Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

39
Bibliography [1] K. J. A strom and B. Wittenmark. Adaptive Control. Addison Wesley, Reading, Massachusetts, 1989, 1995. [2] M. Jessel adn G. A. Mangiante. Active sound absorbers in an air duct. Journal of Sound and Vibration, 23(3):383~390, 1972. [3] G. S. Aglietti. Active Control of Microvibrations for Equipment Loaded Spacecraft Panel. PhD thesis, ISVR, University of Southampton, UK, 1999. [4] G. S. Aglietti, S. B. Gabriel, R. S. Langley, and E. Rogers. A modeling technique for active control design studies with application to space- craft microvibration. The Journal of The Acoustical Society of America, 102(4):2158-2166, 1997. [5] G. S. Aglietti, R. S. Langley, E. Rogers, and S. B. Gabriel. An efficient model of an equipment loaded panel for active control design studies. Journal of The Acoustical Society of America, (Accepted for publica- tion), 2000. [6] G. S. Aglietti, J. Stoustrup, E. Rogers, R. S. Langley, and S. B. Gabriel. LTR control of microvibration. Proc: IEEE International Conference on Control Applications, pages 624-628, 1998. [7] D. P. Agrawal, V. K. Janakiram, and G. C. Pathak. Evaluating the performance of multicomputer configuration. IEEE Computer, 19(5):23- 37, 1986. [8] T. E. Alberts, L. J. Love, E. Bayo, and H. Moulin. Experiments with end- point control of a flexible link using the inverse dynamics approach and Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Transcript of Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

Page 1: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

Bibliography

[1] K. J. A strom and B. Wittenmark. Adaptive Control. Addison Wesley,Reading, Massachusetts, 1989, 1995.

[2] M. Jessel adn G. A. Mangiante. Active sound absorbers in an air duct.Journal of Sound and Vibration, 23(3):383~390, 1972.

[3] G. S. Aglietti. Active Control of Microvibrations for Equipment LoadedSpacecraft Panel. PhD thesis, ISVR, University of Southampton, UK,1999.

[4] G. S. Aglietti, S. B. Gabriel, R. S. Langley, and E. Rogers. A modelingtechnique for active control design studies with application to space-craft microvibration. The Journal of The Acoustical Society of America,102(4):2158-2166, 1997.

[5] G. S. Aglietti, R. S. Langley, E. Rogers, and S. B. Gabriel. An efficientmodel of an equipment loaded panel for active control design studies.Journal of The Acoustical Society of America, (Accepted for publica-tion), 2000.

[6] G. S. Aglietti, J. Stoustrup, E. Rogers, R. S. Langley, and S. B. Gabriel.LTR control of microvibration. Proc: IEEE International Conference onControl Applications, pages 624-628, 1998.

[7] D. P. Agrawal, V. K. Janakiram, and G. C. Pathak. Evaluating theperformance of multicomputer configuration. IEEE Computer, 19(5):23-37, 1986.

[8] T. E. Alberts, L. J. Love, E. Bayo, and H. Moulin. Experiments with end-point control of a flexible link using the inverse dynamics approach and

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 2: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

390 Bibliography

passive damping. Proceedings of American Control Conference, (l):350-355, 1990.

[9] J. F. Allan. The stabilization of ships by activated fins. Trans. Inst.Naval Architects, 87:123-159, 1945.

[10] R. B. Allen. Several studies on natural language and backpropagation.Proceedings of IEEE First International Conference on Neural Networks,San Diego, 2:335-341, 1987.

[11] A. J. Anderson. A performance evaluation of microprocessors, dsps andthe transputer for recursive parameter estimation. Microprocessors andMicrosystems, 15:131-136, 1991.

[12] B. D. O. Anderson and R. E. Skelton. The generation of all g-Markovcovers. IEEE Trans. Circuits and Systems, 35:375-384, 1988.

[13] O. L. Angevine. Active systems for attenuation of noise. InternationalJ. of Active Control, 1:302-310, 1995.

[14] Anon. Perfectionnements apportes aux paliers pour corps tournants,notamment pour ensembles devant tourner a Tinterieur d'une enceinteetanche. French Patent FR 1186527., 1959. Filed: Nov. 18, 1957.Patented: Feb. 23.

[15] Anon. Intelligent Solutions. Engineering materials ease the burden onthe environment, April, 1995. In: Chemistry with Chlorine, Bayer AG,Public Relations Department, Leverkusen, Germany.

[16] D. M. Aspinwall. Acceleration profiles for minimising residual re-sponse. ASME Journal of Dynamic Systems, Measurement and Control,102(l):3-6, 1980.

[17] Rafaely B. Feedback control of sound. PhD thesis, ISVR, University ofSouthampton, 1997.

[18] Rafaely B. and Elliott S.J. Adaptive internal model controller stabilityanalysis. Proc. INTERNOISE96, pages 1021-1024, 1996.

[19] Rafaely B. and Elliott S.J. #2/^00 active control of sound in a headrest:design and implementation. IEEE Trans, on Control System Technology,1999.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 3: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

Bibliography 391

[20] W. R. Babcock and A. G. Cattaneo. Method and Apparatus for Gen-erating an Acoustic Output from an Ionized Gas Stream, 1971. U.S.Patent US 3,565,209. Filed: Feb. 28, 1968. Patented: Feb. 23.

[21] G. Bader and E. Gehrke. On the performance of transputer networks forsolving linear systems of equation. Parallel Computing, 17:1397-1407,1991.

[22] K.H. Baek and S.J. Elliott. Genetic algorithms for choosing source loca-tions in active control systems. Proceedings of the Institute of Acoustic,15(3):437-445, 1993.

[23] K.H. Baek and S.J. Elliott. Natural algorithms for choosing source loca-tion in active control systems. Journal of Sound and Vibration, 186:245-267, 1995.

[24] M. J. Baxter, M. O. Tokhi, and P. J. Fleming. Parallelising algorithms toexploit heterogeneous architectures for real-time control systems. Pro-ceedings oflEE Control-94 Conference, Coventry, 21-24 March 1994, %>1266-1271, 1994.

[25] E. Bayo. Computed torque for the position control of open-loop flexiblerobots. Proceedings of IEEE International Conference on Robotics andAutomation, Philadelphia, 25-29 April, 316-321, 1988.

[26] J. Bell. Adaptive optics clears the view for industry. Opto & LaserEurope, 45:17-20, 1997.

[27] S. A. Billings and W. S. F. Voon. Correlation based model validity testsfor non-linear systems. International Journal of Control, 15(6):601-615,1986.

[28] R. R. Bitmead. Iterative identification and control - a survey. Proc.IFAC World Congress (Sidney, Australia), 1993.

[29] E. Bjarnason. Analysis of the filtered-x lms algorithm. IEEE Trans.Speech and Audio Processing, 3(3):504-514, 1995.

[30] J. C. Bleazy. Electronic sound absorber. Journal of Audio EngineeringSociety, 10(2):135-139, 1962.

[31] V. Blondel, M. Gevers, and R. R. Bitmead. When is a model good forcontrol design? CDC'97 San Diego, 1997.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 4: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

392 Bibliography

[32] W. Bohm. Untersuchungen zur breitbandig wirksamen aktiven Kom-pensation instationar angeregter Schallfelder, 1992. Ph. D. Thesis,Gottingen.

[33] A. V. Boiko and V. V. Kozlov. Strategy of the flow mems control atlaminar-turbulent transition in a boundary layer. In: G.E.A. Meier,P.R. Viswanath (eds.): IUTAM Symposium on Mechanics of Passiveand Active Flow Control:203-208, 1999.

[34] W. J. Book. Recursive lagrangian dynamics of flexible manipulator arms.International Journal of Robotics Research, 3(3):87-101, 1984.

[35] S. et al. Boyd. A new cad method and associated architectures for linearcontrollers. IEEE Trans. Automatic Control, AC33:268-283, 1988.

[36] M. J. Brennan, M. J. Day, and R. Pinnington S. J. Elliott. Piezoelectricactuators and sensors. Proc: IUTAM Symposium on The Active Controlof Vibration (Eds C. R. Burrows and P. S. Keogh), pages 263-274,1994.

[37] M. Bronzel. Aktive Schallfeldbeeinflussung nicht-stationarer Schallfeldermit adaptiven Digitalfiltern, 1993. Ph. D. Thesis, Gottingen.

[38] D. S. Broomhead and D. Lowe. Multivariable functional interpolationand adaptive networks. Complex Systems, 2:321-355, 1988.

[39] A. Brown. Dsp chip with no parallel? Electronics World + WirelessWorld, pages 878-879, 1991.

[40] A.J. Bullmore, P.A. Nelson, and S.J. Elliott. Active minimisation ofacoustic potential energy in harmonically excited cylindrical enclosedsound fields. AIAA Paper, 86-1958, 1986.

[41] A. V. Bykhovskii. Sposob polawlenija shuma w sluchowom organe (Tech-nique for noise suppression in the ear), 1960. Patent UdSSR SU 133 631.Filed: Aug. 24, 1949. Published: Patent Bulletin No. 22.

[42] R. H. Cannon and E. Schmitz. Initial experiments on the end-pointcontrol of a flexible one-link robot. International Journal of RoboticsResearch, 3(3):62-75, 1984.

[43] A. B. Carlson. Communication systems, volume 2nd edn. McGraw-Hill,1975.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 5: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

Bibliography 393

[44] C. Carme et al. Haut-parleur lineaire, 1999. French Patent ApplicationFR 2766650 Al. Filed: July 23, 1997. Published: Jan. 29.

[45] Ross C.F. and Purver M.R.J. Active cabin noise control. Proc. AC-TIVE97, pages xxxix-xlvi, 1997.

[46] J. C. H. Chang and T. T. Soong. The use of aerodynamic appendagesfor tall building control, 1980. In: H. H. E. Leipholz (ed.): StructuralControl, North-Holland Publ. Co.

[47] G. B. B. Chaplin. Anti-sound — The Essex breakthrough, 1983. Char-tered Mechanical Engineer (CME) 30.

[48] G. B. B. Chaplin, A. Jones, and O. Jones. Method and apparatus forlow frequency active attenuation. US Patent No. 4527282, 1985.

[49] G. B. B. Chaplin et al. The Cancelling of Vibrations Transmittedthrough a Fluid in a Containing Vessel, 1979. International PatentApplication WO 81/01479. Published: May 28, 1981. Priority (GB):Nov. 10.

[50] B. D. Charles et al. Blade Vortex Interaction Noise Reduction Tech-niques for a Rotorcraft, 1996. U.S. Patent US 5,588,800. Filed: May 31,1994. Patented: Dec. 31.

[51] Y. P. Cheng. Sliding Mode Controller Design for flexible multi-link ma-nipulators. PhD thesis, University of Texas at Arlington. Ann Arbor,Michigan, USA, 1989.

[52] P. C. Ching and S. W. Wu. Real-time digital signal processing systemusing a parallel processing architecture. Microprocessors and Microsys-tems, 13(10):653-658, 1989.

[53] R. L. Clark and C. R. Fuller. Active Structural Acoustic Control withAdaptive Structures Including Wavenumber Considerations, April 1991.In: C. A. Rogers and C. R. Fuller (eds.): Proc. of the 1st Conference onRecent Advances in Active Control of Sound and Vibration. Blacksburg,VA.

[54] R. L. Clark and G. P. Gibbs. A novel approach to feedforward higher-harmonic control, 1994. J. Acoust. Soc. Am. 96.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 6: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

394 Bibliography

[55] H. Coanda. Procede de protection contre les bruits, 1931. Brevetd'Invention (French Patent Application) FR 722.274. Filed: Oct. 21,1930. Patented: Dec. 29.

[56] H. Coanda. Procede et dispositif de protection contre les bruits, 1934.Brevet d'Invention (French Patent Application) FR 762.121. Filed: Dec.31, 1932. Patented: Jan. 18.

[57] G. P. Collins. Making Stars to See Stars: DOD Adaptive Optics Workis Declassified, 1992. Physics Today 45.

[58] W. B. Conover. Fighting noise with noise. Noise Control, 92:78-82,1956.

[59] W. B. Conover. Noise reducing system for transformers. US Patent No.2776020, 1957.

[60] W. B. Conover and W. F. M. Gray. Noise Reducing System for Trans-formers, 1957. U.S. Patent US 2,776,020. Filed: Feb. 9, 1955. Patented:Jan. 1.

[61] T. P. Crummey, D. J. Jones, P. J. Fleming, and W. P. Marnane. Ahardware scheduler for parallel processing in control applications. Pro-ceedings oflEE Control-94 Conference, Coventry, 21-24 March 1994, %>1098-1103, 1994.

[62] M. A. Daniels. Loudspeaker Phase Distortion Control Using Veloc-ity Feedback, 1998. U.S. Patent US 5,771,300. Filed: Sept. 25, 1996.Patented: June 23.

[63] J. J. D'Azzo and C. H. Houpis. Feedback control system analysis andsynthesis, volume 2nd edn. McGraw-Hill, 1966.

[64] P. DeFonseca, P. Sas, and H. Brussel. Optimisation methods for choos-ing sensor and actuator locations in an actively controlled double-panelpartition. In Proceedings of the SPIE, volume 3041, pages 124-135,1997.

[65] R. Dellman, I. Glicksber, and O. Gross. On the bang-bang control prob-lem. Quarterly of Applied Mechanics, 14(1):11—18, 1956.

[66] S. Deus. Aktive Schalldampfung im Ansaugkanal von Geblasen, 1988. In:Fortschritte der Akustik - DAGA 98 , DEGA e.V., Oldenburg, Germany.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 7: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

Bibliography 395

[67] P. J. Dines. Active control of flame noise, 1984. Ph. D. Thesis, Cam-bridge, England.

[68] P. Doel. A revolution in telescope design. Opto & Laser Europe, 69,1999.

[69] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum. Feedback ControlTheory. Mcmillan, New York, 1992.

[70] Morgan D.R. An analysis of multiple cancellation loops with a filterin the auxiliary path. IEEE Trans. Acoustics and Signal Processing,ASSP-28:454-467, 1980.

[71] G. P. Eatwell. The Use of the Silentseat in Aircraft Cabins, 1991. In:C.A. Rogers and C.R. Fuller (eds.): Proceedings of the 1st Conference onRecent Advances in Active Control of Sound and Vibration. Blacksburg,VA, USA, April 15-17.

[72] G. P. Eatwell et al. Piezo Speaker for Improved Passenger Cabin Au-dio Systems, 1995. International Patent Application WO 97/17818 Al.Published: May 15, 1997. Priority (US): Sept. 25.

[73] D. L. Edberg and A. H. von Flotow. Progress Toward a Flight Demon-stration of Microgravity Isolation of Transient Events, 1992. World SpaceCongress, 43rd Congress of the International Astronautical Federation,Paper IAF-92-0781.

[74] D. Egelhof. Einrichtung zur Schwingungsdampfung, 1987. GermanPatent Application DE 3541201. Filed: Nov. 21, 1985. Published:May 27.

[75] Kh. Eghtesadi and H. G. Leventhall. Comparison of active attenuatorsof noise in ducts. Acoustics Letters, 4(10):204-209, 1981.

[76] Kh. Eghtesadi et al. Industrial Applications of Active Noise Control,1993. NOISE-93. International Noise and Vibration Control Conference,St. Petersburg, Russia, May 31 - June 3, 1993. Proceedings: Vol. 2.

[77] S. J. Elliot and C. C. Boucher. Interaction between multiple feedforwardactive control systems. IEEE Trans. Speech and Audio Processing, 2:521-530, 1994.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 8: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

396 Bibliography

[78] S. J. Elliot, I. M. Stothers, and P. A. Nelson. A multiple error lmsalgorithm and its application to the active control of sound and vibra-tion. IEEE Trans. Acoust. Speech, and Signal Processing, ASSP-35:1423-1434, 1987.

[79] S. J. Elliott and P. A. Nelson. Multichannel active sound control usingadaptive filtering, 1988. ICASSP '88, Paper A3.4, Proceedings.

[80] S. J. Elliott and P. A. Nelson. Active Noise Control. Academic Press,New York, 1993.

[81] S. J. Elliott and B. Rafaely. Frequency-domain adaptation of feedforwardand feedback controllers. Proc. Int. Symposium on Active Control andVibration, ACTIVE'97, Budapest, pages 771-788, 1997.

[82] S. J. Elliott, I. M. Stothers, and P. A. Nelson. A multiple error lmsalgorithm and its application to the active control of sound and vibra-tion. IEEE Transactions on Acoustics, Speech, and Signal Processing,35(10):1423-1434, 1987.

[83] Stothers LM. Elliott S.J., Nelson P.A. and Boucher C.C. In-flight exper-iments on the active control of propeller-induced cabin noise. Journal ofSound and Vibration, pages 219-238, 1990.

[84] L. J. Eriksson. Active Attenuation System with On-line Modeling ofSpeaker, Error Path and Feedback Path, 1987. U.S. Patent US 4,677,676.Filed: Feb. 11, 1986. Patented: June 30.

[85] L. J. Eriksson. Development of the filtered-u algorithm for active noisecontrol. J. Acoust. Soc. America, 89:257-265, 1991.

[86] L. J. Eriksson, M. C. Allie, C. D. Bremigan, and R. A. Greiner. Ac-tive noise control using adaptive digital signal processing. Proceedingsof the IEEE International Conference on Acoustics, Speech, and SignalProcessing, New York, 2594-2597, 1988.

[87] L. J. Eriksson, M. C. Allie, and R. A. Greiner. The selection and appli-cation of an iir adaptive filter for use in active sound attenuation. IEEETransactions on Acoustics, Speech, and Signal Processing, 35(4):433-437,1987.

[88] L. J. Eriksson, M. C. Allie, and R. H. Hoops. Active Acoustic Atten-uation System for Higher Order Mode Non-Uniform Sound Field in a

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 9: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

Bibliography 397

Duct, 1989. U.S. Patent US 4,815,139. Filed: March 16, 1988. Patented:March 21.

[89] S. M. Kuo et al Active Noise Control Systems -Algorithms and DSPImplementation. Wiley-Interscience, 1996.

[90] F. Evert, D. Ronneberger, and F.-R. Grosche. Application of linear andnonlinear adaptive filters for the compensation of disturbances in thelaminar boundary layer. Z. angew. Math, und Mech. (ZAMM), to bepublished in 2000, 2000.

[91] P. L. Feintuch. An Adaptive Recursive LMS Filter, 1976. Proc. IEEE64, Comments: 65 (1977) 1399 and 1402.

[92] P. L. Feintuch, N. J. Bershad, and A. K. Lo. A frequency domain modelfor filtered lms algorithm - stability analysis, design, and elimination ofthe training mode. IEEE Trans. Acoust. Speech, and Signal Processing,ASSP-41:1518-1531, 1993.

[93] W. B. Ferren and Bernard. Active control of simulated road noise. SAEProc. Noise and Vibration Conference, pages 69-82, 1991.

[94] J. E. FfowcsWilliams and W. Mohring. Active Control of Kelvin-Helmholtz Waves, volume In: G.E.A. Meier, P.R. Viswanath (eds.): IU-TAM Symposium on Mechanics of Passive and Active Flow Control,pages 343-348. Kluwer Academic Publishers, 1999.

[95] Powell J.D. Franklin G.F. and Emani-Naeini A. Feedback control ofdynamic systems. Addison-Wesley, New Jersey, 1994.

[96] R. Freymann. Dynamic Interactions Between Active Control Systemsand a Flexible Aircraft Structure, 1986. Proc. 27th AIAA/ASME/SAESDM Conference, AIAA Paper 86-0960.

[97] R. Freymann. Von der Pegelakustik zum Sounddesign, 1996. In:Fortschritte der Akustik - DAGA '96, DEGA e.V., Oldenburg, Germany.

[98] R. Q. Fugate et al. Measurement of atmospheric wavefront distortionusing scattered light from a laser guide-star, 1991. Nature 353 (Sept. 12.

[99] C. R. Fuller. Analytical model for investigation of interior noise char-acteristics in aircraft with multiple propellers including synchrophasing,1986. J. Sound Vib. 109.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 10: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

398 Bibliography

[100] C. R. Fuller and C. A. Rogers adn H. H. Robertshaw. Control of soundradiation with active/adaptive structures. Journal of Sound and Vibra-tion, 157(l):19-39, 1992.

[101] C. R. Puller, S. J. Elliott, and P. A. Nelson. Active Control of Vibration,1995. Academic Press, London etc.

[102] C. R. Puller, C. H. Hansen, and S. D. Snyder. Active Control of SoundRadiation from a Vibrating Rectangular Panel by Sound Sources andVibration Inputs: An Experimental Comparison, 1991. J. Sound Vib.145.

[103] C. R. Fuller and A. H. von Flotow. Active control of sound and vibration.IEEE Control Systems Magazine, 15(6):9-19, 1995.

[104] S. Ganesan. A dual-dsp microprocessor system for real-time digital cor-relation. Microprocessors and Microsystems, 15 (7): 379-384, 1991.

[105] Garcia-Bonito, S.J.Elliot, and C.C.Boucher. Novel secondary source fora local active noise contorl system. ACTIVE 97, pages 405-418, 1997.

[106] F. Garcia-Nocetti and P. J. Fleming. Parallel processing in digital con-trol. Springer- Verlag, 1992.

[107] L. Gaul. Aktive Beeinflussung von Fiigestellen in mechanischen Kon-struktionselementen und Strukturen, 1997. German Patent ApplicationDE 19702518 Al. Filed: Jan. 24, Published: June 12.

[108] T. H. Gawain and R. E. Ball. Improved finite difference formulas forboundary value problems. International Journal for Numerical Methodsin Engineering, 12:1151-1160, 1978.

[109] Si S. Ge, T. H. Lee, and G. Zhu. Improving regulation of a single-linkflexible manipulator with strain feedback. IEEE Transaction on Roboticsand Automation, 14(1):179-185, 1998.

[110] D. H. Gilbert. Echo Cancellation System, 1989. U.S. PatentUS 4,875,372. Filed: May 3, 1988. Patented: Oct. 24.

[Ill] D.E. Goldberg. Genetic algorithms in search, optimisation and machinelearning. Addison-Wesley Publishing Company, 1989.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 11: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

Bibliography 399

[112] D.E. Goldberg and J. Richardson. Genetic algorithms with sharing formulti-modal function optimisation. In Proceedings of the Second Inter-national Conference on Genetic Algorithms, pages 44-49, 1987.

[113] W. Gossman and G. P. Eatwell. Active High Transmission Loss Panel,1994. U.S. Patent US 5,315,661. Filed: Aug. 12,1992. Patented: May 24.

[114] M. Green and D. J. N. Limebeer. Linear Robust Control Prentice Hall,Englewood Cliffs, 1995.

[115] G. Gu and P. P. Khargonekar. A class of algorithms for identification inhoc. Automatica, 28:299-312, 1992.

[116] D. Guicking. Active noise and vibration control. Annotated ReferenceBibliography with Keyword and Author Index. 3rd Edition (Feb. 1988),1708 refs. 1st Suppl. (Aug. 1991), page 2193, 1995.

[117] D. Guicking. Active control of vibration and sound - an overview ofthe patent literature. ISM A 21, International Conference on Noise andVibration Engineering, Leuven, Belgium, Sept 18-20, pages 199-220,1996.

[118] D. Guicking and H. Preienstein. Broadband Active Sound Absorptionin Ducts with Thinned Loudspeaker Arrays, 1995. In: ACTIVE 95,Newport Beach, CA, USA, July 6-8.

[119] D. Guicking and K. Karcher. Active Impedance Control for One-Dimensional Sound, 1984. ASME J. Vib. Acoust. Stress Rel. in Design106.

[120] Hareo Hamada, Kazuaki Nimura, and Seigo Uto. Active noise control us-ing adaptive prediction -implementation by adaptive filter. Proc. AcoustSoc. Japan Symposium, pages 531-532, 1992.

[121] C. H. Hansen and S. D. Snyder. Design considerations for active noisecontrol systems implementing the multiple input, multiple output lmsalgorithm. Journal of Sound and Vibration, 159(1):157-174, 1992.

[122] C.H. Hansen and S.D. Snyder. Active control of noise and vibration.E&FN Spon, London, 1997.

[123] J. Hansen. Eine anwendungsreife losung fur die aktive minderung von ab-gasgerauschen industrieller dieselmotoren und drehkolbenpumpen. VDIBericht Nr. U91, page 199, 1999.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 12: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

400 Bibliography

[124] E. Hansler. The hands-free telephone problem - an annotated bibliogra-phy. Signal Processing, 27:259-271, 1992.

[125] T. R. Harley. Active noise control stethoscope. U.S. PatentUS 5,610,987. First filed: Aug. 16, 1998; Patented: March 11, 1997.

[126] M. Harper. Active control of surge in a gas turbine engine. In: C. A.Rogers and C. R. Fuller (eds.J: Proc. of the 1st Conference on RecentAdvances in Active Control of Sound and Vibration. Blacksburg, VA,April, pages 133-149, 1991.

[127] D. Hassler. Apparatus and method for suppressing reflections at anultrasound transducer. U.S. Patent US 5,245,586. Patented: Sept. 14,1993. Priority (EP): Nov. 15, 1991.

[128] C. M. Heatwole and R. J. Bernhard. The selection of active noise con-trol reference transducers based on the convergence speed of the lmsalgorithm. Proc. INTER-NOISE 94, pages 1377-1382, 1994.

[129] W. von Heesen. Practical experience with an active noise control instal-lation in the exhaust gas line of a co-generator plant engine. AC US-TIC A/acta acustica 82, pages Suppl. 1, p. S 195, 1996.

[130] H. Heller, W. Splettstoesser, and K.-J. Schultz. Helicopter rotor noiseresearch in aeroacoustic wind tunnels - state of the art and perspec-tives. NOISE-93. International Noise and Vibration Control Conference,St. Petersburg, May 31 - June 3, pages p. 39-60, 1993.

[131] A. J. Helmicki, C. A. Jacobson, and C. N. Nett. Control oriented systemidentification: a worst-case\deterministic approach in h^. IEEE Trans.Automatic Control, AC-36:1163-1178, 1991.

[132] N. Hesselman. Investigation of noise reduction on a 100 kva transformertank by means of active methods. Applied Acoustics, ll(l):27-34, 1978.

[133] S. Hildebrand and Z. Q. Hu. Global quieting system for stationaryinduction apparatus. U.S. Patent US 5,617,479. First filed: Sept. 31993, Patented: April 1, 1997.

[134] Chih-Ming Ho et al. Active flow control by micro systems. In: G.E.A.Meier, P.R. Viswanath (eds.): IUTAM Symposium on Mechanics of Pas-sive and Active Flow Control:195-202, 1999.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 13: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

Bibliography 401

[135] Y. Hori et al. Vibration/noise reduction device for electrical apparatus.U.S. Patent US 4435,751. Patented: March 6, 1981 Priority (JP):July 3, 1980.

[136] H. Hort. Beschreibung und versuchsergebnisse ausgefiihrter schiffsstabi-lisierungsanlagen. Jahrbuch der Schiffbautechnischen Gesellschaft 35,pages 292-312, 1934.

[137] C. G. Hutchens and S. A. Morris. Method for acoustic reverberationremoval. U.S. Patent US 4,796,237. Filed: Jan. 28, 1987. Patented:Jan. 3, 1989.

[138] K. Hwang. Advanced computer architecture - parallelism scalability pro-grammability. McGraw-Hill, California, 1993.

[139] Y. Ichikawa and T. Sawa. Neural network application for direct feedbackcontrollers. IEEE - Transactions on Neural Networks, 3:224-231, 1992.

[140] Portland Group Inc. PG tools user manual. Portland Group Inc., USA,1991.

[141] Texas Instruments. TMSS20C40 user's guide. Texas Instruments, USA,1991a.

[142] Texas Instruments. TMS320C4x user's guide. Texas Instruments, USA,1991b.

[143] Texas Instruments. TMS320 floating-point DSP optimising C compileruser's guide. Texas Instruments, USA, 1991c.

[144] G. W. Irwin and P. J. Fleming (eds.). Transputers for real-time control.Research Studies Press, 1992.

[145] Y. Ishida and N. Adachi. Active noise control by an immune algorithm:adaptation inimmune system as evolution. In Proceedings of IEEE In-ternational Conference on Evolutionary Computing, volume xxii+891,pages 150-153, 1996.

[146] M. Izumi. Control of structural vibration — past, present and future. In-ternational Symposium on Active Control of Sound and Vibration, Tokio,April, pages 195-200, 1991.

[147] L. B. Jackson. Digital filters and Signal Processing. Kluwer AcademicPublishers, London, 1989.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 14: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

402 Bibliography

[148] H. B. Jamaluddin. Nonlinear system identification using neural net-works. PhD thesis, Department of Automatic Control and Systems En-gineering, The University of Sheffield, UK, 1991.

[149] M. J. M. Jessel. La question des absorbeurs actifs. Revue d'Acoustique5, pages 37-42, 1972.

[150] F. Jiang, N. Ojiro, H. Ohmori, and A. Sano. Adaptive active noisecontrol schemes in time domain and transform domains. Proc. 34thIEEE Conf. Decision and Control, New Orleans, USA:2165-2172, 1995.

[151] F. Jiang, H. Tsuji, H. Ohmori, and A. Sano. Adaptation for active noisecontrol. IEEE Control Systems Magazine, 17(6):36-47, 1997.

[152] S. Johansson et al. Performance of a multiple versus a single referencemimo anc algorithm based on a dornier 328 test data set. The 1997 In-ternational Symposium on Active Control of Sound and Vibration, Bu-dapest, Hungary, Aug. 21-23, pages 521-528, 1997.

[153] T. Kailath. Linear Systems. Prentice-Hall, Englewood Cliffs, New Jersey,1980.

[154] M. Kallergis. Experimental results on propeller noise attenuation us-ing an 'active noise control' technique. 14th DGLR/AIAA Aeroacous-tics Conference, Aachen, Germany, May 11-14, AIAA Paper 92-02-155,pages 907-918, 1992.

[155] S.K. Katsikas, D. Tsahalis, D. Manolas, and S. Xanthakis. Geneticalgorithms for active noise control. In Proceedings of Noise-93, pages167-171, St. Petersburg, Russia, 1993.

[156] S.K. Katsikas, D. Tsahalis, D. Manolas, and S. Xanthakis. A geneticalgorithm for active noise control actuator positioning. Mechanical Sys-tems and Signal Processing, 9:697-705, 1995.

[157] G. Kim and R. Singh. A study of passive and adaptive hydraulic enginemount systems with emphasis on non-linear characteristics. J. Soundand Vibration, 179:427-453, 1995.

[158] M. J. Korenberg, S. A. Billings adn Y. P. Liu, and P. J. Mcllroy. Orthog-onal parameter estimation algorithm for nonlinear stochastic systems.International Journal of Control, 48(l):193-210, 1988.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 15: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

Bibliography 403

[159] P. K. Kourmoulis. Parallel processing in the simulation and control offlexible beam structure system. PhD thesis, Department of AutomaticControl and Systems Engineering, The University of Sheffield, UK, 1990.

[160] S. M. Kuo, Y. C. Huang, and Z. Pan. Acoustic noise and echo cancel-lation microphone system for videoconferencing. IEEE Transactions onConsumer Electronics, 41:1150-1158, 1995.

[161] S. M. Kuo and D. R. Morgan. Active Noise Control Systems. John Wileyand Sons, New Jersey, 1996.

[162] S.M. Kuo and D.R. Morgan. Active Noise Control Systems. John Wiley& Sons, Inc., New York, 1996.

[163] Heinrich Kuttruff. Room Acoustics Second Edition. Applied SciencePublish. Ltd, 1973-79.

[164] B. Lange and D. Ronneberger. Control of pipe flow by use of an aeroa-coustic instability. In: G.E.A. Meier, P.R. Viswanath (eds.): IUTAMSymposium on Mechanics of Passive and Active Flow Control:305-310,1999.

[165] A. Lapedes and R. Farber. Nonlinear signal processing using neuralnetworks: Prediction and system modelling. Preprint LA-UR-87-2662,Los Alamos National Laboratory, Los Alamos, 1987.

[166] J. D. Leatherwood et al. Active vibration isolator for flexible bodies.U.S. Patent US 3,566,993. Filed: March 26, 1969. Patented: March 2,1971.

[167] L. Lecce, A. Ovallesco, A. Concilio, and A. Sorrentino. Optimal position-ing of sensors using genetic algorithms in an active noise control systemwith piezoelectric actuators. In Proceedings of Topical Symposium VIon Intelligent Materials and Systems of the 8th CIMTEC world ceram-ics conference and forum on new materials, pages 307-314, Faenza, Italy,1995.

[168] H.-J. Lee, C.-H. Yoo, J.-H. Yun, and D.-H. Youn. An active noise con-trol system for controlling humming noise generated by a transformer.Internoise 97, Budapest, Aug. 25-27, 1997. Proceedings: Vol. /, pages517-520, 1997.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 16: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

404 Bibliography

[169] S. Lee. Noise killing system of fans. U.S. Patent US 5,791,869. Patented:Aug. 11, 1998. Priority (KR): Sept 18, 1995.

[170] R. R. Leitch and M. O. Tokhi. The implementation of active noisecontrol systems using digital signal processing techniques. Proceedingsof the Institute of Acoustics, 8(Part 1):149-157, 1986.

[171] R. R. Leitch and M. O. Tokhi. Active noise control system. Proc. IEE,134A:525-546, 1987.

[172] R. R. Leitch and M. O. Tokhi. Active noise control systems. IEEProceedings-A, 134(6) :525-546, 1987.

[173] I. J. Leontaritis and S. A. Billings. Input-output parametric modelsfor nonlinear systems, part i: Deterministic nonlinear systems; partii: Stochastic nonlinear systems. International Journal of Control,41(2):303-344, 1985.

[174] H. G. Leventhall. Developments in active attenuators. Proceedings ofNoise Control Conference, Warsaw, 13-15 October 1976, 33-42, 1976.

[175] H. G. Leventhall and Kh. Eghtesadi. Active attenuation of noise:Monopole and dipole systems. Proceedings of Inter-noise 79: In-ternational Conference on Noise Control Engineering, Warsaw, 11-13September 1979, I, 175-180, 1979.

[176] H. W. Liepmann and D. M. Nosenchuk. Active control of laminar-turbulent transition. J. Fluid Dynamics 118, pages 201-204, 1982.

[177] L. Ljung. System Identification. Theory for the User. Prentice-Hall,Englewood Cliffs, 1987.

[178] Transtech Parallel Systems Ltd. Transtech parallel technology. TranstechParallel Systems Ltd, UK, 1991.

[179] P. Lueg. Process of silencing sound oscillations. U.S. PatentUS 2,043,416. Filed: March 8, 1934. Patented: June 9, 1936.

[180] P. Lueg. Process of silencing sound oscillations. US Patent 2043416,1936.

[181] P. Lueg. Verfahren zur dampfung von schallschwingungen. GermanPatent DE 655 508. Filed: Jan. 27, 1933. Patented: Dec. 30, 1937.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 17: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

Bibliography 405

[182] H. O. Madsen, S. Krenk, and N. C. Lind. Methods of Structural Safety.Prentice-Hall, New Jersey, 1996.

[183] L. P. Maguire. Parallel architecture for Kalman filtering and self-tuningcontrol PhD thesis, The Queen's University of Belfast, UK, 1991.

[184] A. Mallock. A method of preventing vibration in certain classes ofsteamships. Trans. Inst Naval Architects 47, pages 227-230, 1905.

[185] G. Mangiante. Active sound absorption. J. Acoust. Soc. Am. 61, pages1516-1523, 1977.

[186] G. Mangiante and J. P. Vian. Application du principe de huygens auxabsorbeurs acoustiques actifs. ii: Approximations du principe de huy-gens. Acustica 37, pages 175-182, 1977.

[187] R. A. Mangiarotty. Control of laminar flow in fluids by means of acous-tic energy. U.S. Patent US 4,802,642. Filed: Oct. 14, 1986. Patented:Feb. 7, 1989.

[188] M. Mano. Ship design considerations for minimal vibration. Ship Tech-nology and Research (STAR) 10th Symposium of the Society of NavalArchitects and Marine Engineers (SNAME), pages 143-156, 1985.

[189] D.A. Manolas, T. Gialamas, and D.T. Tsahalis. A genetic algorithm forthe simultaneous optimization of the sensor and actuator positions foran active noise and/or vibration control system. In Proceedings of InterNoise 96, pages 1187-1191, 1996.

[190] T. Martin and A. Roare. Active noise control of acoustic sources usingspherical harmonic expansion and a genetic algorithm: simulation andexperiment. Journal of Sound and Vibration, 212:511-523, 1998.

[191] Nobuo KOIZUMI Masato MIYOSHI, Junko SHIMIZU. N arrangementsof noise-controlled points for producing lager quiet zones with multi-point active noise control. Inter-Noise'94 Congress, pages 1299-1304,1994.

[192] W. P. Mason. Piezoelectric damping means for mechanical vibrations.U.S. Patent US 2,443,417. Filed: March 29, 1945. Patented: June 15,1948.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 18: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

406 Bibliography

[193] The Math Works. MATLAB Version 5.3: High Performance NumericComputation and Visualisation Package, volume www.mathworks.comof ftp.mathworks.com. The MathWorks, Inc., Natick, MA 01760-1500,1999.

[194] J. M. McCool et al. Adaptive detector. U.S. Patent US 12+3,935. Filed:May 18, 1979. Patented: Jan. 6, 1981.

[195] T. McKelvey. Frequency domain identification. IFAC Symposium onSystem Identification, Santa Barbara, CD, Plenary Talk:l-12, 2000.

[196] R. L. McKinley. Development of active noise reduction earcups for mili-tary applications. ASME Winter Annual Meeting, Anaheim, CA, Dec.,pages NCA-8B, 1986.

[197] P. H. Meckl and W. P. Seering. Active damping in a three-axis roboticsmanipulator. Journal of Vibration, Acoustics, Stress and Reliability inDesign, 107(1) :38-46, 1985a.

[198] P. H. Meckl and W. P. Seering. Minimising residual vibration for point-to-point motion. Journal of Vibration, Acoustics, Stress and Reliabilityin Design, 107(4) :378-382, 1985b.

[199] P. H. Meckl and W. P. Seering. Reducing residual vibration in systemswith time-varying resonances. Proceedings of IEEE International Con-ference on Robotics and Automation, 1690-1695, 1987.

[200] P. H. Meckl and W. P. Seering. Controlling velocity limited system toreduce residual vibration. Proceedings of IEEE International Conferenceon Robotics and Automation, Philadelphia, USA, 1428-1433, 1988.

[201] P. H. Meckl and W. P. Seering. Experimental evaluation of shapedinputs to reduce vibration of a cartesian robot. Transaction of the ASMEJournal of Dynamic Systems, Measurement and Control, 112(6):159-165, 1990.

[202] G. M. Megson. Practical steps towards algorithmic engineering. IEEDigest No. 1992/204: Colloquium on Applications of Parallel and Dis-tributed Processing in Automation and Control, London, 1992.

[203] L. Meirovitch. Dynamics and control of structures. John Wiley & Sons,New York etc. 1990, 1990.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 19: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

Bibliography 407

[204] J. Melcher and A. Biiter. Adaptive structures technology for structuralacoustic problems. Proc. 1st Joint CEAS/AIAA Aeronautics Conference(16th AIAA Aeroacoustics Conference), Munich, Germany, June 12-15,pages 1213-1220, 1995.

[205] T. Meurers and S. M. Veres. Iterative design for disturbance attenuation.Int. J. Acoustics and Vibration, 4:76-83, 1999.

[206] A. R. Mitchell and D. F. GRiffiths. The finite difference method in partialdifferential equations. John Wiley and Sons, New York, 1980.

[207] H. Miyamoto, H. Ohmori, and A. Sano. Parametrization of all plug-inadaptive controllers for sinusoidal disturbance rejection. Proc. Amer.Control Conf (ACC99), San Diego, USA, 1999.

[208] I. Moore, T. J. Sutton, and S. J. Elliott. Use of nonlinear controllers inthe active attenuation of road noise inside cars. Proc. Recent Advancein Active Control of Sound and Vibration, pages 682-690, 1991.

[209] D. R. Morgan. An analysis of multiple correlation cancellation loopswith a filter in the auxiliary path. IEEE Trans. Acoust. Speech, andSignal Processing, ASSP-28:454-467, 1980.

[210] S. Morishita and J. Mitsui. An electronically controlled engine mountusing electro-rheological fluid. SAE Special Publication 936, pages 97-103, 1992.

[211] P. M. Morse and K. U. Ingard. Theoretical acoustics. McGraw-Hill BookCo., New York etc. Chapter 7.1, 1968.

[212] E. Mosca and G. Zappa. ARX modelling of controlled ARMAX plantsand LQ adaptive controllers. IEEE Trans. Automatic Control, AC-34:371-375, 1989.

[213] H. Moulin and E. Bayo. On the accuracy of end-point trajectory trackingfor flexible arms by non-causal inverse dynamic solution. Transactionof the ASME Journal of Dynamic Systems, Measurement and Control,113(2):320-324, 1991.

[214] G. V. Moustakides. Correcting the instability due to finite precision ofthe fast kalman identification algorithms. Signal Processing 18, pages33-42, 1989.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 20: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

408 Bibliography

[215] M. L. Munjal and L. J. Eriksson. An analytical, one-dimensional,standing-wave model of a linear active noise control system in a duct.The Journal of the Acoustical Society of America, 84(3):1086-1093,1988.

[216] K. S. Narendra and K. Parthasarathy. Identification and control of dy-namical systems using neural networks. IEEE Transactions on NeuralNetworks, l(l):4-27, 1990.

[217] K.S. Narendra and D.N. Steeter. An adaptive procedure for controllingundefined linear processes. IEEE Trans. Automatic Control, pages 545-548, 1964.

[218] P. A. Nelson, A. R. D. Curtis, S. J. Elliott, and A. J. Bullmore. Theactive minimization of harmonic enclosed sound fields, part i: Theory.Journal of Sound and Vibration, 117(1):1-13, 1987.

[219] P. A. Nelson and S. J. Elliott. Active Control of Sound. Academic Press,London, 1995.

[220] P.A. Nelson, A.R.D. Curtis, and S.J. Elliott. Quadratic optimisationproblems in the active control of free and enclosed sound fields. Proceed-ings of the Institute of Acoustics, 7:55-64, 1985.

[221] H. T. Ngo. Tip vortex reduction system. U.S. Patent US 5,791,875.Filed: Sept. 10, 1996. Patented: Aug. 11, 1998, 1998.

[222] D. Nguyen and B. Widrow. Improving the learning speed of 2-layer neu-ral networks by choosing initial values of the adaptive weights. Proceed-ings of International Joint Conference on Neural Networks, WashingtonDC, 3, 21-26, 1990.

[223] B. Ninnness. A stochastic approach to linear estimation in hinfty Auto-matica, 34(4):405-414, 1998.

[224] J. P. Norton. An Introduction to Identification. Academic Press, London,1986.

[225] H. Ohmori, N. Narita, and A. Sano. A new design of plug-in adap-tive controller for rejection of periodic disturbances. Proc. IF AC Symp.Adaptive Systems in Control and Signal Processing, Glasgow, UK:297-302, 1998.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 21: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

Bibliography 409

[226] N. Ojiro, M. Kajiki, H. Ohmori, H. Tsuji, and A. Sano. Adaptive al-gorithm considering stability and application to adaptive active noisecanceling. IEICE Trans. Fundamentals, J78-A(10):1289-1297, 1995.

[227] H. F. Olson. Electronic control of noise, vibration, and reverberation.J. Acoust Soc. America, 28:966-972, 1956.

[228] H. F. Olson. Electronic sound absorber. U.S. Patent US 2,983,190.Filed: April 30, 1953. Patented: May 9, 1961, 1961.

[229] H. F. Olson. Electronic sound absorber. US Patent No. 2983790, 1961.

[230] H. F. Olson and E. G. May. Electronic sound absorbers. Journal of theAcoustical Society of America, 25:1130-1136, 1953.

[231] H.F. Olson. Electronic Control of Noise, Vibration and Reverberation.Journal of the Acoustical Society of America 28, pages 966-972, 1956.

[232] T. Onsay and A. Akay. Vibration reduction of a flexible arm by timeoptimal open-loop control. Journal of Sound and Vibration, 142(2):283-300, 1991.

[233] A V Oppenheim, K C Zangi, M Feder, and D Gauger. Single sensoractive noise cancellation based on the em algorithm. ICASSP, 1992.

[234] R. Ortega and R. Lozano. A journal on direct adaptive control of systemswith bounded disturbances. Automatica, 23(2):253-, 1987.

[235] Nelson P.A. and Elliott S.J. Active Control of Sound. Academic Press,New York, 1992.

[236] N. R. Petersen. Design of large scale tuned mass dampers. In: H. H.E. Leipholz (ed.): Structural Control, North-Holland Publ. Co., pages581-596, 1980.

[237] J. Piraux and S. Mazzanti. Broadband active noise attenuation in three-dimensional space. Internoise 85, Miinchen, Proceedings, pages 485-488,1985.

[238] H. Poerwanto. Dynamic simulation and control of flexible manipulatorsystems. PhD thesis, Department of Automatic Control and SystemsEngineering,The University of Sheffield, UK, 1998.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 22: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

410 Bibliography

[239] L.D. Pope. On the transmission of sound through finite closed shells:Statistical energy analysis, modal coupling, and non-resonant transmis-sion. Journal of the Acoustical Society of America, 50(3):1004-1018,1971.

[240] S. R. Popovich. Fast adapting control system and method. U.S. PatentUS 5,602,929. Filed: Jan. 30, 1995. Patented: Feb. 11, 1997, 1997.

[241] S. Pottie and D. Botteldooren. Optimal placement of secondary sourcesfor active noise control using a genetic algorithm. In Proceedings of InterNoise 96, pages 1101-1104, 1996.

[242] M. J. D. Powell. Radial basis functions for multivariable interpolation:A review. Proceedings of the IMA Conference on Algorithms for theApproximation of Functions and Data, RMCA, Shrivenham, 1985.

[243] H. Preckel and D. Ronneberger. Dynamic control of the jet-edge-flow,pages 349-354, 1999.

[244] S.S. Rao, T.S. Pan, and V.B. Venkavya. Optimal placement of actuatorsin actively controlled structures using genetic algorithms. AIAA Journal,29:942-943, 1991.

[245] K. S. Rattan, V. Feliu, and Jr. H. B. Brown. Tip position control of flex-ible arms. IEEE International Conference on Robotics and Automation,3, 1803-1808, 1990.

[246] Lord Rayleigh. The theory of sound. Vol. II, Chapter XIV, § 282:Two Sources of Like Pitch; Points of Silence; Experimental Methods.MacMillan & Co, London etc., 1st ed. 1877/78: p. 104-106; 2nd ed.1894/96 and Reprints (Dover, New York), pages 116-118, 1978.

[247] D. Rees and P. Witting. Controller implementations using novel pro-cessors, in K. Warwick and D. Rees (eds.): Industrial digital controlsystems, 2nd edn. Peter Peregrinus, London, 1988.

[248] R.E.Skelton and G. Shi. Iterative identification and control using aweighted ^-Markov cover with measurement noise. Signal Processing,52:217-234, 1996.

[249] C. F. Ross. Experiments on the active control of transformer noise.Journal of Sound and Vibration, 61(4):473-480, 1978.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 23: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

Bibliography 411

[250] C. F. Ross. An adaptive digital filter for broadband active sound control.Journal of Sound and Vibration, 80(3):381-388, 1982.

[251] A. Roure. Self-adaptive broadband active sound control system. Journalof Sound and Vibration, 101(3):429-441, 1985.

[252] C.E. Ruckman and C.R. Fuller. Optimising actuator locations in ac-tive noise control systems using subset selection. Journal of Sound andVibration, 186:395-406, 1995.

[253] A. Sano. Wavelet transform and its application to system identification.System/Control/Information, 42(2):103-110, 1998.

[254] K. Schaaf. Private communication from the research department. Volks-wagen AG, Wolfsburg, Germany, 1988.

[255] J. Scheuren, U. Widmann, and J. Winkler. Active noise control andsound quality design in motor vehicles. SAE Technical Paper Series No.1999-01-1846. Proc. of the 1999 Noise and Vibration Conference andExposition, Traverse City, MI, USA, May 17-20, 1999.

[256] R. Schirmacher. Schnelle algorithmen fur adaptive iir-filter und ihreanwendung in der aktiven schallfeldbeeinflussung. Ph. D. Thesis,Gottingen 1996. Abstract: ACUSTICA - acta acustica 82 (1996) 384,1996.

[257] R. Schirmacher and D. Guicking. Theory and implementation of a broad-band active noise control system using a fast rls algorithm. Acta Acustica2 (1994) 291-300, 1994.

[258] R. J. P. Schrama. Accurate models for control design: the necessity ofan iterative scheme. IEEE Trans. Automatic Control, AC-37:991-994,1992.

[259] M. R. Schroeder, D. Gottlob, and K. F. Siebrasse. Comparative study ofeuropean concert halls, correlation of subjective preference with geomet-ric and acoustic parameters. J. Acoust. Soc. Am. 56 (1974) 1195-1201,1974.

[260] B. Schwarzschild. First of the twin 10-meter keck telescopes starts doingastronomy. Physics Today, 46:17-18, 1993.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 24: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

412 Bibliography

[261] T. J. Sejnowski and C. R. Rosenberg. Nettalk: A parallel network thatlearns to read aloud. Technical Report JHU/EECS-86/01, Johns Hop-kins University USA, 1986.

[262] W. R. Short. Global low frequency active noise attenuation. Proceedingsof Inter-noise 80: International Conference on Noise Control Engineer-ing, Florida, 8-10 December 1980, II, pages 695-698, 1980.

[263] B. Siciliano and W. J. Book. A singular perturbation approach to controlof lightweight flexible manipulators. International Journal of RoboticsResearch, 7(4):79-90, 1988.

[264] M. H. Silverberg et al. Outbound noise cancellation for telephonic hand-set. U.S. Patent US 5,406,622. Filed: Sept. 2, 1993. Patented: April 11,1995, 1995.

[265] M.T. Simpson and C.H. Hansen. Use of genetic algorithms to optimiseactuator placement for active control of interior noise in a cylinder withfloor structure. Noise Control Engineering Journal, 44:169-184, 1996.

[266] N. C. Singer and W. P. Seering. Using causal shaping techniques toreduce residual vibration. Proceedings of IEEE International Conferenceon Robotics and Automation, Philadelphia, 1434-1439, 1988.

[267] N. C. Singer and W. P. Seering. Pre-shaping command inputs to re-duce systems vibration. Transaction of the ASME Journal of DynamicSystems, Measurement and Control, 112(l):76-82, 1990.

[268] N. C. Singer and W. P. Seering. An extension of command shaping meth-ods for controlling residual vibration using frequency sampling. Proceed-ings of IEEE International Conference on Robotics and Automation,800-805, 1992.

[269] Elliott S.J. and Nelson P.A. Active noise control. 28:12-35, 1993.

[270] R. E. Skelton. Model error concept in control design. Int. J. Control,49:1725-53, 1989.

[271] R. E. Skelton and J. Lu. Iterative identification and control design us-ing finite-signal-to-noise models. Mathematical Modelling of Systems,3(l):102-135, 1997.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 25: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

Bibliography 413

[272] S.D. Snyder and C.H. Hansen. The design of systems to actively controlperiodic sound transmission into enclosed spaces, Part 1: Analyticalmodels. Journal of Sound and Vibration, 170(4) :433-449, 1994.

[273] S.D. Snyder and C.H. Hansen. The design of systems to actively controlperiodic sound transmission into enclosed spaces, Part 2: Mechanismsand trends. Journal of Sound and Vibration, 170(4):451-472, 1994.

[274] M. M. Sondhi. Closed loop vibration echo canceller using generalized fil-ter networks. U.S. Patent US 3499,999. Filed: Oct. 31, 1966. Patented:March 10, 1970, 1970.

[275] T. T. Soong and H. G. Natke. Prom active control to active structures.VDI-Berichte 695 (1988) 1-18, 1988.

[276] W. D. Stanley. Electronic communications systems. Reston PublishingCompany, Virginia, 1982.

[277] H. R. Stark and C. Stavrinidis. Esa microgravity and microdynamicsactivities - an overview. Acta Astronautica, 34:205-221, 1994.

[278] G. J. Stein. A driver's seat with active suspension of electropneumatictype. ASME J. of Vibration and Acoustics 119 (1997) 230-235, 1997.

[279] Trevor J. Sutto Stephen J. Elliott. Performance of feedforward andfeedback systems for active control. IEEE Transactions on speech andaudio processing, 4(3):214-223, 1996.

[280] J. C. Stevens and K. K. Ahuja. Recent advances in active noise control.AIAA Journal, 29:1058-1067, 1991.

[281] Hyoun suk Kim, Youngjin Park, and Kang hyug Sur. Active noise controlof road booming noise with constraint multiple filtered-x lms algorithm.Proc. INTER-NOISE 96, pages 1155-1158, 1996.

[282] T. J Sutton, S. J. Elliott, P. A. Nelson, and I. Moore. The active controlof road noise inside vehicles. Proc. INTER-NOISE;90, pages 1247-1250,1990.

[283] T. J Sutton, S. J. Elliott, P. A. Nelson, and I. Moore. The active controlof road noise inside vehicles. Proc. INTER-NOISE 90, pages 1247-1250,1990.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 26: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

414 Bibliography

[284] J. C. Swigert. Shaped torque techniques. Journal of Guidance andControl, 3(5):460-467, 1980.

[285] M. A. Swinbanks. The active control of sound propagation in long ducts.J. Sound Vib. 27 (1973) 411-436, 1973.

[286] M. A. Swinbanks. Active control of sound propagation in long ducts.Journal of Sound and Vibration, 27(3):411-436, 1973.

[287] M. A. Swinbanks. The active control of noise and vibration and someapplications in industry. Proc. IMechE 198 A (1984), No. 13, p. 281-288, 1984.

[288] G. Syswerda. Uniform crossover in genetic algorithms. In Proceedings ofthe Third International Conference on Genetic Algorithms, pages 2-9,George Mason Univ., Washington DC, 1989.

[289] M. Taki et al. Sound attenuating system. U.S. Patent US 5,347,585.Filed: Sept. 10, 1991. Patented: Sept. 13, 1994, 1994.

[290] K.S. Tang, K.F. Man, S. Kwong, C.Y. Chan, and C.Y. Chu. Applicationof the genetic algorithm to real time active noise control. Real TimeSystems, 11:289-302, 1996.

[291] K.S. Tang, K.F. Man, S. Kwong, and Q. He. Genetic algorithms andtheir applications. IEEE Signal Processing Magazine, 13:22-37, 1996.

[292] D.R. Thomas, P. A. Nelson, and S.J. Elliott. Active control of the trans-mission of sound through a thin cylindrical shell, Part II: The minimi-sation of acoustic potential energy. Journal of Sound and Vibration,167(1):113-128, 1993.

[293] M. O. Tokhi and A. K. M. Azad. Active vibration suppression of flexiblemanipulator systems: Open-loop control methods. International Journalof Active Control, l(l):15-43, 1995.

[294] M. O. Tokhi and A. K. M. Azad. Control of flexible manipulator systems.Proceedings of IMechE-I: Journal of Systems and Control Engineering,210(I2):113-130, 996.

[295] M. O. Tokhi and M. A. Hossain. Adaptive active control of noise andvibration. Proceedings of the Institute of Acoustics, 16(Part 2):245-253,1994.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 27: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

Bibliography 415

[296] M. O. Tokhi and M. A. Hossain. Cisc, rise and dsp processors in real-time signal processing and control. Microprocessors and Microsystems,19(5):291-300, 1995.

[297] M. O. Tokhi and M. A. Hossain. Real-time active control using sequentialand parallel processing methods. Proceedings of the fourth InternationalCongress on Sound and Vibration, St Petersburg, 24-27 June 1996, 1,391-398, 1996.

[298] M. O. Tokhi, M. A. Hossain, M. J. Baxter, and P. J. Fleming. Het-erogeneous and homogeneous parallel architectures for real-time activevibration control. IEE Proceedings-D: Control Theory and Applications,142(6):l-8, 1995.

[299] M. O. Tokhi and R. R. Leitch. Practical limitations in the controller de-sign for active noise control systems in three-dimensions. Proceedings ofInter-noise 88: International Conference on Noise Control Engineering,Avignon, 30 August - 01 September 1988, 1037-1040, 1988.

[300] M. O. Tokhi and R. R. Leitch. Self-tuning active noise control. IEEDigest No 1989/46: Colloquium on Adaptive Filters, London, 22 March1989, 9/1-9/4, 1989.

[301] M. O. Tokhi and R. R. Leitch. Design and implementation of self-tuningactive noise control systems. IEE Proceedings-D: Control Theory andApplications, 138(4):421-430, 1991a.

[302] M. O. Tokhi and R. R. Leitch. The robust design of active noise controlsystems based on relative stability measures. Journal of the AcousticalSociety of America, 90(l):334-345, 1991b.

[303] M. O. Tokhi and R. R. Leitch. Design of active noise control systemsoperating in three-dimensional dispersive propagation medium. NoiseControl Engineering Journal, 36(l):41-53, 1991c.

[304] M. O. Tokhi and R. R. Leitch. Active noise control. The Oxford En-gineering Sciences Series, Vol. 29. Clarendon Press (Oxford UniversityPress), Oxford, UK 1992, 1992.

[305] M. O. Tokhi and R. R. Leitch. Parametric analysis of field cancella-tion in a three-dimensional propagation medium. Journal of Sound andVibration, 155(3):497-514, 1992a.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 28: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

416 Bibliography

[306] M. O. Tokhi and R. R. Leitch. Active noise control Clarendon Press,Oxford, 1992b.

[307] M. O. Tokhi, G. S. Virk, and M. A. Hossain. Integrated dsp3 systems foradaptive active control. IEE Digest No. 1992/185: Colloquium on Ac-tive Techniques for Vibration Control - Sources, Isolation and Damping,London, 28 October 1992, 6/1-6/4, 1992.

[308] M. O. Tokhi and R. Wood. Active control of noise using neural networks.Proceedings of the Institute of Acoustics, 17(Part 4):209-216, 1995.

[309] M. O. Tokhi and R. Wood. Radial basis function neuro-active noisecontrol. Preprints of IFAC-96: 13th World Congress, San Francisco, SOJune-05 July 1996, K, 97-102, 1996.

[310] M. O. Tokhi and R. Wood. Active noise control using radial basis func-tion networks. Control Engineering Practice, 5(9):1311-1322, 1997a.

[311] M. O. Tokhi and R. Wood. Active noise control using multi-layeredperceptron neural networks. International Journal of Low Frequency'Noise, Vibration and Active Control, 16(2):109-144, 1997b.

[312] Hironori Tokuno, Yuko Watanabe, Hareo Hamada, Ole Kirkeby, andPhilip A Nelson. Binaural reproduction in stereo dipole. ASA and ASJ,Third Joint Meeting, pages 1317-1322, 1996.

[313] Hironori Tokuno, Yuko Watanabe, Hareo Hamada, and Philip A Nelson.Virtual source image in stereo dipole system (in Japanese). Proc. Acoust.Soc. Japan Symposium, pages 591-592, 1997.

[314] M. C. J. Trinder and P. A. Nelson. The acoustical virtual earth and itsapplication to ducts with reflecting terminations. Proceedings of Inter-noise 83international Conference on Noise Control Engineering, Edin-burgh, 13-15 July 1983, I, 447-450, 1983a.

[315] M. C. J. Trinder and P. A. Nelson. Active noise control in finite lengthducts. Journal of Sound and Vibration, 89(l):95-106, 1983b.

[316] D.T. Tsahalis, S.K. Katsikas, and D.A. Manolas. A genetic algorithmfor optimal positioning of actuators in active noise control: Results fromthe ASANCA project. Proceedings of Inter Noise 93, pages 83-88, 1993.

[317] H. Unbehauen and G. P. Rao. Identification of Continuous Systems.North-Holland, Amsterdam, 1987.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 29: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

Bibliography 417

[318] H. Unbehauen and G. P. Rao. Continous-time approaches to systemidentification: - a survey. Automatica, 26(l):23-35, 1990.

[319] A. Vang. Vibration dampening. U.S. Patent US 2,361,071. Filed:Sept. 23, 1942. Patented: Oct. 24, 1944, 1944.

[320] I. Veit. Gehorschutz-kopfhorer. elektronik kontra larm. Funkschau 23(1988) 50-52, 1988.

[321] I. Veit. Anordnung und verfahren zur aktiven reduzierung von rei-fenschwingungen. German Patent DE 19723516 Cl. Filed: June 5,Patented: Oct. 29, 1998, 997.

[322] S. M. Veres. Iterative identification and control redesign via unfalsifiedsets of models: a basic scheme. Int. J. Control, 72(10):887-903, 1999.

[323] S. M. Veres and D. S. Wall. Synergy and Duality of Identification andControl Taylor & Francis, London, 2000.

[324] M. Vogt. General conditions of phase cancellation in an acoustic field.Archives of Acoustics, l(l):109-125, 1976.

[325] Ren W. and Kumar P.R. Adaptive active noise control: structures al-gorithms and convergence analysis. Proc. InterNoise89, pages 435-441,1989.

[326] B. Wang. Optimal placement of microphones and piezoelectric trans-ducer actuators for far-field sound radiation control. Journal of theAcoustical Society of America, 99(5):2975-2984, 1996.

[327] S. Wang. Open-loop control of a flexible robot manipulator. Interna-tional Journal of Robotics and Automation, l(2):54-57, 1986.

[328] C.T. Wangler and C.H. Hansen. Genetic algorithm adaptation of non-linear filter structures for active sound and vibration control. ICASSP,1994.

[329] P. E. Wellstead and M. B. Zarrop. Self-tuning systems - Control andsignal processing. John Wiley, Chichester, 1991.

[330] U. Weltin. Aktive schwingungskompensation bei verbrennungsmotoren.Fortschrittsberichte VDI, Reihe 12, No. 179 (1993), 111:505-508, 1993.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 30: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

418 Bibliography

[331] M. Wenzel. Untersuchungen zur breitbandigen messung und regelung derakustischen wandimpedanz an einer aktiven schallwand mit adaptivenfiltern. Ph. D. Thesis, Gottingen 1992, 1992.

[332] D. Whitley. The genitor algorithm and selection pressure: Why rank-based allocation of reproductive trials is best. The 3rd InternationalConference on Genetic Algorithms, pages 116-121, 1989.

[333] D. Whitley and T. Hanson. Optimising neural networks using faster,more accurate genetic search. The 3rd International Conference on Ge-netic Algorithms, 1989.

[334] G. Wickern. Windkanal. German Patent Application DE 19702390 Al.Filed: Jan. 21 1997. Published: July 30, 1998, 1976.

[335] B. Widrow. Ecg enhancement by adaptive cancellation of electrosurgicalinterference. U.S. Patent US 4,537,200. Filed: July 7, 1983. Patented:Aug. 27, 1985, pages 391-396, 1985.

[336] B. Widrow. Seismic exploration method and apparatus for cancellinginterference from seismic vibration source. U.S. Patent US 4>556,962.Filed: April 21, 1983. Patented: Dec. 3, 1985, 1985.

[337] B. Widrow and S. D. Stearns. Adaptive Signal Processing. Prentice Hall.Prentice Hall, Englewood Cliffs, 1985.

[338] B. Widrow et al. Adaptive noise cancelling: Principles and applications.Proc. IEEE 63 (1975) 1692-1716, 1975.

[339] J. Winkler and S. J. Elliott. Adaptive control of broadband sound inducts using a pair of loudspeakers. Acustica 81 (1995) 475-488, 1995.

[340] R. Wood. Development of neuro-adaptive active noise control systems.PhD thesis, Department of Automatic Control and Systems Engineering,The University of Sheffield, UK, 1997.

[341] H. Xia and S. M. Veres. Improved efficiency of adaptive robust controlby model unfalsification. Automatica, 36, 1999.

[342] L. Yao, W.A. Sethares, and D.C. Kammer. Sensor placement for on-orbit modal identification via a genetic algorithm. AIAA Journal,31 (10) :1922-1928, 1993.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 31: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

Bibliography 419

[343] D. S. Yoo and M. J. Chung. A variable structure control with simpleadaptation laws for upper bounds on the norm of the uncertainties. IEEETransaction on Automatic Control, 37(6):860-864, 1992.

[344] K. D. Young and U. Ozguner. Frequency shaping compensator designfor sliding mode. International Journal of Control, 57:1005-1019, 1993.

[345] J. Yuh. Application of discrete-time model reference adaptive control toa flexible single-link robot. Journal of Robotics Systems, 4(5):621-630,1987.

[346] A.C. Zander. Active control of aircraft interior noise. Ph.D. Dissertation,The University of Adelaide, 1994.

[347] T. Zhou and H. Kimura. Time domain identification for robust control.Systems & Control Letters, 20:167-178, 1993.

[348] O. C. Zienkiewicz. The Finite Element Method. McGraw-Hill, London,1977.

[349] D.C. Zimmerman. A darwinian approach to the actuator number andplacement problem with non-negligible actuator mass. Mechanical Sys-tems and Signal Processing, 7(4):363-374, 1993.

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 32: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 33: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

Index

acoustic box 333-4acoustic echo cancellation 14acoustic feedback 7-8, 26acoustical short-circuit 11active absorber 8active feedforward cancellation of sound 7active flow control 22-3active mounts 19-20, 148-54

transfer function model 148-9active noise control 70-2

adaptive prediction 224-6electric locomotive 319-40feedforward 59-65human head 223-39identification-based 83-5multichannel 75-95neural networks 167-82overview 4-16road booming noise 345-54three-dimensional propagation 25-55

active noise control structure 27-30active noise control system

performance hierarchy 186active optics 20-1active seats 334-7active structural acoustic control 21-2active vibration control 17-22

beam 380-1, 388cantilever beam system 359-62feedforward 360-1flexible manipulators 275-318H-infinity design 135-58microvibrations 241-74neural networks 159overview 17-22passive 136

actuator noise attenuation 151, 158adaptation algorithm 58-9, 69, 71adaptive ANC system 27, 85-6

neural networks 160adaptive digital filter 7-8adaptive feedback control 69-70

stability 70adaptive feedback controller 72

adaptive feedforward control 9, 75sound 7-8, 71, 75-6

adaptive harmonic control 97-116frequency selective LMS 107-10frequency selective RLS 103-7

adaptive inverse control 312, 314-17stability 315

adaptive methods 58adaptive noise cancelling 9-10adaptive optics 21adaptive prediction active noise control

system 224-6single-channel 224-5multiple-channel 225-6

adaptronics 19aeroacoustic instability 23aerodynamic noise 320, 326air conditioner noise 326aircraft 15-16, 19,22-3, 188

fly-over noise 16helicopters 19,22,64,68passengers 14, 64-5, 71pilots 13propeller 71,64-5safety 23skin vibrations 17

algorithmsadaptation 58-9, 69, 71DFL scheme 172-3, 179direct neuro-modelling and control 174Feintuch 9filtered-reference LMS 57-8, 60-4, 70-1filtered-u 189filtered-x LMS 7-9, 76, 81, 87, 93-4, 98,

103,227,334,346-51,353FRM scheme 169-70, 177genetic 185-220gradient descent 187, 189heterogeneous 358-9identification-based 83-5, 90IFL scheme 173, 179indirect adaptive 87-8, 93-4LMS 9orthogonal forward regression 163-4

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 34: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

422 Index

algorithms (contd.)regular iterative 367, 379RLS 104-6, 362robust adaptive 76, 80-2, 84-5, 87, 89-94SFAEST 9stability-assured adaptive 76, 80training 162

aliasing 60analogue/digital controller 68, 72anti-sound 4, 11ASANCA 16autopower spectral density 31-2

base plate vibration attenuation 150-1, 155-8beam control algorithm 379-81, 387beam identification algorithm 368, 379-81,

386beam simulation algorithm 370-1, 373-5,

377-8,380-1,385optimisation 375-8, 383-4

beams 17, 188cantilever 359-62flexible 278-9, 302-3, 385-8vibration control 214, 359-62

bi-functional elements 19Bode plot 110-11, 148,153, 156Butterworth bandpass filter 124, 131

lowpass 283-4, 287-9Butterworth bandstop filter 287, 290-2

C40 363-7, 369-70, 377-81optimisation 374-6, 383-4

cancellation factor: see field cancellation factorcancelling error 93-5cantilever beam 368cantilever beam system 359-62cars 11-12, 15-16,19, 346, 349, 351, 353

passengers 345road booming noise 346, 353

causality condition 10centrifugal pendulum 17civil engineering structures 20code optimisation 374-8, 383-4combustion chamber 22communications links 369-70, 378compensator design 103compilers 366, 374-8

efficiency 374, 376complementary sensitivity function 138compressors 22constraint multiple filtered-x LMS algorithm

346-51,353IIR filter 348-51, 353

continuous-time models 152-3control actuator locations 210control filter weight value optimisation 187,

189-91,214-20genetic algorithm parameters 214-16

control law 108-9control source arrangement 186

control source location optimisation 187-9,191

analytical model 203-5genetic algorithm formulation 206-8results 208-13

controller optimisation 187controller transfer function 28

errors 35-9cost function 119-24

quadratic 58-60, 63, 67simulations 128-30,132

cross-spectral density factor 32crosstalk cancellation 14cylinder 188, 203-4

cost function 204-5finite-element model 203-4

dash-pot 251, 255decoupled linear/nonlinear ANC system

170-3, 176-80direct function learning 171-3,176, 179inverse function learning 171-3, 178-9

DFL scheme 172-3,179Digisonix 9digital adaptive filter 4digital controller 341-4digital processing circuit 341-3digital signal processing devices 356-9, 363

optimising C compiler 374direct function learning 171-3, 176, 179direct neuro-modelling and control 173-5,

179-83direct nonlinear function emulator 171-2, 177discrete-time models 151-2disturbance cancellation 137dry friction control 19ducts 6-8, 59-60, 328-33

simulation 126-7SPL distribution 328-30, 332

ears 223-4, 335earthquake protection 20electric line echoes 13electric locomotives 320-40

active seats 334-7cabin noise 324-5, 327, 334cabin noise reduction 327, 334, 339-40noise characterisation 323-7noise sources 320-2target noise control strategy 333-8TGV 321

electric motors 321-2electron microscopes 20electronic controller optimisation 186-7electrorheological fluids 20elitist model 196empirical model identification 151-4enclosure vibration attenuation 150-1, 155-7enclosures 188engine noise 12

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 35: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

Index 423

equipment loaded panel 251-6, 271control system design 264-70model verification 256robustness analysis 268

equipment mounting feet 251-5error path identification 7-8error sensor arrangement 186-7error signal 60-1, 227error system updating scheme 89, 93-5Euler-Bernoulli beam 278exhaust pipes 11exhaust stacks 9-10

fans 321, 333compressors 323, 325-6, 330-1

FASPIS configuration 9feedback cancellation 8feedback compensation filter 7-8feedback control 59, 65-71

adaptive 69-70internal model control 66-7linear 137negative 67stability 65-6

feedback control structure 28,44, 47, 55feedback controller 57-8feedforward control 58-65

ANC 27-30, 79multiple actuators 64-5road booming noise 346single-channel 59-61

feedforward control structure 28, 47, 55FFT technique 88-9, 102field cancellation factor 30, 32-4, 37filtered-reference LMS algorithm 57-8, 60-4,

70-1stability 61-4

filtered-u algorithm 189filtered-x LMS algorithm 7-9, 76, 81, 87, 98,

103,227,334constraint multiple filtered-x 346-51, 353multiple filtered-x 346normalised 87, 93-4

finite difference methods 359-60finite-element methods 243, 256-60, 265finite impulse response filters 7, 60, 67, 69, 76,

127,215,218,356control filter weight optimisation 215, 218

first-order reliability method 269-71flexible manipulators 276-7, 316-18

adaptive inverse-dynamic active control312,314-17

adaptive joint-based collocated control310-13

bang-bang torque 284-6closed-loop control 312dynamic formulation 278-80end point acceleration 286, 289, 291, 295,

316end point trajectory 302, 304-5, 308-9

filtered torque input 283-92Gaussian-shaped torque input 287, 292-5hub angle 285, 288, 290, 294hub velocity 285, 288, 291, 294motor current 286, 289, 292, 295open-loop control 276-7, 282-95simulations 302-10single-link 278switching surface 296-9test rig 281-2variable structure control 300-2

Frahm tank 17frequency domain 27-30, 102frequency-response measurement 169-70,

176-7frequency selective filtering 101-2, 111-13,

138-9self-tuning 124-7, 131

frequency selective LMS solution 107-10, 115stability 109

frequency selective RLS solution 103-7,111-12,115

forgetting factor 104-5FRM scheme algorithm 169-70, 177

gain 105, 107, 109, 113-14gain margin 48-52genetic algorithms 185-220

breeding 190coding selection 191-3control filter weight optimisation 214-20control source location optimisation 206-13crossover 197-200elitist model 196fitness evaluation 189forced mutation 201meta-string method 198-200mutation 198, 200-1parent selection 189-90, 193-7population diversity 190-1, 200-1selection probability 193-5selective pressure 190-1, 195sharing 201-3steady-state 196-7

glass plate attenuation 145-50Gottingen model 23gradient descent algorithms 187, 189Gram-Schmidt procedure 164granularity 382

hardware 366-7task 367

H-infinity design 135-58continuous-time 145identification of empirical models 151-4optimisation 143-5robust performance 140-2, 154

Hankel function 227Hanning window 112harmonic control 97-8, 101

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 36: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

424 Index

head 223-39simulation 228-39

headphones 13head-related transfer function 224headrest 72headset 72hearing protectors 13helicopters 19, 22, 64, 68Helmholtz-Huygens integral equation 6Hermes 341-4heterogeneous algorithms 358-9heterogeneous architecture 356-7, 364-7high-rise buildings 20hill-climb search 188,191, 195-6homogeneous architecture 356, 364howling 13human head 223-39

diffuse sound field 230rigid sphere model 224, 227-8single primary source propagation 229-30

Huygens's principle 5hybrid collocated noncollocated control

scheme 314-15hybrid controller 121hydraulic shock absorbers 19-20

i860 363-5, 367, 369, 377, 379-81optimisation 374-8, 383-4

identification 151-4, 362identification error 95identification noise 58, 69, 71identification-based adaptive control 83-5

error system 85identification-based algorithms 83-5, 90IFL scheme 173, 179indirect adaptive control algorithm 87-8,

93-4inertia matrix 246-7, 252infinite-gain controller 40-4,46-7, 54-5

SIMO structure 44, 46-7SISO structure 40-4

infinite-impulse response filter 9, 346-51, 353,356

road noise attenuation 348-51, 353insonification 22instrument vibration control 148-54

baseplate/enclosure 150-1,155-8internal model control 58, 66-7, 69-72

sensitivity function 70interprocessor communication 368-75

communication overhead 371-3, 375inverse function learning 171-3, 178-80inverse nonlinear function emulator 173iterative controller tuning 117-21

robustness 132-3simulation 128

iterative identification and control redesign152-3

iterative model unfalsification and controlredesign 153-4

JMC theory 5-6joint-based collocated control 310-14

Lagrange-Rayleigh-Ritz method 243, 245,256-7,259-61,265-6,271-2

equipment loaded panel 265-6mass loaded panel 245, 256-7, 259-60

Lagrange's equations of motion 245laminar-turbulent flow transition 22local sound field cancellation 13-14loudness 4loudspeakers 10

placement 16Lueg 4, 6lumped mass approximation 251-2, 256-8,

273Lyapunov function 90, 301

magnetic bearings 17magnetic resonance imaging 12magnetorheological fluids 20manipulators 276-7

rigid-link 276see also flexible manipulators

mass loaded panel 244-51, 271control system design 260-4model verification 256-60robustness analysis 267-71

mechanical junctions 19mechanical wave filters 17medical diagnostics 9,12microelectromechanical system 22microphones 14

placement 16microprocessor technology 356microvibrations 241^4, 271

control system design 260-7modelling 244-56

million floating-point operations per second357

million instructions per second 357million operations per second 357minimum variance design criterion 28, 168,

361modal control 18modal coupling theory 204modal identification 188modal restructuring 21model predicted output 166-7model uncertainty 154model validation 166-7model-free iterative tuning 117-34

online 121-6simulations 126-32

modified integer string crossover 210-13Monte Carlo simulation 268-9, 271, 274mufflers 11-12multichannel active noise control 75-95

error microphones 77-8error system 78-80, 82, 89

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 37: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

Index 425

multichannel active noise control (contd.)reference microphones 76-7

multilayered perceptron neural network160-2, 176-84

DFL scheme 179FRM scheme 177IFL scheme 179

multiple filtered-x LMS algorithm 346, 348multiple regression 187multiprocessor systems 356

heterogeneous architecture 356, 357homogeneous architecture 356-7

multivariable binary string coding 192-3,198-9, 211-12

NARMAX model 161neural network filter 215, 217-19neural networks 159-84

multilayered perceptron 160-2, 176-7radial basis function 160,163-5, 176-7training algorithms 161-2

neuro-active noise control 167-84decoupled linear/nonlinear system scheme

170-3, 176-80direct neuro-modelling and control 173-5,

179-83frequency-response measurement 169-70,

176-7simulation 175-6

noise attenuation level 232, 235-6, 239noise cancellation 25-6, 30, 32

three-dimensional 33noise control: see active noise controlNyquist stability criterion 47-8, 65

off-line tuning 117-21Olson 4, 14one-step-ahead output prediction 166-7online tuning 121-3

feedback 122feedforward 123FSF 124-6

optimal controller design rule 169optimisation 185, 191optimisers 374-8, 383orthogonal forward regression algorithm 163-4

P4P5 filter 215, 217-19panels

actively controlled 259-60control systems design 260-7equipment loaded 251-6mass loaded 244-51, 273model verification 256-60point-force-driven 258-60voltage-driven 258-9

parallel architecture 380-2heterogeneous 356-7, 364-7homogeneous 356, 364uniprocessor 363, 380-1

parallel communication link 369parallel processing 356-8, 363, 367, 374partitions 188passive damping technology 243patent applications 4,13periodic disturbance cancellation 99, 115periodic noise 12periodic noise cancellation 117-134

self-tuning 121-3simulations 126-34

periodic noise control 98Conover's system 98-9

periodic primary noise sources 82personal noise protection 13phase margin 48-9, 52-3piezoelectric patch 17, 244-51

strain distribution 249piezoelectric prism 251-4plates 17power transformers

noise shielding 6, 16processing elements 358, 363-4, 379processor capability 358program behaviour 358proportional and derivative feedback 310publications 23-4

quadratic cost function 58-60, 63, 67quadratic optimisation theory 204quiet zone 224

radial basis function neural network 160,163-5, 176-8, 180-4

FRM scheme 177IFL scheme 180

radiation impedance 5, 11Rayleigh, Lord 4real-time active control 355-7, 368, 372, 374reduced instruction set computer processors

359, 363, 372reference signal quality 187regression equation 161regular iterative algorithm 367, 379regularity 367, 382Riccati equation 261rigid sphere model 224, 227-8, 234-5Ritz functions 257RLS algorithm 104-6, 362road booming noise 345-54

attenuation 351, 353-4CMFX LMS algorithm 347-50

roads 346-7, 351,354robots 275-6

see also flexible manipulatorsrobust adaptive algorithm 76, 80-2, 84-5, 87,

89-94boundedness81,92cancelling error 93-4convergence 81, 92

robust performance 139^2, 154

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 38: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

426 Index

robust stability 139robustness analysis 267-71rocket 22room reverberation 15rooms

adaptive active noise control 85-6

satellites 18-19,243equipment enclosure 253-4, 256

seismic exploration 9self-tuning 121-3,129-31, 133

FSF system 124-6, 131sensitivity function 65-6, 138sequential processing 379serial communication link 369shakers 214ships 22

vibration control 17-18single number coding 191-3, 198-9single-input multi-output control structure 26,

35, 44-7, 54errors 39feedforward ANC 27-30interference pattern 38-9

single-input single-output control structure26, 30, 34-6, 40-4, 48, 167-8

interference pattern 36stability 48

single-input single-output tdf controller117-121

simulations 126-34tuning 119, 123

smart materials 19smart structures 19sound control: see active noise controlsound pressure 4, 13, 227, 229-30sound propagation

one-dimensional 6-10sound source 23sound-soft reflector 8-9source control strategy 327spacecraft 242speakerphones 13speech transmission 9sphere head-related transfer function 224,

227-8spillover 18stability 47-53, 55, 139

gain margin 49-52phase margin 52-4

stable adaptive algorithms 75-6, 80steady-state conditions 27steady-state genetic algorithm 196-7stereophony 13-14stethoscope 9stiffness matrix 247-8, 360

switching surface 296-9stability 298-9

synchrophasing 15-16

T8 363-7, 372-3, 376-81communication links 369-71

tables 19target noise control strategy 333-8tdf controller 124, 129, 131

SISO 117-21teleconferencing 13telescopes 20-1tendon control systems 20thin-plate-spline function 165three-dimensional free-field propagation 26three-dimensional sound fields 14—16Tollmien-Schlichting waves 22traffic noise 16training algorithms 162

backpropagation 162orthogonal forward regression 163-4

trains: see electric locomotivestransfer functions 31, 44, 224, 227-8transformer 188transputer 357, 359, 363, 370, 373-5, 382

granularity 357truss structures 188tuned mass dampers 20tuning

feedback 119, 125feedforward 121, 126frequency domain 97-116iterative 117-34off-line 117-21online 121-6self-tuning 121-3, 129-31, 133time domain 117

Tustin's formula 145

ultrasonic testing 14uniprocessor architecture 363, 380-1

variable structure control 300-2control torque 306, 309-10

vector processors 356, 363, 367, 380vibration actuator placement 188vibration control: see active vibration controlvisualised sound field 228-9

waveform synthesis 12wheel-rail noise 321, 326white noise 84, 116Wiener filter 67wind tunnel 23

Young, Thomas 4

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp

Page 39: Active Sound and Vibration Control: theory and applications Volume 31 || Back Matter

This book presents the established fundamentals in the area of active sound and vibration control (ASVC) as well as exploring the new and emerging technologies and techniques. There has been a considerable amount of effort devoted to the development and realisation of methodologies for the control of sound and vibration, and this book covers the latest theoretical, algorithmic and practical applications including: noise control in 3D propagation, adaptive algorithms, prediction, processing and tuning, neuro-active control, control of microvibrations, and noise reduction in locomotives and vehicles. Topics discussed include multichannel active noise control, adaptive harmonic control, model-free iterative tuning, model-based control design for active vibration control (AVC), ASVC using neural networks, genetic algorithms for ASVC systems, and active noise control (ANC) around the human head. The authors also discuss active control of microvibrations, vibration control of manipulators, and techniques of real-time processing. This book will be essential reading for electrical, mechanical and control engineers, designers and researchers, interested in noise and vibration control.

Osman Tokhi is Reader in Control and Systems Engineering at the Department of Automatic Control and Systems Engineering, the University of Sheffield, UK. His research interests include active noise and vibration control, intelligent/adaptive control, biomedical applications of control, parallel processing, real-time signal processing and control, application of soft computing techniques to modelling and control of dynamic systems. He is the author of three books and over 200 refereed research papers, and serves on the editorial board of several other international journals. He is co-founder of the IEE Inter-Active: International Online Conferenence on Active Control of Sound and Vibration series. He is a Member of the IEE, Senior Member of the IEEE and Member of the International Institute of Acoustics and Vibration (IIAV).

Sandor Veres is Professor of Autonomous Control Systems at the University of Southampton, UK. His interests include the theory and practice of control engineering including adaptive and intelligent control systems, robust modelling and hardware implementations using microprocessors. He is the author of two books and over 100 refereed research papers. He is co-founder of the IEE Inter-Active: International Online Conference on Active Control of Sound and Vibration series. He is a Member of the IEE and on the Executive Committee of the IEE Professional Network on Concepts and Theory of Control Systems.

The Institution of Electrical EngineersMichael Faraday HouseSix Hills Way, Stevenage, Herts, SGI 2AYUnited Kingdom.wwv.iee.org

ISBN 0 85296 038 7

Printed in the United Kingdom

Active Soundand Vibration Controltheory and applications

ISBN 978-0-852-96038-7

Downloaded 23 Aug 2012 to 128.59.62.83. Term of Use: http://digital-library.theiet.org/journals/doc/IEEDRL-home/info/subscriptions/terms.jsp