Advanced Building Physics - Psychrometry

24
L.D.D Advanced Building Physics - Psychrometry The word 'Psychrometer' is originally from the Greek meaning of 'cold' + 'meter', i.e. literally meaning a measurer of cold. The gaseous phase of the moist air mixture can be treated as a mixture of two ideal gases: dry air and water vapour. It is a good approximation to treat water vapour as an ideal gas? p v <p vsat is always valid, and p vsat (5 °C) = 0.87 kPa p vsat (45 °C) = 9.59 kPa while the critical pressure of water is equal to p cr = 22 MPa ---> p R =p v /p cr < 10 -4 << 1 At 100 kPa, if the water vapour would be at atmospheric pressure (and in moist air this never happens) the maximum error that could be done approximating it as an ideal gas would be of 1.6%. 1 - Mixtures of gases and vapours In a mixture of gases, the components that are condensed alone are called condensable components, while the others (incondensable components) are called gases and are completely mixed. Consider a mixtures in which the following assumptions are valid: - The gaseous phase obeys the ideal gas law - The condensed phase are incompressible and do not dissolve non-condensable gases in these conditions: The vapour behaves as if it were present alone in the same volume and at the same temperature of the mixture. For a homogeneous state (gaseous) in whic there are two components (a, non condensable, and v, consensable) it is valid the second equation of state of ideal gases, where p is the total pressure, T the temperature in Kelvin and N the total number of moles (N = N a +N v ): pV = NRT = (N a +N v )RT = N a RT + N v RT and defining the partial pressures p a and p v as: p a V=N a RT and p v V=N v RT, we obtain: pV = p a V+p v V Dalton's law: p = p a +p v

Transcript of Advanced Building Physics - Psychrometry

Page 1: Advanced Building Physics - Psychrometry

L.D.D

AdvancedBuildingPhysics-Psychrometry

Theword'Psychrometer'isoriginallyfromtheGreekmeaningof'cold'+'meter',i.e.literallymeaningameasurerofcold.Thegaseousphaseofthemoistairmixturecanbetreatedasamixtureoftwoidealgases:dryairandwatervapour.Itisagoodapproximationtotreatwatervapourasanidealgas?pv<pvsatisalwaysvalid,andpvsat(5°C)=0.87kPapvsat(45°C)=9.59kPawhilethecriticalpressureofwaterisequaltopcr=22MPa--->pR=pv/pcr<10

-4<<1At100kPa,ifthewatervapourwouldbeatatmosphericpressure(andinmoistairthisneverhappens)themaximumerrorthatcouldbedoneapproximatingitasanidealgaswouldbeof1.6%.1-MixturesofgasesandvapoursInamixtureofgases,thecomponentsthatarecondensedalonearecalledcondensablecomponents,whiletheothers(incondensablecomponents)arecalledgasesandarecompletelymixed.Consideramixturesinwhichthefollowingassumptionsarevalid:-Thegaseousphaseobeystheidealgaslaw-Thecondensedphaseareincompressibleanddonotdissolvenon-condensablegasesintheseconditions:Thevapourbehavesasifitwerepresentaloneinthesamevolumeandatthesametemperatureofthemixture.Forahomogeneousstate(gaseous)inwhictherearetwocomponents(a,noncondensable,andv,consensable)itisvalidthesecondequationofstateofidealgases,wherepisthetotalpressure,TthetemperatureinKelvinandNthetotalnumberofmoles(N=Na+Nv):pV=NRT=(Na+Nv)RT=NaRT+NvRTanddefiningthepartialpressurespaandpvas:paV=NaRTandpvV=NvRT,weobtain:pV=paV+pvVDalton'slaw:p=pa+pv

Page 2: Advanced Building Physics - Psychrometry

L.D.D

2-HomogeneousequilibriumstatesofmoistairInthehomogeneousstatesofequilibriumofmoistair,thereisnocondensate,neitherliquid(L)norsolid(S).

ML=MS=0Humidityratiox(moisturecontentofair)forhomogeneousgaseousstates:

Mv/Mda[Kgvap/Kgda]

TakingintoaccountthatwecanusetheidealgasmodelfordryairandvapourpaV=NaRTpvV=NvRTitfollows:

Thereforethemaxuminpossiblevalueforhumidityratioisdeterminedbythemaximumpossiblevalueforthepartialpressureofthewatervapour.

Page 3: Advanced Building Physics - Psychrometry

L.D.D

Page 4: Advanced Building Physics - Psychrometry

L.D.D

3-MoistairEnthalpyWeneedtodefineaquantityinordertodescribetheexchangesofenergy.Letsintroduceenthalpy.

Todeterminetheenthalpyofanystate,itisnecessarytodefineareferencestatetowhichassignarbitrarilythevalueofzeroenthalpy.Theenthalpyofanyotherstatewillthenbecalculatedasadifference.T=0-->ha(Ref.)=0--->ha(F)=ha(F)-ha(Ref.)Weneednowtodefineareferencestatefordryairandoneforwater.1)SpecificenthalpyofdryairhaSincewehavesupposedthatdryaircanbetreatedasanidealgas,theenthalpydoesnotdependonpressure:itisnotnecessarytospecifypressureofreferencestate-Tref=273,15K=0°CRememberingthatforanidealhasdh=cpforeverytransformation

Page 5: Advanced Building Physics - Psychrometry

L.D.D

2)SpecificenthalpyofwatervapourhvForwater,wecannotchooseastateclosetocriticalpointasreferencestate.Letsassumeasreferencestatetheliquidphaseattriplepoint,forwhichenthalpyissetequaltozero.Tref,w=273,15K=0°CWeneedtovaporizewaterfromliquidtovapourat0°C

Page 6: Advanced Building Physics - Psychrometry

L.D.D

1+2)Enthalpyofthemoistairmixturespecifictothemassofdryair

4-MollierpsychrometricchartThemoistairinthehomogeneousstatesisatwo-componentandonephasesystem,thereforeithasthreedegreesoffreedom.Ifwewanttorepresentthehomogeneousstatesonatwo-dimensionaldiagram,itisnecessarytosetaparameter:theMollierdiagramrepresentsthedifferentpossiblestatesofamoistairmixtureatagiventotalpressure.y-axis:specificenthalpiesarerepresentedhx-axis:humidiyratiosarerepresentesXTheinclinationoftheaxisischosensothattheisothermT=0°Cresultshorizontal.4-ASHRAEPsychrometricdiagramThefundamentalvariablesarealsotheenthalpyspecifictodryairmassandhumidityratio.Theisothermshavevariableinclinations.TheAshraediagrammightbeobtainedfromtheMollieronebyflippingandrotatingit.

Page 7: Advanced Building Physics - Psychrometry

L.D.D

4-MAINTRANSFORMATIONSOFMOISTAIRATCONSTANTPRESSURE4.1HeatingConsidertheprocessifdeliveringheattoamassofdryairMda.Weoperateatconstanttotalepressurewhileprovidingheat.ThehumidityratioXdoesnotvaryandthetemperatureTincreases.A---->B

Atconstantpressure,theheatexchangedbyoursystemisequaltotheenthalpychangeofthesystemitself,therefore:

Massconservation1)Mda1=Mda2=Mda2)Mv1=X1Mda=X2Mda=Mv2-->X1=X2EnergyconservationH1+Qin=H2

---->Mdah1+Qin=Mdah2--->h1+(Qin/Mda)=h2

Relativehumidityisdecreased.

Page 8: Advanced Building Physics - Psychrometry

L.D.D

4.2CoolinganddehumidificationConsideramassofdryairMda.Operateatconstanttotalpressurewhilesubtractingheat.ThehumidityratioXdoesnotvaryandtemperatureTdecreases.Ifwecontinuesubtracting,theairmassreachesthesaturationconditionsR(dewpoint).

IfthecoolingcontinuestillTE<TR,somecondensateisformed.Thefinalmixtureofmoistairandcondensatewillhavethesamefractionofwater'smassoftheinitialmoistair(butcontentofvapourwaterisdecreased).

Massconservation1)Mda1=Mda2=Mda2)X1Mda=X2Mda+Mc-->X2=X1-MC/MdaEnergyconservationMdah1+Qin=Mdah2+Mchc(hc=CpLT2°C)CpL=4.186butMchc<<Mdah1---->Mdah1+Qin=Mdah2

Page 9: Advanced Building Physics - Psychrometry

L.D.D

4.3AdiabaticmixingThesystem1(moistair)ismaintainedatconstantpressure,whileasystem2(moistair,vapourorliquidwater)isinjectedthroughavalve.IfQABistheheatsuppliedtothesystem,andweindicatethewiththeletter'm'theconditionsoftheobtainedmixture,wecanwritetheenergybalance

Massconservation1)Mda1+Mda2=Mda32)X1Mda1+X2Mda2=Mda3X3-->X3=(Mda1X1+Mda2X2)/(Mda1+Mda2)

EnergyconservationMda1h1+Mda2h2=Mda3h3--->h3=(Mda1h1+Mda2h2)/(Mda1+Mda2)

Page 10: Advanced Building Physics - Psychrometry

L.D.D

4.4Waterinjection1)Liquidform

Massconservation1)Mda1=Mda2=Mda2)MdaX1+Mh2o=MdaX2-->X2=X1+(Mh2o/Mda)EnergyconservationMdah1+Mh2ohh2o=Mdah2--->h2=h1+(Mh2o/Mda)hh20Buthh20=CpLTh2o<<h1,2-->transformationalmostisoenthalpic-->T2<T1

2)Vapourform

Massconservation1)Mda1=Mda2=Mda2)MdaX1+Mh2o=MdaX2-->X2=X1+(Mh2o/Mda)EnergyconservationMdah1+Mh2ohh2o=Mdah2--->h2=h1+(Mh2o/Mda)hh20Withthh20=λv+CpvTh20-->h2>h1--->T2>T1

Page 11: Advanced Building Physics - Psychrometry

L.D.D

5-INSTRUMENTSTOMEASURETHEMOISTURECONTENT1)Slingpsychrometer

Consistsintwoglassthermometerscontainingaliquid,usuallymercury.Onethermometermeasurestheairtemperaturewhiletheotheronemeasuresthewet-bulbtemperature.Afterthewickisdippedindistilledwater,aweatherobserverwhirlstheslingpsychrometeraround,usingthehandle.

Page 12: Advanced Building Physics - Psychrometry

L.D.D

Astheinstrumentsiswhirled,waterevaporatesfromthewhickonthewet-bulbthermometerandcoolsthetermometer.Thewet-bulbthermometercoolstothelowestvaluepossibleinafewminutes.Thisvalueisknownasthewet-bulbtemperature.Thedriertheairthemorethethermometercoolsandhence,thelowerthewet-bulbtemperature.Theobserverusesatable(oracomputerprogram)todeterminerelativehumidityandhumidityratiobasedonthereadingsofdryandwet-bulbtemperatures.2)ChilledmirrordewpointhygrometerAhygrometerisaninstrumentusedformeasuringthemoisturecontentintheenvironmentalair,orhumidity.Thechilledmirrordewpointhygrometerisoneofthemostpreciseinstrumentsavailable.Accuracyof0.2°Cwitharelativehumidityaccuracyof+/-0.5%.Needsfrequentcleaningandperiodiccalibration.3)Humiditysensors3.1-Capacitivehumiditysensors:theeffectofhumidityonthedielectricconstantofapolymerismeasured.Ifcalibrated,accuracyof+/-2%RHintherangeof5-95%RH.Robustagainsteffectssuchascondensationaandtemporaryhightemperatures.3.2-Resistivehumiditysensors:thechangeinelectricalresistanceofamaterialduetohumidityismeasured.Typicalmaterialsaresaltsandconductivepolymers.Lesssensitivethancapacitivesensors.Accuracyupto+/-3%RH.3.3-Thermalconductivityhumiditysensors:thechangeinthermalconductivityofairduetohumidityismeasured.Thesesensorsmeasureabsolutehumidityratherthanrelativehumidity.6-THEBUILDINGAIRCONDITIONINGPROCESSConsideraroomthatwedesiretokeepatcertainconditionsoftemperatureandhumidity.Comfortsetpoints:-Summer:operativetemperature26degrees,maxrelativehumidity60%-Winter:operativetemperature20degrees,minrelativehumidity25% Considerasoursystemunderstudythemoistaircontainedintheroom,andsuppose:-FixedTandRH-Airwellmixed(parametershavesamevaluesineachpoint)-Constantmassairflowexchangedwithothersystems-->Sothesystemisuniformandisstationaryconditions.Theaircontainedintotheroomwillreceive:1)Energy(heat)frominternalsurfaceofthewalls(ΔTint-ext)2)Energyduetoelectromagneticradiations(solar,sky..)3)Energyduetoinfiltrations4)Energyduetointernalgains5)Watervapourgeneratedbyoccupants

Page 13: Advanced Building Physics - Psychrometry

L.D.D

6)Watervapourgeneratedbyinternalsources(showers,kitchen,vegetation..)7)WatervapourduetoΔTint-extbetweenincomingandoutgoingflowofairTheair-conditioningdeviceshouldbeabletokeepthesystemconstantlyinthefixedchosenconditions;theexchangesdescribedas'heatandhumiditygains'(or'zoneloads')havetobecounterbalancedbytheair-conditioningsysteminordertokeepthesysteminthedesiredstationaryconditions.-ControlandreduceheatgainsthroughtheenvelopeHeatentersthroughtheexternalsurfacebecauseofsolarradiationsandΔTint-ext.Ahighreductionoftheamountofheatpassingthroughtheexternalsurfacecanbeachievedbymeansofsolarprotectionsandsurfacefinishingswithadequatevaluesofreflectivityandemissivity.Andalsolimitingairexchangeswhenoutsideairiswarmerthaninsideair.

Onceloadshavebeenreducedbytheuseofpassivemeans,inordertoramaininacomfortrangeinsomecasesitmightstillbenecessarytointroduceanactiveairhandlingsystem.Weanalizeasystemthatusesairasawaytotransferenergyandwatervapourtotheairoftheroom.AHU:airhandlingunit:

Page 14: Advanced Building Physics - Psychrometry

L.D.D

-SummerairconditioningWesearchtheinputconditions(i)knowingtheindoordesiredconditions(a)andtheexternalconditions(e).Forsemplicity,treatthesystemwithoutrecirculation.

Wegetanequationwithtwounknowns(hi,Xi).There'sagraphicalmethodtosolvethisproblem.Onthepsychrometricdiagramtheequationwrittenaboveisrepresentedbyastraightlinepassingthrougha.Thepointiissituatednecessarilyonthisstraightline,whichisalsocalledintroductionlineorroomline.Notethatinsummer

Page 15: Advanced Building Physics - Psychrometry

L.D.D

Inordertofindtheexactintroductionpoint,weneedtoconsiderseveralissuesandboundariesgiventothesummerconditions:1-ComfortinT:|Ti-Ta|=10/12°C2-Comfortinairvelocity:noise3-COP(limitedbyTi-Ta)4-Energy-->fansconsumption5-Installations(limitincosts)or(limitinMda)

-WinterairconditioningInthiscase,theexternalconditionsarecolderandatlowerXthanthedesiredones.Theequationsofbalanceareequaltothoseofthesummercase,buttheterm(Q/V+h)isnegativeandthestraightlinehasgotanegativeslope.Startingfromeweheatuptob,pointwhichcorrespondstotheintersectionbetweenthestraightlineatconstantXpassingthrougheandtheisoenthalpicpassingthroughthedewpointofi,whichweindicateasRi.BetweenbandRiweoperateahumidificationwithliquidwater,thereforewemovealongtheisoenthalpicutilsaturation.Atthispointweoperateasecondheating,uptothedesiredconditions.

Page 16: Advanced Building Physics - Psychrometry

L.D.D

7-'AVERAGESPECIFICHEAT'OFMOISTAIR

Page 17: Advanced Building Physics - Psychrometry

L.D.D

Note:Dewtemperature:temperatureofthemixtureatwhich,inatrasformationwithpandXconstant,thevaporstartstocondense.8-SENSIBLEANDLATENTHEATEXCHANGERememberthatforamixtureofidealgasessuchasthegaseousphaseofmoistair,withconstantCpaandCpvwehave:H=Ha+Hv.

Page 18: Advanced Building Physics - Psychrometry

L.D.D

Ifwewanttofindthe'thermalfactor'R(orSensibleheatingratioSHR),itisdefinedas:

9-THERMODYNAMICTEMPERATUREOFWETBULBANDITSAPPROXIMATIONConsideramoistairattemperaturetandhumidityratioX.-->atemperaturet*existsatwichaliquidorsolidH2Oevaporatesintotheairadiabaticallyanditbringstheairatsaturationexactlyatthesametemperaturet*andtotalpressure.Duringthisadiabaticprocess,atconstantt=t*:-HumidityratioincreasesfromXtoXS*correspondingtosaturationattemperaturet*-DryairmassspecifichentalpyincreasesfromhtohS*correspondingtot*-H2Omassaddedperunitmassofdryairis(XS*-X)=ΔX-Energy/enthalpyaddedperunitmassofdryairis(XS*-X)hw*

Page 19: Advanced Building Physics - Psychrometry

L.D.D

Page 20: Advanced Building Physics - Psychrometry

L.D.D

10-PSYCHROMETRICPROCESSESANDAPPLICATIONSTheanalysisofpsychrometricprocessesisperformedbyconsideringacontrolvolumeandthenapplyingtheprinciplesoftheconservationofmassandenergytothecontrolvolume.Changesinpotentialandkineticenergyarenegligible,thustheenergyequationreducesto:

1)AdiabaticmixingofTwostreamsofmoistair

Thelastequationtellsusthattheprocessfromstate2to3hasthesameslopeoftheprocessfromstate1to3,sothestate3mustlieonastraightlineconnecting1and2.Thelenghtsofthelinesegmentsareproportionaltothemassflowratesofdryairmixed.

Page 21: Advanced Building Physics - Psychrometry

L.D.D

IntheUS,sometimesitisusedanapproximateequationinvolvingdrybulbtemperaturesofairstreamsinordertofindthemixed-aircondition.ma3cp3t3=ma1cp1t1+ma2cp2t2ifwemaketheapproximationthatthespecificheatsofthemixturesareapproximatelyequal:t3=(ma1/ma3)t1+(ma2/ma3)t2-->theaccuracyiswellwithintheaccuracywithwhichonecanreadthepsychrometricchart2)DehumidificationofMoistairbycooling

Ifmoistairiscooledbelowitsdewpoint,condensationofmoisturewilloccur.Theidealprocesscorrespondstooneinwhichtheairisuniformlyandperfectlycontactedbythecoolingcoil.Inthiscasenocondensationoccursuntiltheaverageorbulktemperatureoftheairreachesthedewpointtemperature.Inarealprocesstheairdoesnotcomeintoperfectoruniformcontactwiththeheat-exchangersurfaces,sothetemperaturenearthesurfaceswilldropbelowthedewpointtemperature,whiletheatnearthecenterramainsabove.Analternativeapproachtoanalyzethecooling/dehumidifyingprocessusesasocalledbypassfactor.Considerarealprocess(b).Drawastraightlinethatconnectsstates1and2andwhichisextendedtothesaturationcurveatstated.Thispointrepresentstheapparatusdewpoint(orcoolingcoil)temperaturetd,whiletheremainingairbypassedthecoolingcoil.Thefinalstate(state2)isthenthoughtastheadiabaticmixtureofthebypassedair(1)andthesaturatedair(d).

Page 22: Advanced Building Physics - Psychrometry

L.D.D

Page 23: Advanced Building Physics - Psychrometry

L.D.D

Notethatthesensible-heatratio(SHR)canbereaddirectlyoffthepsychrometricchartforthestraightlineconnectingstates1andd.3)EvaporativecoolingofmoistairInhotanddryclimatesevaporativecoolingcanbeaneffectivemeansofreducingairtemperature.Ratherthanpassingtheairthroughacoolingcoil,wecantakeadvantageofthelowhumiditytoachievecooling.Thisisaccomplishedbypassingtheairstreamthroughaspraydevice(evaporativecooler)usingdirectlyrecirculatedwater.ThankstothelowRH,partoftheliquidwaterstreamevaporates.Theenergyfortheevaporationprocesscomesfromtheairstream:theoveralleffectistocoolandhumidifytheair.

Detailedanalysisoftheevaporative-coolingprocess,incaseof:a)Theevaporationrateismuchsmallerthanthewater-recirculationrate(-->energyintroducedbythemakeupwaterisnegligible)b)Thewallsofthedeviceareadiabaticc)ThepoweroftherecirculationpumpisnegligibleResults:1-Theairpassingthroughtheevaporativecoolerundergoesaconstantwet-bulbtemperatureprocess2-Alltheliquidintheapparatusisatwet-bulbtemperatureoftheairstream

Page 24: Advanced Building Physics - Psychrometry

L.D.D

Theminimuntemperaturetowhichtheaircanbecooledisthewet-bulbtemperaturet*.Theextenttowhichtheleavingairtemperatureapproachesthisminimumtemperatureisreferredtoasthesaturationeffectiveness,ec.