ACTIVITY 34 Review (Sections 3.6+3.7+4.1+4.2+4.3).
-
Author
jennifer-berry -
Category
Documents
-
view
222 -
download
0
Embed Size (px)
Transcript of ACTIVITY 34 Review (Sections 3.6+3.7+4.1+4.2+4.3).

ACTIVITY 34
Review (Sections 3.6+3.7+4.1+4.2+4.3)

Problems 3 and 5:
Sketch the graph of the function by transforming an appropriate function of the form y = xn. Indicate all x- and y-intercepts on each graph.
3)2()( xxP3xy 32 xy 32 xyintercept-y
0x
3)20(0 P 8
8,0
intercept-x
0y3)2(0 x
3)2(0 x
)2(0 x 2x
0,2

82)( 4 xxP
y = 2x4
y = x4
y = 2x4 + 8
No x – interceptsy – intercepts is (0,8)

Problems 11, 13, and 15:
Match the polynomial function with the below graphs
)4()( 2 xxxP xxxxR 45)( 35 34 2)( xxxT
xxxxR 45)( 35 )4()( 2 xxxP34 2)( xxxT

Problems 21:
Sketch the graph of the polynomial function. Make sure your graph shows all intercepts and exhibits the proper end behavior.
2323)( xxxxP
szero' / intercepts-x
3x
2x
3
2x
intercept-y
0x 2032030)0( P
223 12
The leading term is 3x3

Problem 31:
Factor the polynomial P(x) = −x3 + x2 + 12x and use the factored form to find the zeros. Then sketch the graph.
xxxxP 12)( 23 122 xxx
34 xxx
0 x 04 x 03 x0x 4x 3x
Zeros

Problem 3:
Let P(x) = x4 − x3 + 4x + 2 and Q(x) = x2 + 3. (a)Divide P(x) by Q(x). (b)Express P(x) in the form P(x) = D(x) · Q(x) + R(x).
x4 − x3 + 4x + 2x2 + 3
x2
x4 + 3x2 –x4 – 3x2
− x3 – 3x2 + 4x + 2
– x
– x3 – 3x + x3 + 3x
– 3x2 + 7x + 2
)(xQ
)(xR
)()()()( xRxDxQxP 1173324 2234 xxxxxxx
– 3
– 3x2 – 9 +3x2 + 9
7x + 11

Problem 9:
Find the quotient and remainder using long division for the expression
22
362
3
xx
xx
x3 + 6x + 3x2 – 2x+2
x
x3 – 2x2 + 2x –x3 + 2x2 – 2x
2x2 + 4x + 3
+ 2
2x2 – 4x + 4– 2x2 + 4x – 4
8x – 1
)(xQ
)(xR
)()()()( xRxDxQxP
)(
)()()(
)(
)(
xD
xRxDxQ
xD
xP
)(
)(
)(
)()(
xD
xR
xD
xDxQ
)(
)()(
xD
xRxQ
22
182
22
3622
3
xx
xx
xx
xx

Problem 21:
Find the quotient and remainder using synthetic division for the expression
3
283
x
xx 13 0 8
1
3
3
9
1
)(xQ )(xR13)( 2 xxxQ
2
3
1
1)( xR

Problem 35:
Use synthetic division and the Remainder Theorem to evaluate P(c) if P(x) = 5x4 + 30x3 − 40x2 + 36x + 14 and c = −7.
57 30 40
5
35
5
35
5)(xQ )(xR
)()( cRcP
36
35
71
)7(P
14
497
483
483

Problem 43:
Use the Factor Theorem to show that x − 1 is a factor of P(x) = x3 − 3x2 + 3x − 1.
11 3 3
1
1
2
2
1
1
1
0
Showing that x = 1 is a zero.
Therefore, (x – 1) is a factor

Problem 53:
Find a polynomial of degree 3 that has zeros 1, −2, and 3, and in which the coefficient of x2 is 3.
1x 2x 3xa
3222 xxxxa
322 xxxa 6233 223 xxxxxa
652 23 xxxa
aaxaxax 652 23
32 a
2
3
a
1x 2x 3x2
3

Problem 3:
List all possible rational zeros given by the Rational Zeros Theorem (but don’t check to see which actually are zeros).
8432)( 235 xxxxR
q
p ,1
,1 2
,1possible rational zeros:
2 of divisors
8 of divisors
,2
1 ,2 ,4
,2 ,4 8
8

Problems 13 and 23:
Find all rational zeros of the polynomial.
23)( 3 xxxP
q
p ,11
,1possible rational zeros:
1 of divisors
2 of divisors
2
2
11 0 3
1
1
1
1
2
2
2
4
11 0 3
1
11
1
2
2
2
0
233 xx 22 xx )1(x
22 xx 1x

233 xx 22 xx 1x
22 xx 12 xx
112233 xxxxx
Consequently, the zero’s are x = 2 and x = – 1

8676)( 234 xxxxxP
q
p
1 of divisors
8 of divisors
,1
1
,2 ,4 8
possible rational zeros: ,1 ,2 ,4 8

8676)( 234 xxxxxP possible rational zeros: ,1 ,2 ,4 8
11 6 7
1
1
7
7
14
6
14
8
8
8
0
8676 234 xxxx 8147 23 xxx 1x
So we need only factor 8147 23 xxx
possible rational zeros: ,1 ,2 ,4 8possible rational zeros: ,1 ,2 ,4 8

8147 23 xxx
11 7 14
1
16
6
8
8
8
0
8676 234 xxxx 8147 23 xxx 1x
1)1(862 xxxx
11862 xxxxSo we need only factor 862 xx 14 xx
possible rational zeros: ,1 ,2 ,4 8
11248676 234 xxxxxxxx
Consequently, the roots are x = -4, x = -2, x = -1, and x = 1