AD-fl132 DETERMINATION OF QUANTITATIVE RELATIONSHIPS ...

322
AD-fl132 834 DETERMINATION OF QUANTITATIVE RELATIONSHIPS BETNEEN 1/4 SELECTED CRITICAL HELICOPTER DESIGN PRANETERS(U) NAVAL POSTGRADUATE SCHOOL MONTEREV CA R S PETRICKA SEP 84 UNCLSSIFIED F/G 1/3 U

Transcript of AD-fl132 DETERMINATION OF QUANTITATIVE RELATIONSHIPS ...

AD-fl132 834 DETERMINATION OF QUANTITATIVE RELATIONSHIPS BETNEEN 1/4SELECTED CRITICAL HELICOPTER DESIGN PRANETERS(U) NAVALPOSTGRADUATE SCHOOL MONTEREV CA R S PETRICKA SEP 84

UNCLSSIFIED F/G 1/3 U

Ii 1.0 : M"'~ iII111110

I '36'0 111111 ' '2.0

lii- 2

MICROCOPY RESOLUTION TEST CHART

NAVAL POSTGRADUATE SCHOOLMonterey, California

LO'm

DT C

THESISDETERIMINATION OF QUANTITATIVE

RELATIONSHIPS BETWEEN SELECTED CRITICALHELICOPTER DESIGN PARAMETERS

by

Ronald S. Petricka

LA- September 1984

Thesis Advisor: D. M. Layton

Approved for public release; distribution unlimited.

.... " ' " . , : :: i: : + " - : + . .-:

SE 104r -- PAG D81 V 7Mr0. - . s

5E~~'~:..REPORTZ -* , DOCUENTTO P*[email protected] READ INSTRUCTIONS

*~~~~~~~ REOTDCMNABNPG EFORE COM.PLETING FORM4

4 1 %'E w'd S.~8twr. 5 TYPE AT PEq-C CC~vEQE0

:eterminat.of of ~ aMsers:-e~Relatiols.2.:s 2et;een Sel'ec:-C2 Zectember13;

Cr~~~~t~~.cal~~~ zPlEc:r e~nr&ltr RFC4NG :aG, REoCA N..T E

Aj 8. CONTRACT OR O;ANr N. mGER(s)

Ronald S. Petricka

S ~Q'Q~d3 QOA2A ZN NA.E ANC ACOPSS 0. ROOAM E-EYE4 PQOjE:: -ASK(

Naval Postgraduate SchoolAEAS* SiTNJES

ZNOL. Z Z CE .Ah4E APC AOCPESS 12 REPORT A-E

N av~al Postgraduate Sch-oL September 1934

'-onterev, -_A 93943 '3. NUMBER OF PAGES

fd ZEC..ASS%rCAT':'N ZOINNGRACING

S - -. 4 t ., eot SC)4E=ULE

-.,,roved for public release; distribution unlimited.

* I S- 3, '.. N S A!EE4 1 b ef&Cf eor~c ntered in Block 210. 11 Jiffeent Irom Report)

-Uant tative Relv onshics of He' icopter :esi~n ?3rameters

* ....Thi tn'eSLS deterines the rel~ationlships or nelicocter e n

r-ararneters iz _ ae-ictin; aaor.ica._*.y all :.css~z~e car:7

or selected JeSL -n parameter values and tn-en, secondl,:,, ,en ra hicaLv reszoecti-ie :rurv:e tits ro,:r tr-e aa-a ::oint

zos meetJ - --n accectance critera. _1n 3enea.n:)!S, s-ec L~C Constants Of eacn- crv- -Ir':

:~'--~~, l;~an;th~e -_esi~ner - he atlt io>r>

DO ."AN 13, 1473 EOIS Of IN 40NV SS IS OBSOLETE

~~~~~*~'n La s t V wS RAE (W*l 0.. In..

*IUIYCASFC rO FT~lSAIthnDt ftrd

SUCU~tIT C %.ASSI~CATION OP !NIS 'AG(E (Who. Data £.,tocw%

.- r, fr -,E Lecz-d L tra and erro)r

10 -L 01-6 0

SEUIYpAU I~iw(o ri aa wnDt no d

K 7

Approved for puhlic release; distribution unlimited.

4-]

Determination of Quantitative Relationships BetweenSelected Critical Helicopter Design Parameters

by

Ronald S. PetrickaCaptain, United States Army

B.S., United States Military Academy, 1973

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOLSeptember 1984

Author: t t

Approved by: ,?esis Advisor

Cha-irman, 'Departme0 of AeronauticsI!

6ean oS' Science and Encineering

"

A BSTBACT

Ibis thesis deterxines the relationships of -ielicc:pter

design caraaeters by first Je~icting graphically all

Fossitle pairings of _5elected design parameter vL lues and

tzen, secondly, depicting graphically respective curve fits

for the data point plcts which meet an acceptance criteria.

In gEneratirg the curve plots, the specific constants of

each curve eguation are determined, thas allowing the

designer the ability to derive yuantitatively the values cf

many of the design parameters heretofore selected by trial

and error methods.

I4

G Li

,- . .I' .. . - . .. -.....- ..,,,..,-. ... .,- .,,.,, ,,. . " ...i -'

IABLE CF CCNTENTS

I. INTECDUCT ION .................. 10

A. CBJECTIVES AND SCOPE ................. 10

II. APPRCACH '0 TEE PROBLEM ................. 12

III. SCIUTION TO THE PROBLEM. 1............. 4

IV. RESUITS AND CCNCLUSICNS ..... ............. 19

A. CONCLUSIONS ....... ............... . 21

APPENDIX A: REFERENCES FOR DATA BASE AND HELICOPTERS . . 22

A. SELECTED rESIGN PARAMETERS AND

NCMENCLATURE ................... 22

B. SELECTED DESIGN PABA3ETER VALUES ....... 23

C. FELICCPTEE PLANFCR?S AND PICTURES ... ..... 24

APPENDIX E: CRITICAL DESIGN PARAMETER PAIRINGS AND

REFERENCE SYSTEM 34.............3

APPENDIX C: DATA POINT PLOTS, CURVE FITS, AND CURVE

FIT EQUATIONS ...... .............. 69

APPENDIX 1: FORTRAN AND HEWLETT PACKARD COMPUTER

PROGRAMS ............... 341

A. 'CRVFIT' (EETERIINATICN OF CURVE FIT

ECUATIONS) HP FROGRA . ...... ............ 341

B. 'CRVFIT' (GRAPHING CF CURVE FITS) FORTRAN

PEOGEAM ........... .................... 346

LIST CF FEFERENCES .................... 52

INITIAL ZISIRIBUTION LIST ..... ............... 353

5

LIST OF TABLES

1. Summary Characteristics of Chosen ieLicopt ers 13

2. Resultant Relationships of Design Parameters 2)

2. Selected Design Parameters and Nomenclatur e . . . 22

4. Selected Design Parameter Values ... ......... .23

5. Main Rotor Radius Pairings ..... ............ 34

6. Tail Rotor Radius Pairings ... ........... . 36

7. Number of Mair Rotor Blad Pairings . . .. 38

E. Number of Tail Rotor Biade Pairings .. ...... 0

9. Height of Main Rotor System Pairinjs ... ..... 2

10. Steed of Main Rotor Pairings ... ............ 4

11. Speed of Tail Eotor Radius Pairings ........ 46

12. Chord of Main Rotor Blade Pairings .... ........ 48

13. chord of Tail Eotor Blade Pairings ....... 50

14. Span of Main Fctor Pairings .............. 52

15. S.an of Tail Ector Pairings ............. 54

16. Twist of Main Botor Blade Pairings .. ........ .56

17. 1wist of Tail otor Blade Pairings 5........5

18. rofile Drag cf Main Rotor Blade Pairings . . 53

19. Profile Drag cf Tail Rotor Blade Pairings . .. 59

20. Disc Loading of the Main Rotor System Pai: ings . 63

21. Width of the Fuselage Pairings .......... 61

22. Length of Fuselage Pairings ........... 62

23. Frcntal Hcrizcntal Flat Plate Area Pairings 63

24. Fzcntal Vertical Flat Plate Area Pairings . 6-4

25. Maximum Fcrward Velocity Pairings ........ 65

26. Maximum Range Fairings .... .............. 65

27. Eate of Climb airings ................. 6

28. Hcver Ceiling (IG:) Pairinjs .. ........... 66

29. HCVEr Ceiling (OGE) Pairings 67

30. Length of Tail Pairings 67

21. O0erating Weight Pairings 68............6

-2. Load Weight Pairings ................ 63

23. Fuel Weight Pairings ....... .............. 69

.4

7

.

-' - -

4" LIST CF FIGURES

2.I Cata Point Flot Chosen to be Curve Fitted . . 15

3.2 ata Point Ict Chcsen Not to be Curve

Fitted .................... 15

3.3 Example of Type 1 Curve Fit .. ......... . 16

3.4 Example of 11pe 2 Curve Fit . .......... 17

-. 5 Example of Type 3 Curve Fit ..... ....... 17

6 Example of Type 4 Curve Fit ........... 1

A. 1 AH64 Planform ......................... 2

A.2 CH58C Planfcrm ... . ................. 25

A.3 SH-39 Planfcm ... ................... 26

A. 4 S-76 Planform ...... ................. 27

A.5 UH-60A Planfcrm ............. ................ 28

A.6 CH-5 Planfcrm ............................. 29

A.7 CB-53D Planfcrm. ...... ................ 30

A.8 CH-53E Planform ...................... 21

A.9 AH-1S Planfcrm ...................... 32

A. 10 UH-IH Planfcrm ....................... 33

Main Rotor Fadius Pairings .... ........... 69

Tail Rotor Fadius Fairings . ........... 93

Number of lain Rotor Elades Pairings.. . . . 107

Number of Tail Rotor Elades ?airings ..... . 127

Height of lain Rotor System Pairings ..... . 137

Speed of lain Rotor Pairings ......... 1

Speed of Tail Rotor Radius Pairings ..... 167

Chcrd of Main Rotor Blade Pairins ...... 191

Chord of Tail Rotor Blade Pairings 191......

Span of Main Rotor Pairings .... ......... 201

Span of Tail Rotor Paizings . ......... 215

Twist of ".air Rotor 3lade paiz:i.s. 227

Twist of Tail Rotor Blade Pairins . .. 231

Prcfile Drag of :ain Fotcr Blade Pairin;s . . 235

Prcfile Drag of Tail Fotor Blade Palrin;s . 243

Disc Loading of the Main Rotor System

Pairings ................... 251

Width of the Fuselage Pairings ......... 263

Length of Fuselage Pairings ... ........ 271

Frcntal Horizontal Flat Plate Area Pairings 281

Frcntal Vertical Flat Plate Area Pairings 289

Maximum Forward Velocity Pairings ...... 295

Maximum Range Pairings ................ 1

Rate of Climt Pairings ................ 07

Hover Ceiling (IGE) Pairings ......... 13

Hover Ceiling (OGE) Pairings ....... 17

Length of Tail Pairings...........321

Cperating Weight Pairings -7..........27

load Weight iairings .. ............. 333

Fuel Weight Pairings .. ............ 337

I. INISCEUCTION

-he evclution of helicopter desion has prcce- iel far

beyond the starting -cint where desI-n ecisicns W.ere based

on a 'trial and error' criteria. In major helicopter

industry, the design process has evolved to a lacgely tEch-

nical disci~line where, with the noted exceptions of techno-

logical breakthroughs which cause a drastic departure from

the ncrm (an example being the Hughes NOTA2, a heliccpter

without a tail rotor!), a new helicopter design is built by

Fiecirc together critical design parameters in a fashion

dictated by past successful designs. Those critical Iesi:n

paramEters, logically, are determined by the intended user's

requirements (e.g., carrying capacity, and mission (scout

v6. utility vs. attack)), performance requirements (e.g.,

speed, clixt, and rance), and the geometric requirements

(e. ., length, and width).

Definite relationhips between these critical design

parameters (30 have teen selected), are frequently unavai-

lable, or unknown, and are not used during the preliminary

design process. Fy examining all possible pairings, or

jermutations, across a large number of present helicopter

designs (10 have Zeer chosen), one could produce equations

cf curves which would consistently, accurately and quickly

pro.uce the quantitative value for the design parameter a

designEr seeks.

A. CEJECTIVES AND SCCPE

* The Cbjective of this thesis is to Jetermine if cuanti-

tative relationships Exist between the pa.rings of crltical

helicoCter 2esi-gn parameters. If tney do exist, sEci f.fC

0

01

-~ - ~..*** -v--u--.

Ep1aticn~ a: curves, ~cr~n-~ a curve ~i: ~ the ~ ata, a:specific ccr~sta2ts, are ta ~e ~eterzi:e'1.

4 4

4 I

I

1 I

4 I

I

6

S

*11

S

II. APROACa TO THE PROBLEM

Thirty design parameters were selected and a data base

was ccmpiled of the values of these desi~n parameters fcr 1)

heliccpters. The 10 helicopters chosen were selected

purposely tc represent a varied mix of single-missicn

aircraft (utility, heavy utility, scout or observation, and

attack) , and old and new technology, ranging from the 1950's

to the late 1970's, tc lend creditability to the resulting

relaticn.hips for use in any future preiiminary aelicopter

design piocess. Selected design parameters, and the respec-

tive values for each cf the chosen helicopters ace listed in

Appendix A. A planfcrm and abstract picture of each heli-

copter, for referencing, is ccntained in the same Appendix.

Table 1 is a brief summary which illustrates the diversity

of the helicopters chosen to compile the data ba3e fcr this

thesis.

Pairing each parameter singularly against eaz:h other

yielded 435 permutaticns at the start of the evaluaticn.

The pairings are referenced by 2 numbers. For examcle, the

pairing numher '1-30' pairs the first design parameter, Iain

Rotor Blade Radius, against the thirtieth design parameter,

Maximum Grcss Weight. Appendix B contalns a complete

listing of pairings. A simple data point graph (X vs. Y)

was made of each pairirg and, for the graphs that showed a

clear relationship existed, data points are curve fitted

yielding a curve equation with specific constants. 2oth the

singular data ,oints, and the curves, generated from the

curve eguatiois, are depicted graphically, reinforcing the

closeness of the curve fits, and that a relationshLp IcEs

indeed exist.

12

6:

TABLE 1

Summary Characteristics of Chosen Helicopters4' "

M litarv Weigot Primary Year of Year 3Z f issionDesignator Class Service Manufacture :echnology Purpose

AH64 Medium USA 1933 1970 AttackCH58C Lih USA 1969-78 1960 Ccservati onSH-3H Medium USN 1961-72 1950 Ut.LitVS-76 Mt-diam USN 1982 1970 UtilitUH-60A Medium USA 1979 1970 UtiiltyCH-54B Heavv USA 1974 1960 Ut-i. tvCH- 53D heavy US N (MC) 1969 1960 UtiityCH-53E Heavy USN 1981 1970 UtIi 1 VAH-IS Medium USA 1970-81 1963 AttacxIUH-1H ledium USA 1965-76 1950 Jtility

In addition to original programs, two pre-existing

computer prcgrams were used to facilitate the accomplishment

cf the thesis objective. The data point plots were gener-

ated with 'Helicopter Data Display', written by Captain Gary

Eisho, tSA, "Ref 13, and the curve fit evaluation was

accomrlished with 'Crvfit', a Hewlett-Packard hand-held

computer program, written by Commander Pat Sullivan, USN,

[Ref 2 I he 'Heliccpter Data Display' graphic output was

re-si2Ed tc meet the reguirements for thesis submission, and

the pre-existing data base revised with additions of data

from 3 mcre helicopters, a deletion of 1, and correction of

some incorrect data. The 'Crvfit' program was used as is,

with an acceptance criteria, called the correlation factor,

cf .8 Cr greater.

13

• S

A

IllI. SCLUTICN T0 THE PROBLEM

Cf tie first 435 airings, 153 were cut from considera-

tion following an initial ccnsultat'.on with ThesLs Advisor

Prof. Donald Layton hased on his own expertise. Those ;air-

ings disregarded from further evaluation are indicated hL a

prefixed "XX" in Appendix B. An example of pairings which

were disregarded outright were those involving 'Degree Twist

of Blades'. By experience, and verified thru conversations

with helicopter company representatives, 'Twist of the

Elade' has in the past been decided on by a 'what's on the

shelf' selection criteria, thus explaining why some ccmFa-

nies produce helicopters predominantly with a -10 degree

twist, while others produce helicopters predominantly with a

-8 degree twist, or, a 0 degree twist. 282 simple X-Y Flcts

of the rEmaining pairings were then generated, with the

first number of each pairing designated as the X-abcissa, or

horizontal axis, and the second number, as the Y-ordinate,

cr vErtical axis. Plots appear in Appendix C and are refer-

enced with figure numhers consistent with the method used to

reference the initial pairings (Example: Fig 1-30). 7he

selection for further evaluation for determining curve fits

%as accomplished by empirically judging whether the data

points tended to show that a relationship existed. lhcse

figures referenced with a suffix 'a' indicate that a rela-

tionship does exist and a data point curve fit follows. The

two examples are illustrated in Figures 3.1 and 3.2.

The data of the data points plots that were ;uestionazle

* were sutmitted to the Crvfit program which made the final

decision as to whether there was an interrelationshi F with a

resulting program correlation factor of .8 or greater.

14

1. AH-64 6. CH-54B

IHELICOPTER DESIGN" 2 -311 7.

AE 4306/4900 4. S-76 9. AH-13.UH-60A 10. UH-1533000 436-005 H-0 0 H

L

e2

') 2000-

0 9 41. 1 I

o 5 0

-< 0-3 7... 8

20.0 25.0 30.0 35.0 40.0MAIN ROTOR RADIUS (FT)

Figure 3.1 Data Pcint Plot Chosen to be Curve Fitted.

LUC

I.-I3I0 4 7

" :4- •10 O 5 0 O 8

- 60-

0 2- o 2 0cc 10n Im

z

0 20.0 25.0 30.0 35 0 40.0MAIN ROTOR RADIUS (FT)__

Figure 2.2 Data Point Plot Chosen Not to be Curve Fitted.

15

At the same time, the 'Crvfit, program determinei which of 4

(four) curve types, linear (Type 1) , exponential (Type 2),

logarithmic (Type 3) , cr power (Type 4), Lest fit the data

Eoints plotted. An example of cue of each of tha 4 curves

is illustrated in Figures 3.3 through 3.6. Curve fits for

the respective pairings, referenced with a suffix 'b', indi-

cating curve fit (Example: Fig 1-30b), and which includes

the test curve fit eguation, follow their respective data

point jlcts in Appendix C.

,

0 #1, LINEAR, Y=BX -A

_= ,5-

2 3-:

UJ 2-

z20.0 25.0 30.0 3i.0 46.0

MAIN ROTOR RADIUS (FT)

Figure 3.3 Example of Type 1 Curve Fit.

616

[# 2, EXPONENTIAL, Y A EB

3006 30 35 4

< 100

30U,

_ 150 #3, LOGARITHMIC, Y B LN X+ A

20.0 25.0 30.0 35.0 40.0

MAIN ROTOR RADIUS (PT)

Figure 3.5 Example of Type 3 Curve Fit.

17

6h ~100 D-1B

i 40. j14 IE YX

200 20 300 350 40.0

MAIN ROTOR RADIUS (FT)

FoFigure 3.,6 Ezanple of Type L4 Curve Fit.

[. _ •.

IV. RESULTS ANC CONCLUSIONS

282 iairings were evaluated to determine wnetner an

interrelaticnshij existed between the selectei lesign param-

eters. 185 were determined to produce positive curve fit

data which zet or exceeded the chosen correlation factcr.

Cf the 3C design parameters selected for evaluation, the

parameters Maximum Grcss Weight and Operating Weight were

most interactive, resulting in positive quantitative rela-

tionships with 16 other parameters. This is understandable

for bcth parameters are geometric parameters, driven hy

mission and performance requirements and both influence many

cf the cthers. 10 design parameters had no influence,

resulting in no relationship with any other parameter. A

demonstration of the validity of the derived relationships

is illustrated as follcws where both the curve fit equaticn,

and an alternate methcd (used in AZ 4306 Helicopter Design

Manual [Ref 31), are used to generate specific design param-

eters of Gross Weight and Tail Rotor Radius. .:he results are

compared to an existing, flying helicopter.

Pequired: Com ute Gross Weight, N1W, as a fun::tion ofTail Rotor Radius, RTR, given as 2.6 feet.

Curve Fit - MG ' = 32 4.88 x RTR 2.382 = 3166 lbsE uaticn

AE 43C6 - MGN = 591.716 x RTR 2.o = 4000 lbsDesierg Manual A(Alternate Method)

2.E feet is the actual tail rotor radius of tae OHS8CArmy Cbservation/Scout Helicopter whose actual 3rcssWeight is 2550 lbs.

ccmparison, the curve fit equation generates a value

Grcss weight 2411 above actual lesion, whereas thealternate method CEnerates a value 52% above actual design.

Table 2 lists the nuzker of relationsaips, or the influence

cf each design parameter upon each other.

1. .

TABLE 2

B sultant Helationships of Dmsign Parameters

V 'H tF LVELFRTFFFVF:-s - - -> > :4- '-

---

I --i - -- - -

.- .4>4 ,

_ -4 -I - - - - - - - - -

'1I

6 -. - . .. . ...4 .4 C

. " 4)

- a - -, . ; -: I

- -. - - t

, 4 4 ( :

- - - - - - - - - - - - -- - - - , - - --

. ...7 :- o + ... . .4,47- -,-.. - ..

+ '1 4 . 4 , 7 0

- - >44 4->>- > 4 - -20

- 4 4 - 44 44>

>4 - 4 4 4>- i 0 4 4 4 4 4" " 0 0 4 4 - 1 4 41 / "-4 ",** +° "+

'41 44 0 , I . . 0 0 a (4 1 0 4 > 3:. ' ° -

A. CCNCIUSIONS

7he cbjective of this t.nesis nas teen ac-ievz? -v estat-

lishirg the clear relationships that exist 'etweer. seleCtE4

Helicc~ter design parameters. The curve :it e-uations tnat

wre derived, and the specific constants for each e-uatio:,

rovidE the designer, be he prcfessional, in the industry,

cr student, a means to quantitatively derive valies cf

desin arameters that are encountered during the Erelii-

rary design process.

Until technological breaktbroughs force a drastic !epar-

ture from the established design norms developed over the

last 30 years, the curve fit equations car. produce a zuanti-

tative, quicker, and aore oytimum solution than the metho-s

emplcyed to date.

I=

APPENDIX AREFEEENCES FOR DAIA BASE AND HELICOPTTTS

A. SELECTED DESIGN EARAMETERS AND NO5ENCLATURE

TABLE 3

Selected Design Parameters and Nomenclatzre

Selected Design Parameters Nomenziatire

1. Main Fotor Radius .t 22. Tal Rotor iadias ) .iae3. Numcer of !ain Rotor lades4. Number of -,ii Rotor Blades R5. Heigrt of iain aotor System T

azove Ground (nt)6. Szeed of Main Rotor System (rpm) PM7. Su:ed of ail Rotor System (rpm)a. Caord of the Main Rotor (ft) C9. Caord of tae Iail Rotor (ft) CTR

10. Soan of the !aiz Rotor Blade (ft) as11. Span of tae fail Rotor 5lade (ft) RSTR12. Twist ot ' ain Rotor Blade degrees) TWST13. Twist of iail Rotor Blade (E grees) :WSTR14. Profile Drag of Main Rotor Blade ZDO15. Profile rag of ail Rotor Blade :DO .R16. Disc Loading of Main Rotor System DL

(li/s; ft)17. Wiitz o--: tne Fuselage (f S18. Length of the Fuselage (:t)19. Frontal Horizontal Flat latE Area FH23. qnta i Iertical Flat Plate Area FVJq/ft) o w r V .121. aX Fward Velocity (knots) 7.)2. Maximum Fange (nam)13. Rate of Climb, maximum Continuous C

Power fp?)24. HoveZ Leiling (:GE, in ground H OV E

effect)25. Hover Ceiling (CGE, out of ground HDV26. enjt) of rail (ft)27. Cperating. deight (It) 3M'2a. L~ad Weignt (5b -.W!29. F]il W e .-. t .:WT30. ,axi mu Gzoss Weight (lb)

-2

E. S f ZCTE H -2S 3N i A FA 1EE V LS

TABLE ~4

SeJlectEd Desig~n ParameteZ values

1 40

-~ ~ ~ ~~ ~~ 4 4 N M2 7 41 " " 4 4 . e - 1 . . 2

Cn c3 4.2 .' n *0 0 . - 1 z' ~ ''

~ I- ~ * - ,44 - 7 4 -. 4 - "4 .4 -

-~ 2 0 '2 7' 2 12 .2 -~ *0 a 24- ~ 1'

*1 n2 -. 7 1 ' . 2 n 2 '' * . " 2 ' 2 '

4~~~ ~~ X.. ~ .. ' 14

'VI '44D .

>4 - 4 . 4 - M -a w44 - 12 . ' C 4 2 4 ' 1

04 ~1 41

'.4 I), L c- ,- A- N z2 -, I' .2 7 0 (N .

w2 4 4 1

N F' F 4 r 7 F41 'F 11 F E2 F4 F2 F-

4

C. HELICOPTER PLANFORIIS AIdD P~ICTURES

Hu~gMtl YAN 6A Avoche prototyp, dutimq fl )ht demonstralIoni riv 1 98?

_ _ __ _HUGHES -AIRCRAFT USA

E7 I --)

42

Bell OH ISA Kiowa turbine-powered liht observation helicopter in US Army Orir~ce \.'un ?v.

AIMI

.........

Fi ur A. /H81Pa fo

Sikorsky SN-3H multi-purpose hielicopter tor ASW and expansion of Rooet missile defence

SIKORSKY -AIRCRAFT: USA 471

Sikorsky SN-3M twin-efined muiti-purpose amphibious h*licopter'P,,, P'-is;

62

IA_

Sikonty AUH-76 armed utility helicopter, with srwiwiaily mourned ant-armouf minls

Fiue4. - 7 Plaf-

277-

I USA.. AIRCRAFT - SIKORSKY

1 UN-6OA Black Hawk. *quipped with arternai Stores support systemi carrying 16 Helffire iss nRgh

* q~~~~~ad!efication testmas, nfgt

Sikorsky UH-60A Black Hawk combat assault helicopter 'Pit, Preirp

Figure A.5 UHl-60A Pidanors.

62

g o rs H C - , 8 tt46 u S A rm y n*W M vy

4 ' t u ti ity w anto n ol t~ i S 1ty I "ifl

pjgure k. 6 C 5 4B Plafo"

Sikorsky CH-530 helicopter of the US Marine Corp$

Figur A.IH5D laom

30j

AA

.- r Ir

Sikorsky CH-53E Supet Stallion heavy- lot? helicopter- Ithese Goijeral Eiocttic T64-GE-416 turboshaft anqane..

I-

Sikorsky CH 53E Supor Stallion heavy-lift helicopter !Pdvi Presj

Figure A.8 CH-53E Piantora.

31

.A#

BolA eIc .wt diinlscevo~ fA -IJIcnfe n AH- I__ __ _ G (too___ i - P-Is

Fi ur A. H 1Ilnom

51

PIP

Bell MN-i H Iroquois local bass rescue helicoolmf in USAF service

/41

_ > A2

111UN-i N Iroquois, with sddifttisaf side views of UN-iN -ceiifrei and AN-IG____________ ~ Mil Nuqr 0ott"'11 ~ _______

Figure A.1 oa Ei- 1 a Plaztoru.

13

APPENDIX 3CRITICAL ZCESIGM PARIAETER PAIRIN,33 A-43 REFERENZE SYSTEM~

TABLE 5

M~ain Rotor Radius Pairings

1 - IAIN PCIJ: BL DE RADIUS IN FE2- :A-;L F ORz: BLZF RADIUS IN' E 7-

4~~ 1- -AN-T? LD ADIUS IN3 - '4L :.3ER OF MI.'i FO-OR BLADES

1 - .AAUN ?CCB: -LZ ADIUS i'lFEEE74 JBE ,F I~ ~C _C? BLAZES

1 A ' i~ =CO 0 2A27 ADh7JUS :N

1 "A ~I N ECTO E BLAD E ;;ALI US I N F ET6 - SPEED CF ,,AIi RG:DER sySE I 5

1 - .IA IN EC:,Oz =LAZF zAD:US 1N v::7 - SPe-7D Cf AL CC SYSTEm I .N ?.

I - iA:.1 IRC'37 RLz ADIUS :N' EE7- CHO ID CF .-,'AIN F :7&J BLAD E IN

1 - A -N ECc:O'- E-TADE :PADIUS IN FEE:-9 - C c'J? CFA.L FOTCR BLADE IN i-EE-

1 - IA I,' ZCTO= LA ET nAD IUSz I N FE~F 1A 'A -NA CF F~ FC;: C B ZA E _1N =r

1 " - .AN FCda? = LA2E FAD:jS IN ETET.1 C SP: F TA 0T~ A DE I N FE

:! - I FC-_C7 ELA2E FAD:U3 IN \E1 2 - _.:.3S CF A.AINq :;6C-4 B-LADE, :N DEDRE-s

CC 1 :,- I PCr3 ELA 0 E EA3 :US fN13 7' - s c A AI L 2cT C In3LADE IN_3 DEREE S

1- ~L ECTOR =LA:T: ?ADIUS :N FzL4 -?J:E DP AG (' CF ' MA 1N FCO BLDE

'K 1 -A ~AN r - 0 7 EL FE ?ADIU3 IN FEE:15 - ER -IL DF;A3 3F TAIL FCTOa:L 'LAZE7

Y( 1 ! A::"; FC'O. LE:,%)- ADMU3 IN Fr~10 LY L L (_A D G JCF Ti M A N F C 7C F .3if M

KX 1 A: N :-) E:A:E :AD:'JS IN17 - :3HC TE7SA FEET:

N- A - LAT Z A E S-5

1: - L-flTH H TRE 7Us::a:z -M

1 - -; 2733 -LAD:- ADCUS S-- NA FEAT LAT AREA IZ a AUIrE RET

1- TM CXROO ELA ,Z RADIUS 21 LX" - iU:.T£C.I FLAT ;LA TE A REA -M S N

1 - .t. ROTO.R FLAXZ RADIUS CM c_- A - :A'IiUM VELOCiTY N' NOT

1 - %CN C ETOR FLAE RADIUS CN FEET22 - A.M .A.NGE CM UAJ-CCAL CLE3

1 - A'I RCTS, ELADE A2CUS -N _A - A - CC 1 1 1 " : 1 E7T ?R .T

1 - ' C T A.DB DIUS 7M fEET24 - 'DV CEtING (7-1 GouND -:5:0C)

:N fEE

1 - A I N R OTR ELADE RADIUS 21 FEETF5 - (OV H CEI LING (CUT F GOU NE L FCT)

1 - .AIN RCTOR FLAE RADIUS IN FEET26 - LEG-H OF THE TAIL5OG IN FEET

1 - iN.ECTOR ELAZE: FAD-US IN FEET27 - OPERACI'IG WEl N II FOUNDS

1 - AIN ROTOR FLACE RAIUS IN FEETFE - EDAD WI-IJMT'.. Ci: POUNDSO

1 - AIN RG'OR FLAE FACDUS IJ fEET23 - FUEL WEriGT :N _CUNDS

- A F0TC 7 EADE RADIUS iI FEXT-u - NA.CAU GRcSS I.EI5T iI POUNDS

35

TABLE 6

Tail Rotor Radius Pairinags

XX 2--TAIL' rOTOR JXRTIS IN FE

2 - ALROTOR B:LADE RADIUS :1 -rri% -, NE 'F TAIL ROT 0OR BL:A w S

X X 2 -TAIL ROTOR BLADE RADIUSz:1 IN E T5 HIGHT C"F MtA I I ROTORG1, SSTE ABOVE

G~RJUND IN FrET

7A7 2 AL ROTO0R BLADE READIUS IN4 FEET6 C PE F 'IAIN ROTOR SlSTE-M I N RPFM1

TAI RCWD ELADE RADIUS IN FEET7 7 -PE O" T AI7L RO TOR S YST E . IN RP .

XX 2 -:AIL, ROTO- ELAZE R.ADIUS IN'3-CHORD OF lIAIN B-OTOB BELADE IN FEET

2 - TrA:L ROTOR BLADE RADIUS Ii FE--r9 - CH'ORD CF': TAIL ROTOR BLADE IN

XX 2 - T A IL ROTOR BILE RADIUS3 IN EE7 T

*10 - SPAN OF !AIN ROTORi B.LAZE IN FEEL

-TAIrL ROTOR' BLADE FADIJS IN FEET11- SPAN-13 Cr TAIL FROTO BL 3:,ADE IN iE -T,

K.(2 - TAI ROC?= BLADE RADIUS IN.E12 :7 -WIS OF AIN ROTOR BLADE I N DEZ;R EE.3

A 2 - AL R.OTO 0R BEAE --A DIU S I N F~r13 C 5'S CF TA IL;; OT OR B.LADEZ IN DEGREE

U 2 I' TAL ROTOR BL'ADE RADIUS IN -EC4 F P ZFIE D RA G OC .AIN RO0TO0R B.LADE

TAIL ROTORF BLADE RADIUS IN F ETN 5-PR ~EDRAG OF TAIL ROTOR BL11AD3E

2- TAI OTOR BLE RADIUS IN i-E Tit - DISzC LOA DI7NG OF F MAI -' OTO:R _ElSTEM "

XX 2 - TAIL ROTOR BLADE RADIUS IN FE-717 - WI:DTH CF THEL FUSELAGE IN FEET7

- -A TAL ROTOR BLAZE RADIUS TN "EET*~~7 18-LEGH (DR THE FUSELAG3E IN FE

LI

12 - :ZL ECTR ELADE -ADU.S IN FE?

21) - FERONTAL FL A P:LA A RA YZN 5&AX' 2 A -I RCe- =LADE .AD:US ZN FEET2I VRTICAL FLAT PLATE AREA IN SKE

2 - TA:: ROTOR E LAE RADIUS ZN FBET21 - MAXI.1 RELOCITY N KNCS

" IL ROT.OR ELAZE F ADIUS IN rE22 - A CTI.U RANG TN NAJ:I AL ZLES

2-TA:: ROTOR, EilATE RADTUS- IN =EETATE CF CL-M3 ZN F:E- PER .TNU.-,AXD UM CONT.INUOUS POWER

2 - TAlL FCTOR ELATE FADhUS i' T -.fl4 - CE. CEILEN; (ZN h3OUND E FEC:)

IN FE E7

2 - TAIL, EC :iA:E ... OT E DIUS - .Z EET25 - HO'.E CEILING (CU-OF CRQU NT EFFECT)

IN

2 - TAIL ECTOE SLTAE RADIUS IN FEET- LE~NTH C5 HE- IAiLSOON ZN BEET

2 - TATL ,OTOR SLAD RADIUS IN 5EET27 - OPERATiJG WEIGHT N POUNDS

2 - TAIL R:CR ELADE BADTUS ZN FEET28 - LOAS WEGHT IN PCUNDS

xx 2 - 7-A:7 RSTOP. SLAE RADIUS ZN 7 EST29 - FUEL WEIGHT,. I'I POUNDS

2 - TAiL RCTOR ELAM :RADIUS TN FEET30 - A:CIZUM GROSS WEIGHT IN. POUNDS

7

TABLE 7

Munber of main Sotor Blades ?airiz.;s

S NJ'IE 7 E 1A l' C TC R BADE7SN NJ A E C 7 -A.L P:C -CR BL:AD E

3 N 1 C F !A:" RxU 0 B.LA DE- t I Th: CF :1 AP I SLS:EY. AZCVE

GROJNC 1.1 F E 7

- N U'lE F C F M A I S FC 'OR BLAZ)ES3-sEF:D C7 :!':N FOTOB SY3EM IN 'P

3 -1 T! E R CFM ~A :q RO-TOR B LADE S7 - S2_7ED C7 : ROTOR SYSTIMA I N R 2 '

3 - N:J:IBE? "F MAIN zC7OR BLADES8 - CH1OZD C.: M AI1N FC7CR BLALE IN FEE:

'(3 - N'J 32R uF Y!AIN FO:02 BLADES- CHOP.- OF -_A iL FEc:cR iLD N FE7ET

3 - NU13ER OF AIA EC-CR BL;AD S10 - 5; ;N1 cF AA~ N PCTOin BLA CE IN F-7

1- NJ 1BE. G F A 7N RC Ci B L A DE1 1 - 5N C F TL COO : LAE L N F EE

3 -N'J* ": .F ~A N 7:C:OR BLALES1- T:S: CF AAIN RCTCR BLADE IN DEOREES

.~ - E-17;E CF MAN SCTCR BLADES13 CF -.s o AIL = c 7CR L AD E I N Z3 REES

*.x3- NUY 3EB F j: Al RO':CF BLADE-S15 %FL DRAG CF TAIN Ec:OR BLA DE

3 - Nj.IBER 6=' A!N' 2GC BLADES16 - :s L AG 0F '; TIAZN F RCR SYSTE:17

3 -:iiBER C A TAI r cTOR BLADES

17 -21Hc?:~~5EAEZ FZEE:

- N~'BES F AIJ 5C'C. BLADES18 - ING 7H C F T HE_-: SE7-L A GE : N 5 EE

3 N NUA;E 3 oRF !1 A ;0 -OR B LA DE SJ9 N TF :A FLAT I iT A-1HREA N3 SQA E F Z

3?

"LI AREA

Li AA~u 7zc:0 IN DNS

- ENJA7EF FS .A-iN BCCQR *-:A DI2 LA U :1 BA .4GE I N 'AJTL-CA:,~LZ

NJYBA IF :N FX B PLADESA E C F CZL:1B N ED F E . :'1 E,

AA:Lu LNITIUCUS P?- 7EE

NAE O- 7 F iAIN 52C BLA DE4 CE CELIN G IN 3floJMD EFEC)

JAB? CF A TIN BOX? BLC 7A DESP

2 ~ V C;1sr 7v 7KN ROORBLDE

27I a': 7 VFATN :-Ii C:N' PO7U1D S

33 - AUBE 7,F AIN EOO BLA DES29 - FUE INIHT1 IN GNDPSJ

4 UAE F AKIN BCXR BL1AD)E S

20 - AAUMUA : IR'S QE2H DS OU

CF 0I7;3

A* T jpo jN ZS

TABLE 8

Nuaber of Tail Rotor Blades Pairings

XX 4 - NUIBEi OF TAIL ROTCR BLADES- £jzI7hT OF MIAIi ROTOR SiS-E ABOVE

GR:.OUND IN FEET- N - .\IBER OF TAIL SO-CR 3LADES

0 - SEED CF MAIN FCTCR i5STEM. IN P

4 - NUMIBER CoF TAIL ROTOR BLADES7 - SPEED CF TAIL ROTOR SYSTEM IN RPM

iX - NU.IBER OF TAIL ROeOR BLADES8 - CHORD CF AAIN ;0;TCR BLADE 1N FEET

- jU:iBER OF TAIL ROTCR BLADES9 - CHORZ OF TAIL ROTOR BLADE IN BEET

XX 4 - NUMBER OF TAIL FCTOR BLADES10 - SPAN CF nA-N ?CTCC BLADE IN FEET

4 - :IUAIBEP uF 7AI. ROTOR BLADES11 - SPAN GF TAIL RCTOR BLADE IN FEET

XX 4 - NU:5ER OF TAIL FGTOF BLADES12 - TWIST OF .IAIN RC. O BLADE IN DEGREES

4 - NUMBER OF TAIL OTOR BLADES13 - TWIST CF TAIL EOTCR BLADE IN DEGREES

XX 4 - NUIBER OF TAIL ROTOR BLADES14 - PROFILE DRAG GF MAIN ROTOR ELADE

4 - NUMBER OF TAIL FOTG BLADES15 - PROFILE DRAG C;F AIL ROTOR ELADE

XX 4 - IUMBEE CF TAIL ROTOR BLADES16 - DISC LOADING OF THE :AIN ROTOR SYSTEM

XX 4 - NUMBER OF TAIL ROTOR BLADES17 - WIDTH OF THE FUSELAGE TN FEET

4 - ThU.,B.R OF TAIL ROTOR BLADES18 - LE:N H OF THE FUS LAG E IN E;E_

X:( 4 - NUMBER OF TAIL ROTOR BLADES19 - F-DONTAL FLAT PLATE AREA IN SjAEE FEET

XX 4 - NU:IBER OF TAIL ROTOR BLADES20 - VERTICAL FLAT PLATE AREA IN SQUARE EET

0

4 - NU'132P :F '.A:-- ;;00G BLADES21 - ::x:uiVELCCITY lN KiC'S

.(X 4- NUJIBEF C7 TAIL Rc:O0R BLADES22 - '.A':M::Uy :1"t,4E IN NAUTICAL 1E

X K 4 - iJA37F. CF 'TAIL ECc0F. BLADES23 - -. EC LIMB IN :.Z77: !ER AIINUTE,

4 UnSEF OF 7AIL PCOR BLADZES24 - ?iO'Eg CEILTNG (._N GROUND ZZFz EC)

4- N V! B ER :A:L aG-R BLADES25 H 0 Ci c:L. N G (CJ c C ,F OUN Z E F FEC)

I N FEE:

4 N 0 '13E R CF 1I T C R R F LA DES3,- LEI ;TH CF :H-- :_A:L,OO1 lN i-HET

4- NU'IBER CT 'TAIL ROcOR BLADES27 - 02 7 . 114NG WEGH T IN POUNDS

4 - IUABER Cf TAIL ECTOR BLADES28 - LOAD iEI&J,:iIN POUNDS

4 - NUMBER OF TAIL EO R B'L'ADES29 - FUEL W;73H' IN PC NDS

4 - NU:IB7E CF TAlL' ECTOR BLADES30 - MAX::I1 GF.CS]S WEIGHI I N OU N D S

.0

TABLE 9

Height of 8ain Rotor System Pairings

5 - HE3ihT OF MAIN FOTOR SYSTEA AEOVE- POUN :N FEE:T5:~I

SPEED CF AA.IN ROTOR SYSTM 1N ;Pl

X - i3-:iT CF MA1N ROTOR SYS-E, AZCVEGRXUNC LN FEE:"7 - SPED GF TAIL RCTO SYSTEM 7_N SP'.

- H:EIGHT CF MAIN EOTOR SYSTEM ABOVEGROUND IN FEET

- CHORD OF 1AIN FOTOR BLADE IN FEET

:KX 5 - HEI ,-HT OF 4 A7I RCTOR SYSTEM ABOVEGROUND N FEETN

9 - CHORD CF :AIL ROTOR BLADE IN FEET

S - HEIGHT OF MAIN ROTCR SYSTEM ABOVEGROUND IN FEET

10 - SPAN OF MIAIN ?OTOR BLADE IN FEET

XX 5 - HEIGHT OF MAIN FOTOR SYSTEM ABOVEGROUND IN C EET

11 - SPAN CF TAIL ECTOR BLADE iN FEE:

I(X 5 - HEIGHT CF MAN ROTOR SYSTEM ABOVEGROUND N FEEl

12 - TWIST OF IAIN ROTOR BLADE IN DEGREES

XX 5 - HEIGHT OF MAIN ROTOR SYSTEM1 ABOVEGROUND IN FEET

13 - TWIST CF TAIL POTOR BLADE IN DEGREES

5 - HEIGHT OF MAIN ROTOR SYSTEIM ABOVEGROUND IN FEET

14 - PROFILE DRAG OF MAIN ROTOR ELADE

X( 5 - HEIGHT OF MAIN ROTOR SYSTEM ABOVEGROUND IN FEE

15 - PROFILE DRAG Of TAIL ROTOR ELADE

5 - HElmhT GF MAIN ROTOR SYS-EM ABCVEGROuND iN :EET16 - DISC LCAD:NG OF THE :lAIN CIOR SYSTE'Z!

5 - HEIGHT OF MAIN ROTOR SYS-,EM ABOVEGROUND -N FEEE

17 - WIDTH C? THE FUSELAGE IN FEET

5 - HE-GHT CF MAI, ROTOR SYSTEM ABOVEGROUND IN FEET

18 - LENGTH OF THE FUSELAGE :N FEET

5 - HEIGHT CF MAIN F'OTCR SYSTEM AhOV:3OJ ND IN FEET

19 - F R, NTAL FlAT :zLATE AREA IN S UARE U !A

- -.EIGHT ,F MAIN RG:OR SYSTEM ABOVE; 3U ND ' FC ET

IJ - VER:ICAL FLAT PLATE AREA IN UTE i-::

5 - HE PiT AIN 'lOTOR SYSTE. A C7E21 UM V N FEET21 - .A:(iY UJ VEX..CCIY IN NC:S

42

4 x 5 - H'IGH: CF MA1' F0 C, .YS:TM ABOVEGROU'D IN rEE

22 - *.47'4UE ANGE IN NAJTICAL MILES

5 - HEIGH- OF !AI:l POTOR SYSTEM ABOIEGROUND IN FEE:

23 - :;ATE C: CLIMB IN FEET PER M:NUTE,MA:(I .U CONTINCOUS ?C-ER

5 - HEIGHT CF MAIN ROTOR SYSTEA ABOVEGROUND iN FEETZ - HO7ER CEILING (IN GROUND EfFECT)

5 - HEIGHT C? MAIN ROCR SYSTEM ABOVEL 3GROUND 1 N F EET

25 - HOV I'- CEILING (CUT OF GROUNE ZFEECT)TN

5 - :I ZE!HT OF IAIN EOTOR SYSTEM ABOVEGROUND IN FEET

26 - LENGTH OF THE TAILBOOI IN FEET

5 - HEIGHT OF MAIN 5CIOR SYSTEM ABOVEGROUND IN FEET

27 - OPERATING 7EIGHT IN POUNDS

5 - HEIGHT OF MAIN EOTOE SYSTEM ABOVEGROUND IN FEEr

28 - LOAD WEIGHT IN POUNDS

XX 5 - HEIGHT OF MAIN FOTOR SYSTEM A OVEGROUND IN FEET

29 - FUEL WEiGH IN POUNDS

5 - HEIGHT OF MAIN ROTOR SYSTEM A3OVEGROUND IN FEET

30 - YA.IMUM GROSS NEIGhT IN POUNDS

3

.4

TABLE 10

Speed of Main Rctor Pairings

b - SPEED C? !A:N iOTCR SYS:E IN ?FP7 - SPEE OF T!IL RCTOR SiSTE iN :

6 - SPEED CF M AIN R5TCR SYSTEM IN p!8 - 1:HOa: CF MAIN ECTCR BLADE IN FEZT

.XX 6 - SPEED CF IAIN ROTOR SYSTEM IN RPM9 - CHORD CF TAIL ROTC BLADE IN FEET

6 - SPEED CF MlAIN FCTCR SYSTEM :N 02110 - SPAN CE AAIN RCTOR BLADE IN FEET

XX 6 - SPEED OF :3AIN ROTOR SYSTE IN RP111 - SPAN OF TAIL ROTOR BLADE IN FEET

6 - SPEED OF MAIN FOTCR SYSTEM IN RPM12 - TWIST CF MAIN FOTCR BLADE IN DERES.3

XX 6 - SPEED CF :AIN RCTCR SYSTEN :N .RP'13 - TWIST CF TAIL ECTOR BLAZE IN DEGREES

6 - SPED CF M1AIN ROTOR SYSTEM IN FPI14 - PaJFILE DPAG OF !AIN ROTOR ELADE

XX 6 - SPZED OF MAIN ROTOR SYSTEM IN RPM15 - PROFILE DRAG OF TAIL ROTOR ELADE

6 - SPEED OF MiAIN ROTOR SYSTEM IN RPM16 - DISC LOADING OF ThE MAIN ROTOR SYSTEM

XX 6 - SPEED CF MAIN FOTCR SYSTEM IN a9Mc 17 - WIDTH CF Tzi FUSILAGE IN FEET

6 - SPlED OF HAIN ROTOR SYSTEM IN RP A18 - LENGTH OF THE FUSELAGE IN FEET

6 - SPEED CF MAIN ROTCR SYSTEM IN RPM19 - FRONTAL FLAT PLATE AaEA IN SQUARE FEET

6 - SPEED CF MAIN ROTOR SYSIEM IN EPA20 - VERTICAL FLAT PLATE AREA IN SQUARE FFET

6 - SPEED CF MAIN ROTOR SYSTEM IN iPM21 - ,AXINUM 7ELOCITY IN KNOTS

(X 6 - SPEED CF IAIN SCTCR SYSTE.M N RPM22 - MAXIU RANGE IN NAJTICAL MILES

44

4L

• . . . . . _ , . . . - -

_. - RA i. Cr --.- 2B!3 . :: 77" R i.-l.l.UT-EIA.(ZU: CONTINUOU: POWER

- SPEED C? IAIN -OCR SYSTE.1 iN RP.125 - HVE3R CEILING (I ROUND C EEC :)

C6 - SPEED CF ;AIN K0TCE SYSTE.1 IN RP.23 - OV"V CZEI'LING; (CUT OF GOUN FEC.

: F E TI

X 6 SPEED CF :MAIN OTCR SYSTE IN RPM

27 - JEATN G' W -,EE ,3T IlN N D S

6 - SPEED CF :AIN FOTOR SYSTEM IN FP.129 - LOAD AE4 T :' POUNDS

XX 6 - SPEED CF MAIN NOTCF SYSIE.4 IN RP I29 - FUEL WEIGHT IN POUNDS

6 - SPEED CF !AIN FOTCE SYSTEM IN RP l30 - MAXIMUM GiNCSS EIGHl IN POUNDS

4 5

TABLE 11

Speed of Tail Rotor Radis Pdirings

XX 7 -SP--_ED CF -AIL POTCR SYSTEM IN RPM

8 - CHORD CF '-IAIN ROTOR BLADE IN FEET

7 - SPEED CF TAIL POTCR SYSTEM IN RPM9 - CHORD CF TAIL ROTOR BLADE IN FEET

XX 7 - SPEED CF TAIL ROTOR SYSTEM IN RPM10 - SPAN CF M AIN ECTCR BLAZE IN FEET

7 - SPEED OF TAIL ROTOR SYSTEM IN RPM11 - SPAN OF TAIL ROTOR BLADE IN FEET

XX 7 - SPEED CF TAIL FOTCR SYSTEM N RM12 - TWIST OF MAIN iOTC? BLADE IN DEGREES

7 - SPEED OF TAIL ROTOR SYSTEM IN RPM13 - TWIST OF TAIL ROTOR BLADE IN DESR EES

XX 7 - SPEED CF TAIL CTCR SYSTEM IN EPM14 - PROFILE DRAG OF MAIN ROTOR BLADE

7 - SPEED CF TAIL FOTCR SYSTEl IN RPM15 - PROFILE DRAG OF TAIL ROTOR ELADE

7 - SPEED OF TAIL ROTOR SYSTEM IN RPM16 - DISC LOADING OF THE MAIN RCIOR SYSTEM

XX 7 - SPEED CF TAIL CTCR SYSTEM IN RPMI17 - WIDTH CF THE FUSELAGE IN FEET

XX 7 - SPEED OF TAIL ROTCR SYSTEM IN R-18 - LENGTH OF ThE FUSELAGE IN FEET

7 - SPEED CF TAIL ROTC? SYSTEM IN ErM19 - FR ONTAL FLAT PLATE ARE. N SQUA E FEET

XX 7 - SPEED CF TAIL ROTOR SYSTEM IN RPM20 - VERTICAL FLAT PLATE AREA IN SQUARE FEET

7 - SPEED CF TAIL CTCR SYSTEM IN RPM21 - .AX-1UJM VELOCITY IN KNOTS

XX 7 - SPLED CF TAIL ROTOR SYSTEM IN RPM22 - M4AXIMUM RANGE IN NAJI .CAL ILES

XX 7 - SPEED OF TAIL ROTOR SYSTEM IN RPM23 - RATE OF CL IBB IN FEET PER mINUTE,

.iAXPMUM CONTINUCUS POWER

L 6

I'

7 - SPfED CF :A:L I TC? SYs:: IN3.,>-7 HO'r 0 _7 LN3 (IN OUND EFEC:)TN FE E

7 - SPEED CF TAIL ;CTCO SYSTE1 IN EP25 - HCV E CH LING (CUT CF CU N: Z TFECT

IN FE ET

7 - SPED CF TAIL ;GOR SYCTE IN RP26 - :EN7H F THE :TA:EOOAG IN ZEET

7 - SPEED CF TAIL ROTOE SYSTE TN R-127 - OPERATING WEIGHT IN POUNDS

7 - SPEED CF TAIL FOTCR SYSTEI -- -P'N A23 - LOAD WEIGHT IN PCJNDS

X( 7 - SPEED CF TAIL FOTOR SYSIEA. IN TP.29 - FUEL WEIGHT IN POUNDS

7 - SPEED CF TAIL FOTC SYSTEN IN F PM30 - MAXI IUM GCSS ;EIGHT IN POUNDS

47

TABLE 12

Chord of Main Botcr Blade Pairings

8 - CHORD C.' IAIN FOTCR 3LADE IN FEET9 - C0-ORD CF TAI LUR B LADE IN FEr

8 - CF?D CF AIN GTCR BLUE IN F:::1J - SPAE CF AAIN FTC BLADE IN

K X 3 - C ,DRD 7 AI , DLA: E IN F77-711 - SPAN F 0 FAIL RTC. BLADE IN ITz

8 - CHORD 0F ' MAIN RCTC BLADE IN FEET12 - TWIST CF AIN ;GTCR BLADE IN DE0 aEES

XX 8 - CHORD CF IAIN ROTC? BLADE IN FEET13 - TWIST CF 'TAIL FCTC? BLADE IN DEGREES

8 - CHDRD OF '1AIN FOTOR BLADE IN FEET14 - PRDFILE DR AG OF MAIN CTCR ELADE

xx 8 - CHORD CF !AIN R-CTC? BLADE IN FT15 - PROFIIE DRAG O. TAIL ROTOR ELAM

8 - CHORD CF MAIN .O:OR BLADE IN F:-'16 - DISC LOADING ,- THE IAISN ZZTCR SYSTEM

XX 8 - CHORD CF .AIN iCTCR BLADE IN FEET17 - WIDTH OF THE FUSELAGE N FEET

8 - CHORD CF MAIN ROTCR BLADE IN 777718 - LENGTH OF ThE ',SELAE .N 1.'ET

8 - CHORD OF MAIN C?- E BLADE IN19 F RNT.)A FLA PLATE AREA IN 5' " a

8 CHORD CF JAIN FCTCR BLADE IN 7EET0 11 AL FLAT :LAT AREA IN 5 JAR E T

8 - CHORD OF MAIN ROTOR BLADE IN FEET21 - "AXIrUM VELOCITY IN KNOTS

XX 3 - CHORD CF MAIN ROTCR BLADE IN FE rI2 A X IUil PANGS IN NAUTICAL UI'

X.( B - CHOD CF AIN OTCR BLADE IN F T23 - FATE CF CLIMB IN FEET E? .INJ-,mAKIL1UM CONTINUOUS POWER

8 -HORD CF .IAIN ROTC? BLADE IN FE7F24 - HOVE? CEILING (IN GROU ND E FECT)

IN FEET

L' 48

[.-,

[."4

- HCV: 17 F. c (Cjr C l E3J N Z C~.

i: F -- E

- Cij-D O .i. r-CTCi SLADE IN F-77-26 -- : T ;GH f Th CAIlBDQ.C IN SEE:-

- &iD CT -AA:N FC TCE -,BLADE IN F?U-7 027-?AIINT 1E3 HT N PCJNCS)

3 -CH RD 0 F :!AIN FC-CF SLADE !N FEE:12 LjAD WEISE-: :NI POUNDS

CHDR CF MA :N ECTCE SLADE :11 FEET

3-CH3':D CF vAIN FC:CR 31ADE :N FEET.1 A .iX.i ~C SS ' ELJJH: lN POUNDS

TABLE 13

Chord of Tail. Rotor Blade Pairings

CHAX 9 - CHORD CF TAIL ROTCr BLADE IN F-EzT10 - S C F MAi IAN ROTOR BLADE IN FEET9 - CHORD CF TAIL FCTCR =LADE :N FET

11 - SPA. CF TAIl CTO.R BLAZE IN FE -

XC 9 - CHORD OF TAIL OTCR BLADE iN FET12 - TW1 ST OF A. AI RFOTOR BLADE IN 3BBS

S- CHORD CF TAIL OTCR BLADE IN FEET13 - TWIST CF TAIL ROTOR BLAZE IN DEGREES

XX 9 - CHORD CF TAIL 0TCR BLADE E:N EET14 - PROFILE D>AG CE MAIN ROTOR ZLAZE

9 - CHORD CF TAIL ROTOR BLADE IN "FF

15 - PROFILE DRAG OF TAIL ROTOF -LADE

xx 9 - CHORD CF TAIL RCTOR BLAZE IN FEET16 - DISC LOADING CF TE iAIN ROTOR SYSTEM

XX 9 - CHORD CF TAIL BOTCR BLADE IN E17 - WIDTH CF THE FUSELAGE IN FEET

XX 9 - CHORD CF TAIL ROTCR BLADE IN FEET18 - LENGTH CF THE FUSELAGE IN fEET

XX 9 - CHORD CF TAIL FOTGR BLADE IN FEET19 - FRONTAL FLAT 2LATE AREA IN SQUARE EET

XX 9 - CHORD CF TAIL ROTOR BLADE IN FE 7:T20 - VERTICAL FLAT PLATE AREA IN ::7ARE rT

9 - CHORD CF 2AIL FOTCR BLADE it F EZ T21 - MAX!UiM V7ELCCITY IN KNOTS

9 - CHORD OF TAIL R OTOR BLADE IN FEET22 - A!AXI. U RANGE IN NAUTICAL .1:LES

(A 9 - CHORD CF TAIL ROTOR BLADE IN FEET23 - RATE C; CLI.M2 IN FEET PEF .MINUTE,

.AXI MU CONTI NUCUS POWER

H- OHZ, CF TAIL ROTOR BLADE IN EST24 - HOVER CEILING (IN GROUND EFFEC:)

IN FEET

9 - CHORD OF TAIL ROTOR BLADE IN 777T25 - HOVER CEILING (CUT OF GROUND EFFECT)

IN FEET

r j

A KY l :uN p&C BL; 3

S-ciF: C7 :-AIL- OC F. BLADE N FE7Z77

7A -L C2 ?AwC 7E H :N POUND

V A .' -E S Lz a. -7 1 G C SY k) .j.N

TABLE 14

Span cf Main Rotor Pairings

10 - SPAN CF AAN A ROT>. BLAZE IN FEET11 - S AN CF TACL COTOR BLA:E IN FEET

13 SPAN CF IA-N RTR SLAM-)INFEE:S 7 F M A 1iN F C. SvA I N ":3R - - 7_

X( 13 - SAN CF 1A:N : T. BLAZE IN FET13 - -1S: CF TAIL so'-> BLAZE IN ZZ, ZZZ

10 - SPAN CF AlAIN ROTCR BLADE IN FEE:14 - PROFILE DRAG CF MAIN KOTOR BLADE

XX 13 - SPA'N F :AITN CTOR BLAZE > FEET15 - PROFILE DRAG GB TAIL ROTCP LADE

10 - SPAN CF l1AIN ACTOR BLAZE IN16 - DISC CADING %1 -5 lAIN IOT. YS: 9.1

10 - SPAN CF MlAIN ?4C3R BLAZE IN 1>117 - WIDTH OF THE FUSELAGE j FET

10 - SPA N CF MAIN ACTCR 5%A2E IN FEET18 - LEN TH OF THE BUS ELA E IN FEET

13 - SPAN CF IlAIN ROTOR BLADE IN FEET19 - FRONTAL FLAI PLA:E AREA IN SQUARE FEET

10 - SPAN C MAIN RCTR BLAZE IN FEET20 - VERTICAL FLAT -LAIE AREA IN S&JARi FEET

10 - SPAN C MlAIN FOTCF BLADE IN FEET41I - AXI.lUt! VELCCITY IN KNOT.

XX 1) - SPAN CF .AIN RCTOR BLAZE :.7 FEET22 - !A 'I.1UM AiGE IN NAUTICAL ILES

10 - SPAN CF PAIN RCTOR BLADE IN FEET23 - RATE CF CLIMB IN HE- D-R .IINU TE,

m AXI-1UM CONTINUOUS POWER

13 - SPA N CF MlAIN RCTOCR BLADE IN FEETHOV 7R CEILING (IN GROUND :E:ECT)IN FEET

10 - SPAN CF .lAIN ROTCR BLAZE IN FEET5- .. OlER CEILING (CUT OF ROUND EFFECT)

lI FE ET

10 - SPAN CF .1AIN RCTOR BLAZE IN FEE:26- LENGTH OF THE TAILBCOM IN FEET

52

I0 - P .IARS F CC- flATE IN Fu:7- PA:N s3~ :S C-ND

E - SPAN OF . AIN CC C A D N F-N28 - -3 - w--_3.u i' POUNDS

x.: 1N - S A 1 CF AIN FC C BLADE '2 - -] L -- 3b i i C J D 5

1 - SP.N CF I:I RATC? -LADE A N ?U7T10 - jAXTAU 3 .SS NEIS? i PCUNDS

5 3

.4.

It11 -SPAN Cy TIL ROTR BLAZE I FEET I

2 - 1STan of AAI OT L N Tai? IFS P3i-i-gs

11 - SN CF TAIL R FTC? BLADE IN FEET13 - 7:IST 6F TAIL ROTC BLADE " DEGRES

11 - SPAN CF TAIL ICTO= BLAZE IN FEET14 - PROILT DRAG CF MAIN ROTOR BLADE

11 - SPAN OF TAIL RCTOR BLADE IN FEE-15 - PRDFILE DRAG DF TAIL ROTOR BLADE

11 - S?AN CF TAIL RCTOR BLAZE IN FEET16 - DISC LOADING OF TALE AOTh ROR SiS7'

x 11 - SPAN OF TAIL RCTO BLADE IN Ft'E17 - WIDTH OF T OHFUEAIN FEE T SE

XX 11 - SPAN CF TAIL RCTC BLAZE IN FEET18 - LENGTH CF THE FUSELAGE IN FEET

11 - SPAN CF TAIL RCTCR BLAZE IN FEET19 - FRON TAL FLAI -LATE AREA IN Z.QUARE ET

11 - SPAN CF TAIL ROTOR BLADE IN FEET29 - VERTICAL FLAT PLA1E AREA IN SQUARE FEET

11 - SPAN CF TAIL ECTC BLADE IN FEET,1 - . X IAUM VELOCITY IN KNOTS

KX 11 - S EA N OF TAIL ROTOR BLADE IN22 - .AX IU M RANGE IN NATICAL MI-ES

XX 11 - SPAN CF TAIL SOTOR BLAZE IN FEET23 - RATE OF CLIMB IN FEET PER INJTE,

A AXIMUI CONTINUOUS PO.ER

11 - SLAN CF TAIL OTOR BLADE IN* 2 - HOV ER CEILING (IN GROUND EFFECT)

IN FEET

11 SPAN OF TAIL .CTO, B LADE I N FEET25 - HOV ER CEILING (CUT OF GROUND EE:

IN FEET

11 - SPAN CF TAIL CTOR BLADE IN 777726 - LENGIH OF 'IE TAILBOGOM IN FEET

4 S

11 - SPAN CF TAIL EC-IB L'A:E :N FE77727 - O)PEATING INJ5 POUNDS

1 r - SPN CEF TAI EC% LTA ZE I N 7-E28 - LO3AD WEJ? I C'NDS3

XX 11 - S PAN Ot F ':AIL.7 C':T? SLADE IN FEE:29- FUE WEH 13 POUNTSi2 11

11 - SP2ANJ CF :AIL zECICS %A: IN iEUT3D - .A&:IiUM GROSS -:J,h: II'POUND

55

TABLE 16

Twist of Main Rotor Blade Pairings

12 - T:IS: CF M AIN ;CTCR BLADE IN -E-ES13 - TWIST CF TAIL R0 T- BLADE IN £.R -:-S

12 - :T:ST CF MAIN FCTCR BLADE IN ::GR EES14 - PROF.EM DRAG CF MAIN ROTOR ELA-E

X' 12 -1 IST OF IJAIN OTCR BLADE 7N LIa15 - RD FILE DZAG E TAIL ROTOR =ELADE

12' - TWIST CF MAIN FOTCR BLADE IN LEGR EES- DSC LOADING OF THE MAIN RCTC SYSEi

Xx 12 - TWIS' OF !AIN ROTCR BLADE IN DEGREES17 - WIDTH CF THE FUSELAGT IN FEET

XX 12 - TWIST CF T1AIN EOTCR BLADE IN DEGREES18 - LENGTH OF THE FUSELAGE IN FEET

XX 12 - TWIST CF :AIN FOTCR BLADE IN LEGREES19 - F2ONTAL FLA PLAT2 AREA IN SQUARE FE-IT

Xx 12 - TWIST OF MAIN ROTGF BLADE IN DEGREES20 - VERTICAL FLAT FLATE AREA IN SQUARE FEET

12 - TWIST CF MAIN EC-CR BLADE IN DEGR EES21 - AX IMU M VELOCIiY IN KNOTS

XX 12 - :WIST CF MAIN FOTCR BLADE IN DEGREES22 - IAXI'IUM RANGE IN NAUTICAL MILES

XX 12 - TWIST OF '1AIN ROTOF BLADE IN DEGREES23 - RATE CF CLIM B IN FEET PER MIN=:E,

'JAXIUM CONTINUCUS POWER

XX 12 - TWIST OF MAIN ROTOR BLADE IN EG RE ESS24 - HCV7E CEILING (IN GROUND EFFECT)

iN FEET

(X 12 -TWIST CF :AIN ROTOR BLADE I N DEGR EES25 - HOVER CEILING (CUT OF GROUND EFFECT)

XX 12 - T.ST CC'AIN ROTCR BLADE IN DEGREES26 - LENGTH CF THE TAILBDOG IN FEET

XX 12 - TWIS! OF MAIN FCTCR 3LADE IN DER EES27 - OPERATING WEIGHT IN POUNDS

XX 12 - TIST CF IAIN ROTGE BLADE IN DEGREES28 - LOAD WEIGHT IN POUNDS

XX 12 - T4ISI CF MAIN .OTCR BLADE IN :3 REES29 - FUEL WEIGHT IN POUNDS

Xx 12 - TWIST CF MIAIN FOTCR BLADE IN L EGRES30 - .'_AXI. U, GiCSS WEIGHT IN POUNDS

4 S! I

TABLE 17

Twist of Tail Botor Blade Pairings

X( 13 - TWIST CF TAIL FCTCR BLADE IN DEGREES14 - PPCFILE DRAG Of AAIN ROTOR ELADE

13 - TWIST CF TAIL POTCR BLADE IN DEGREES15 - PROFILE DRAG C TAIL ROTOR ELADE

XX 13 - TWIST CF TAIL ROTCR BLADE IN DEGREES16 - DISC LOADING OF THE MAIN RCTOR SYSIE-

XX 13 - TWIST CF TAIL FCTCR BLADE IN DEGREES17 - WIDTH CF :HE FUSELAGE 1N FEET

XX 13 - TWIST OF TAIL ROTCR BLADE IN DEGREES18 - LENGTH OF THE FUSELAGE IN FEET

AX 13 - TWIST CF TAIL EOTCR BLADE IN ZEGREES19 - FRONTAL FLAT PLATE AREA IN SQUARE FEET

XX 13 - TWIST OF TAIL ROTCR BLADE IN DEGREES20 - VERTICAL FLAT ELATE AREA IN SQUARE FEET

XX 13 - TWIST OF TAIL ROTOR BLADE IN DEGREES21 - MAXI:NUM VELOCITY IN KNOTS

iX 13 - TWIST CF TAIL EOTCR BLADE IN DEGREES22 - .AXIMUM RANGE IN NAUTICAL MILES

XX 13 - TWIST OF TAIL POTOR BLADE IN DEGREES23 - RATE O CLIMB IN FEET PER MINUTE,

MAXIMUM CONTINUCUS POWER

XX 13 - TAIST CF TAIL ROTOR BLADE IN DEGREES24 - HOVER CEILING (IN GROUND EFFECT)

IN FEET

XX 13 - TWIST OF TAIL ROTOR BLADE IN DEGREES25 - HOVER CEILING (CUT OF GROUND EFFECT)

IN FEET

XX 13 - TWIST OF TAIL ROTCR BLADE IN DEGREES26 - LENGTH OF THE TAILBOOM IN FEET

X9 13 - TWIST CF TAIL FCTCa BLADE IN LEGREES27 - OPERATING WEIGHT IN POUNDS

XX 13 - TWIST OF TAIL ROTOR BLADE IN DEGREES28 - LOAD WEIGHT IN POUNDS

XX 13 - TWIST CF TAIL ECTCR BLADE IN DEGREES29 - FUEL WEIGHT IN ECUNDS

13 - TWIST CF TAIL ROTOR BLADE IN DEGREES30 - MAXIMUM 3RCSS WEIHT IN POUNDS

57

S .- - - -.-. .

TABLE 18

Profile Drag of lain Botor Blade Pairings

14 - PROFILE DRAG OF MAIN ROTOR ELADE15 - PROFILE DRAG OF TAIL ROTOR ELADE

14 - PROFILE DRAG CE .AIN FOTOR ELADE16 - DISC LOADING CF THE MAIN ECTOR SYSTEM

XX 14 - PFDFILE DRAG OF M 1N ROTOR -LADE17 - r:iDTH OF THE FUSELAGE IN FEET

AX 14 - PROFILE DiAG CF MAIN RCTOR ELADE18 - LENGTH OF THE FUSELAGE IN FEET

XX 14 - PROFILE DRAG OF MAIN ROTOR ELADE19 - FRONTAL FLA! PLATE AREA IN SQUARE FEET

XX 14 - PROFILE DRAG CF MAIN ROTOR ELADE23 - VERTICAL FLAT PLATE AREA IN SQUARE FEET

14 - PROFILE DRAG CF MAIN ROTOR ELADE21 - MAXIMUM VELOCITY 1N KNOTS

XX 14 - PROFILE DRAG OF MAIN ROTOR ELADE22 - IAXIAUM RANGE IN NAUTICAL MILES

14 - PROFILE DRAG Of MAIN ROTOR ELADE23 - FATE CF CLIMB IN FEET PER MINUTE,

MAXIMUM CONTINUCUS POWER

14 - PROFILE DRAG OF MAIN ROTOR ELADE24 - HOVER CEILING (IN GROUND EFFECT)

IN FEE7

14 - PEOMIlE DRAG CF MAIN ROTOR ELADE25 - HOVER CEILING (CUT OF 3ROUNL -FFECT)

IN FEET

X& 14 - PROFILE DRAG CF MAIN ROTOR ELIDE26 - LENGTH OF THE TAIZBOOM IN BEET

14 - PROFILE DRAG OF MAIN ROTOR SLADE* 27 - OPERATING WEIGHT IN POUNDS

14 - ?L;OFIL= DRAG SF MAIN ROTOR ELADE29 - LOAD WEIGHT IN POUNDS

XX 14 - PROFILE DRAG OF MAIN ROTOR ELADE29 - FUEL WEIGHT IN POUNDS

14 - PROFILE DRAG OF MAIN ROTOR SLADE30 - !AXITUM 3ROSS ;EIGHT IN POUNDS

I 5U

TABLE 19

Profile Drag of Tail Rotor 3laije Pairings

XX15 - PRFLF' DR'AG CF TAIL ROTCF zFLAX16 - DIS LADIN 3 OF THE ?A iN Roc'OR SFiS':f

A15 - PRMED;AG --- TAIL ROTOR ETLD17 - E-DT CF1 AEI F EE

*15 - PRO FILE DR AG CF T-AIL- ROTOR FLAD18 - LENG41TH CV- THE FUSELAGE- IN1 FEET

X X 15 - PROFILE D RAG' CE TAIL ]ROTC? FLAX--19 - FRON,'TAL FLAT 'IPLAT E AREA IN4 SQUAREZF E

X X 15 - PR; FI':LE DRAG OF TAIL ROTOR FL-AX)20 - VE-4RTI CAL FL--AT PLATE AREA IN SQUAR EFE-

15 - PRFILE 1 DRAG CF TAIL ROTOR ELADE21 - "I~U VE u7LOC:IY IN KNOTS

XX 15 - PROFL DRAG OF TAIL ROTOR FLADE2 2 - MA XIiU M RANGE IN NAUT ICAL MILE-S

15 - PRO0 F!IL.E DR;AG OF TAIL ROTOR ELADE*23 - R-A TE OCF CL IME IN4 FEET PEP, 1INUTEr

MAXI MU. CONTINUOUS POWER

15 - PRn FL E DRAG JF TAIL ROTOR FLADES- 527ER ELN (IN GROUNDEFCT

:'I F EE--T

15 -PR FLE DR.AG CETA"L ROTOR ELAJE* cOV? EIIN (CU':O RUN FET

15 -3 R7ILE DRAG 0-F TAIL ROTOR ELADE- LNTH OF THE TAILBOM IN F

15 - PFILE DRAG OF TAIL ROTOR E -27 - OPER_7A TING i -13HFT IN1 POCUNSDS

15 - P. FLE D EAG O F -AIL ROTO 0R F-LAXD28 - LOADL WEIG.hT 1i POUNDS

XX 15 - PRO-FILE DRAG CF TAIL RIOOR FLAX29 - FUE ~I GH IN POUC JN DS

15 - PRFI7LE- DRAG CF TAIL ROTOR FL-AXD*30 - MIAXIM1UM ;iOSE 7EIGHT IN1 POUNDS

-' ~ ~ . .' .~ . 7-. 7-7-77- - i7

TABLE 20

Disc Loading of the Main Rotor System Pairings

16 - DISC LCADING CF -HE 1AIN ECIO, SYSTEM17 - WID:H CF :HE FUSfLAGE IN FE

16 - ',ISC LOADING OF THE !AIN RCO SiSTL10 - LENG:H OF THE FUSELAGE IN FEET

16 - DSC ICADING CF TEE .IAIN RCTCR SYS-EM19 - F.O1TAL FLAT PLATE AiZA IN SQUAE

16 - DISC LOADING OF THE MAIN ROO SYSTE20 - VERTICAL FLAT PLATE AREA IN SQUARE EET

16 - DISC LCADING CF THE MAIN ROTOR SYSTE:M21 - AAXIMUM VEICCITY IN KNOIS

16 - DISC LOADING OF THE MAIN RCTOR SYSTEM22 - iAXI MUM RANGE IN NAUTICAL IILES

lb - DISC LOANING OF THE MAIN RCTOR SYSTEM23 - RA!E OF CLIMB IN FEET PER MINUTE,

.lAXIAUM CONTINUCUS POWER

1b - DISC LOADING OF THE 14AIN RCTCR SYSTEM24 - HOVER CEILING (IN GROUND EFECT)

:N FEET

XX 10 - DISC LOADING OF THE .AIN RCTOR SYSTEM25 - HOVER CEILING (CUT OF GROUND EFFECT)

IN FEET

X K 16 - DISC LOADING OF THE MAIN ROTOR SYSTEM26 - LENGTH OF T HE TAILSOM. IN FEE:

XX 16 - DISC LCADING OF THE LIAIN ROTOR, SYSTE.27 - OPERATING 'EIGHT IN POUNDS

XX 16 - DISC LOADING OF THE MAIN RCTOR SYSTEM28 - LOAD WEIGHI IN POUNDS

XX 16 - DISC LCADING OF T'E JAIN E OTR SYSTE'I29 - FUEL 3:3HT IN FOUNDS

16 - DISC LOADING OF THE MAI. zCIOF SYSTEM30 - '!AXIMUM GROSS WEIGHT IN POUNDS

. . S

TABLE 21

Width of the Fuselage Pairings

17 - WIDTH CF THE FUSELA3E :N FEET18 - LENG:H CF THE FUSELAGE 'N F-ET

17 - W-DTH CF THE FUSELASE IN FEET19 - F.ONTAI FLAI M!ATE AREA TM SQJA2E FEE-

17 - 4IDTH OF THE FUSELAGE IN FET20 - VERTICAL FLAT PLATE AREA IN SQUARE FEET

17 - WIDTH CF THE FUSELAGE IN F=-ET21 - MAXIMUM VEICCIY IN KNCTS

Y.X 17 - 1IDTH CF THE FUSELAGE IN FEET22 - .1AXIIUm RANGE IN NAUTICAL ILES17 - WIDTH CF THE FUSELAGE IN FEET23 - FATE OF CLI.MB I.,. FEET PER 1INUE,

%AXI'iUI CONTINUCUS POW R

17 - WIDTH CF THE FUSELAGE IN FEET24 - HOVER CEILING (IN GROUND EFFECT)

IN FEET

17 - WIDTH CF THE FUSELAGE IN FEET25 - HOVER CEILING (CUT OF GROUND EFFECT)

IN FEET

17 - WIDTH OF THE FUSELAGE IN FEET26 - LENGTH OF !HE TAILBO0O IN FEET

17 - WIDTH CF THE FUSELAGE IN FEET27 - OPERATING hEIGH IN POUNDS

17 - WIDTH CF THE FUSELAGE IN FEET28 - LOAD WEIGHT !. POUNDS-17 - WIDTH CF -HE FUSELAGE IN FEET29 - FUEL "WEIGHT IN PCUNDS

17 - WIDTH OF THE FUSE=LAGE IN FEET30 - 1AXIUM 3GECSS EIGHT IN PCUNDS

ci

TABLE 22

Length of Fuselage Pairings

18 - LENGTH OF THE FUSELAGF IN FET19 - FR!TAL FLAT PLAT: AREA RI UARE FE:

18 - LENG3TH CF TE FUSELAGE IN BEET20 - "IE-TICAL FLAT LAE A;EA :N S&JAFE FEET

13 - LENGTH OF THE FUSELAGE RIN fEET21 - MAXIMUM VELOCITY !N KNOTS

18 - LENGTH OF THE FUSELAGE IN BEET22 - '!AXIUM RANGE IN NAUTICAL MILS

18 - LENGTH CF THE FUSELAGE IN FEET23 - RATE CF CLIMB IN BEET PER iINUTE,

.'AXIMUN CONTINUOUS POWER

13 - LENGTH OF THE FUSELAGE -i FEET24 - HOVER CEILING (IN GROUND EFFECT)

1N iEET

19 - LENGTH OF THE FUSELAGE IN FEET25 - HOV :R CEIL>IG (CUT OF GROUND EFFECT)

IN FEET

18 - LENGTH OF THE FUSELAGE IN FEET26 - LENGTH OF THE TAILBO0. IN FEET

18 - LENGTH OF THE FUSELAGE IN fEET27 - OPERATING WEIGHT I POUNDS

18 - LENGTH OF THE FUSELAGE IN :EE:23 - LOAD WEIGHT IN POUNDS

XX 18 - LENGTH OF THE FUSELAGE IN fEE"29 - FUEL WEIGHT IN P OUNS

18 - LENGTH OF THE FUSELAGE IN FEET30 - YAXIMUM GROSS WEIGHT IN POUNDS

0

62

S , . "'

TABLE 23

Frontal Horizcntal Flat Plate Area Pairizys

19 - FROGNTAL' FILAT FLAT:- A-REA IN SUARE FE20 - VERTZICAL FLAT FLACKE AFEA TN U-ARE FEE

19 - :7FF0 NTA F1L77AT PL1ATE, AREA IN cQUARE FEE:-21 - IA:(I:IUNJ vEHcC-TLY I.N KNOTS

19 - FRO NTAL F-LAT PLATE AREA IN SQUARE FEET-22 - 4AX IM U RANGE IN NAUTICAL :LE

xx19 - FRONTA FL:,AT PLATE A1RE IN SQUAREFE23-) RA T E OF CLD IM N FEET PEE MrNU--T2,

:IAX IM 0% CONTIHUOUJS POWE-R

4 X 19 -- RNTAL FLAT PLATE AREA IN4 SQUARE FEE24 -6 HVER, CEILING -(IN G-ROU3D F E-CT)

K.x 19 -FRON'TAL FLA T PL ATE A REA INI SQUAR E FEE25 -HOW VE CEIL ING (CUT OF GEOU NZ EFFECT)

IN; F --ET

Xx 19 F FRONITAl FLA T PLACEF AE EA !I SQUARE F EEZT26 - LE-:NGIE OF THE TAILBOON IN !EB:

19 - FRONTAL FLAT PLATE ARE-A IN SQUARE FEE-T27 - OP- ERATING WEIGHT IN POUNDS

19 - ERG "NTAL FLAT PLATE- AREA IN SQUARE- F EET7£28 - LOA-D 'EIG HT I-A POUNDS

K X 19 - FRONCIAL FL.AT PLATE IREX IN SQUAhRE r Z.Z29 - "FUEL W EIGHT !1f POUNDS

19 - FROJNTALT FLAT FLATEB AREA IN SQUARE- F ET30 - ! AXIi1U, GROCSS W4EIGH: IN1 POUNDS

63

TABLE 24

FIrcrltal Vertical Flat Plate Area Pa .1ri 4 s

S -

-- v>:L AL : :LATE .A 7A 7EJAE

*~ N.. Iz J. A. A -E: ~ A N ~7A: C -1 N F7-- : 1: :,-

YJ 7 1 'C' A 7 A iA-- Ai.EA !N St&JAF F~- uI F :NG (N JRCU 4D F~

.~~~~~~ :9 1 ;z:CL?::~AEA: N S,-JARLL Hc~ P-.; i AN - cJ ,D R N z F

X 9 X 'i T:CAL ~LA: T E'A: AF:A I N* S QUA E

"17- -. CAL FLAT .4 7r A F EA IN S, EJAE I

(X A -v:c LA- LA--- AREA IN SQ JAR HFE T

X29 7 :i-:CA L FAT :LATE A2:-A IN SJJAEEFR- ~A; 1 'R3 H :.ITPC2CUN

10

b4

TABLE 25

maximum Forwar- Yelocity ?airinjs

21 - MA'(: :AM V7 LCC::-Y -N K14JTSU- AA1.1 TjU RANGE :A~ NAUTICAL M :-' 7

21 - M~AX:: UM CC:TY IN KNO-LS23 - RA: 0F C LT 1 S:N F E E R M:NU:,7

:IA. ' MJ M C C N'! ,;US P3ow ---

21 - A X IM UM 'v:7=cc:Y :N 0NT4- H DVE C N G (IN OROU ND E FF C:7)

21 - 11IX :1 U~ v: LOcI:Y :N~ KN6S5- H 3V ER C71 :ING (Cu: ')F OEROJNZE-u7EC:-)

XXK 21 - MA K 1 UMELOCCITY IN : No:s6 . G:H C' THL -A- TPODo NF

-1 M~ U M V L C C: 7~ .1 -327 -0 2 FA I N G 1E3 H N PO0U " nDS

21 - k -I~h VELCCIUY IN KNOTS28 -~ WE3PT I, POUNDS

XX 21 - AX1 V-LCC:TY :3r KJCTS29 - JE-7 ' HIGHT IN Pculms

21 - AA:.~VEz*LGCTY TN KNOTS3- IAXI UM 3RcS3 'AEIGH: :I' POUND)S

TABLE 26

faximum Range Pairings

7- :A.(TAUM RANGE IS NAUTICAL TS23 - RAIEo GB 2IMB IN -E7 PER M71U-7

.,'A.(IMULM CCONTIN UCOS PC PE

X22 - MAK(I IIU RANGE IN NA.U-:CALr :T 724 H iC VE E C I L :NG (: N GR C'I: D ZFf vEC:1

EN FET

X 2 I :A 'C M U' A NGE -- 1N NAUTICAL M!ILES23 -1 '1 r- R C 11LINSG (CU: CIF 3RCUNEEFCT

'(X 22 MAXMU RANGE IN NAJUTICAL M iLE SK26 -ENG:F OF :HE TAIL2 T N no0,E1

2 - "AKIM~UY RANGE T N N A JTI C A 7 7 527 - ~EAIOWEIGHIT :.1 PoUNDS

22 A :1XM UN RA NG E IN' NAJTICAL' 'jIL529 - LOCAT- WEIU;HT L i POUNIDS

U- MlAXIU Fiu ANGZ I' JAATICAL ~IIZ

22 - IA C::Iu' U . NE TN NAUTICAL MI 7S3J - A:Iui A,: N: N PCUND.5

b50

TABLE 27

Rate of Climb PairinasI

2 - R AE CF C- !ME I zz.:- D-ER :N7:'AA.., U :c NT:N"UCUS ?' E

-4 HC7ERz~N (IN GOFJoI: EF IFC:

D , - j I;

25 jV EFR CII LI NG (CUT '0F JROUjNEr E:

23- AT E O F CLM IN FEEVT 2E R TNU:EMA"'I .1U J CONTINEJOUS -CO;iER

2c- - i1 i OF HE: AI..300 1\ F EE T

3 - RA CE CL I!S INFETERINEiI M U N COINTINUCUS pE

27 C? cpATING WEIGH]T IN POUNDS

3 - F C crl1 IN FEET PER M-INjT.1 A 1U 1 CONTI:NUC1US POWERa

28 -J,,AD WEIGHT IN POUNDS

3 - A.E CFO~ NFEET 2PEFE1 MiN UTE-M u m c --~I~hU ?OuER

29 - LwEiG:-U IN ?OEJNDS

23 -RAT Z CF CLIMB IN FETPER LA Nr-1MA X I M " ONTINUCUS POWER

30 - X I U9 M 3CSS EIiIN POUNDS

TABLE 28

C Hover Ceiling (IGE) Pairings

24 -O -OJR CEILING (IN GROUNDj EFFEC:)

2'5 - ii7--E CEILI:NG (CUT DIV 3ROUNZ EFFECT-)Ill FE ET

Z x24 H C', VER CEI LI1NG (I N G.ROUNJllD EV"zFE7CT)

26 L LT-,'' C :dE -A:S-OOM IN FEET

24-':' - OEiCIING (I GF OU ND -FFiECTIN EET 7

-7 - PEPA:I-. EIGHT IN POUNDS

22 4 H - OVE C -"'rL I NG ( IN G RO0U 'ID E F FECTZ) 9

23-LOAD WEIG1HT IN POUNDS

IC~ 4- OVCEILDIG (IN GRCGUNL EF 7C:)

2;-F77L WEI'3HT IN POUNDSH .YIR CE IIN G (I3aCU'I EFEQ

.32 A A'I M .UM G tuS 'iEUi 7 1.1H : POUNDS

TABLE 29

Hover Ceiling (OGE) Pairiags

(I 25 -iHO'--i CEIING (CUT OF 3RO NE EFFECT-)I.727 -i H '-_--

... A LE-OCA IN ; ::

25 - HOITU CE-I ING (CUT OF GROU ND EFECT)

27 - OPEFATIN3 WEIGHT IN POUNDS

25 - HOV ER CE I1NG (CUT :F 3RdOND IE CTN

28 - ,, AD IH T! UNDS

XX 25 - HCV-? CEILING (CUT OF 3ROUND EFFECT)IN; FEET29 -FEL 'El3IGH: : CUNDS

25 - HC E'- CElL ING (CU:OF ] ,OUNE E?7EC)N F

30 - 3AXI UM GRCSS W-IG N. POUNDS

TABLE 30

Length of Tail Pairings

16 .... ..F --

6 - LENG H CF THE TAIL90 IN FET

43 - LEAD WEIGHT I , POUNDS

6 - LEN:GH I TILBOOM IN FEET29 - FUEL WEIGHT IN PCUNDS

2 - LE1.GTH CF THE AILEO.:1 IN FEE:33 -

7 IMUJ 33053 WEIGHT IN POUcNDS

b7

S

TABLE 31

Operating Veight Pairings

27 OPERA TING WE: 24 2DUNDS28 - LCAD !EIGHT IN PCUNDS

27 - OPEPA-lI N :_iGHT IN -CUN-S29 - 1'77L WEIG.HT IN POUNDS

27 - OPERATING WEIiHT IN POUNDS30 - AXI!U:i GRCSS AEIGJT IN POUNDS

4TABLE 32

Load Weight Pairings

28 - LOAD WETGHT IN PCUNDS29 - FUEL qEIGHI IN POUNDS

23 - LOAD WEIGH- IN POUNDS30 - A.(IMUM 3RCSS WEI3HIi IN POUNDS

(!

TABLE 33

Fuel Weight Pairings

29 - FUEL 'WEIHT IN PCUNDS30 - .AXI1Uh ,ROSS WEIGHT IN POUNDS

*1

8I

APPENDIX C

DATA POINT PLOTS, CURVE FITS, AND CURVE FIT ET>~

P Main Rotor Radius Pairings.2

69

0

C

I

U

0

cx

0

S

0

S

7-,.2

0

C/ cc ( Q

00v -d

z

Z 0 o_i 0=

00

1=N

0i)siv HiHiv

0i.12 n -b

CC

00

o =

0~000

LI S3VS OOH NIVN~ dO 38V'

1 3 a -b

- 0

-. V)

06

0 F4

,tOZ 0

0

mr0-

a0 m

000 0-

Fig 1-1rd 1 5

7

600

fz 00 c

C.,

z .-

0- 0

CLC

LU-00

0I 0

(VUUd) Q133dS UOIOH NIVV4

U

S 07

Pg

00

o)LU

o 0 0

(Y44ki) Q33dS HOIOIU NIVVN

Fig. -t dnd 1-ob.

0

00* *?CC

UJ 02

II

LJJ

0~00.

o 0U 0d 0~O 01V

oig 1-7 and 1-b

REPRODUCED AT GOVERNMENT EXPN5EC

7

00

'~60 (n

E z

Q Nz

04

* I)UH 0O'8U.0 IV

Fig. 1-8

76~

0 7

uj u

~0

00

uU9

(IJ) ~~ ~ ~ N GHH LSUiHI~

0L 0 CC0

00

u0

'~'7

--. - r - . -- - - -. -. - - -- - - - -

a0

< en0L

<~I

I:*z z

LU

0

(Id) NVdS 3GVIS HOIOH NIVN

-n

zco= 0

0 7

flU

0LU0

C14Nd 3G1 *1HNV

0 fi . 1-10d nd 1 10b

*Com

C

0 0 0

00

-j 9 ? 9 0 0

0-'02

Cf) 0)LU 0

NZ

4CLUH 0

I(Ld) NVdS 30V19 HOIOH IlVI

Fig. - ll and -11b

-,-z

00

U)

z0

U) 0(I) 0 z

LU o<

(9GS~ 01 .0OUNIV

Fig. 10n 1 4

Vm= -

0

CC

00

aLU

W 0

~cuJ

Ui

z 0

0

(3 0

Cl) r

ONIVJ OSI

I t~a a nd I -

00

0/LUJ

(1:1) H.LOIM 90Y1~snld

* Fig. 1-17.

C

.. U 0

-r 0

_ 0 0:LU * t6

zq

U 7~U) 0

LU

LUJ) HION31 3ovi~sfld

fig. 1-1a a d 1 1 b

F Maw

* N 0

z

13 0C/)I 0

*- 0C4Z

LUJ

0

0 0 0

(,:J OS) VrJUV 31iVld iV]J INOUzd

,Cc 0C? so

lw7 a

~ ~LJ

(i)VH 31t.PIJINH

fig. 1- 1 d a d 1-19b

in44

U )

~~00

ob cc*cc=~ a-or

4I o -4 U)

r

(AS)3UV 1V~dIV14'IU3

Fig. 0-2 an 1 21

-~ ~ ~.rrr~ --

.6

~c~J -J

U, ~ 0

0

SU~ 0 N C

0 0

- gN C9 ~riCI) oLU 0~

a.

* ~.a 0

0N

N

0 8 80________

* N

~ C~ (flCa

U~Z 0

~(Ou~ci~0

* ao 0~ A

LU er~

- NZ.q* S

a 00N

N

0U

I 0 0 0

4I L~NN) S3~NV~ WNfl1'NIXV~

Fi.j. 1-22 and 1-23.

4

- -- " ... -

'44 0

z C0 0

(D 0-4* 0

LU

391 J) ONII30 3AOH

Fig. 1-4 a d - 5

70

UJ

7 7

C 0W./ cno I?

LU

())

* (Id) IIV. JO HION31

fig. -26aand -26b

U

*q=0 W( Dc

.(0cnvto

z a:LU0L

CLtu.0

0

0~~ 0 004

a_ 04 fl 0'

0000

0 t

icl) LH'3C)Nl Ud

F-g 0-7 nd12b

M, CACf

00

C) 0

4C0N

01

gopt* (21) iHDIGM CUVOl

00

M c10

UD

z0

(3 oN

6/ 0

LUI

CL 0

H- N

(81) HO13 GVO

0i.12dLid12b

re z

00

UN

co -c aM

0 Sc A

LUJ

4

(81) ,LHO13M 13flz

0 Fig. 1-29a and 1-2.ib.

u <

cn 0 t

Z -0

LIa0 OL (91) iH913M ssouE mfIv~vn

C ~zz000 0

U)Q 0

* CD -

0 0

(m)~ ~ ~ iiin soovinw

Fi . 1 30Uo 13b

Tail Rotor Radius Pairinas.

o9 3

REPRODUCED AT GOVERNMENT EXPE,-'::

6-

u <_=,v

a 0

C0

F--

CDC

iu0S3HSU1H liH9m

4 Fig. 2-4.

r

.0 ti 0~

0 2

(Add (2:SUOC ~

LU

LU C

I- (

0

0 0 0 0 0

(NW) G33dS UO1OU liVi

2~ ~ ~ -7-on - o

7 RD-Ali52 834 DETERMINATION OF QUAlNTITATIVE RELATIONSHIPS BETWEEN 2/4SELECTED CRITICAL HELICOPTER DESIGN PRAMETERS(U) NAVALPOSTGRAlDUATE SCHOOL MONTEREY CA R S PETRICKA SEP 84

UNCLASSIFIED F/6 1/3 UL

mmhhhhhhhm

I 1.0-~ 11111 2.2

*1 111112.8IHH'I.25 -111'4 1111.

- illil- .6

MICROCOP'Y RESOLUTION TEST CHART

4*W 0

10

- N o a:

0 0

0U

co r, 0 0 0 N C

M U=0) QGOHD JaVIG U0IOU livi.

CC

z(J a C

C

LU 0 *

LLA)CHOHO 3aVIS HOiod IIVI

fig. 2-9d and 2-sb.

LL

r. " 0W. c

0

0

1~~~ 0 0 a 0

eNN

(-)2L 00

CCC

U

Fig 11 a n - 1b

0 0-

0.,saJ 0 0

400

(1) 0

0

U

(3)SM V1 UOIOU IIVI aJOd

Fi . 2-3adW- 5

0-

vo= 0

0

z C 0 a

a-.

0p U

ONIC VOl )4SIO

* 0

cc44

00

a 00(0 tLiiVO :)I

Li.2 6A n -lb

04VL

.00

LU 0

0 U

~wz 0

z=a:

00

uj 0

00

UNX (101A~~

*i.22 n -j

0 0

U 0

0 00 4

00

30 (1:0 DN11083

3=0 * .

00

0

00

- 31O (I.) N11I30 U3AOI'

Z 0d

I,,0 0 ,

._ 0

00

C o6

-r 0

.. 2-24 d 2-25.

• ... , . . . -. . .-. : --,.,,

~-0

cz --*W 0

LL

0

a:

F--

00

-- JLUI

0

o o

IJ

a~ca

0 u

rn C4

uA I4iJ HO

CC-

z M4

00

LUJ

7-I

01

10 0 0 0S0 0 0

0 *0L *(91) H913M DNI1VU~dO

Fl . ' 271 an -2 b

0j

CLC

00

%3LU

U -

~OI..(21) 1HHJI3M OVOl

0 ~ ~ ~ ~ . E'. 2,n 22t

Iu

C 24C)C

u I

, t j 0 A.

zt 8)ID~soovniv

0ccar a

LU

SCL

00

(9-1)iHE)3Mssoo Nn~ixv

300n 2 3t

.6

I

N~rnber z: Matn Ro~r Blades Pajr~zs.

4

4

(

a S

I

4

I p

I

V 10

0 Z

CIO

z C.,

0LU

40 ~IjLOro

00

-F

00

3 -4- 4u -- L

REPRODUCED AT GOVERNMENT EXPE'4SE

* 0 u

0 o

I-I0i

z0.Z

z -

.0o000z

0u

0 00

(1:) Y~SAS HOiOU JO 1-Hi13H

Fiy. 3-5.

6"1 1i

0

N0Lh

*.~z 0

C-)Iz "0

a a

cl U

0M4

iO 0

I0 0 ~

00

0'UH) 03d I-WNV

z-aad -o

0Z

U 4

.,m 0 6

CVdU G3d 800 II

z% P) .01nAz3oCl)uLJ N n

LLI

C-C)

(VUU) 033dS HOoU li

Ei 3 a and3- 7b

.~~~~~~~ .

WU N, 7. - --4-- ~ - -

REPRODUCED AT GOVERNMENT EXPEN'SE

4U

0 wUz

ClCon I

zz(J St

Fi . -6

'n0

0L.-

z

0U9

(id) NVdS 30VIG HOiOU N1VV4

0 00

C=,

LLLU

C)

LC

00

(Id;)NVdS 3GVI9 dOIOU NIWVN

Fig. 3- l3i ani 3- lob.

0 4U

zz

LU

Q9 a

U40 -IY V(33U~

W *07z

C-O0

C-,n

LI

Fi 3~ ~ 1 a n0 - 4

0uc

=V

C - o

z co 0 W

u *( Z

U)06

LU

C-a)

u-Ij< 0

qow1

0

~t4cn 0

z cCD * .q

(1)

Q L

S z

0

0JI~ ElSto

OI1 OS

Fi.306 n -1b

REPRODUCED AT GOVERNMENT EXPE'JBE7

co

u./

oprr

uj- ,C4C

U 44

iii j

0 Fg.3-17

117

I* C 0 0 0 0 0 0 0 0 0 0

I[-id) RJ.IM V3 F:Sf'l-

* Fig. 3- 17.

117

0 ,

0 U

umm2(/

N0ri z_ oZ

LU

I-r

u00

0 40

L) H.LDN31 30V13snid

uo -

,O'o= 0

(LJ

o LJo

0

o 0a 0

o 00 0

WI) HiON31 30413sflY

fi.3- 18a and 3-18b.

~~LLJ

0

en V 00W

Co

0z

LU 2

Lii

0

0 CC

C U0w

z

CLi

uC 0

od . .0 It0

rH

US)V8V 3V~d VIJ NOz

__ Fi . 3 9 n -e o

I I

CCU)L

U

- C4

,,Cc 0

CCU)U

LL.0 0 00

UNA) -.103 mx

Fig 3-1ad -2

.,W 0

r)LU

A -q

LU

00400

o 0 0

o0

0 0a 0

(NIN/ii) GNI3JO UBACVH

fi.32 n -4

UL

C 0 (0

0 0J

zz

Zola

0.

zz0

0)LU

0 0

0 0 C)

0 c~J -

30 (IJ 0N13 3O

i a,! -0 21

- i

4z

0 3n 4n C4 C-

* Cl

z no

L 0

0 0 0 0

,OL.(81) iHSIJM ONIIVHIdO

1.1j. 3-27, inJ -27b

(MU.N CD

CD 0

LU

LULw1

Ir

cc 0

COL*c

MU 4?

<t~ 0'A(M

zCMv 0

LU

u-i

L 0(8-1)iHOO OVN

fig. - 28 and -28b

CUU

C- *NO*

P C

zz

C/0

0

0 0

0C 0

LU

OL (8)I91M1n

,,W 00H- z0 G c00

0 00 00

LUn I

(81) H~3I3 l~fo

*r 2i. 1 -9 ±d J2 b

SL n:

V CJLWUC

U. *

,*COX 0

.0

C)I

Z

* t*. (8-1) IH913Mssu SSUDnfv~ixvv

UL

zz(J 2

LUU

1U b

I i

I U

Number of Tail Rotor Blades Pairinzs.S

4

4

S

I Ip

o

4 5.9

127//AS

4

__________________ _____________ -I

4 u7 Of

0

LU I.-

0UV

- -- . 0 0 0 0 0 a

I (1-4)OIOHO 30VIS80~106 IIVI

t) EMAp

0'~~ 0

C) co

zz

LU0

000

M~dU) 033dS 8OLOU iIlV

F. 4~-7 a ad ~4-.

~cq

u u.j

w:ow

0z

030

0

u aU

.0W 0

~0u0

LIUJ

.. ~z 0

LU N0 0

0, _ _ _ __ _ _ _

SUJ)NVdS 3COVI1 U0Ili

0 Fig. 4-11 ind 4-13.

a7

uo -

cc.0

U to

ez 0

00

Z 0

wCD c /LU L)

0o 1

0 0

CI C0 (i

00

0 0

UCDO IIIOU 1A~

fil 4-15 in -- 8

LU

VCO 0

0

0 0

UL

0u

00

r. I 301 (j) ONIII30 U3AOH

In w

ar.*n LU

LULI-m00

0U

0 I (1NN1 AiI3O13A v~fl~ixvIN

Fig. 4-21 and 4-24.*

4 REPRODUCED AT GOVERNMENT EXPE .EE

LLU

(I)

0 c

300 (IA ) ONflIT) H3AOH '

1 3

~cuJ -

C 00

uJ oxLUUEm

0(9

7' W) C

(Id) IlVI AO HItON31

1eO 0

* z(3

U9

*-j IIJII iD3

fi, .4-2o anJ -2ob

LUJ

.,Cc= 0

0

0

UJLJU

C4 mI v %a

0 00 LU

00

404U

0,04

*s m

0z

00

CDuJ

0 0 0 0 a*

a do

(WI IH)9 SO3M 13fniv

an -0

ft ft ft ft ft ft

I B

zei;t~: of Main Rotor S:sten Pazoinos. B

4

I S

(

*

I S

4 '1S

VF

4

00

CL

LI C4L

Z z

0.

C U

u <

LL

CL ec, L

~L J

00

z U

LUdd 03d OCHII

Fi.*?, a d 5 ro

.1pt c m

MOW.u 0

00

P 000

(Ia

eU L

aOUCO IAOVG3U~

Mz

* cc

< V)z20

QD 0

00

UL

I (JA)GUHO 30V18 UOiOU NIVV4

ijg. s-8 jnJ 5-14.

0U..*M 0 e.

0

0 (1)

0

0/ 00

ZuMw t LLZ. 00

V)

zz0~0

0

00 0U 0 0 0 0 0 0 0 0

03 0 CD N

r(1N) RLCI :)VSIGd

fig 5- dd5-7

LIu

In~ 070~lC

zcc 4M-

LU D

(Di

0 00

vco0 0

U

00.L0u' V

UJ) HON31 V13s0

Fig. ,i n4 5 lo0

VV

~ 0

'-I

zz

C

0

(J OS) V HV 31VI ..LVlI iNOU

Maui

u 4#co= 0

= 80

00

00

(I)

0 0 0 0 0 0

00

r

v0 A -(~9

UN * A-=13 inm

O5)urioSV

LUJ

Fig 0-2 0n- 1

*4

0 0 LL

U LU

u U0 0

30I (Id) ONIlI3 H3AOH

WOW -

,( Cn U

0 00

qL.. 0

aI*u6NV/J 6MDJO3V

Fig 5-3 nd5-

Z1 4-5

A

o L

0 0

CIO-

cj

z 00

0 0 0

39 0A 0N13) 3O

Fi. 5-25.

w I

0

z 0.

(1) a: Al

LU4C

U 0 0

~0w -

L0 Cl)

0 0C00

(I-4

(1j) 0liJ HO

Fig. 5-26a and 5-2)bb.

147

C -7CN m

ro~ 0

CL C

0~0

0 -

I0

U L

00

00

0 a~

0U 0

(C)I[1M NIUd

fig 5-7 nd52b

REPRODUCED AT GOVERNMENT EXPEN'3-

l V a

z cr

0 0

* --I.---

D o 2-91 NH 13M C V),

F 5

(D 0 -Q_ 000

II ° °LUi1

(8"1 .LHIAAaVO0

I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

04'

U)~

zz0

*400

cc 0L

IIA

C CD

0

U (

(91)" IH1Mso~ n v

Fig 0- 0 ad 5 3

A IS~eec~ of Main Rotor Pairincs.

0

H 0

0

0

F

131

A, C

.0 r

U)c

zr <00

0-u0

000

(ANdH) QJadS UOICU ThVi

C OS

U <U

z

00K 8 0

0 000

u 0 0

44

(Ndd G33S UiOVJIlS

Fij. 6-7L and )-7b

REPRODUCED AT GOVERNMENT E XP E

IrI

0 .

00

U )

(~J 00 0

U),

(1)LUJH 0-13810 IV

Fig.0

LJ ~.134

CMC

CO C

,t =0 CO.

0 Liz3 CL,

00

I- 000i0z

UQ

(IJ) NVdS 3GV19 UOiOHi NIVN

0,0

3i~

LUz C

000 I

-. q 6- 10 u -Zo

0 U

u -c

a LULU

0 07UI)

0

00

QU

cir

<CIA

* LLUCL

z cn ,

LU rZ

0

00

I W93)±SIMi 30VIG UOiOU NIVV4

fig. 6-12 and b-14.

0 LI0

CL

V La

to Qzz V)(D IN l 0LUo

0 c

u-I

0

- 0d 4i Ji 4

ONICIVOl OSIG

0

0

-j~~ ~ 0 l40.

1 7

C9C

70

*W= 0 0 C

* CL

Ki~ z0-

i~i -0'Cocno r14 I

ciLU 0

U] 0LU X

10. z

C)CU0 u

(I/) 0M3 EV~n

fig.~~ ~ ~ 6-18 nd6 '

CLc 'o

0

LLU

LC00

(-)0j 0

U9

oJ)3J 31l ~l NU

fz iq a a i -1

CL

0

U)U

z zCC <

__ 0

(1u00

U

-0

-CC

CLC

(A)VU RVdi7Ji

0i .6 2 a - 1

cc a

CLU

Z

3i

co 0010LU-04

a C0

0 4,0IU U

0

U 0 00

00

(ig 6-2 an 6-4

_ i] " . . r ". - . - -, : - . .- - . ' -' . ,.. ,.~ - . - T ,. . . . _ . .. .

REPRODUCED AT GOVERNMENT EXPE E--

0

r.

MOW

4 0

LLJ 0

o(. so' -0

U,

350 (1- ) ON11303 AOH

Fig. 6-25.

1o2

6 ..• "- ' - . . . "-' -" - : " " ; -o:,i - , " , * -' -, - , , w ,in, i • ,' "3

- - - - --- ,.----.--'- .- -- .

u0= 0 CL

(U *(

- C)

LLU

00M 0a

UI c a-

0

u0

0 0 0 0 0 0 0

N Nq -060

COW L

0 0

U)

LLLU

0

0 070

L Ao 0 a 0 0 o

(21) iHDIJM ONIIVY~dO

4 fig. 6-27a and o-27o.

Ic 3

4u

CL

U 4U

* U C::

LLU

OLO~~~ 0 f (11 H)MGO

CcaLU

0-0

*0o 0a

i (81) 1HI = oi,OL.J

0 CC

,.C 0 0.

0 O0 0 0

0C 0 a

(81) 0H13 Cn

LUg 032aida2b

<0 WO D

0 CL

0

00uo

C4 C4

(.14 (8)i53 s- nmv

VC 0

a oa.

~ow -

CC0

00

11600

-. ~''x~cr.', ;in', - -C- * * ~ *%* **. **

.4

*1

t

~peeJ of Rotor Radius ta~

I

I

C

6

I

I

K I

p

167//& r

C I

- - - - V -~ - - - -- -' -- - -. -. -

U,:

IC-

U)*

cn

CL 0 0

U <~ca -m

ut

CL

z0

0

0

LIJ4

C) CLU aOe

(iACUO:)3CIIB ACOU IV

4ij 7-')d -t d 7-

n I. - - - -' -

A

uuQ~~C ~ 2U (

,e~= C,~ ~- A

C-A -0~ .~

- '-. C-, ~ A

* ZI0 C

LU ~. .2C * A

*.,

jC

0(-)

C 0 0- 0 A0 0

* ~a)1sIM± ~avia uoiou iivi

C S

U <.t~= 0 *

A

- C-~ A

-

LU ~~0C

0 ~-. Su~i C0

I-. 0

0 *

a a o a a c a a 2a ~- . ~ ~ ~9 ri -

I

(1d)NVdS 30V18 UOIOU lIVI

S

I,:

S

- -- - .- -----------.------.-.-.. ,---"--..- ~ .

REPRODUCED AT GOVERNMENT EXPEN SZ

to Co

U

0~o lcc-MG Tju

Fig. 7-15

17-

~0~J -

0

0 000

C3 0 aQ

(NC.Cavfl LUl

-0CLU

C.,4

LU 0 w

0

LI 00

00

-- 0 -C4m

U

uu-

C./) OS 3V3-I LC N8

CjC

CcN Cn 'D 4?CN

u-i

0

LU '000.

C,

Cn 0 <

0U

0 a 0 0a a 0 0 a

(dS)V3UV 9iV~d iI. INOUW

Fig. 7- 1'a ani 7-IUb.

17 3

CC

00

aU (

Ccc

C44

a.,z0 0

00 ..LLJ00

0- CCR -j

0

00

4 uUNAI (II)3 NNflIixvAO

Fig. 7- 1 a d - 4

170

0A

.4 REPRODUCED AT GOVERNMENT EXPENSE

U(0

.. =z 0

(0~~ 0U 0_

1751

0 c

-L 0

U

a 0 L

a gUom(5.n

* CL

0 cr0

0u

0J 0IV O 0IN3

fig 0-6 an 02

19 00

u Q

oo < .1

0-~

0

LUJ C 0

01.(81) J.HDQM E)NLLVH~dO

~~CC

00 0

0

~-0 0 N

-0

CL w0U 0

* 0 0 --.

H N(8)1O1M9IIUd

0~~ ~ ~ fi.72aad72b

177

S%

~ 4 I--

m V 0 00.

00LL

z VU)(5l

LU *0

cr-.

00

u~0

00

(3LU 0 0

,OL* (81) iHOIOM OVOl

-0 r

0g

.0

0 40.

LU

fig.~~ 7-3da d -2b

C1

-0

'O' (n 0 9 C

.~ 0

LU)

00

LU

0~00 0 000

LUU

0LUJ

0.0

(91) HE)13 sso g v~nCix,

Fig 7-0 u7 3b

.~17'0

Chord of Main Rotor Blade Pairings.

4[

,, ,S ,?& e r ,, '. i . - i ., , - , "- n : n , I , ,,m8//Z

zCl)

C)

U .

ui 0 ,

0

LU *

a n

.4.

o ~so

00

LLLU

C DC -7

0w -b

U.

4 go0

a 0 9 I

z <

0 c(-)0

(iJ)NVdS 3COV18 8O1OU NIV'N

C

KLJ -M r9

s~ C-1-0

<- c

u~j .0

0

a i a

0 a .0

0 a0

0< 3

0

U)4

0 .0 a

0 0 00 0

U <oo-o

zz

nI

0-00 0u 0 0.

A, C

U C

5 0* .0 L

CL

0-

0 a 0 6

UL

0 0

~owon

CJ)3V3V~ VJi3

fi.02 t d 3 21

1, 7

F7 -

oo, =, 10.,: 0 -

0

0 u0

zl

~cr

00 0 0o a 000

30O (Id 9NI130 H3AOH

00

CO c.r

00 M:

0 30

0

CI) =.

CC z

00 00 0 0 0 0

0 0

000

uco =0 0 M'o q C

:ii - P-)<.. O' " 3..2

0l 00LL

.<

0~00L

(--o

40 0 0

(id) lIVi JO HiON31

* Fiy. 8-2b dnd 8-27.

o 4-(, " q

z 0

ua

.0 O =2

00

LU N6 U

0 -0

z

LLU .o-

I-,

0.

(81) iHgI93M S VO'I

Fig. 8-28 and 8-30.

~ow--

-.. 0

.4r..- ~. . .,-----

Chord of Tail Rotor Blade Pairings.

4

4

4

I S

I. w

0 <

U 0D

C (

(3 cc 0 <-

z 0 7

0 c0K) -0

.C I 0

LLU

Ui4NVdS 3QVIG UOiOH IIVI

K1 liJ -i1 d 9- 11b.

4 .. 1.3

('5 J co

o co ZO=Z 0 0l .

C,)

LU

C-)D

3 z 0

0 0 0

00

LLJLL

UN 0

00 LL-a(0CSM 3:IVI UZO I

-j 9N1 an 9- 5

77 2W---~-- - . ~ . ~ *

-7

00zC/) 00 -6I

V m

a~ uj

Go m.*=0

o~~~ 0 0 0

0 C) ' '

*~ ;:2-

.0

UU

U 9-(INN) 0101ANviv

Fig. 9 21 an 9-22

0 U-

0cnm 'n

UN C.

0 4

or 0 00

0'~

V 0 0 0 00

300 (1A) ON1130 HAOH

U -Q.* = 0

I<LLJ 0

(cc

30 (j DN Cfl3 0

U.J

Fig.9-24 and -2!D

.~C.) *

#W= 0 -0

-0

00~U ~L

o*CO0 0

o 0 0

IL

z -0

~0

NCC~ 0 -j

00

0 0-on 04

10 7

M L

~0

CC

LU0-0.

u4

0Q 0 0a 0 0 3

~OL * (81) LHOIJM E)NLLVU~dO

~-.C-c lq' 71(

uuu q?

LUUz

- 0'~'

os

U0 a00

(81) IHS13M 9NiIVUdO

F.1g. 9-27a dand 9-27b.4

1 1

REPRODUC:ED AT GOVERNMENT EXPENSE

uI

.11

*0

0 00

LLJ0 -J

0 0 0n 00

(81) IH913M oIVOl

a Fig. 9-28.

'MC 0 U -

z

C/CcLU C ol-

O

L

0

LU

* ,OLO (81) iHDIJ9M SSOUD mmflNxvv4

~CJ-

C C

.*z 0

uC

0 a

a~ 0-

4 aU MH91 H)9 sosvn~yv

-0; - 0 a d 9 3 b

I ScSPan o f Main Rzriri.~

A6

L4

4

4

AD-Ai52 834 DETERMINATION OF QUANTITATIVE RELATIONSHIPS BETWEEN 3/4SELECTED CRITICAL HELICOPTER DESIGN PARANETERS(U) NAVALPOSTGRADUATE SCHOOL MONTEREY CA R S PETRICICA SEP 84

UNCLSIFIEE FG 1/ N

EhhhhhhmosmmmusmhhhhmmhlmEhhhhhhhhmhhlosmhhhhhmhhhml

" , ...- . .. r- w -- rrrr i . . . . - -. .

1 36

1111 1 1 4 111112.0~11111 ~1.81. 5 1.4 111 .6

MICROCOPY RESOLUTION TEST CHART

U U .

.. = 0 z0<

- 0

o 0<

U) 0 .2LU

r0I

LCO 0

o C

0z -)

0

00

Li0 0<

00

U)0 a 0 a 0

a -- azo -

I (1A)NVdS 30V19 UOiOU IlVI.

fig. 10-11 and 10-1:.

CA Mo

gow -oC

0 Lf0

03 70c

0

LILU

00 0

00

0 z3UU0<

0 cou0

LU .0

00

00

0

012 0

UOiOW NIVI' 5VU0 31UdO~d

Fig. 10-14 and 10-16.

REPRODUCED AT GOVERNMENT EXPE%5:7

(J z0 0<

0.

M 7

U) 0L±LJ

'00

zI-J

00

0 a 0 0 0 a 0 0 0 0

I Lid) HICJIM 3DV13sfld

Pig. 10-17.

UN x

,tJ 0 Z

uL

zU 00 co to

UI) HIN1MI3n

LU0 1oa < 0

000 C

0 0 0 0

~LJ

U:J)HION1 MV3sn-

Fiq 10 8 n 01b

Iz

MCO~ <00 0-(

V)~ 0

LLU

CDzCCC

00

0 0

(JS)V3)V 9J1d iVIA '183A

ouJ -

0 0<0

40 rz0

z 0 -(I Cn

U* 00 0 .

cc: z

I C:vz:v:!:12cL.0I

uI

. , =~ 0f C oC

-4 0

U) 0

00

- t0

a 0

LUI

0 z

U

LU0 0

UNNl) 1101A dO 31ix

fij. 0-21and 0-20

,CIU

vw= 0

0

0 0~

zz

LL0

00

0

U

30 (IJ ON13 U3Aw

fi . 1 - 4 a d 1 - 5

.,M= 0 zCLJ

Z 9<0 c

00

LU 0

LU 0

LU 0t m

(id) liVi dO HIONT1

*W 0 0<

i.. ,:10 - 0- .

0 40

(I)

LUV 0O .4N3

0i.1-b n 02b

U *(

r zi;00

LUJ0~0

0Q-)

LUJ

S O.(91) IHEDIJM E)NUNU3dO

Maui

cCl). -

LU

o~~ 0<

LLJ 00

IZ

L 0 v

REPRODUCED AT GOVERNMENT EXPENSE

o

m E

4©oi i q o a.

C4 en .0 6

00

zz

(Cl 1HI* aVO

0-.

00 0

8 0

0]

(81) 1HO13M OVOl

Fig. 10-28.-!

"1,-.: : . .. . .- .. . - -- -- -. - . ,J

o CL

~z 0I _

LUc

C

00

LUo4 ,Ot* (81) IH9I3M SSOUE) vyJfVixvvq

'q -"

z 0<

0 0

cc ci- -

-zz

U)0- 0

o 0

o 0

UH~J SU ~l~IV~

0 /A(

Span of Tail Rotor Pairings.

I

ira

I 0?/9/215

Ii

0

# CO 0.0

oZ V

z 0<

U)-4o

0 0

0~ 0<

a-00u

0j 0 00

CCQLU 0

Oco= 0'o <

0

z <

0 c0

U* 0

*- 0

REPRODUCED AT GOVERNMENT EXPENSE

'--]

co w 00

u LL

co I r o Z3

tZ 00 /0 'a < ".(O~qcql

0

ujC W0

cl a

"T <

WIO01W 71VI ODMI 311lOl~d

Fig. 11-15.

1I-

C . , 00 2h.+" • . . . , . ,- , - -. ." .. ._- • . . .. . ;.,+, ,,..,,., ,..' , . .: .,- .-.-...- T,. ,,., .'~i~ ',- :-. .- ,--

L.~J

aoEwcb0 0 z

- k,., (D

0 a:

LU ~0

0 9

Cl-

uj 0 6 *

(J.J OS) V3WV 31V1d IVId 4.N08A

0 C"

0<

o000L -D

00

K 00 0 0 0 0

U-S)V3UV 31VId IVIJ INOUdFKj 1-I9 nL 1-1 )

X C

0

z<U) a 0c *

Q t

0 0<F-i

0

I (IN)I) AIIZ)013A fv~nvixvvyJ

Co 0 M

LU0

-

0

(N0 0

00

0 000

LA)3V3VdiIJ IH3A

Fig. l11-20and 11-21.

0oCw

0

u -4 LLVWX 0 Oz

C C

(11

0

M 0 0 00

a 0 - 0

00

LLJ .0

oo CDU

*CO 0

cc 1 0 Z

C W

0z 0<

LU)I-I0 'o g0

LU *

00

00

F-iy. 11 -24 aind 11-25.

00

m co

v=o 0 oZIn M I?-

i iZ = a(0)

0

Q])LU C4

(li)- III-O.IO3

0 0

0)

LU

~0

00 0V 94 44

UiJ (liJ HO

Fi .012t an oZb

-~ 0CU UOU4

C a

U0 X't 0

0. 0

CC

0 0 0 0 Z

LU~t ma o an 0m

00-v

00

p. 0

a~0 0 0 0

4 Oninn 0 02 0

V.0 -r nC(L)UE1M NIUd

FC 11 27 and -1-7b

it Z<

co

U)

Q1 0

cc'NNza_

00

LU

LU

0 00 0n?,

0 0

LU

00

(5 I

LU 0

FII -~ 11 2 a a d 1 2 b

C.,( uuU<0z

I.a

z

CCu~l 0

00

00

x co

N V) 0 D fl

0o <0'

LU

LL0 0

Ir- 0

U0 0

(81) IHD13Mssu vS~ InflIXVV

- . . 7--

0

Twist of Main Rotor Blade Pairings.

4

*

~0

0

* ~29227

0

.. . - . . .

~ 4 000

zr

00

uz

00U00

ca 0:on 0oaU

UOOi Nir DU 3Ifc ~

7 4

0 0 -

* **u0 Lz

(03G)ISIMI~- 30I OIHN~

uij. 1201 an 2-

01

u-i

~~ C

z C'

CLo0 -

S0

[UJ N c,

* I (1UNN) AIO13A INfl~ixv~N

10

u Z3"o= 0

z <H-j

0-0

0 0 0 0 0 0 a 0 a 0 0 0

ONIOVO1 OSICQ

F* j 12-lr_ And 12-21.

0

I

I

Twist of Tail Rotor Blade Pairinas.I

I

£ S

I

I S

4 S

231/~3)~ 5

S

(n '7S 0

4 0

rd0 7

z 0(D -

LUJ00

C))

00

o 0oo 0

(21) iHDI3Mssu SSUDi'nflxm~

CC

uo

LU

LUI 0C Io

CL0

00

80108~ lIVI DVHO 31dO~d

4 Fi'j. 13-15 m 13-14.

4

.6 I

C

Profile Drag of Main Rotor Blade Pairings..4

I I

* q

C

*

*

.4

* S

*

*

u oQOCO= 0

o0

C04 0<

00

0 CL0

00

0000 0 0 0 0 0 0 0 0

M I NIQVO1 DSIO

ccm 0 r#Cx0 0

.00

10 0

LJL00

0(cc*~~~ ~~ CL7u:T: 72

7K

o u

.twS 0

0

4 cn fLa

LU 0U

00U-1C

M 0 0 00 0LU C4,-

* I (NI/ld) MVID AO 31VU

C-

tco= 0 0

0

C4 z

00

LU 0

C)LC* 0 (INAI) kil3013AvynvmvIvN

Fi .161A d 1 - 3

.,w - .

RD

COW (n~ 'o 1?

cccD 0 00 z(

UI)LU 00 U

0cc .e 0 OR

00

0 0 0LU 0 0

300 (1J1) ONII3 UI3AOH

0

4 so0C., 0

4 .- E C4

z N c

CD - '~2p

0U0

LU

391 (Jd) E)NfI13 U3AOH

Fig;. 14-24 and 14-25.

0

laM1? 0

LUJ LU.

0 .0. 00

00 0 00

00

(81) 1H03Mo

00

C<

0D

0 0 0 0 0 0*00 0 0 0 0 0

0 0UD0 0

(21) iHO13M 9NI1VHfldO

fij. 14-,:7 and 14-283.

REPRODUCED AT GOVERNMENT EXPENSE.4

4

~ow0 0O

cO-

U C

ecn zGo C4 -(

3 0<

0LIJ L.C) go

00 "

0a x

,C°

0 0

(17) IH9M SSOug lnINIXVN

Fig. 14-30.

2

241/i4.

oS

N--]

1

Profile Drag of Tail Rotor Blade Pairings. j1

I

' - ° • -_ . , " .. - . , ' - .. .. .- s... . . . . . . . . . . . .. -.. , . . , , . . . .-. . .- ,

~Cc.400 0 0

0

0 z<

z C)

LiiCL

L~

060 00

7 i-

-0< 0

o 1? 0

0

0 .- ICO~ 0c

U/) HIN3 M13n

Fig 15-1 An 5 )1

VWI 0

0

0

0 C

00

LLI 0

40 0~00

39 U)N10 0O

00

0M *

c4 *(, L i <

U)~ a 0

0 ~

o0c-

7J 0S 0 0O

F- Lo

0

0 0 0a 0 0

(NNW/L) SMI13 JO 3IVUi

Fig. 15-zj anu 15-24.

cc 00

.u 0

'a -0

zo

0 .0

LL-

0

0

090

uJ

*cr Ci)iL. OHO~

C S0

0

00 0 0-.

0s~ 04 pi30 (.A ON 113 0<A

REPRODUCED AT GOVERNMENT EXPENSE

10u -7

r,~~ co0-

Cc0

z

uJ *40 .C-7 0b

co4 0

0 CI.-

0~0

Z30 0 0 0 0 0 00 0 0 0 0 0 0

LJ0 0 0 0 0 00 L3U t 0 W

(21) 1i-~i3M DNI1VH~dO

Fig. 15-27.

00

cn 10

UU 0-

0LIJ CIF- 0

00

0 0 0 0 0

£OL* (81) 1H9IJM avoi

~ 0

0

z

U1) 900LUL

co 00 0 m

0 CL 00U o 0 0 0

0 00 0

00 0l4 N N -

(91) LHO13M OIVOl

?i.15-2na and 15-23L.

REPRODUCED AT GOVERNMENT EXPENSE

Ln0u v

00

o4 C.) c

Z<CCD

0 <0

LU 0 C)

c) LA-(N 0

0

0u I

0 00 0

o 0

4w(81) 1O3soohviv

Fi.1I0

Disc Loading of the > lain Rotor System Pairings.

F

ca CD

c) 0 0

V(0ucn~ 4::

~0 Ej

00

U) ~0

C-)

(Id) HIDN31 J9V13sfl

Ccn(AC

U *

v4 oZ 0 0

Loo5

z <

(I) 0- Ucc)

00UN

o 0 0 0 0 0 0 0 0 0 0

(Id) HIGIM 3OV13sflA'

fig. 16-17 ind~ lo-18.

* *3

0 0

7

ID o

,0 oC.0

00 -0<C

p9 <

LUJ

0

(I S) VUV iVld .V1A INOU4

'Fiu z lb09 n t)lJ)

00

0 00

0 SM

UNN 0l31Aqvv

M UV

cq cn 0Iwo - 7

.90 0 0 n,

0C

00

0 0 0

(AS)3UV 1V~diVIAI.-3

0i . 1 - J a d l -)1

L

U 0w.~ 10 ( 0

00

LLO

0 **.b

* .0

H N 0

010 0000

a0 0

(NIY4/IJ) GV4N13 JO 91VUd

(aC3w Co

.OWX 0

U

_j0 0 00 0 0 2N

LzzI C)U4 VM M) 30VU ~nqivv

Fij 6 2'adla34gC

-' -; 00

go 4

z -(2< .

Ch ILU 0

00

cc* 04 4

30(1)O10 03A0

00-

P, 08

to 00

0a 0

LU0C4

00

0

LL301 (id) ON11I30 U3AOH

figj. 16-24 aind lo-25.

61

UJU

0

wz 00

00

0--02

uN

LLCl -)C

LUco 0* 0

0-2 100 04

0) 00.

0 20J 0W~0

0S

CLC

00uc

00U 0

UJ) lVI JOHiON3

Fig. 6-2uaand 102cb

N

z<

LLJ co

toL 0

0

0~~~~~ ~ CM l (81 DHIMDNIU

z <0

00

0 ~CDji

.0 00 to

(81) *H13 ECu, -~

LU

REPRODUCED AT GOVERNMENT EXPENSE

.4o

0o 7

4#W 0

z

LU -

2o 0

CMC

u0en tz

oaU) ~0

I LU 4

00

0 0

* ,OL* (81) IH913M ssouo Wmflqixvrv

~cwccr-a co ~

00

0 E

00

oa u

~Z 0

400 61

eno(81 IH(I)sou *~n

FiLU-3a n 6jt

4

4I

Width of the Fuselage Pairings.!

I .. 2

4

00

co a

000

00

La LL

CN

00

0 0

0 6

-'1

10z LU 7cc

Z/ * '0 0c <LU

C ) -10

C::0

00

0 0

LU0 0 0 0

(Id) HION3fl 39V13sflJ

fiy. 17-1d and 17-19.

m wc0 LO

C -

0LU 0

LCOL

w 0

00C-)J

0 o <

L/U --I

*LL I IN LUOJ f~V

0 Z0

* 0

0 .

01 0LLJ a0=

(JS)VHV RVd iVI IH3

17 N 2* 17-2

d7 7

CO 0 oRCo LL

:ii rM = -

zLU)

(c L "

LUA00

0 LA

z

0U

C 0o 0

301 (d) E)Nfl133 H3AOH

cn CC

,#00 0

00 5(n0

0 0 -L

LU

0 V)

LUL

-) 0

00CL L 0 0 0 0n

I ~(NIWNId) M~ID2 dO 31VU

fij. 17 -23 and 17-2.4.

.4 5.

- 0

d10~ LL)

U) OC-1

0 c0

LU

1 0

LU 0 0 0

(Id) IIVI dO HiON31

100

LL

o 00

(0a <~(

n 00

0U*

0 0C0 0LU 0~ 0

LLJ~ 0u CD00co 10 (n

100 U0 SN 1133HIAC

17 -2D .1n l 7 -2t:

4 C4

z 0 0

0o 4 N

C/) 0c OM -Lnc.

0 o

00)L

ao ILU 0

U3 0 0

(91) IH913M OVOI

0

u- <

" o 40<01 0 '

c)qI

coUL

LU 0L

Q 02

01(9

0 0 0 0 0 0 000 0 0 0 0 0LU 0 0 a 0 0

(91) 1HDIIM DNIIV)A3dO

fig.. 17-27 ana 17-28.

Lo 7 . .

0

COX 0

60 01

Cl) COL0<I-UU

0

00u0

0~0

00LU 000 0

0 0U

~00 0 a

< 0

0~0

U -j

~ 0

<OU0u 0 0

,I0 0

N -b

(Ell IH<H -3

LU Fi. 1- a d 1- i

-* - -. a- - 4-- .-.-- - -. ~ -- - -

6

Length of Fuselage Pairings.

6

C

0

6K

K

K p~1

Lii: i .1 271dP272~

ou <

0 L

.0

u 4 0

Gor 0 aJ

uLuv I Q

u. -. j

LUU

V)

0C~)

LU0 0 0 0

r N4 -

U -A OS) V3UV 3.Vld iVidA 4NOWd

Q .J< 0

~~-00=

zz -

LU

UU

LU 0 0 f en N 9

(AS)V3HV 31VId iVIl iNOUA

*Fig. 18- 19d aind 18-19b.

7

.)

0 05

0

.t .0

CC

U))

LU-

0

0 u 0 0

.U 40 00-ec

* NN 00013 yn x

co=0

OC U).

D

0U0 0

LU <

SM i

0 In /..

co 4m 00

OMX 0 I

zzz N

(2J 0<

0~ U-

LU * 0L

0 0 0 00L 0 60 0 0

00100

U 4

01

LUa* 0

o N

(A (tN) S39NVU Nlv4ixvN

13j b-. a rs d18- 23

o co

0

z LU-

<0CMD 0(

LU -0

LU0) 00 T

0-()

00 0

0 0

fl 0 0

390 (-U) ON1130 U3AOH

0

*qo 0

z wc u(II

* ~0 L

LUO

20 0 0

0 0 0

*LU (No0

391 (Id) DNI11130 U3AOH

Fig. 18-24~ and 18-25.

OCD= 0

U pU,.0 0 I

0 6

C/)V)La w

LUCH0

O 0 0LU ic (

(J) 1IVIJ. O HJ.DN31

u D

OQD= 0 MD C? L

z H0 I.

LUU

LUJ

0u

*LU W2 e

Fi, . 1d- 2d and 18-2ob.

97

o

4 0

.~0 0 -

Ln M n 4

'm=u~ 01

z z

(n

0LU

00-uw

00 LLU 0

0i 0 0 0 0 0 0Lu a a 0 0 a in

,a IN W 0-O 0 u

m e2,oI. (81) 1HO13M E)NILVU~dO

Fi . 8-27dand 1-27b

u I

LOZZto<0u~n -~ M W C

(I) I

u.i

LUJ

0 0 0(00a

LU w CAn 6 m

.0

0 LL00 0 ,1

W 0 <0

0 016j

Z *

U) 0<0

00

LU0 0 a 0 00a 0 to 00

6 F i. 16- 231 Andc 18-2z3b.

4

UL

(i 0

00

0

< .0

LU -1

0~ 0in

LU 0

(91 1H1MHoovn~xv

F0 3-3 a d ld-3Jb

Cl

Frontal Horizontal Flat Plate Area Pairinc.,s.

.4J

~0cn c

0-

00 00

Vk o0 40 <

0 M<

0-

LU0 (D

41

e 0 E00

(7CC 0LU

0 0 0

.cn'n: 0

0I0

000

0: 0

N oD 0 0n

(AS)V3)AV 3iVId IV-I iV3JMA

Fi.1 19 -20 and 19-21.

REPRODUCED AT GOVERNMENT EXPENSE

mawi

r ~Go

41

cn 0

L-1

,tW= 0

C]

0 CL

u-]

( Ou'n "0

u , 0 EE

(I0'a N0S 0DNV0 0

Fi.19-22.

I~l.I

• -..,-.- -. o-

0 LL

COC

0~o

U),

LLU

CCDLLU -

f0

0o 0 0 0 0f 0 toLU M q r4 N

*L I

co L Wi MHI9 CcNUd

CC

2 -

. LJ 0 0

- S

01-

-0

w0COL

co

N N 0LUJ

0U)

Q 0

LU z n0'(N0

0.

ton 0 to

xN"~f 0

LUL

0

00

0 M 0LU0 0 0 0 01

N (N

(81) J.HO13M OVOl

*~~ Fij. 19- 2ba and 1-.u

00

0 f

:ii i L LL)0 W

0<

z <0L0 I-

U) a0 a.

L<0 00j o

LU e

CL LL

WZ0 0<

'7

u u -0

u/ <C 2' 1*cc= 0 -U-

LUCL

co 0Z0~0

0a 0 0-0 0

(2-1) IHDGhM ssouo Nfli)v~'v'

F 1 1 J - 3 afli 1 3 iu .0

07

Frna etclFa PaeAe arns

I

Frontal ~ 28 Vetia Fl9PaeAe arns

*COXZ 0

I0<

LU~ &(3I 0-I

0

C E . 0 40'*

LLu U)

04 0 0

LILi 0 0

0

10 0 00 N

C4 4 4

0]

a 0o

co 0..

M'D0<

z I

0N

(I)LU -J

o Uo

*0

0

-j 0 00 0 0

W3 0 U

COW

0.

< n o, D 0

LCD -J

000UU

0j0t 0 i

a 0 0 0 0LU0 0 0 0 0flJ N 0 0

390 (I-) ONI1193 H3AOH

Fig. O -2: Ana 2J-27.

cn C-3~f

to x 0

L , , . 0 LJ<0(n 'n D

mw L6~

z

LU

00

F- 0

Ij 0 0.

00

** 111,3 n=7I

u U<

00

< 0 A 0): 0

* LUJI

UL

~ - a >* -

Maximum Forward Velocity Pairings.

0

29 5

't , 0

0 4 4

00 >

CD w

LU *

000 0 0 0a 0 a 0LU to 0 10 0

04 c4

lew 0 -oz

.. c LO cn 3 X' ' r 0

LUL

LU *

F- o

0 0 0 0 0 0 0a 0 In 0 0 0

Lj It m (nN4 c

(IN 3NHvnyxv

fI. 2 -2 a d 2 - 3

0 n:

02

.z 00 oj

0 14)

0 WI

LU D

0

0i0 0 (-)O 10 0 0O

0 00

*CO 0 oz

0

0U D

LU

C

0LU N*q301 (I)O.03 3O

ii . 2 -2 n 2 - 5

4 .0

0 Woz

z co-_ 0>

C/)LUJ

0

0

LU to 0 o-r

(81) iHOJI3M OVOl

"c -

VW 0 oZ

.00

4 z -

UD

LU

0 0 0

a- *v 000L 0 0

00

(81) iHDI3M DNIIVU~dO

F q 1 7 An.

REPRODUCED AT GOVERNMENT EXPENSE

IWOW

"m

<Omu3 >-o (.. a ,.,

0

0

Fig 2130

LJ3JJ

I--C0i:

0J .

(-i

I.~NflVJIXVV

Maximum Range Pairings.

*0 1

o 0

cc,

z N

z <

L .0060

0

LU 0 ao

00

(81) H913 E)NlVH~0

u0i

,*O 0

LU

zI 0<

Cl) o00

LLO

to 0

00

- *0 0

10 0 100 10

LU 0 NIn

4 I (NIfr/iA) OVY1J JO 31VU

?.ij. -2 -z3 and 22-.17.

REPRODUCED AT GOVERNMENT

Cz

co U)LU.~ • - ;

<t 0 :

0

• *Do z .o zz <C-) o

"L 000 <

LUJ

0-

0 0 0-LJ 0

00

Fig. 22-30.

30

Rate of Climb Pairings.

7/0

0i x qco 0

rm~ 0

z z-l N

4

C ~ 4

LU * 0

0

0 0 0 0 00 0 0 0 0 00 0 a

(81) iHO13M 13nf-A

0 UJCM C, 0/

co~c 0

0 WD 0

zz 0<

(.1) -0

0

LUI

L 0

0 0 0 00 0 0 0 00j 0 0 a

(81) iHDI3M OVOl

* rFig. d-2-26 aind 22-z9.

00

-0oo o 0-

Z *0

C/) LL NJLU

o0wL t

0-0

0

NU cm 4 M

6 390 (IA) ONIII30 Ii3AOH

400,Ccn= CD

0-0

40

0<0

,*wj 00

C) Z0 .4

CLC0

0 w

40

LU a a

301 (.L) ONIII30 U3AOH

iiq. 23-24 ad 23-25.

(OCO 0

0

.z 0

U) LL

LL N

CO

LU0~001

00

LU

i a w 0 00u 4 0

.LZ 0 0

IQ 0 U, 0 1U-

0

(9co 0

LU ~0

z 0

F- .0

0 0

0I 0 0 00

* 0 0

UI lii O HiON31

F ij 23-2o aind 23-27.

0

~~-0o C c S IC

uOf~l

Cc

4LU 00H-L0

0-

0 001 0 0 0 00L 0 0 0 0 0

MLU

~ow 00-

<g~ 0 )(: 4F

IL

z *mN 0

I.

CL0o

0 0.

0 0 0

() HO13AA OVOI

Big. 23-28 and 23-29.

REPRODUCED AT GOVERNMENT EXPENSE

4 0

u <.,CO= 0

-0<Ou0~ C-4

N ~LLZ- m U

(I) -- 0

LU 00

1- 0

00

aLi 0 00 0

* ~(91) 1I-9D2M ssouo fNfl'~ixvvq

Fig. 23-30.

~12

t.4

Hover Ceiling (IGE) Pairings.

4:

4/ ,

.4 . . -

.*W= 0*0O

z 0-.Z-0..

0

()

o 0 0 0 0 0a 0 0 0 0 0 0

(91 wiO1DM ONIIVU~dO

uuu'(

46 .2 0

z -~0 Z 4

oo

oo u4

K0 0o 0000

0 0o 0 0

390 (1A) ON11130 S3A0H

figj. 24-415 adi 24-27.

070

(Ai m m 0_0 u

U3 ~cn I

wjzI 0 N

LU N0

LiU00 o0

__ 0 0LA. 0

0 0

too

0 0

* *WX 0(f I?-DO I?~ ~flrIV'

0

z 0*~

0 0 w)

* * 0

0 0 0

o0 0 0 0

N4 N

(ill) 1LH13M OVOI

I Figj. 24-28 And 24-3J.

42

Hover Ceiling (OGE) Pairings.

0

-317//

, -- , ,-. -C

cc 0,M=U( 0

(a 0

00

0 Z)0 0 0

zZ

0>0 m

n-0

00

0100

cc o "

0

]0 0 0 0 00

LU0 0 0 0 0

(81) 1Hi3M voI

o '('

77

uu1<Z 0

cii

<01a U-:ZI ~ o0~10 000

o 0>10

0 - 0

0 0~ 0

0 0

0 0 00 0 0 Q

00 to 0 Q0

(91) IHD13M E)NIIVH~dO

F . 25-27 irld 25-28.S4

N

REPRODUCED AT GOVERNMENT EXPENSE

,0 Lo ,n ,o C? 0 '-

z C) °OWImI

U) U

I >e4 0

Pig. 25-30.I

a_ co

I 0

-i 0 - - - - S*~. ~ - ~..t.A.

If

IC

Length of Tail Pairings.

I

I

I

KI

3 .1

-

AD-A i52 034 DETERMINATION OF QUANTITATIVE RELATIONSHIPS BETWEEN 4/4SELECTED CRITICAL HELICOPTER DESIGN PARAMETERS(U) NAVRLPOSTGRADUATE SCHOOL MONTEREY CA R S PETRICKA SEP 84

UNLLESSIFIED F/6 1/3 L

EEEEEEEEEEEEE

I

I I II- I~3136Ii -IIII111111.111112.8

1.25 111 .6____M.I RESOLU IIJI

MICROCOPy RESOLUTION TEST CHART

--. 77

_T0:

*CO 0

00

U 4,

, 1 m1 0

zzI.-

LU 0 i

0z

0~0

0-

o~W 0

0

4

0 0C,

0 0 0

j0 00 0 0 0 0oL 00 0 0 0 0LU0 0 0 0 to 0 0

(91) 1HO13M DNllVUi~dO

Fig. 2u- 27d and. 26-27b.

S-

*j 0

-N 1 4. -0-

z C

0.

00

4 I4OLCL) H)3MO~

00

U 44

scl..

011 0

no *0*

02

oOR 0

Lu in 0 0n

(81) iHDI3M GVOl

Fig. 2 o- 2 6 cd and 26-28b.

W~r 0

0 0

tz 0~ZZ Z -JLL

0 0 0

LII -0m

0LU

aLU

NWv <

U U-

Z L

0 0-0 0=0

* p-

(91 1HO3Msswowmvv

Fig 2o3zcn 63b

Operating Weight Pairings.

I2/2-f

C"' . _ , • . , ""::,-, . i i- . , _ , . . • , . . ." .

(a 0

0 o4

U ( N

u.0 00.

01'

Z LUr) en

*OW 0

0(-)0

0~ 0

*U oO.(1 HD~ jo

-0

0 L

00-0

U 0

. 1 0 0o 0I

(81) 1H13M OVO

"is.27-2d dd 2728040

4~(~l

(.. cc CA

vtw 0C,'n C (0

_u aA D 21

0 -4c N

LU 0

ui co 0 _

0=

(9 to

0~0

Q F-0

0 -0 LLo 0

1LU 00 0 400

00 <(Q1 !2DR =~

F~~~~~ iy 7 ujaC 7 2bCLS

cc 00

~c-v C4

L* f

I-I.1L

00

C

1- w.0J

000 00

0

10 LL0

00o ( -0

0

LU00

-U 000

(91) 1HO13IM ssouo vyflkyixvvy

Fi.l. 27-30~d and~ 27-JOb.

Load Weight Pairings.

333

N C-

w --

0 04D-3:

z0

U (

,t-5? 0

m~i 0(N71

-Ju

CC

U

00LU 0C

0 0 006 0

,0a 0

(0tf1)~ 0H13 _~

Fig.26-2a an 28-9ki

(N

u(N

00

_

(LJ V)

uuu< 0

*CX0

0 0j

U*L 01 (<)iO~ SU~VJl~IVA

00

uUU< 0

00

gS

00(()I91Msou )vqxv

Fi .2IJ 0nl 2 -0 L

Fuel Weight Pairings.

333

U *( C

,t~I 0

-LJ

A 00~ -.

LLU

L0

1L

F- 0c",

00

1 0

r ,OL* (81) IHEDIJM SSOHD NflmxV

00

00

0

A- 0

zLU

0

0

00

Ja0 in 2-0b

APPENDIX D

FCRTFAN AND HEWLETT PACKARD C03PUTER PRO2A1S

A. 'CRVFIT' (DETERMINATION OF CURVE FIT EQUATIOS3) HP

PFOGEAM

This program will determine a cuive of best fit tu aset of data points. Tne tour standard curve types the

program handles are:

1. Linear y - bx + a

2. Exponential y - aiesv tx0)

3. LogarithmIc y- bLn(x) + a

b4. Power y - aox (4>0)

The program will compute the coefflclents a and b In

the equation of one of the above tour curve types

as well as copute a value r2

called the coefficientof determinatlon which Is a measure of the goodness of

fit. Once a set of data has been fit to a given curve

type, a prediction may be made for the y-value given anew x-value, or a prediction may be made for the

x-value given a new y-value. Ine tunctlons available

on The top row of Keys on the keyboard are Indicated

In the following diagram.

These same functions are referenced In the exairples

and InsTructions by enclosing tie name of the function

on the key In square brackets [ 3.

Examle 1: Find the straight line which best fits the

tiiowing data:

(1.1, 5.2), (4.5, 12.6), (8.0, 20.0),(10.0. 23.0), (15.6, 34.0)Then predict y when x20 and predict x hen y-25.

oAl "C"JFhQ . Into the 41C and SIZE 027. GTO

"CVF" and go into USER mode. This puts the program

counter In ROM and makes the curve fit functions

available on the top row of Keys. Pressing

[INITIALIZE] .111 Initialize the program. This clearsregisters RII thru R24 so that a new set of data may

be entered. In this example the 5 data points will be

entered using the [ E+] key. Key In each pair as

SENTERt y and push [ 1:.].

I L _ ..-- . . . .. ,,. ..,, , . ..-". . . . . - o ; , . . • . "" " . .• . .

I

Do: See:

[INITIALIZE) 1.0001.1 ENTERt 5.2 C 2.00004.5 ENTERt 12.6 C E+] 3.00008.0 ENTERt 20.0 El 4.000010.0 ENTERt 23.0 E+ 5.000015.6 ENTERt 34.0 [ E+3 6.0000

All the data has now been entered and the parametersfor the curve will be computed next. Since In thisexample we are Interested In a straight line we Key I

(J11) and push [SOLVE TYPE J3. When execution stos

the values a, b, and r are available In the stacK as:

Z. r and are albo stored as R08, bYa a R091 aX: b RIO. r

for this eAamplel

Z: r-0.999055140.': a3-.499147270x: b1 .972047542

The value r ranges between -1 and 41 and Is a measureo0 how well the data fits the given curve type. Thesign ot r indicates whether tne Oata is Positlvely ornegatively skewed. The closer r Is to one of theextremes ±1 the better the tit. For this example theline has positive slope and the fit Is extremely good(all sample problems seem to work veil).

Having computed the values b and a (these remainstored in ROB & R09 until new data Is Input) we candetermine new points along the line. Key In 20 andPuSh Cy ] for the predicted y-value. y-42. 9 4009811when x-20. Key in 25 and push [ x J tor the predictedx-value, x,10.90280649 when y-25 .

COMPLETE INSTRUCTIONS FOR 'CVF"(Keyboard Operation)

1) Key GTO " , SIZE 027 and go into USER moos.The keyboard functions should now be now available onthe top row of Keys.

2) Press [INITIALIZE] to Initialize the program.T his step clears data registers RI1 thru R24Inclusive. These registers will be used to accumulatethe data for all- tour curve types. The display willShow I.

342

4

0

3) Key In the next data pair (x,y) as x ENTERt y

and push I Z +3. Repeat this step for all data pairs.Ine display will stop with a count of the numoor of

the next data pair to be entered. This feature maues

It possible to enter only the y-values when tre

x-valueS are consecutive Integers which start counting

from 1. In this case tne display provides the

x-values whiC h need not be entered. It an Improper

data paIr has Just been input wIth the C Z +3 Noy, then

I mmedlately pressing R/5 vii delete the pair.

Otherwise an Improoer or undesired data pair can be

deleted by re-entering both x and y and pressing

C r-3.

4) As data pairs are entered It I possibie that so

x or y value Is negative or zero. In these cases only

one or two of the tour curve types may be applied to

the data. The tour curve types and their respective

equations are as tollows:

Type J Na me Eouatlon

I Linear y b*x + a

2 Exponential y a so*b x

(a)O)

3 Logarit ic y b*Ln(x) + a

4 Power - y afxb (&)0)

If any x-values are negative or zero then only types I

& 2 are feasible curves. It any y-values are negative

or zero then only types I & 3 are feasible Curves. it

In any data pair both x and y are negative or zero

tnen type I Is the only feasible curve. The a

Coetlclent must be positive tor curve types 2 and 4.

5) After 3Ii data pairs have been Input the next step

IS to select the desired curve type. This step can be

eccoaplished In one of two ways. Under either optlon.

the 4IC should not be Interrupted or else there Is a

possibility that the data registers will not be

returned with their normal contents.

a) To fit a particular curve tyoe. key In the

number 1-4 for that type and press [SOLVE TYPE J].The stack returns with:

Z: r and these parameters R07: J-curve type

Y: a remain stored In R08: b

Xt b R09: a

RIO: r

Step a) may be repeated at any time for any of the

four curve types.

343

b) If all data Input Is positive then pressing[SOLVE BEST)3 w IlIl automatIca I Iy Choose the Curve ofbest f It accord Ing to the Curve type w Ith Ilaroestaosolute value of r. in this case the stack returnsWIThI

Tt r and these Parameters P07: J~curve type

Za remain stored In R08: b

Y: b R09: aX: J~oest curve type RIO; r

6) Predictions for new x or y values may be mace onlyafter Step 5) has been com~pleted. Predictions for newval ues are based on the sett Ings of flIaas F08 and F09which are automatically set during the fit Process instep 5). The status of flags 8 and 9 for the fourcurve types are as follows.

Flag a Flag 9

1 Linear clear clear2 Exponential set clear3 Logarithmic clear set4 power set set

In ceneral the user need not be concerned with theseflag settings, and F08 and F09 are not avalible forother use and must not be disturbed. To predict ygiven X, key In x anEress E ; 3. To predict x givenY. key In y and press ; 3 .*In both cases thePredicted value Is left In the X-register.

7) New data may be added or deleted at any time viathe C I*] Or C Z -3 keys. However. Step 5) must beoerformed after Updating the data before any newPredictions can be made using step 6). The parametersI and b are automatically destroyed after Input ct new

0 data.

*9

344

81.LBL *CVF" 51GTO $6 181 ST- 07 151 EtX82 XEQ e 52#LBL B 182 RCL 10 152 RTH83 GTO IND 06 53#LBL 82 183 RCL 09 153#LBL D@4*LBL A 54 CF 88 184 FS1 88 154#LBL $4

@S.LBL 0I 55 CF 89 185 EtX 155 FS1 888 CF 18 56 STO 87 186 STO 89 156 LN@7#LBL $6 57 2 107 RCL 88 157 PCL 098$ STO 89 58 XYI 188 RTN 158 FS1 08

89 X(>Y 59 SF 89 18Q9LBL 18 '59 LN18 STO 88 68 / 118 RCL 11 168 -II ZREG 13 61 FRC III X(> 17 161 RCL 88

12 FC1 18 62 X=01 112 STO 11 162 /13 E+ 63 SF 88 113#LBL 13 163 FS1 8914 FS! 10 64 8 114 RCL 21 164 EtX15 5- 65 ST+ 87 115 X(> 15 165 RTN16 RDN 66 XEQ IND 87 116 STO 21 166#LBL eI RCL 88 67 RCL 17 117 RCL 22 16'.LBL 881 ENTER? 68 RCL 13 118 XC/ 16 168 CLRG19 X)8 69 RCL 15 119 STO 22 169 SF 2728 LN 78 STO 89 12@#LBL 89 178 E21 ST* Z 71 ' 121RTN 171 PTN22 RCL 89 72 RCL 18 1".LBL I1 I72LBL E23 Vg? 73 / 123 RCL 12 173#LBL 8524 LN 74 - 124 X0 17 174 .25 ST* Z 75 STO 18 125 STO 12 175 STO 25

26 XOY 76 RCL 14 126*LBL 14 176 427 ZREG 19 77 RCL 13 127 RCL 19 177 STO 8728 PCI 18 78 XM2 128 XW> 13 178.LBL 8729 t+ 79 RCL 18 129 STO 19 179 RCL 8738 FS? 18 88/ 138 RCL 20 180 XEQ B31 Z- 81 - 131 X(> 1432 Rt 82 STO Z 132 STO 28 181 RCL 25

33 FS1 18 83 / 133 RTN 183 CB 1

34 CHS 84 STO 8 ,134 LBL 12 184 (:

35 ST+ 12 85 RCL 13 135 RCL 23 184 X(T=yI V05 GTO 1536 Rt 86 * 136 X0 17 186 STO 2537 FS1 18 87 ST- 89 137 STO 23 18? RCL 8738 CHS 88 X<>Y 138 XEQ 14 188 STO 2639 ST+ 11 89 RCL 16 139 GTO 13 188.LBL 1548 XW Z 98 RCL 15 140*LBL C 19$ DSE 17

41 SIGN 91 X2 141*LBL 03 191 BT 87191 GTO 07

42 ST+ L 92 RCL 18 142 FS? 89 192 RCL 2643 RCL 88 93 ST/ 89 143 LN44 RCL 89 94 / 144 RCL 88 193 XEQ 82

45 X> L 95 - 145 194RCL26195 ,END.

46 PTN 96 * 146 RCL 89

47 RCL 88 97 SORT 147 FS1 08

48 RCL 89 98 ST/ 10 148 LN4q#LBL 99 XEQ [ND 87 149 +58 SF 18 1888 158FS 88

345

s

B. CHVFIT' (GRAPHING OF CURVE FITS) FORTRAH PROGRAM9

((I

i -J4'1I

* - -- 4

ac %ftW

- ~ ~ ~ ~ I Lj (II* I L , ~ d-. 66 -n mvl .4 rJ* 'd ~ -

-4L f Z. % '.j A~.& -

-V ". II LI /j "I ~U . 4 L.6J".~ (. j" i )4J -,L.1.L: .' f- Z

*- xr"nn j- u-''

C.3 -r

UJ .

C~l 0 .J~- -

*.44

x *:. m~ w zL U.

V) (f3 -A.) PM. L

4 -. . -, LU . -- I

LU .4 - 2-. 1 .1,10~~~~P 4% -a .~. . e L 4 -

a. _ - _- - _- -4 _iA '4j LU 4 4 ) ) J~ -.44 4) j4 '4 w4 '4 . L -q .4j4 0

aI .''. PM -r r

O'OI O O '4O D O O O O O4 4 4 J)- j *.-400.'ViA-

LL 6& fl& . L LL .6 -a &L 4 J.4 P- -S .4 -i UL NoI~ILI

* '... ' .~ '4. r i~i ' ' - '4 ' . U K ~ L ) 4!Z- .x . 4 C'd -D 'd I4 I' I'd $ '. '

U..4%.46

WeU ,J L L J 6J U J W 111 U U LJ LJCXY 0

e- dr- Ic d- -. e- Ir3 4 .- - r 4r-t~l " l4lV

A.-X)-- * L

ft-

'"IT

ka

W.A- W..k;

u I j - I r 1 j -A VI j, -~ I-fli~~- ml "Id III ni "I- r N - 4 I r I 41

348'

+ C; t -

ZO I . i n 0 0 8aA 1 : -: 3 r

N j

nn - C M 0A

"U. -P

U') 0 u - - - -A - - - - - - - 0 -

aU 0. a) .%U LA . . 0 . 7

"1 ~ ~ ~ ~ ~ ~ L -j Z)N * ' . N 0 ' -j

.j -j _ j- -' _0 - j - j - 7 - 0

~~(1 r4 IAI aA %P c"j (1 r ~ .

-, ~'0 a - a -~'0 0 0 00.1 '~~~~~~a 4% UN -l %&I A AAO 4* Ao 'LA %0 %Ad 0 ' ) ) C

N ~ '.. U - .. i N 4 a S n -d 4 - '4349 (

-j (i r- r )

-l n - i )

a~~L N 7 le . .

-1 * -_Ipl a

-i-L -t -L Is If L i tJ I) 2

L. .- . j- - LL C. P. - W) I/ - .. J A. "i -S - - i

v . L t"- L Wi .L C..) cx L - A -a .d i 6.

- .L .) - S 4 .- a . - . L 7-jr .j *. a- -a -i I..#7.-

.u- - 0~ ,.LJ r- L 5iC) C'

.- 4' 0' n vI .0 0 vi .. (A t (.A!LA0( 0 4^ O(A LU vi 0-n0 tA kA~ * CA 0 LA 0 .L. a

UL w JU " A% L UILA A .. UI i L U I... L" U SA 2. Li. k - AJL L 1 * %.AJ P I~ k.J

-a x x 2L x x 7

-.i2 - j - LL ).. ) -l u - Cj r-j -ei I-- J' inP -j f, j -j-6- -jI- - -i I., j - .

CAl -. 1Li _j(J0 -4 *C_ j4d -.a - 1 41~ 4 ' " 1 *' u * j I.P 11 Ll' UN) Jl*

0 '. Y~i 'I -0 -0 ]' 350 . - 4 ~ -

.r

CL(J C

I- w - -j>U L l

.L -IL- C

k -.4~L 0 .J .J. %.ijaIw

J~LJ351

lIST OF REFERENCES

1. Bishop, Gar, Captain, USA, Com4uter Proirams forHelicopter Data and Dis-lav aT- ric FiaLies1 ,California, December, 1483.

2. Sullivan, Patrick, Commander, USN, Hewett Packard HandHeld Computer Projram for Determinini-UEve -s- --

CUY~e UaT ion-s--ritt ?FT5Fhie1saI Pt~arFMt Shool, Monterey, California,Fetruary, 1982.

3. Layton, Professcr Donald M., AE 4306 Helico2ter Des nManual, Naval Postgraduate SCK~oI. Monterey,CaTTIZrnia, 19E3.

352

I'

INITIAL DISTRIBUTION LIST a

No. Copies

1. Defense Technical Informaticn Center 2Cameron StationAlExdndria, Virgiria 22314

2. Army Aviation Systems Command 1Attn: Mr. Craw cid DRAV-GT4300 Goodfellow ElvdSt. louis, Missouri 63120

3. United States Naval Test Pilot School 1Attn: Mr. Jim McCueFatuxent River, Faryland 20670

4. litrar y, Code 0142 2Naval Postgraduate SchoolMcnterey, Califorria 93943

5. Department Chairian, Code 67 1Department of AezcnauticsNaval Pcst raduatE SchoolMcnterey, Califorria 93943

6. Frcf Donald M. Layton, Code 67-LN 2repartmEnt of AexcnauhcsNaval Pcst raduatE SchoolMCnterey, Califorria 93943

7. Maj Fonald S. Petricka 4244 Mortimers LaneMarina, California 93933

353

FILED5-85

* DTIC