Adaptive and Localized Basis Functions for Linear Scaling...

28
bigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook Max Conference on the Materials Design Ecosystem at the Exascale: High-Performance and High-Throughput Computing TRIESTE Adaptive and Localized Basis Functions for Linear Scaling, Large Systems and Complex QM Simulations Luigi Genovese, Stephan Mohr, L. Ratcliff, D. Caliste, S. Goedecker, T. Deutsch INAC – CEA Grenoble January 30, 2018 Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Transcript of Adaptive and Localized Basis Functions for Linear Scaling...

Page 1: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Max Conference on the Materials DesignEcosystem at the Exascale: High-Performance

and High-Throughput Computing

TRIESTE

Adaptive and Localized Basis Functions forLinear Scaling, Large Systems and

Complex QM Simulations

Luigi Genovese, Stephan Mohr, L. Ratcliff, D. Caliste,S. Goedecker, T. Deutsch

INAC – CEA Grenoble

January 30, 2018Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 2: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

BigDFT: A DFT code based on Daubechies wavelets

A pseudopotential Kohn-Sham code

Daubechies wavelets have uniqueproperties for DFT usage

I Systematic, Orthogonal

I Localised, Adaptive

I Kohn-Sham operators are analytic

I Efficient Poisson solver, capableof handling different boundaryconditions – free, wire, surface,periodic

I Explicit treatment of chargedsystems

-1.5

-1

-0.5

0

0.5

1

1.5

-6 -4 -2 0 2 4 6 8

x

φ(x)

ψ(x)

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 3: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Adaptivity of the mesh

Atomic positions (H2O)

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 4: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Adaptivity of the mesh

Fine grid (high resolution)

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 5: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Adaptivity of the mesh

Coarse grid (low resolution)

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 6: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Adaptivity of the mesh

No close form: Scaling relations!All functions have compact support, centered on grid points.

φ(x) =m

∑j=−m

hj φ(2x− j)

We only use the filters hj : short convolutions (GPU-friendly)

-1.5

-1

-0.5

0

0.5

1

1.5

-6 -4 -2 0 2 4 6 8

x

φ(x)

ψ(x)

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 7: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

DeltaTest benchmark: ∆ = 1.0 Science, 351, 6280 (2016)

For the first three rows

Screenshot of DeltaTest webpage as of 24/02/16,elements up to Ar, new NLCC - HGH - NC - PSP (S. Saha)

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 8: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

http://bigdft.org version 1.8.1

A code both for solid-state and physical chemistry

I 3D periodic, surfaces and free BC (← Poisson Solver)

I Usage of analytic HGH pseudopotentials

I Very high precision (analytic Kohn-Sham operators)

I All-electron accuracy, benchs in G2-1, (DeltaTest)

Present functionalities

Kohn-Sham DFT (metals, van der Walls, Hybrid Functionals),Systems embedded in electrostatic environments,Library of Structural Prediction, O(N) calculations

Under implementation

Non orthorhombic cells, PAW, linear response TD-DFT

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 9: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

BigDFT breakdown process (1.8.x)

Modularity first

Each section of BigDFT is,when appropriate, defined asa module with its own buildsystem and compilationinstructions.

At present:

I FUTILE 1.0 (low level)

I GaIn 1.0(Gaussian Integral fromFiesta GW code)

I CheSS 1.0 (talk Stephan)

I PSolver 1.8Poisson solver + exchange

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 10: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Hybrid Functionals for large systems γ=PBE0/PBE

Since 2009, BigDFT ported on GPU.

Use for the exchange part (N2 Poisson Solver evaluations).

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 11: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Hybrid Functionals for large systems γ=PBE0/PBE

UO2 systems:Atoms Orbitals

12 20096 1432

324 5400768 128001029 17150

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 12: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Scaling of “Traditional” BigDFT (linear scaling)

“Traditional” BigDFT code

We can reach systems containing up to a few thousandelectrons thanks to wavelet properties and efficientparallelization: (MPI + OpenMP + GPU)

DFT operations scale differently:

I O(N logN): Poisson solver

I O(N2): convolutions

I O(N3): linear algebra

and have different prefactors:cO(N3)� cO(N2)� cO(N logN)

0

10

20

30

40

50

60

0 1000 2000

Tim

e / ite

ration (

s)

Number of atoms

ax3 + bx

2 + cx:

2.8e-09; 8.4e-06; 4.1e-031.3e-10; 6.1e-07; 3.9e-035.7e-11; 6.1e-07; 4.9e-047.1e-11; 1.7e-11; 3.4e-032.1e-11; 1.2e-11; 3.8e-03

For bigger systems the O(N3) will dominate

* Motivation for a new approach

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 13: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Localized optimized minimal basis set (linear scaling)

Kohn-Sham orbitals

Linear combinations ofsupport functions φα(r):

Ψi(r) = ∑α

cαi φα(r)

I localized around atoms

I expanded in wavelets

I optimized in-situ

Density Matrix

Defined via the kernel K αβ inthe φα(r) basis:

ρ(r, r′) = ∑i

fiΨi(r)Ψi(r′)

= ∑α,β

φα(r)K αβφβ(r

′)

Localization→ Sparse matrices (Hαβ, K αβ)→ O (N)Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 14: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Comparison with the cubic version (linear scaling)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2000 4000 6000 8000 10000 12000 14000

tim

e (

se

co

nd

s)

number of atoms

total runtime lineartotal runtime cubic

linear extrapolation, reference 3000 atoms

I 20 min for 18 000atoms

I CPU Time andmemory ∝ numberof atoms

High flexibility, like the cubic code

I Different levels of precision via the cutoff radii: Withoutfine-tuning converges to absolute energy differences ofthe order of 10 meV/atom, and almost exact forces.

I System sizes: 100 - 200K atoms 1M basis functions

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 15: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Features of the localized optimized minimal basis set

Ideal properties to work at the many thousand atoms scaleI Accurate results with good localizationI Low No. of degrees of freedom

* Low condition number (quasi-orthogonal)

* Small Spectral Width (thanks to pseudo-potential)

S H

system (#atoms) sparsity κ sparsity SW (eV)

DNA (15613) 99.57% 2.29 98.46% 49.25bulk pentacene (6876) 98.96% 2.26 97.11% 42.30perovskite (768) 90.34% 2.15 76.47% 47.25Si nanowire (706) 93.24% 2.16 81.61% 41.54H2O droplet (1800) 96.71% 1.57 90.06% 38.26

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 16: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Our record: 250,000 atoms (Stephan Mohr)

Algorithm is robust and reliable on a variety of systems

Included in the Real-space numerical grid methods in quantum chemistry

themed issue of PCCPGuest-edited by Luca Frediani

(The Arctic University of Norway) and Dage Sundholm (University of Helsinki)

Accurate and efficient linear scaling DFT calculations with universal applicability

S. Mohr, L. E. Ratcliff, L. Genovese, D. Caliste, P. Boulanger, S. Goedecker and T. Deutsch

Phys. Chem. Chem. Phys., 2015, 17, 47, 31360-31370. DOI: 10.1039/c5cp00437c

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 17: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Why do we need so Large scale DFT?

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 18: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Review of O(N) DFT calculations

New calculation paradigms are emerging!

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 19: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Bridging the gap between different methods!

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 20: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Testing different approaches and models

I Fragments : Constrained DFT,Charge transfer, Excitations

I Atomic charge analysis

I Statistics of atomic configurations(snapshots from MD with force fields)

I Impact of the (electrostatic) environment

I Comparison between Full QM, QM/QM,and MM calculations

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 21: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Dividing a system into fragments JCP 142, 234105 (2015)

We can duplicate the localized adaptedorbitals for similar portions of largesystems→ considerably reduces the cost

support function

optimization

support function

reformatting

* Enables manipulation of optimized basis sets(need an efficient reformatting)4 Efficient and precise roto-translation of localized orbitals

Reformatting the minimal basis set in the same grid

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 22: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Fragment: Charge transport in OLEDs (statistics)

Impact of environment in a realistic ‘host-guest’ morphology:6192 at., 100 molecules — L. Ratcliff et al. JCP 142, 234105 (2015)

Host molecule

4,4’-N,N’-dicarbazole-biphenyl

Guest molecule

tris(2-phenylpyridine)iridium

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 23: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Complex Input files: What we need?

Need to build complex files and process outputfiles

I Use of a Human readable markup language(YAML)

I An output file can be an input file to rerun asimulation

I Easy to parse and processI as Python dictionariesI Develop the Fortran FUTILE library

I Towards workflows (Jupyter notebooks)

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 24: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Which structure for the data? Disclaimer: Personal experience

Block structured YAMLI A clean and very human readable format.

I Very good choice for configuration files that are humanreadable and editable while at the same timeinterpretable and modifiable by a program.

* YAML parsers are available for scripting languages(Python, Ruby)

“FUTILE” approach to input variables and optionsI Options defined like an input file

(key→ value)

I Logfiles come structured similarly

I Usage of structured I/O at FORTRAN level

I Allows for legacy code and enhanced modularity

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 25: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Example of the input dictionary (YAML format)

Use for Input and Output files!

setup:taskgroup_size : 0 # Size of the taskgroupsaccel : none # Accelerationglobal_data : Noverbose : Yes #Verbosity switchoutput : none #Quantities to be plotted

kernel:screening : 0 #Mu screening parameterisf_order : 16 #Order of the ISF familystress_tensor : Yes #Extract stress tensor

environment:cavity : none #Type of the cavitycavitation : No # Extra cavitation termsinput_guess : Yes #Input guess procedurefd_order : 16 #Order of FD derivativesitermax : 50 #Max. No.of GPS iterationsminres : 1.e-6 #Convergence threshold

pb_method : none #Poisson Boltzmann Equation

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 26: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

How can we benefit from this?

I Understanding code behaviour on a new architecture

I Identify optimization strategies for the end-user(modification of the input file)

I Small demo, notebooks based on jupyter

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 27: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Perspectives

Linear-Scaling DFT: Opens up new possibilities

I Robust convergence, high accuracy and flexibility (BC)

I Reduction in degrees of freedom→ large systems viamoderate sized machines (∼ TFlop/s) Lab-scale

I Different level of descriptions (controlling the precision)QM ⊃ Fragments ⊃ Atomic charges

Challenges and future directions

I Explore interplay environment↔ electronic excitations(CDFT, QM/MM, statistics, . . . )

I Provide high quality back end for extraction of atomicmultipoles from QM calculations

I Explore Linear Response Time-Dependent DFT, . . .

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese

Page 28: Adaptive and Localized Basis Functions for Linear Scaling ...bigdft.org/images/e/e3/ICTP.pdfbigdft.org Cubic vers. O(N) vers. Bridging the gap Facilitating processing Outlook BigDFT

bigdft.org

Cubic vers.

O(N) vers.

Bridging thegap

Facilitatingprocessing

Outlook

Acknowledgments

I Main maintainer — Luigi Genovese

I Group of Stefan Goedecker — Basel UniversityB. Schaefer, A. Ghazemi, S. Saha, G. Fisicaros

I Order N methods (fragments, constrained DFT)Stephan Mohr (BSC), L. Ratcliff (Imperial College), PaulBoulanger (U. Montreal)

I Link with ABINIT and python bindingsDamien Caliste (CEA)

I Hybrid Functionals, GPU — A. Degomme (CEA)

I Optimized convolutions — B. Videau, J.-F. Méhaut (LIG,computer scientists, Grenoble)

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim T. Deutsch, L. Genovese