Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic...

39
Adap%ve Boos%ng for Image Denoising: Beyond Low-rank Representa%on and Sparse Coding Zixiang Xiong Texas A&M University http://lena.tamu.edu

Transcript of Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic...

Page 1: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Adap%veBoos%ngforImageDenoising:BeyondLow-rankRepresenta%onandSparseCoding

Zixiang Xiong

Texas A&M University http://lena.tamu.edu

Page 2: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Denoising:Anoldtopicwithwideapps

2

§  Recovering𝐱from𝒚=𝐱+𝐧 hasbeenstudiedfromseveralangles§  IP,sta6s6cs,CV&ML,coding,andop6miza6ons

§  ClassicWienerfilteringtechnique(1949)firstappliedtoimagedenoisingin1980

§  Wavelettheoryfoundwideapplica6onsinimageprocessinginthe1990s

§  Compression(withcri6callysampledwavelettransform)§  Denoisingviawaveletshrinkage

§  Overcompleterepresenta6onisadvantageous!§  Breakthroughs§  Non-localmean(NLM)in2005§  Block-matching+3DWienerfiltering(BM3D)in2006

Page 3: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

NLMandBM3Ddenoising

builtuponpowerfulnon-localpatch-basedimagemodels§  Toexploitnon-localself-similarity

Page 4: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Imagedenoisingresearch

4

§  ExplosivegrowthsinceNLM(2005)&BM3D(2006)Papers published on image denoising

According to Google Scholar

Page 5: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Leadingimagedenoisingmethods

5

Arebuiltuponpowerfulpatch-basedimagemodels§  NLM(2005):Self-similaritywithinnaturalimages§  K-SVD(2006):Sparserepresenta6onmodelingofimagepatches§  BM3D(2006):Combinesasparsitypriorandnonlocalself-similarity§  EPLL(2009):Expectedpathloglikelihood§  NCSR(2011):Non-localcentralizedsparserepresenta6on§  SAIST(2013):Spa6allyadap6veitera6vesingular-valuethresholding

§  WNNM(2014):Weightednon-localnuclearmean§  …

Page 6: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Leadingimagedenoisingmethods

where𝐃isafatmatrixwithlow-rankand 𝛼 issparse,meaningisafatmatrixwithlow-rankand 𝛼 issparse,meaningthatitcontainsmostlyzeros

§  Thecomputa6onof 𝛼 from x  (oritsnoisyversion)iscalledsparsecoding

6

Twomaincomponents:low-rankrepresenta6on&sparsecoding

§  Signals/imagesaredecomposedintoalow-rankrepresenta6on

x =𝐃 𝛼 

D

D=x 𝛼 

Page 7: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Theore%caladvanceonlow-rankmatrixapprox.

7

Nuclearnormminimiza6on(NNM)[Candès&Recht’09]§  Thenuclearnormofamatrix𝑿∊𝑅↑𝑚×𝑛 isǁ 𝑿ǁ↓∗ =∑↓𝑖 |σ↓𝑖 (𝑿)|§  Nuclearnormisthe6ghtestconvexrelaxa6onoftherankpenalty

ofamatrix§  Let𝒀∊𝑅↑𝑚×𝑛  bethegivendatamatrix,theNNMproblemaims

tomin↓𝑿 { ǁ𝒀−𝑿ǁ↓𝐹↑2 + λ ǁ 𝑿ǁ↓∗ }

whereλisaposi6veregulariza6onparameter§  Theclosed-formsolu6on(Cai&Candès&Shen’10)

𝑿↑∗ =U 𝑺↓λ (Σ) 𝑽↑𝑇  with𝒀=UΣ 𝑽↑𝑇 beingtheSVDof𝒀and 𝑺↓λ (Σ)=max(0, Σ-λ/2) §  ThisisjustsoithresholdingintheSVDdomain!

Page 8: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Theore%caladvanceonlow-rankmatrixapprox.

8

Weightednuclearnormminimiza6on(WNNM)[Zhangetal’14]§  ExtendsNNMtoallownon-uniformthresholdingofσ↓𝑖 (𝑿)toexploitapriori

imageinfo

§  Theweightednuclearnormofamatrix𝑿∊𝑅↑𝑚×𝑛 isǁ 𝑿ǁ↓𝒘,∗ =∑↓𝑖 |𝜔↓𝑖 σ↓𝑖 (𝑿)|,

where𝒘=[ 𝜔↓1 , 𝜔↓2 ,…, 𝜔↓𝑚 ]istheweigh6ngvectorofnonnega6vethresholds

§  TheWNNMproblemaimsat

argmin↓𝑿 { ǁ𝒀−𝑿ǁ↓𝐹↑2 +λ ǁ 𝑿ǁ↓𝒘,∗ }§  Whentheweights/thresholdssa6sfy0≤𝜔↓1 ≤ 𝜔↓2 ≤···≤ 𝜔↓𝑚  (Zhang et

al’14),𝑿↑∗ =U𝑺↓𝑾 (Σ)𝑽↑𝑇 and 𝑺↓𝑾 (Σ)=max(0, Σ↓𝑖𝑖 - 𝜔↓𝑖 )

§  Threshold 𝜔↓𝑖 ischosenempiricallyas[Venerlietal’00]

𝜔↓𝑖 =𝑐/[ σ↓𝑖 (𝑿)+ε],withσ↓𝑖 (𝑿) es6matedfrom Σ↓𝑖𝑖 =σ↓𝑖 (𝒀)

Page 9: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Whatisnext?

9

§  Withsomuchprogressbeingmade

§  Isdenoisingdead?[Chanerjee&Milanfar’10]

Chatterjee and Milanfar. Is denoising dead? IEEE Trans. Image Proc., April 2010.

Papers published on image denoising According to Google Scholar

Page 10: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Whatisnext?

10

§  Withsomuchprogressbeingmade

§  Isdenoisingdead?[Chanerjee&Milanfar’10]

Sparsecoding

Low-rankrepresenta6on

Adap6veboos6ng

§  HowcanwedobeKerthanWNNM(2014)?

§  Beyondlow-rankrepresenta%onandsparsecoding

§  Togetgoodimagedenoisingresults,oneneedstodelicatelybalancemathema%calrigorandengineeringapproxima%ons

Chatterjee and Milanfar. Is denoising dead? IEEE Trans. Image Proc., April 2010.

Page 11: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Boos%ng

11

Noisyimage𝐲

Denoisedimage𝐱 =𝑓(𝐲)

Methodnoise𝐲− 𝐱 

§  Formulatedenoisingasaregularizedop6miza6onproblem:itera6velyminimizingtheobjec6vefunc6onofminimizingtheMSE

§  Boos6ngperformancebyadap6velyfeedingbacktheresidual/methodnoiseimage

Page 12: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Boos%ng

12

Mul6pleboos6ngalgorithmshavebeenexploredinthepast:

§  Twicing[Tukey’77,Charestetal.’06]

§  𝐱 ↑𝑘 = 𝐱 ↑𝑘−1 +𝑓(𝐲− 𝐱 ↑𝑘−1 )

§  Diffusion[Perona-Malik’90,Coifmanetal.’06,Milanfar’12]

§  Removesthenoiseleioversthatarefoundinthedenoisedimage

§  𝐱 ↑𝑘 =𝑓(𝐱 ↑𝑘−1 )

§  Spa6allyadap6veitera6vefiltering(SAIF)[Talebietal.’12]§  Automa6callychoosesthelocalimprovementmechanism:

§  Diffusion§  Twicing

Page 13: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Boos%ng

13

§  SOS[Romano&Elad’15](Strengthen-Operate-Subtract)

§  𝐱 ↑𝑘 =𝑓(𝐲+ 𝐱 ↑𝑘−1 )− 𝐱 ↑𝑘−1 

Denoise

PreviousResult

§  Moregeneral:usingparameter𝜌tocontrolsignalemphasistocontrolsignalemphasis

§  𝐱 ↑𝑘 =𝑓(𝐲+𝜌𝐱 ↑𝑘−1 )− 𝜌𝐱 ↑𝑘−1 

Page 14: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Boos%ng

14

§  Annealing:WNNM[Zhangetal.’14]

§  𝐱 ↑𝑘+1 =𝑓(𝜌𝐱 ↑𝑘 +(1−𝜌)𝐲)=𝑓( 𝐱 ↑𝑘 +(1−𝜌)(𝐲− 𝐱 ↑𝑘 ))

Denoise

PreviousResult

§  WNNMusesaconstant 𝜌forthewholeimageforthewholeimage

§  𝜌 =0.9inexperiments

Page 15: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

ReviewofWNNM

15

fixed

Page 16: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Basicideaofadap%veboos%ng(AB)

16

•  Insteadofusingafixedfeedback/boos6ngfactor1−𝜌,,weadap6velychangeitfromoneitera6ontoanother

•  Thisisveryintui6ve•  Asthedenoisingperformanceimproves

fromitera6ontoitera6on,thereislessandlessusefulstructureinthemethod/residualnoise

•  Thefeedbackfactor 1−𝜌 shoulddecreasefromoneitera6ontoanother

•  Howtodoadap6veboos6ngsystema6cally?•  Rank-1basedfixed-pointanalysis

Page 17: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Fixed-pointanalysis

17

§  Setup:𝐲=𝐱+𝐧

§  𝐲 ∈ 𝑅↑𝑚×1 , noisy image patch arranged in an vector

§  𝐱 ∈ 𝑅↑𝑚×1 , clean image patch;𝐧∈ 𝑅↑𝑚×1 , AWGN noise 𝐧~𝑁(0, 𝜎↑2 )

§  Agenericitera6vepatch-baseddenoisingalgorithm

𝐱 ↑𝑘 =𝑓(𝐱 ↑𝑘−1 +(1− 𝜌↑𝑘 )(𝐲− 𝐱 ↑𝑘−1 ))

=𝑓(𝜌↑𝑘 𝐱 ↑𝑘−1 +(1− 𝜌↑𝑘 )𝐲) 𝑘∈ 𝑍↑+ 

Ø  𝑓(∙)isnonlinearingeneral,butmostexis6ngalgorithmscanberepresentedas(∙)isnonlinearingeneral,butmostexis6ngalgorithmscanberepresentedasrow-stochas6cposi6vedefinitematrixopera6ons𝑊[Milanfar’13][Milanfar’13]

Ø  Assumingconvergence,assign𝐱 ↑𝑘 = 𝐱 ↑𝑘−1 = 𝐱 ↑∗ 

𝐱 ↑∗ =𝑊(𝜌↑∗ 𝐱 ↑∗ +(1− 𝜌↑∗ )𝐲)

§  Thefixed-pointsolu6on:𝐱 ↑∗ = (𝐼− 𝜌↑∗ 𝑊)↑−1 (1− 𝜌↑∗ )𝑊𝐲

Page 18: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Fixed-pointanalysis

18

FixedPoint:𝐱 ↑∗ = (𝐼− 𝜌↑∗ 𝑊)↑−1 (1− 𝜌↑∗ )𝑊𝐲§  Minimizethemeansquareerrorofes6mator𝐱 ↑∗ :

𝑀𝑆𝐸(𝐱 ↑∗ )=𝐸[(𝐱 ↑∗ −𝐱)↑2 ] = ‖𝑏𝑖𝑎𝑠( 𝐱 ↑∗ )‖↑2 +var(𝐱 ↑∗ )§  Bias: 𝑏𝑖𝑎𝑠(𝐱 ↑∗ )=𝐸(𝐱 ↑∗ )−𝐱 =[(𝐼− 𝜌↑∗ 𝑊 )↑−1 (1− 𝜌↑∗ )𝑊−𝐼]𝐱 = (𝐼− 𝜌↑∗ 𝑊 )↑−1 (𝑊−𝐼)𝐱

•  Row-stochas6cposi6vedefinitematrixadmitsaneigen-decomposi6on:𝑊=𝑈Λ 𝑈↑𝑇 ;thecleanpatch𝐱=𝑈𝐛

‖𝑏𝑖𝑎𝑠‖↑𝟐 = ‖𝑈(𝐼− 𝜌↑∗ Λ)↑−𝟏 (Λ−𝐼)𝐛‖↑𝟐  = ‖(𝐼− 𝜌↑∗ Λ)↑−𝟏 (Λ−𝐼)𝐛‖↑𝟐 

=∑𝑖=1↑𝑚▒(𝜆↓𝑖 −1)↑2 𝑏↓𝑖↑2 /(1− 𝜌↑∗ 𝜆↓𝑖 )↑2    (Λ=𝑑𝑖𝑎𝑔[λ↓1 ,⋯,

λ↓𝑚 ])

Page 19: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Fixed-pointanalysis

19

FixedPoint:𝐱 ↑∗ = (𝐼− 𝜌↑∗ 𝑊)↑−1 (1− 𝜌↑∗ )𝑊𝐲§  Variance: 𝑣𝑎𝑟(𝐱 ↑∗ ) =𝑡𝑟[𝑐𝑜𝑣(𝐱 ↑∗ )] =𝑡𝑟[𝑐𝑜𝑣( (𝐼− 𝜌↑∗ 𝑊 )↑−1 (1− 𝜌↑∗ )𝑊n)]

= 𝜎↑2 ∑𝑖=1↑𝑚▒(1− 𝜌↑∗ )↑2 𝜆↓𝑖↑2 /(1− 𝜌↑∗ 𝜆↓𝑖 )↑2   

§  OverallMSE:

§  noisevarianceà 𝜎↑2 §  patchpropertyà 𝑏↓𝑖↑2 §  denoisingalgorithmà Λ, 𝜆↓𝑖↑2 §  trytofindtheop6mal𝜌↑∗ tominimizetheMSE

§  SpecializethedenoisingmatrixW toSVD-basedsoithresholdingandlookfortheop6mal 𝜌↑∗ 

𝑀𝑆𝐸=∑𝑖=1↑𝑚▒𝜆↓𝑖↑2 (1− 𝜌↑∗ )↑2 𝜎↑2 + (𝜆↓𝑖 −1)↑2 𝑏↓𝑖↑2 /(1− 𝜌↑∗ 𝜆↓𝑖 )↑2   

Page 20: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

SVD-basedsoVthresholdinginWNNM§  Group-levelsetup:stack𝑚↓1 similarblockstogether

𝑌=𝑋+𝑁𝑌, 𝑋, 𝑁∊𝑅↑𝑚× 𝑚↓1  𝑌= 𝑈Σ𝑉↑𝑇  Denoiser W 𝑋 =𝑈𝑆↓𝜔 (Σ) 𝑉↑𝑇 

Λ= 𝑆↓𝜔 (Σ) Σ↑−1 

𝑋 =𝑈𝑆↓𝜔 (Σ)Σ↑−1 𝑈↑𝑇 𝑈Σ𝑉↑𝑇 

𝑋 =𝑈𝑆↓𝜔 (Σ)Σ↑−1 𝑈↑𝑇 𝑌

Σ=𝑑𝑖𝑎𝑔[𝑠↓1 ,⋯, 𝑠↓𝑚 ] S↓𝜔 (Σ)=𝑑𝑖𝑎𝑔[max (𝑠↓1 − 𝜔↓1 ,0) ,⋯, max (𝑠↓𝑚 − 𝜔↓𝑚 ,0) ]

𝜆↓𝑖 = max (1− 𝜔↓𝑖 /𝑠↓𝑖  ,0)  for𝑖=1,⋯,𝑚

𝑊=𝑈Λ 𝑈↑𝑇 

𝑋 =𝑊𝑌

𝑋 =𝑈Λ 𝑈↑𝑇 𝑌

Page 21: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Rank-1basedfixed-pointanalysis

21

§  Rank-1Assump6on:Allnonlocalblockssimilarto𝐱intheoriginal

imageareiden6cal!𝑌 isarank-1matrixplusGaussiannoise

𝐱 𝐲

𝑀𝑆𝐸=∑𝑖=1↑𝑚▒𝜆↓𝑖↑2 (1− 𝜌↑∗ )↑2 𝜎↑2 + (𝜆↓𝑖 −1)↑2 𝑏↓𝑖↑2 /(1− 𝜌↑∗ 𝜆↓𝑖 )↑2   

Page 22: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Rank-1basedfixed-pointanalysis

22

§  Rank-1Assump6on:Allnonlocalblockssimilarto𝐱intheoriginalimageareiden6cal!𝑌 isarank-1matrixplusGaussiannoise§  Thefirstsingularvaluein Σdominatestherest:𝑠↓1 ≫𝑠↓𝑖 ,for𝑖=2,

⋯,𝑚

Shabalin and Nobel. Reconstruction of a low-rank matrix in the presence of Gaussian noise. Journal of Multivariate Analysis, 2013. Nadakuditi. Optshrink: An algorithm for improved low-rank signal matrix denoising by optimal, data-driven singular value shrinkage. IEEE Trans. Info. Theory, May 2014.

Page 23: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Rank-1basedfixed-pointanalysis

23

§  Since 𝑠↓1 ≫𝑠↓𝑖 ,for𝑖=2,⋯,𝑚, wehave𝑠↓𝑖  ≤ 𝜔↓𝑖 𝜆↓𝑖 = max (1− 𝜔↓𝑖 /𝑠↓𝑖  ,0)  for𝑖=1,⋯,𝑚 à 𝜆↓𝑖 =0, for𝑖=2,⋯,𝑚

𝑀𝑆𝐸=∑𝑖=1↑𝑚▒𝜆↓𝑖↑2 (1− 𝜌↑∗ )↑2 𝜎↑2 + (𝜆↓𝑖 −1)↑2 𝑏↓𝑖↑2 /(1− 𝜌↑∗ 𝜆↓𝑖 )↑2    = 𝜆↓1↑2 (1− 𝜌↑∗ )↑2 𝜎↑2 + (𝜆↓1 −1)↑2 𝑏↓1↑2 /(1− 𝜌↑∗ 𝜆↓1 )↑2  

§  Theop6mal 𝜌↑∗ thatminimizetheMSEis𝜌↑∗ = 𝜆↓1 𝜎↑2 −(1− 𝜆↓1 )𝑏↓1↑2 /𝜆↓1 𝜎↑2  

Denoiser: 𝑊=𝑈Λ 𝑈↑𝑇 

Page 24: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Adap%veboos%ng(AB)

24

𝜌↑∗ = √𝐸↓𝒚  /√𝐸↓𝒚  +√𝐸↓𝐱   

§  The 𝑏↓1↑2 standsfortheenergystrengthinpatch𝐱àpatcheswithdifferentcharacteris6csshouldbeassigneddifferent𝜌↑∗ s.

§  𝜌↑∗ ∈(0.5, 1)whichsa6sfiestheconvergencecondi6on§  Weusethesameformulafor𝜌↑𝑘 inthe𝑘-thitera6onofAB,

theadap6veboos6ngbecomes

§  Thefeedbackfactor1-𝜌↑𝑘 decreasesas𝑘increasesüincreasesü

§  Giventheformulaofop6mal𝜌↑∗ fromfixedpointanalysis 𝜌↑∗ = 𝜆↓1 𝜎↑2 −(1− 𝜆↓1 )𝑏↓1↑2 /𝜆↓1 𝜎↑2   ,es6mate 𝜆↓1 =√𝐸↓𝐱 /𝐸↓𝒚    , 𝑏↓1↑2 = 𝐸↓x  ,wehave

𝜌↑𝑘 = √𝐸↓𝐱 ↑𝑘−1   /√𝐸↓𝐱 ↑𝑘−1   +√max(𝐸↓𝐱 ↑𝑘−1  − 𝜎↑2 ,0)  

Page 25: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Adap%veboos%ng

25

𝜌↑𝑘 = √𝐸↓𝐱 ↑𝑘−1   /√𝐸↓𝐱 ↑𝑘−1   +√max(𝐸↓𝐱 ↑𝑘−1  −

𝜎↑2 ,0)  

Page 26: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Convergenceanalysis

26

Assumingmatrixapproxima6onof𝑓(⋅)≈𝑊

§  Differencebetweenthe 𝑘-thes6mateandthefixedpoint-thes6mateandthefixedpoint 𝒆↑𝑘 = 𝐱 ↑𝑘 − 𝐱 ↑∗ 

=𝑊(𝜌↑𝑘 𝐱 ↑𝑘−1 +(1− 𝜌↑𝑘 )𝐲)−𝑊(𝜌↑∗ 𝐱 ↑∗ +(1− 𝜌↑∗ )𝐲)

§  Aieralargenumberofitera6ons,replace𝜌↑𝑘 by 𝜌↑∗  𝒆↑𝑘 = 𝜌↑∗ 𝑊(𝐱 ↑𝑘−1 − 𝐱 ↑∗ )= 𝜌↑∗ 𝑊𝒆↑𝑘−1 = 𝜌↑∗ ↑𝑘 𝑊↑𝑘 

𝒆↑0 

§ Wehave0< 𝜌↑∗ <1and0≤𝑊<1(thedenoisingoperatoriscontrac6ve)

§  𝒆↑𝑘 →𝟎as𝑘→∞as𝑘→∞

§ OurABalgorithmconverges

Page 27: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Testimages

27

The20testimagescommonlyusedinexperiments:

Page 28: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Numericalresults

28

ABgivesthebestPSNRresultforeveryimages(20testimages)andtheimprovementoverothersincreaseswithnoisevariance

Page 29: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Numericalresults

29

ABgivesthebestPSNRresultforeveryimages(20testimages)andtheimprovementoverothersincreaseswithnoisevariance

Page 30: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Visualcomparison

30

Page 31: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Comparisonwithlowerbound

31

ABperformsclosesttotheCramer-Raolowerbound

Chatterjee and Milanfar. Is denoising dead? IEEE Trans. Image Proc., April 2010.

Page 32: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Remarks

32

•  ABworksasapreprocessingstepineachitera6onbeforetheimageisdenoisedbyleadingmethod

•  ComplexityofABisignorablecomparedwiththemaindenoisingalgorithm

•  ABisblock-basedtoadapttonon-sta6onarity•  TheideaofABisverygeneric

•  Canbecombinedwithtraining/learning-basedapproach

•  ABisapplicabletootherrepresenta6vemethods•  SuchasBM3DandK-SVD

Page 33: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Remarks

33

•  ABisapplicabletootherrepresenta6vemethods•  FreshPSNRresults(indB)fromBM3D+AB

Sigma = 25 BM3D BM3D+SOS BM3D+AB

Foreman 33.41 33.48 33.49Lena 32.02 32.04 32.05House 32.90 32.90 32.93

FingerPrint 27.72 27.72 27.74Peppers 31.87 31.89 31.90

Page 34: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Imagedenoising--forreal!

34

§  Imagestakenbylow-andhigh-endsmartphones

3264x2448 4160x3120

Page 35: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Imagedenoising--forreal!

35

§  Imagestakenbylow-andhigh-endsmartphones

1031x754 window 1259x771 window

Page 36: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Imagedeblurring

36

§  Couldbepartofdenoising

Page 37: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Imagesuper-resolu%on

37

Page 38: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Facesuper-resolu%onforrecogni%on

38

Page 39: Adap%ve Boos%ng for Image Denoising · § IP, stas6cs, CV & ML, coding, and op6mizaons § Classic Wiener filtering technique (1949) first applied to image ... § Rank-1 Assump6on:

Imageinpain%ng

39