Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint -...

31
© Copyright Ned Mohan 2001 1 Ned Mohan Oscar A. Schott Professor of Power Electronics and Systems Department of Electrical and Computer Engineering University of Minnesota Minneapolis, MN 55455 USA Advanced Course on Electric Drives © Copyright Ned Mohan 2001 2 Chapter 1 Introduction to Advanced Electric Drives 3 Graduate Course in Electric Drives Objectives: Basics to Advanced Topics in 2 Semesters Seamless Continuation of the First Course Topics: Dynamic Modeling and Control Approach/Tools dq-Windings based Analysis Design Examples Using Simulink Verification in the Hardware Lab using dSPACE © Copyright Ned Mohan 2001 4 Topics (Lectures) 1. Introduction to Advanced Electric Drive Systems (2) 2. Induction Machine Equations in Phase Quantities: Assisted by Space Vectors (5) 3. Dynamic Analysis of Ind. Mach. in terms of dq-Windings (7) 4. Vector Control of IM Drives: A Qual. Examination (4) 5. Mathematical Description of Vector Control (5) 6. Detuning Effects in Induction Motor Vector Control (3) 7. Space Vector PWM (SV-PWM) Inverters (3) 8. Direct Torque Control (DTC) and Encoder-Less Operation of Induction Motor Drives (5) 9. Vector Control of Perm-Magnet Syn. Motor Drives (3) 10. Switched-Reluctance Motor (SRM) Drives (3)

Transcript of Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint -...

Page 1: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 1

Ned Mohan Oscar A. Schott Professor of Power Electronics and Systems Department of Electrical and Computer Engineering University of Minnesota Minneapolis, MN 55455 USA

Advanced Course onElectric Drives

© Copyright Ned Mohan 2001 2

Chapter 1

Introduction to Advanced Electric Drives

3

Graduate Course in Electric Drives

Objectives:Basics to Advanced Topics in 2 SemestersSeamless Continuation of the First CourseTopics: Dynamic Modeling and ControlApproach/Tools

dq-Windings based AnalysisDesign Examples Using SimulinkVerification in the Hardware Lab using dSPACE

© Copyright Ned Mohan 2001 4

Topics (Lectures)1. Introduction to Advanced Electric Drive Systems (2)2. Induction Machine Equations in Phase Quantities: Assisted by Space

Vectors (5)3. Dynamic Analysis of Ind. Mach. in terms of dq-Windings (7)4. Vector Control of IM Drives: A Qual. Examination (4)5. Mathematical Description of Vector Control (5)6. Detuning Effects in Induction Motor Vector Control (3)7. Space Vector PWM (SV-PWM) Inverters (3)8. Direct Torque Control (DTC) and Encoder-Less Operation of

Induction Motor Drives (5)9. Vector Control of Perm-Magnet Syn. Motor Drives (3)10. Switched-Reluctance Motor (SRM) Drives (3)

Page 2: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 5

Continuation of Topics Discussed in the First Course

Switch-Mode Converters Average RepresentationMagnetics – TransformersFeedback Controller DesignSpace Vector Representation for AC MachinesBasic Calculations for Electromagnetic TorquePMAC Drives – Space Vector Based Steady State OperationInduction Motor Drives – Space Vector based Steady State Analysis

© Copyright Ned Mohan 2001 6

Design ExamplesInduction Machine Initially Operating in Steady state

Load Torque Disturbance at t=0.1 sControl Objective is to keep Speed Constant (design speed loop with a bandwidth of 25 rad/s and a phase margin of 60 degrees)

Permanent Magnet AC (PMAC) DrivesSwitched-Reluctance Motor (SRM) Drives

© Copyright Ned Mohan 2001 7

“TEST” INDUCTION MOTORNameplate Data:Power: 3 HP/2.4 kWVoltage: 460 V (L-L, rms)Frequency: 60 HzPhases: 3Full Load Current: 4 AFull-Load Speed: 1750 RPMFull-Load Efficiency: 88.5 %Power Factor: 80.0 %Number of Poles: 4

Per-Phase Motor Circuit Parameters:

2

1.77 , 1.34 , 5.25 (at 60 Hz)4.57 (at 60 Hz), 139.0 (at 60 Hz)

Full-Load Slip = 1.72 %, 0.025

s r s

r m

eq

R R XX X

J kg m

= Ω = Ω = Ω= Ω = Ω

= ⋅© Copyright Ned Mohan 2001 8

Chapter 2

Induction Machine Equations in Phase Quantities:

Assisted by Space Vectors

Page 3: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

9

c axis

a axis

b axis

i c

i b

i a

θ

magneticaxis of phase a

ia

θ=0

′4′3

′2

′1

7

65 4 3

2

1

′7

′6

′5

θ π=

(a) (b)

Figure 2-1 Stator windings.

Sinusoidally-Distributed Stator Windings

(1) ( ) sin2s

sNn θ θ= 0 θ π≤ ≤

(2) ( ) i cossa a

g

NHp

θ θ= ( )(4) ( ) ( ) i coso sa o a a

g

NB Hp

µθ µ θ θ= =

( ) ( )(3) i cossa g a a

NF Hp

θ θ θ= =

© Copyright Ned Mohan 2001 10

Figure 2-2 Three-phase windings.

a'a

b

'b

c

'c

ai

bi

ci

axisa −

axisb−

axisc −/j4 3e π

/j2 3e π

j0e

θb

bi

ai

cic

a

(a) (b)

Three-Phase Sinusoidally-Distributed Windings

© Copyright Ned Mohan 2001 11

n

b

c

a

ia

a ax is−

ia

ia

r

leak age

m agn etiz in g

(a)

(b)Figure 2-3 Single-phase magnetizing inductance and leakage

inductance.

Single-Phase Magnetizing Inductance ,1m phaseL −

,,

,1

,(1) a leakagea as self

a a ai onlyaL Ls m phase

magnetizingLi i i

λλ λ

= = +

, ,1(2) s self s m phaseL L L −= +

2,1(3) ( )o sm phase

g

r NLp

πµ− =

© Copyright Ned Mohan 2001 12

n

b

c

a

ia

λ b

Figure 2-4 Mutual inductance .

Stator Mutual Inductance mutualL

0,,

(1) bmutual

a i i rotor openb c

Liλ

==

,11(3)2mutual m phaseL L −= −

, ,(2) cos(120 )ob duetoi a magnetizing dueto ia aλ λ=

Page 4: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 13

a axis−

b axis−

c axis−

θm

ia

ib

ic

iA

iC

iB

A axis−

B axis−

C axis−

ωm

( )a

ia

ib

ic

−− +

+

+

va

vb

vc

Rs

−−

+

+

vA = 0

vB = 0

vC = 0

RriA

iB

iC

Stator circuit Rotor circuit

( )b

− +

Figure 2-5 Rotor circuit represented by three-phase windings.

(b)

Equivalent Windings in A Squirrel-Cage Rotor

,13(2)2m m phaseL L −=

23(3) ( )2

o sm

g

r NLp

πµ=

(4) s s mL L L= +

(1) ( ) ( ) ( ) 0A B Ci t i t i t+ + =

(1) ( ) ( ) ( ) 0a b ci t i t i t+ + =

,13(2)2m m phaseL L −=

(3) r r mL L L= +

,1(4) cosaA m phase mL L θ−= ⋅

Stator

Rotor

© Copyright Ned Mohan 2001 14

( )sF t( )

sF tθ

( )aF t( )bF t

( )cF t

axisc −

axisb −

axisa −

ci = −

bi =−

ai = +

( )aF t

( )bF t

( )cF t

axisc −

axisb −

axisa −

(a) (b)

Figure 2-6 Space vector representation of mmf.

Review of Space Vectors

( ) ( ) ( ) ( )a a a as a b cF t F t F t F t= + +

© Copyright Ned Mohan 2001 15

Figure 2-7 Physical interpretation of stator current space vector.

a'a

b'b

c

'cai

bi

ci

axisa −

axisb−

axisc −

/j4 3e π

/j2 3e π

j0e

sI

at time tmagnetic axis of hypothetical winding

ˆwith current sI

axisa −

(a) (b)

si

Physical Interpretation of Current Space Vector

( )0 2 / 3 4 / 3 ˆ(1) ( ) ( ) ( ) ( ) ( )j tia j j j ss a b c si t i t e i t e i t e I t eθπ π= + + =

(2) ( ) ( / ) ( )a as s sF t N p i t=

© Copyright Ned Mohan 2001 16

( )0 2 / 3 4 / 3 ˆ( ) ( ) ( ) ( ) ( )j tva j j j ss a b c sv t v t e v t e v t e V t eθπ π= + + =

( )0 2 / 3 4 / 3 ˆ( ) ( ) ( ) ( ) ( )j ta j j j ss a b c st t e t e t e t eθλπ πλ λ λ λ λ= + + =

Voltage and Flux-Linkage Space Vectors

Page 5: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 17

Figure 2-8 Relationship between space vector and phasor in sinusoidal steady state.

ˆa js si I e α−=

@ t 0=

(b)

axisa −αα

ref

ˆa aI I α= ∠ −

(a)

Relationship between space vector and phasor in sinusoidal steady state

0

32

as ati I

== 3ˆ ˆ

2s aI I=

© Copyright Ned Mohan 2001 18

i a

ib

ic+−vc

+−vb

+− va

λ a t( )

λ b t( )

λ c t( )

a axis−

c axis−

b axis−

e j0

e j4 3π/

e j2 3π/ i s s,i

s s,i

B

Fs

s

,, λ

at time t' '

Figure 2-9 All stator space vectors are collinear (Rotor open-circuited).

All stator space vectors are collinear (Rotor open-circuited)

,due to leakage flux due to magnetizing flux

( ) ( ) ( ) ( )a a a as s m s s ss is

t L i t L i t L i tλ = + =

© Copyright Ned Mohan 2001 19

a axis−

b axis−

c axis−

θm

iA

iC

iB

A axis−

B axis−

C axis−

ωm

,

, ,

, Br r irFr r ir

i

λat time t' '

Figure 2-10 All rotor space vectors are collinear (Stator open-circuited).

a axis−

b axis−

c axis−

θm

iA

iC

iB

A axis−

B axis−

C axis−

ωm

,

, ,

, Br r irFr r ir

i

λat time t' '

Figure 2-10 All rotor space vectors are collinear (Stator open-circuited).

All rotor space vectors are collinear (Stator open-circuited)

,due to leakage flux due to magnetizing flux

( ) ( ) ( ) ( )A A A Ar r m r r rr ir

t L i t L i t L i tλ = + =

© Copyright Ned Mohan 2001 20

Making the case for dq-axis analysis

(3) ( ) ( ) ( ) ja a A ms s s m rt L i t L i t e θλ = +

(2) ( ) ( ) ja A mr ri t i t e θ=

a axis−

b axis−

c axis−

θm

ia

ib

ic

iA

iC

iB

A axis−

B axis−

C axis−

ωm

( )a

ia

ib

ic

−− +

+

+

va

vb

vc

Rs

−−

+

+

vA = 0

vB = 0

vC = 0

RriA

iB

iC

Stator circuit Rotor circuit

( )b

− +

Figure 2-5 Rotor circuit represented by three-phase windings.

(b)

(1) ( ) ( )a a as s s m rt L i t L iλ = +

(4) ( ) ( ) ( )a a as s s s

dv t R i t tdt

λ= +

Page 6: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 21

Chapter 3

Dynamic Analysis of Induction Machines in Terms of dq-Windings

© Copyright Ned Mohan 2001 22

Representation of Stator MMF by Equivalent dq Windings

2 / 3 4 / 3(2) ( ) ( ) ( ) ( )a j js a b ci t i t i t e i t eπ π= + +

(3) ( ) ( )a ass s

NF t i tp

=

( )3/ 2(4) ds ssd sq s

N Ni ji ip p

+ =

( ) 2(5)3d

sd sq si ji i+ =

2,1

,1

(1) winding magnetizing inductance =( 3 / 2)

(3 / 2)

(using Eq. 2-12)

m phase

m phase

m

dq L

L

L

−=

=

axisa −

axisb −

axisc −

si

ai

bi

ci

at t

axisa −

axisb −

axisc −

si

at t

axisd −

axisq −

sdi

sqi

axisa −

axisb −

axisc −

si

at t

axisd −

axisq −

projection

projectionsq2i3

= ×projection

projectionsd2i3

= ×

(a)

(b) (c)

3

2 sN

Figure 3-1 Representation of stator mmf by equivalent dq winding currents.

daθ daθ

© Copyright Ned Mohan 2001 23

Representation of Rotor MMF by Equivalent dq Windings

2 / 3 4 / 3( ) ( ) ( ) ( )A j jr A B Ci t i t i t e i t eπ π= + +

( )( )/

AA rr

s

F ti tN p

=

Figure 3-2 Representation of rotor mmf by equivalent dq winding currents.

Ai

dAθrqi

a axis−

dωd axis−

q axis−

B axis− A axis−mω

daθ mθ

ri

••

rdi

projection2 projection3rqi = ×

projection2 projection3rdi = ×

© Copyright Ned Mohan 2001 24

a axis−stator

A axis−rotor

d axis−

ωm

isd

isq

q axis−at t

i rq

ird

θm

is

ir

32

isd

32

isq

32

irq 32

ird

daθ

dAθ

32 sN

32 sN

32 sN

Figure 3-3 Stator and rotor mmf representation by equivalent dq winding currents.

a axis−a axis−stator

A axis−A axis−rotor

d axis−d axis−

ωmωm

isdisd

isqisq

q axis−q axis−at tat t

i rqi rq

irdird

θmθm

isis

irir

32

isd32

isd

32

isq32

isq

32

irq32

irq 32

ird32

ird

daθ

dAθ

32 sN

32 sN

32 sN

Figure 3-3 Stator and rotor mmf representation by equivalent dq winding currents.

Figure 3-3 Stator and rotor representation by equivalent dq winding currents. The dq winding voltages are defined as positive at the dotted terminals. Note that the relative positions of the stator and the rotor current space vectors are not actual, rather only for definition purposes.

Mutual Inductance between dq Windings on the Stator and the Rotor

sd s sd m rdL i L iλ = +

sq s sq m rqL i L iλ = +

rd r rd m sdL i L iλ = +

rq r rq m sqL i L iλ = +

Page 7: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 25

Figure 3-4 Transformation of phase quantities into dq winding quantities.

[ ]abc dqsT →

aibi

ci

sdi

sqi

(a) stator

[ ]ABC dqrT →

Ai

Bi

Ci

rdi

rqi

(b) rotordaθ dAθ

Figure 3-4 Transformation of phase quantities into dq winding quantities.

[ ]abc dqsT →

aibi

ci

sdi

sqi

(a) stator

[ ]ABC dqrT →

Ai

Bi

Ci

rdi

rqi

(b) rotordaθ dAθ

[ ]abc dqsT →

aibi

ci

sdi

sqi

(a) stator

[ ]ABC dqrT →

Ai

Bi

Ci

rdi

rqi

(b) rotordaθ dAθ

[ ]

2 4 ( )cos( ) cos( ) cos( )( ) 2 3 3 ( )( ) 2 43 sin( ) sin( ) sin( ) ( )

3 3

ada da dasdb

sqda da da c

Ts abc dq

i ti t

i ti t

i t

π πθ θ θ

π πθ θ θ

− − = − − − − − [ ]

2 4 ( )cos( ) cos( ) cos( )( ) 2 3 3 ( )( ) 2 43 sin( ) sin( ) sin( ) ( )

3 3

AdA dA dArdB

rqdA dA dA C

Tr ABC dq

i ti t

i ti t

i t

π πθ θ θ

π πθ θ θ

− − = − − − − −

Mathematical Relationship between dq and phase Winding Variables

© Copyright Ned Mohan 2001 26

-axisa

-axisd

-axisα

-axisβ

daθ

i

ii

i

sdisqi

si α

si β- axisq

Figure 3-5 Stator and equivalent windings.dqαβ

(1) s s s sdv R idtα α αλ= +

(2) s s s sdv R idtβ β βλ= +

_ _ _(4) s s s sdv R idt

α α ααβ αβ αβλ= +

_ _(6) ; etc.j das s dqv v e θααβ = ⋅

_(5) ; etc.s dq sd sqv v jv= +

Derivation of Stator Voltages in dq Windings

_(3) ; etc.s s sv v jvααβ α β= +

© Copyright Ned Mohan 2001 27

_ _ _ _(2) s dq s s dq s dq d s dqdv R i jdt

λ ω λ= + +

(3) sd s sd sd d sqdv R idt

λ ω λ= + −

(4) sq s sq sq d sddv R idt

λ ω λ= + +

[M ]rotate

0 1(5)

1 0sd sd sd sd

s dsq sq sq sq

v i dRv i dt

λ λωλ λ

− = + +

Derivation of Stator Voltages in dq Windings (continued)

_ _ _(1) s s s sdv R idt

α α ααβ αβ αβλ= +

© Copyright Ned Mohan 2001 28

-axisa

-axisd

-axisα

-axisβ

daθ

ii i

i

rdirqi

ri α

ri β

- axisq

Figure 3-6 Rotor and equivalent windings.dqαβ

-axisA

dAθ

Derivation of Rotor Voltages in dq Windings

(1) rd r rd rd dA rqdv R idt

λ ω λ= + −

(2) rq r rq rq dA rddv R idt

λ ω λ= + +

(3) dA d mω ω ω= −

(4) ( / 2)m mechpω ω=

[M ]rotate

0 1(5)

1 0rd rd rd rd

r dArq rq rq rq

v i dRv i dtλ λ

ωλ λ −

= + +

Page 8: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 29

[M ]rotate

0 11 0

sd sd sd sds d

sq sq sq sq

v id Rv idt

λ λωλ λ

− = − −

[M ]rotate

0 11 0

rd rd rd rdr dA

rq rq rq rq

v id Rv idt

λ λωλ λ

− = − −

Obtaining Flux Linkages: Voltages as Inputs

[ ]_ _ _ rotate _[ ] [ ] [ ] M [ ]s dq s dq s s dq d s dqd v R idt

λ ω λ= − −

[ ]_ _ _ rotate _[ ] [ ] [ ] M [ ]r dq r dq r r dq dA r dqd v R idt

λ ω λ= − −

_s dqv

_r dqv

_s dqλ

_r dqλ

rotate[M ]

rotate[M ]

1s

1s

sR

rR

dAω

dω×

×

+

+

_s dqddt

λ

_r dqddt

λ

1[ ]M −

Eq. 3-62

dqi

_s dqi

_r dqi

Figure 3-7 Calculating winding flux linkages and currents.dq

© Copyright Ned Mohan 2001 30

a axis−

d axis−q axis−

rqi

rdi

sqi

d

d

add

subtract

due to and sq rqi i

due to rqileakage flux

i

i i

Figure 3-8 Torque on the rotor -axis.d

a axis−

d axis−q axis−

rqi

rdi

sqi

d

d

add

subtract

due to and sq rqi i

due to rqileakage flux

i

i i

a axis−

d axis−q axis−

rqi

rdi

sqi

d

d

add

subtract

due to and sq rqi i

due to rqileakage flux

i

i i

Figure 3-8 Torque on the rotor -axis.d

Electromagnetic Torque on the Rotor d-Axis

0 3/ 2ˆ(1) ( )s rrq sq rq

g m

mmf

N LB i ip L

µ = +

,3 / 2 ˆ(2)

2s

d rotor rq rdNpT r B ip

π

=

20

,3 / 2(3) ( )

2s r

d rotor sq rq rdg m

Np LT r i i ip L

µπ

= +

20

,3(4) ( )

2 2s r

d rotor sq rq rdg m

Lm

Np LT r i i ip L

µπ = +

,(5) ( )2 2d rotor m sq r rq rd rq rd

rq

p pT L i L i i i

λ

λ= + =

© Copyright Ned Mohan 2001 31

rqi

rdi

q

add

subtract

due to and sd rdi i

due to rdileakage flux

q axis−d axis−

a axis−

sdi

q

i i

i

Figure 3-9 Torque on the rotor -axis.q

rqi

rdi

q

add

subtract

due to and sd rdi i

due to rdileakage flux

q axis−d axis−

a axis−

sdi

q

i i

i

rqi

rdi

q

add

subtract

due to and sd rdi i

due to rdileakage flux

q axis−d axis−

a axis−

sdi

q

i i

i

Figure 3-9 Torque on the rotor -axis.q

Electromagnetic Torque on the Rotor q-Axis

, ( )2 2q rotor m sq r rq rq rd rq

rd

p pT L i L i i iλ

λ= − + = −

, ,(1) em d rotor q rotorT T T= +

(2) ( )2em rq rd rd rqpT i iλ λ= −

(3) ( )2em m sq rd sd rqpT L i i i i= −

(4) em Lmech

eq

T Tddt J

ω −=

Net Electromagnetic Torque

© Copyright Ned Mohan 2001 32

Equivalent d and q Axis Equivalent Circuits

( )sd s sd d sq s sd m sd rdd dv R i L i L i idt dt

ω λ= − + + +

( )sq s sq d sd s sq m sq rqd dv R i L i L i idt dt

ω λ= + + + +

0

( )rd r rd dA rq r rd m sd rdd dv R i L i L i idt dt

ω λ=

= − + + +

0

( )rq r rq dA rd r rq m sq rqd dv R i L i L i idt dt

ω λ=

= + + + +

sR

+

+

+

+

−−

− −

sR

sL

sL rL

rL

mL

mL

sdv

sqv

d sdω λ

d sqω λ

sdi

sqi

dA rqω λ

dA rdω λ

rdv

rqv

+

+

sdddt

λ

sqddt

λ

+

+

rdddt

λ

rqddt

λ

(a) -axisd

(b) -axisq

1 2

1 2

1 2

1 2

1

2

1

2

Figure 3-5 -winding equivalent circuits.dq

rdi

rqi

rR

rR

Figure 3-10 dq-winding equivalent circuits.

Page 9: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 33

Figure 3-11 Per-phase equivalent circuit in steady state.

+

(at )ωaV

+

sj Lω

maImaE

raI ′aIsR

rj Lω

rRs

( )m mj L jXω =

AI

Per-Phase Equivalent Circuit

_ _ _(1) s dq s s dq syn s dqv R i jω λ= +

_ _(4) 0 rdq syr n r dq

R i js

ω λ= +

_ _ _ _ _(2) ( )s dq s s dq syn s s dq syn m s dq r dqv R i j L i j L i iω ω= + + +

_ _ _ _(5) 0 ( )rr dq syn r r dq syn m s dq r dq

R i j L i j L i is

ω ω= + + +

(3) ( )a s a syn s a syn m a AV R I j L I j L I Iω ω= + + +

(6) 0 ( )ra syn r A syn m a A

R I j L I j L I Is

ω ω= + + +

© Copyright Ned Mohan 2001 34

Obtaining Currents from Flux Linkages

[ ]

sd s m sd

rd m r rdL

L L iL L i

λλ

=

[ ]

sq sqs m

m rrq rqL

iL LL L i

λλ

=

[ ]

0 00 0

0 00 0

sd sds msq sqs m

m rrd rd

m rrq rqM

iL LiL L

L L iL L i

λλλλ

=

1[ ]

sd sd

sq sq

rd rd

rq rq

ii

Mii

λλλλ

=

© Copyright Ned Mohan 2001 35

Induction Motor Model

_s dqv

_r dqv

_s dqλ

_r dqλ

rotate[M ]

rotate[M ]

1s

1s

sR

rR

dAω

dω×

×

+

+

_s dqddt

λ

_r dqddt

λ

1[ ]M −

Eq. 3-62

dqi

_s dqi

_r dqi

emT

LT

Eq. 3-47

1

eqsJmechω

2p

+

+−

Figure 3-12 Induction motor model in terms of windings.dq

© Copyright Ned Mohan 2001 36

Calculation of Steady State Initial Conditions Using Phasors

ˆ

3ˆ ˆ(0)2

j ia a i s a

Is

I I i I e θθ= ∠ ⇒ =

ˆ

2 2 3 ˆ(0) (0) - = cos( )3 3 2sd s i

Is

i projection of i on d axis I θ = ×

ˆ

2 2 3 ˆ(0) (0) - = sin( )3 3 2sq s i

Is

i projection of i on q axis I θ = ×

Page 10: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 37

(1) sd s sd syn sqv R i ω λ= −

(2) sq s sq syn sdv R i ω λ= +

(3) 0 r rd syn rqR i sω λ= −

(4) 0 r rq syn rdR i sω λ= + [ ]

0

0

000 0

s syn s syn m sdsd

syn s s syn m sqsq

syn m r syn r rd

rqsyn m syn r r

A

R L L ivL R L iv

s L R s L iis L s L R

ω ωω ω

ω ωω ω

− − = − −

[ ] 1

00

sd sd

sq sq

rd

rq

i vi v

Aii

=

Calculation of Steady State Initial Conditions Using Voltage Equations

© Copyright Ned Mohan 2001 38

Simlink-based dq-Axis Simulation of Induction Motor

© Copyright Ned Mohan 2001 39

Simulation Results

© Copyright Ned Mohan 2001 40

Chapter 4

Vector Control of Induction-Motor Drives: A Qualitative Examination

Page 11: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 41

DC Motor Drive

aS

SN

aNemT

PPU

+

− aeav

aL

aR

ai

+

ai

0

0

t

em T aT k i=emT

t

Tem = kT ia

© Copyright Ned Mohan 2001 42

Brushless DC Motor Drive

( )rB t

( )si t

o90 NS axisa −

sI

0

0

em T sT k I=emT

t

ˆ em T ST k I=

© Copyright Ned Mohan 2001 43

Vector-Controlled Induction Motor Drive

axisa −'( )ri t

'( )rF t( )rB t

( )rF t

( )msB t( )lrB t

( )sv t

speed feedback

currentfeedback

Tacho

IMPPU

( ) perpendicuar to ( ) and ( )r r rB t F t F t′'ˆ ˆ (keeping constant)em T r rT k I B=

© Copyright Ned Mohan 2001 44

Analogy to a Current-Excited Transformer With a Shorted Secondary

, 2m iφ , 1m iφ

1i l2φ

N:N

shown explicitly2R

short

net = 0

2v 0=2R

2i

0 t1i

+ -2 2(0 ) = (0 ) = 0λ λ

1 2

+ + +m,i m,i 2(0 ) = (0 ) + (0 )φ φ φ

+ +m2 1

2

Li (0 ) = i (0 )L

Page 12: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 45

Analogy to a Current-Excited Transformer With a Shorted

Secondary

2 12

(0 ) (0 )mLi iL

+ +=

22 2( ) (0 ) ti t i e τ−+=

22

2

LR

τ =

φmi, 2 φmi, 1

i1 i1

i2

N1 N2

net =0

R2φ2

∴ = +φ φ φmi mi, ,1 2 2

0 t

t = +0

short

R shown licitly2 exp

( )a

i2

−+

+Lm

L2

+

e2

Nddt

L didt

φ2

2

2=

Nd

dtL di

dtmi

mφ , 2 2=

Noted

dtmi: ,φ

1 0=

t >0

( )b

0

0i2

i1

t

t

LL

im

21 0+d i

( )c

Figure 4-5 Analogy of A Current-Excited Transformer with a Short-Circuited Secondary;

0

1 2N N=

2 2mL L L= +

© Copyright Ned Mohan 2001 46

R1 R2i2

i2

00 tt im

i1i1

L1

L2

Lm

N N N1 2= =

Figure 4-6 Equivalent-Circuit Representation of the Current-Excited Transformer with a Short-Circuited Secondary.

Using the Transformer Equivalent Circuit

2 1 12 2

(0 ) (0 ) (0 )m m

m

L Li i iL L L

+ + += =+

2 21 1

2 2(0 ) (0 ) (0 )m

m

L Li i iL L L

+ + += =+

22 2( ) (0 ) ti t i e τ−+=

© Copyright Ned Mohan 2001 47

d- and q- Axis Winding Representation

sd s

2i = the projection of i (t) vector along the d-axis3

sq s

2i = the projection of i (t) vector along the q-axis3

a axis−stator

A axis−rotor

d axis−

ωm

isd

isq

q axis−at t

i rq

ird

θm

is

ir

32

isd

32

isq

32

irq 32

ird

daθ

dAθ

32 sN

32 sN

32 sN

Figure 3-3 Stator and rotor mmf representation by equivalent dq winding currents.

a axis−a axis−stator

A axis−A axis−rotor

d axis−d axis−

ωmωm

isdisd

isqisq

q axis−q axis−at tat t

i rqi rq

irdird

θmθm

isis

irir

32

isd32

isd

32

isq32

isq

32

irq32

irq 32

ird32

ird

daθ

dAθ

32 sN

32 sN

32 sN

Figure 3-3 Stator and rotor mmf representation by equivalent dq winding currents.

Figure 3-3 Stator and rotor representation by equivalent dq winding currents. The dq winding voltages are defined as positive at the dotted terminals. Note that the relative positions of the stator and the rotor current space vectors are not actual, rather only for definition purposes.

© Copyright Ned Mohan 2001 48

Initial Flux Buildup Prior to axisq −

axisd −

sqi 0=

sdi

t−∞ 0

, sdm iφ

si

rB

t 0−=

sdi

- - -a m,rated b c m,rated

1ˆ ˆi (0 ) = I and i (0 ) = i (0 ) = - I2

-sd ms,rated m,rated m,rated

2 2 3 3ˆ ˆ ˆi (0 ) = I = ( I ) = I3 3 2 2

sqi = 0

-t = 0

Page 13: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 49

Step Change in Torque at m 0ω = +=t 0

rB sdi

net = 0

axisa −

slipωlrφ

, rm iφ, sqm iφ

slipω

sqi sqi

sdi

0−∞ t

ωm = 0isd unchangedStep-change in isq

Φq,net = 0sq r

+ + +m,i m,i r(0 ) = (0 ) + (0 )φ φ φ

mem r sq

r

LˆT α B , iL

-t = 0

© Copyright Ned Mohan 2001 50

Flux Densities at +t = 0

rB

t 0+=

lrBmsB

axisa −

© Copyright Ned Mohan 2001 51

Transformer Analogy –Voltage Needed to Prevent the Decay of Secondary Current

+

2i′

( ) ( )2 2 2v R i 0 u t+′ ′ ′=

2R′

mimL

l2L′l1L

( )1i u t⋅

1R t 0>

© Copyright Ned Mohan 2001 52

Currents and Fluxes at Sometime Later t > 0, Blocked Rotor

m 0ω =

t 0>

rBsdi

net = 0

axisa −

slipωlrφ

, rm iφ, sqm iφsqi

slipω

sqi

axisd −

axisq −

r m r sqslip

r

R , (L /L )i

Bω α

Page 14: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 53

Vector-Controlled Condition With a Rotor Speed ωm

t 0>

rBsdi

net = 0

axisa −

synωlrφ

, rm iφ, sqm iφsqi

synω

sqi

axisd −

axisq −

syn m slipω = ω + ω© Copyright Ned Mohan 2001 54

Torque, Speed, and Position Control

(measured)/d dt

encoder

Motor

PPUregulated current

to abcdq

to dqabc

*ai*bi*ci

aibici

sdisqi

emTˆrB

rBθcalculations

mθmω

(measured)mθ mω emT

(measured) (calculated)

P PI PI

∑∑ ∑

−−+ +

−+

+ PImω(measured)

*ˆrB

ˆrB

ˆrB (calculated)

*sdi

*sqi

*mθ *

mω *emT

(measured)mωmotor mathematical model

syn m slipω (t) = ω (t) + ω (t)

r

t

B syn0θ (t) = 0 + ω (τ) dτ∫ ⋅

© Copyright Ned Mohan 2001 55

Figure 4-14 (a) Block diagram representation of hysteresis current control; (b) current waveform.

T

1k

*sI

*emT

*( )ai t*( )bi t*( )ci t

Σ ( )Aq t

phasea

( )ai t

dV+−

( )m tθ

+

(a)

(b)

reference current

actual current

t0

.From Eq 10 6−

using Eqs. 10-11 and 10-12

Power-Processing Unit (PPU)

© Copyright Ned Mohan 2001 56

Chapter 5

Mathematical Description of Vector Control

Page 15: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 57

a axis−stator

A axis−rotor

d axis−

ωm

isd

isq

q axis−at t

i rq

ird

θm

is

ir

32

isd

32

isq

32

irq 32

ird

daθ

dAθ

32 sN

32 sN

32 sN

Figure 3-3 Stator and rotor mmf representation by equivalent dq winding currents.

a axis−a axis−stator

A axis−A axis−rotor

d axis−d axis−

ωmωm

isdisd

isqisq

q axis−q axis−at tat t

i rqi rq

irdird

θmθm

isis

irir

32

isd32

isd

32

isq32

isq

32

irq32

irq 32

ird32

ird

daθ

dAθ

32 sN

32 sN

32 sN

Figure 3-3 Stator and rotor mmf representation by equivalent dq winding currents.

Figure 5-1 Stator and rotor mmf representation by equivalent dq winding currents. The d-axis is aligned with rλ .

Motor Model with the d-Axis Aligned with the Rotor Flux Linkage Axis

( ) 0rq tλ = mrq sq

r

Li iL

= −( ) 0rqd tdt

λ =

© Copyright Ned Mohan 2001 58

sR

+

+

+

+

−−

− −

sR

sL

sL rL

rL

mL

mL

sdv

sqv

d sdω λ

d sqω λ

sdi

sqidA rdω λ

0rdv =

0rqv =

+

+

sdddt

λ

sqddt

λ

+

+

rdddt

λ

0rqddt

λ =

(a) -axisd

(b) -axisq

rdi

rqi

rR

rR

+

rqi

Figure 5-2 Dynamic circuits with the d-axis aligned with rλ .

Dynamic Circuits with the d-Axis Aligned with the Rotor Flux Linkage Axis

Calculation of :dAωrq m

dA r sqrd r rd

i LR iωλ τ λ

= − =

Calculation of Torque

2 2m

em rd rq rd sqr

Lp pT i iL

λ λ = − =

:emT

© Copyright Ned Mohan 2001 59

rL

mLsdi

+

rdddt

λ rdi

rR

Figure 5-3 The d-axis circuit simplified with a current excitation.

D-Axis Rotor Flux Dynamics

(1) ( ) ( )mrd sd

r r

sLi s i sR sL

= −+

(2) rd r rd m sdL i L iλ = +

(3) ( ) ( )(1 )

mrd sd

r

Ls i ss

λτ

=+

(4) rd mrd sd

r r

Ld idt

λλτ τ

+ =

© Copyright Ned Mohan 2001 60

Motor Model

0( ) 0 ( )

tda dt dθ ω τ τ= + ∫

rFigure 5-4 Motor model with d-axis aligned with .λ

rdλrdλ1m

r

Lsτ+

DN

N/D1/ sdaθ

emTmω

mechω

dω dAωmL

sqi

sdi

2m

r

Lp

L⋅

2

p

rdλ

×

++

Page 16: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 61

Simulation with d-Axis Aligned with the Rotor Flux Linkage (line-fed machine; achieving vector control is not an objective)

© Copyright Ned Mohan 2001 62

Figure 5-6 Results of Example 5-1.

Simulation Results match that of Example 3-3

© Copyright Ned Mohan 2001 63

Vector-Controlled Induction Motor with a CR-PWM Inverter

Figure 5-7 Vector-controlled induction motor with a CR-PWM Inverter.

emT

isd*

isq*

ia*

ib*

ic*

Current −Regulated

PPU

Motor

( )mech measuredωmechθ

mod elMotor

of Fig.49

sdi

sqi

iaibic

Encoder

Transformations

Transformations

ddt

Eq. 107

Eq. 103

Motor Model(Fig. 5-4)

abctodq

dqtoabc

rdλ

daθ

daθ

© Copyright Ned Mohan 2001 64

Speed and Position Loops for Vector Control

Figure 5-8 Vector controlled induction motor drive with a current-regulated PPU.

(measured)/d dt

Motor

PPUregulated current

to abcdq

to dqabc

*ai*bi*ci

aibici

sdi

sqiemTrdλdaθ

Fig. 5-4

mechθmechω

(measured)

mechθ mechω emT

(calculated)

P PI PI

∑∑ ∑

−−+ +

−+

+ PImechω *

rdλ*rdλ

mechω

rdλ (calculated)

*sdi

*sqi

*mechθ

*mechω *

emT

(measured)

daθ

mechωEstimated Motor Model

Page 17: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 65

Design of Speed Loop

rd m sdL iλ =

2*

2m

em sd sqrk

LpT i iL

=

∑+

mechωk

( )sqi si

pkks

+ 1

eqsJ

*mechω emT

© Copyright Ned Mohan 2001 66

Simulation of CR-PWM Vector Controlled Drive using Simulink

© Copyright Ned Mohan 2001 67

Figure 5-11 Simulation results of Example 5-2.

Simulation Results of a Vector Controlled Induction Motor Drive

© Copyright Ned Mohan 2001 68

Calculation of Stator Voltages in Vector Control

2(1) 1 m

s r

LL L

σ = −

(2) msd s sd rd

r

LL iL

λ σ λ= +

(3) sq s sqL iλ σ=,

(5) msq s sq s sq d rd d s sd

rvsq vsq comp

Ldv R i L i L idt L

σ ω λ ω σ

= + + +

Figure 5-12 Vector control with applied voltages.

isd*

isq*

PI

PI

∑ ∑

∑+

+

++

+

+

isd

isq

ia

ic

ib

va*

vb*

vc*

Motorvsd*

vsq*

Transformations

M o to rM o d e l

isd

isq

Encodermechθ( )mech measuredω

Transformations

Modulated

SpaceVector

PPU

rdλemT

daθ

daθ

,sd compv

,sq compv

sdv′

sqv′

,

(4) msd s sd s sd rd d s sq

rvsd vsd comp

Ld dv R i L i L idt L dt

σ λ ω σ

= + + −

Page 18: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 69

Figure 5-13 Design of the current-loop controller.

∑+−

( )sdi s( )sdv s′* ( )sdi sPI

1

s sR s Lσ+

Design of the Current-Loop Controller

(1) sd s sd s sddv R i L idt

σ′ = +

(2) sq s sq s sqdv R i L idt

σ′ = +

1(3) ( ) ( )sd sds s

i s v sR s Lσ

′=+

1(4) ( ) ( )sq sqs s

i s v sR s Lσ

′=+

© Copyright Ned Mohan 2001 70

Simulation of Vector Controlled Drive with supplied Voltages

© Copyright Ned Mohan 2001 71

Figure 5-15 Simulation results of Example 5-3.

Simulation Results of Vector Controlled Drive with supplied Voltages

© Copyright Ned Mohan 2001 72

Chapter 6

Detuning Effects in Induction Motor Vector Control

Page 19: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 73

sdi

0sqi =

rλ-axisa-axisd

-axisq

0t −=

-Figure 6-1 windings at 0 .dq t =

Initial conditions

0t −=*

sd sdi i=

, 0da da estθ θ= =

© Copyright Ned Mohan 2001 74

-axisd

-axisestd

-axisa

-axisq

-axisestq

_s dqi

sdi

*sdi

*sqi

sqi

sdi

*sdi

*sqi

sqi

,da estθdaθ

0t >

Figure 6-2 windings at 0; drawn for 1.dq t kτ> <

-axisd

-axisestd

-axisa

-axisq

-axisestq

_s dqi

sdi

*sdi

*sqi

sqi

sdi

*sdi

*sqi

sqi

,da estθdaθ

0t >

-axisd

-axisestd

-axisa

-axisq

-axisestq

_s dqi

sdi

*sdi

*sqi

sqi

sdi

*sdi

*sqi

sqi

,da estθdaθ

0t >

Figure 6-2 windings at 0; drawn for 1.dq t kτ> <

Effect of Detuning due to Incorrect Rotor Time Constant

,(1) r

r estkτ

ττ

=

( ) ( ), ,,_ _ _(3) j jd d est d estda da est errs dq s dq s dqi i e i eθ θ θ− − −= =

,(4) err da da estθ θ θ= −, * *_(2) d est

sd sqs dqi i ji= +

© Copyright Ned Mohan 2001 75

* *(3) cos sinsd sd err sq erri i iθ θ= +

* *(4) cos sinsq sq err sd erri i iθ θ= −

-axisd

-axisestd

-axisa

-axisq

-axisestq

_s dqi

sdi

*sdi

*sqi

sqi

sdi

*sdi

*sqi

sqi

,da estθdaθ

0t >

Figure 6-2 windings at 0; drawn for 1.dq t kτ> <

-axisd

-axisestd

-axisa

-axisq

-axisestq

_s dqi

sdi

*sdi

*sqi

sqi

sdi

*sdi

*sqi

sqi

,da estθdaθ

0t >

-axisd

-axisestd

-axisa

-axisq

-axisestq

_s dqi

sdi

*sdi

*sqi

sqi

sdi

*sdi

*sqi

sqi

,da estθdaθ

0t >

Figure 6-2 windings at 0; drawn for 1.dq t kτ> <

Effect of Detuning due to Incorrect Rotor Time Constant (continued)

( ) ( ), ,,_ _ _(1) j jd d est d estda da est errs dq s dq s dqi i e i eθ θ θ− − −= =

,err da da estθ θ θ= −

, * *_(2) d est

sd sqs dqi i ji= +

© Copyright Ned Mohan 2001 76

Estimated Motor Model (Rotor Blocked)

*sdi

*sqi

dqtoabc

CR-PWMInv.

*ai

*bi

*ci

ai

bi

ci

abctodq

sdi

sqi

1m

r

Lsτ+

mL

DN ND

dAω 1s

dAθ

rdλ

,rd estλ,1

m

r est

Lsτ+

,r estτ

,dA estθ

,dA estθ

abctodq

mLN

D,dA estω

ND

1s

*,sd est sdi i=

*,sq est sqi i=

(ideal)

Estimated Motor Model(Rotor Flux and Slip Estimator)

Actual Motor Model

Figure 6-3 Actual and the estimated motor models (blocked-rotor).

Page 20: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 77

Simulation of Vector Control with Estimated Motor Parameters

© Copyright Ned Mohan 2001 78

Figure 6-5 Simulation results of Example 6-1.

Effect of Detuning in Dynamic and Steady States

© Copyright Ned Mohan 2001 79

-axisd

-axisestd

-axisa

-axisq-axisestq _s dqi

sdi

*sdi

sqi

*sqi

daθ ,da estθ

0t >

Figure 6-6 windings at 0; drawn for 1.dq t kτ> <

,i estsθ

isθ

Calculations of Steady State Errors

1 sqdA

r sd

ii

ωτ

=

*

, *1

,sq

dA estsd

i

ir estω

τ=

*

*,

,

1 1sq sq

r est r sdsddAdA est

i iii

ωω

τ τ=

2 22 2 * *_ˆsd sq sd sq s dqi i i i I+ = + =

© Copyright Ned Mohan 2001 80

-axisd

-axisestd

-axisa

-axisq-axisestq _s dqi

sdi

*sdi

sqi

*sqi

daθ ,da estθ

0t >

Figure 6-6 windings at 0; drawn for 1.dq t kτ> <

,i estsθ

isθ

Calculations of Steady State Errors (continued) *

*sq

sd

im

i=

2

* 2 21

1sd

sd

i mi k mτ

+=+ ⋅

* *sq sd

sq sd

i iki i

τ=

1 1tan ( ) tan ( )err m k mτθ − −= − ⋅

,err i est is sθ θ θ= −

2

* 21

1 ( )em

em

T mkT k m

ττ

+=+ ⋅

Page 21: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 81

Chapter 7

Space-Vector Pulse-Width-Modulated (SV-PWM) Inverters

Advantages

• Full Utilization of the DC Bus Voltage

• Same simplicity as the Carrier-Modulated PWM

• Applicable in Vector Control, DTC and V/f Control

© Copyright Ned Mohan 2001 82

Synthesis of Stator Voltage Space Vector

Figure 7-1 Switch-mode inverter.

aq bq cq

+

dV

ab

c

N

+−av

bv+

cv +

ai

bi

ci

0 2 / 3 4 / 3(1) ( ) ( ) ( ) ( )a j j js a b cv t v t e v t e v t eπ π= + +

(2) ; ;a aN N b bN N c cN Nv v v v v v v v v= + = + = +

0 2 / 3 4 / 3(3) 0j j je e eπ π+ + =

0 2 / 3 4 / 3(4) ( )a j j js aN bN cNv t v e v e v eπ π= + +

0 2 / 3 4 / 3(5) ( ) ( )a j j js d a b cv t V q e q e q eπ π= + +

© Copyright Ned Mohan 2001 83

0 7Figure 7-2 Basic voltage vectors ( and not shown).v v

-axisa

sv

1(001)v

3(011)v2(010)v

6(110)v

4(100)v5(101)v

sector 1

sector 2

sector 3

sector 4

sector 5

sector 6

Basic Voltage Vectors

00

12 / 3

2/ 3

34 / 3

45 / 3

5

6

7

(000) 0

(001)

(010)

(011)

(100)

(101)

(110)

(111) 0

asa js da js da js da js da js da js das

v v

v v V e

v v V e

v v V e

v v V e

v v V e

v v V e

v v

π

π

π

π

π

= =

= =

= =

= =

= =

= =

= =

= =

© Copyright Ned Mohan 2001 84

Synthesis of Voltage Vector in Sector 1

01

jdv V e=

/ 33

jdv V e π=

ˆ j ss sv V e θ=

1xv

3yv

Figure 7-3 Voltage vector in sector 1.

1 31(1) [ 0]a

s s s ss

v xT v yT v zTT

= + + ⋅

1 3(2) asv xv yv= +

(3) 1x y z+ + =

0 / 3ˆ(4) j j jss d dV e xV e yV eθ π= +

Page 22: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 85

Synthesis using Carrier-Modulated PWM

0 7Figure 7-4 Waveforms in sector 1; .z z z= +

sT

/ 2sT7z

0 / 2z 0 / 2z

/ 2y/ 2y

/ 2x / 2xaNv

bNv

cNv

0

0

0

dV

dV

dV

0

,control avtriv

,control bv

,control cv

,

,

,

ˆ / 2

ˆ / 2

ˆ / 2

control a a k

dtri

control b b k

dtri

control c c k

dtri

v v vVV

v v vVV

v v vVV

−=

−=

−=

max( , , ) min( , , )2

a b c a b ck

v v v v v vv +=

( ) ( ) ( ) 0a b cv t v t v t+ + =

© Copyright Ned Mohan 2001 86

Synthesis of Space Vector using Carrier-Modulated PWM in Simulink

© Copyright Ned Mohan 2001 87

Figure 7-6 Simulation results of Example 7-1.

Control Waveforms for Carrier Pulse-Width-Modulation

© Copyright Ned Mohan 2001 88

Limit on the Amplitude of the Stator Voltage Space Vector

,max,max

ˆ(4) ( ) 3 0.707

2 2phase d

LL dV VV rms V= = =

,max3(5) ( ) 0.612

2 2LL d dV rms V V= = (sinusoidal PWM)

030,maxsV

dV

dV

ˆFigure 7-7 Limit on amplitude .sV

,max ,maxˆ(1) ( ) j ta syns sv t V e ω=

0,max

60 3ˆ(2) cos( )2 2s d dV V V= =

,max ,max2ˆ ˆ(3)3 3

dphase s

VV V= =

Page 23: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 89

Chapter 8

Direct Torque Control (DTC) and Encoder-less Operation of Induction

Motors

© Copyright Ned Mohan 2001 90

DTC System Overview

Measured Inputs: Stator Voltages and Currents

Estimated Outputs: 1) Torque, 2) Mechanical Speed, 3) Stator Flux Amplitude and 4) its angle

+−dV aq

bq

cq

aibici

IM

∑ ∑PI+ +− −

+∑

*mechω

mechω

*emT

*ˆsλ

ˆsλ

emT

sθ∠

Estimator

Selectionof

sv

Figure 8-1 Block diagram of DTC.

© Copyright Ned Mohan 2001 91

Principle of DTC Operation

Figure 8-2 Changing the position of stator flux-linkage vector.

( )s tλ

( )s t Tλ − ∆sv T∆i

( ) ( )r rt t Tλ λ≈ − ∆

-axisa

Rotor -axisAArθ

2ˆ ˆ sin

2m

em s r srLpTLσ

λ λ θ=

sr s rθ θ θ= −

© Copyright Ned Mohan 2001 92

22 3

ˆ2em

slip rr

TRp

ωλ

=

m r slipω ω ω= −

(2 / )mech mpω ω=

ˆ( ) ( ) ( )t j ss s s s s s

t Tt t T v R i d e θλ λ τ λ

−∆= − ∆ + − ⋅ =∫

ˆ( ) jr rr s s s rm

L L i eL

θλ λ σ λ= − =( ) ( )r r

r rt t Td

dt Tω

ω

θ θω θ − − ∆= =∆

Im( )2

conjem s s

pT iλ=

21 m

s r

LL L

σ = −

Calculation of Stator Flux:

Calculation of Rotor Flux:

where

Estimating Torque:

Estimating Mechanical Speed:

s s s sdv R idt

λ= + ⇒

Page 24: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 93

Inverter Basic Vectors and Sectors

a-axis1(001)v

3(011)v2(010)v

6(110)v

4(100)v 5(101)v

b-axis

c-axis

1

23

4

5

6

Figure 8-3 Inverter basic vectors and sectors.

© Copyright Ned Mohan 2001 94

Stator Voltage Vector Selection in Sector 1

sector 1sλ

1v

3v2v

4v 5v6v

Figure 8-4 Stator voltage vector selection in sector 1.

© Copyright Ned Mohan 2001 95

Selection of the Stator Voltage Space Vector

sector 1sλ

1v

3v2v

4v 5v6v

Figure 8-4 Stator voltage vector selection in sector 1.

sector 1sλ

1v

3v2v

4v 5v6vsector 1sλ

1v

3v2v

4v 5v6v

Figure 8-4 Stator voltage vector selection in sector 1.

Effect of Voltage Vector on the Stator Flux-Linkage Vector in Sector 1.

increasedecrease

decreasedecrease

decreaseincrease

increaseincreasesv

3v

2v

4v

5v

emT ˆsλ

a-axis1(001)v

3(011)v2(010)v

6(110)v

4(100)v 5(101)v

b-axis

c-axis

1

23

4

5

6

Figure 8-3 Inverter basic vectors and sectors.

© Copyright Ned Mohan 2001 96

Effect of Zero Stator Voltage Space Vector

sθrθ

( ) ( )s st t Tλ λ≈ − ∆

-axisa

Rotor -axis at t- tA ∆

Arθ Rotor -axis at tA

( )r t Tλ − ∆( )r tλ

mθ∆

sin ( )sr s rθ θ θ≈ −

( )em s rT k θ θ−

0sθ∆

0Arθ∆

Ar m r mθ θ θ θ∆ = ∆ + ∆ ∆ ( )em mT k θ∆ − ∆

Page 25: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 97

DTC in Simulink

© Copyright Ned Mohan 2001 98

Fig. 2 Torque Waveforms.

© Copyright Ned Mohan 2001 99

Fig. 3 Speed Waveforms.

© Copyright Ned Mohan 2001 100

Fig. 4 Stator Flux.

Page 26: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 101

Fig. 5 Stator and Rotor Fluxes.

© Copyright Ned Mohan 2001 102

Chapter 9

Vector Control of Permanent-Magnet

Synchronous-Motor Drives

© Copyright Ned Mohan 2001 103

Non-Salient Permanent-Magnet Synchronous Motor

sd s sd fdL iλ λ= + sq s sqL iλ =

axisc−

axisa−

axisb−

N

S

bi

ai

ci

( )a

axisc −

axisa −

axisb −

N

S

bi

ai

ci

rB

'a

a

-axisq

( )b

-axisd

Figure 9-1 Permanent-magnet synchronous machine (shown with =2).p

© Copyright Ned Mohan 2001 104

sd s sd sd m sqdv R idt

λ ω λ= + −

sq s sq sq m sddv R idt

λ ω λ= + +

2m mechpω ω=

( )2em sd sq sq sdpT i iλ λ= − [( ) ]

2 2em s sd fd sq s sq sd fd sqp pT L i i L i i iλ λ= + − =

em Lmech

eq

T Tddt J

ω −=

Non-Salient Permanent-Magnet Synchronous Motor (Continued)

Page 27: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 105

sd s sd m s sqv R i L iω= −

Per-Phase Steady Stead Equivalent Circuit

sq s sq m s sd m fdv R i L iω ω λ= + +

3/ 2s s s m s s m fd

e fs

v R i j L i jω ω λ= + +

23a s a m s a m fd

E fa

V R I j L I jω ω λ= + +

2ˆ3fa fd m E m

kE

E kλ ω ω= =

23E fdk λ=

sR

aV

m mLωm sLω

m lsLω

ˆ( )fa fa E mE E k ω=

+

aI

+

Figure 9-2 Per-phase equivalent circuit in steady state ( in elect. rad/s)mω

© Copyright Ned Mohan 2001 106

Controller in the dq Reference Frame

compd

( )sd s sd s sd m s sqdv R i L i L idt

ω= + + −compq

( )sq s sq s sq m s sd fddv R i L i L idt

ω λ= + + +

22, ,

3ˆ ˆ( )2sd sq dq rated a ratedi i I I+ ≤ =

Figure 9-3 Controller in the dq reference frame.

ai

bi

ci

Motor

+ Σ

+−

Σ

+−

Σ*sqi

*sdi

( )2m mechpθ θ=

sensorposition

abctodq

+ Σ+

+

( )m s sd fdL iω λ+

m s sqL iω−

*sdv

*sqv Inverter

PWMi

pkks

+

mωsqi

sdi

decouplingterms

1s

toabc

dq

*av

ipkks

+

*bv

*cv

© Copyright Ned Mohan 2001 107

Vector Control of a Permanent-Magnet Synchronous-Motor Drive

© Copyright Ned Mohan 2001 108

Figure 9-5 Simulation results of Example 9-1.

Simulation Results

Page 28: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 109

Salient-Pole Synchronous Machine

sd md sL L L= +

sq mq sL L L= +

fd md fdL L L= +

rd md rdL L L= +

rq mq rqL L L= +

sd sd sd md rd md fdL i L i L iλ = + +

sq sq sq mq rqL i L iλ = +rd rd rd md sd md fdL i L i L iλ = + +

rq rq sq mq sqL i L iλ = +

fd fd d md sd md rdL i L i L iλ = + +

-axisa

-axisd

-axisb-axisq

-axisc

× -axisa

-axisd-axisq

sqi

rqi

rdisdi

fdi

( )a

( )b

Figure 9-6 Salient-pole machine.

© Copyright Ned Mohan 2001 110

sd s sd sd m sqdv R idt

λ ω λ= + −

sq s sq sq m sddv R idt

λ ω λ= + + ( 0)rd rd rd rd

dv R idt

λ=

= +

( 0)rq rq rq rq

dv R idt

λ=

= +fd fd fd fd

dv R idt

λ= +

Winding Voltages

+

+

+

+

+

( ) -axisa d

( ) -axisb q

sdv

sqv

sqi

sdi

rqi

rdi

fdi

rdv

rqv

fdvsR m sqω λ sL rdL rdR

mdL

sR m sdω λ sL rqL rqR

mqL

fL fdR

Figure 9-7 Equivalent circuits for a salient-pole machine.

© Copyright Ned Mohan 2001 111

field+damper in d-axis saliency

[ ( ) ( ) ]2em md fd rd sq sd sq sd sq rq sdmqpT L i i i L L i i L i i= + + − −

Electromagnetic Torque

( )2em sd sq sq sdpT i iλ λ= −

sd sd sd md rd md fdL i L i L iλ = + +

sq sq sq mq rqL i L iλ = +

© Copyright Ned Mohan 2001 112

Space Vector Diagram in Steady State

sd sd sd md fdL i L iλ = + sq sq sqL iλ =

sd s sd m sq sqv R i L iω= − sq s sq m sd sd m md fdv R i L i L iω ω= + +

sd sq s sd s sq m sd sd m md fd m sq sqv jv R i jR i j L i j L i L iω ω ω+ = + + + −

23sd sq sv jv v+ =

23sd sq si ji i+ =Figure 9-8 Space vector and phasor diagrams.

-axisd

-axisq

sdv 2 / 3 sv

2 / 3 si

sqv

aV

aI

Re

Im

( )a ( )b

Page 29: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 113

Chapter 10

Switched-Reluctance Motor (SRM) Drives

© Copyright Ned Mohan 2001 114

mechθo0mechθ =

da

ad

c c

b

b

Figure 10-1 Cross-section of a four-phase 8/6 switched reluctance machine.

Cross-Section of a Switched-Reluctance Machine

© Copyright Ned Mohan 2001 115

mechθo0mech

al

θθ

==

b

a

a

b

c c

d

d

mechθo0mechθ =

b

a

a

b

c c

d

d

unθ

(a) (b)

Figure 10-2 Aligned position for phase a; (b) Unaligned position for phase a.

Aligned and Unaligned Positions for Phase-a

© Copyright Ned Mohan 2001 116

unaligned position

aligned position

(V-sec)aλ

(A)aiFigure 10-3 Typical flux-linkage characteristics of an SRM.

Typical Flux-Linkage Characteristics

Page 30: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 117

Figure 10-4 Calculation of torque.

ai1I

1λ2λ

0

12

1θ1 mechθ θ+ ∆

Calculation of Torque

mech em mechW T θ∆ = ∆

1 2(1 2 1)elecW area λ λ∆ = − − − −

2 1(0 2 0) (0 1 0)storageW area areaλ λ∆ = − − − − − − −

mech elec storageW W W∆ = ∆ − ∆

1 2 2 1

1 2 1 2(0 1 2 0)2

(1 2 1) (0 2 0) (0 1 0) (1 2 1) (0 1 0) (0 2 0)

(0 1 2 0)

em

area

T area area areaarea area area

areaλ

θ λ λ λ λλ λ λ λ

− − − −

∆ = − − − − − − − − − − − −= − − − − + − − − − − − −

= − − −

(0 1 2 0)em

mech

areaTθ− − −=

∆ constantem

mech ia

WTθ =

′∂=∂

© Copyright Ned Mohan 2001 118Figure 10-5 Performance assuming idealized current waveform.

( )ai A

( sec)a

Vλ−

,

( )em aTNm

( )ae V

(deg)mechθ

unθ

unθalθ

alθ

Waveforms Assuming Ideal Current Waveforms

a a av Ri e= +

( , )a a a mechde idt

λ θ=

a aa a mech

a mech imech a

d de ii dt dtθ

λ λ θθ

∂ ∂= +∂ ∂

a aa mech mech

mech mechi ia amech

dedtω

λ λθ ωθ θ∂ ∂= =

∂ ∂

© Copyright Ned Mohan 2001 119

(A)ai

(V-sec)aλ

,

(Nm)em aT

onθ unθ

onθ unθ

onθ unθ offθ alθ

offθ alθ

offθ alθ

offθ alθonθ unθ

emT

,em aT,em bT ,em cT ,em dT(Nm)

Figure 10-6 Performance with a power-processing unit.

Performance with a Power Processing Unit

© Copyright Ned Mohan 2001 120

Figure 10-7 Flux-linkage trajectory during motoring.

0

emW

ai

fW

unalignedposition

alignedposition

offθ

Role of Magnetic Saturation

em

em f

WEnergyConversion FactorW W

=+

Page 31: Advanced Course on Chapter 1 Electric Drives Introduction ... · Title: Microsoft PowerPoint - Slides_AdvEDBook2001.ppt Author: Ned Mohan Created Date: 7/29/2007 9:32:03 AM

© Copyright Ned Mohan 2001 121

Dc1

Sc1

Pha

se a

Dd1

Dc2

Sa1

Sc2

Pha

se d

Sd1

Pha

se b

Sa2

Pha

se c

Db2

Da1 Db1

Da2

Sd2Sb2

Dd2

Sb1

dcV

+

Figure 10-8 Power converter for a four-phase switched reluctance drive.

Power Processing Unit

© Copyright Ned Mohan 2001 122

∫v

−+ Σ

λ

i( , )iθ λ

mechθ

iR

Figure 10-9 Estimation of rotor position.

Determining Rotor Position for Encoder-less Operation

© Copyright Ned Mohan 2001 123

positions

*mechω

+−

refIPI

currentcontroller

powerconverter

gate

signals

Σ

mechω

Figure 10-10 Control block diagram for motoring.

Control in Motoring Mode