Active Enhancement in Industrial Heat Exchangers 1 Active Enhancement in Industrial Heat Exchangers...

13
09/05/2011 1 Active Enhancement in Industrial Heat Exchangers Dr. Juan P. Solano Technical University of Cartagena Technical University of Cartagena Spain Departamento de Ingenieria Termica y de Fluidos Universidad Politecnica de Cartagena Reciprocating Scraped Surface Heat Exchanger (RSSHE) 2 Introduction Characteristics Spring Session PIN NL – Utrecht, May 11 th , 2011 Hydraulic Piston Advantages: Characteristics Reciprocating Movement Scraping inner walls HRSSpiratube, S.L. Selfcleaning Tubeside enhancement No downtime

Transcript of Active Enhancement in Industrial Heat Exchangers 1 Active Enhancement in Industrial Heat Exchangers...

Page 1: Active Enhancement in Industrial Heat Exchangers 1 Active Enhancement in Industrial Heat Exchangers Dr. Juan P. Solano TechnicalUniversityof Cartagena Spain Departamento de IngenieriaTermica

09/05/2011

1

Active Enhancement in Industrial Heat Exchangersin Industrial Heat xchangers

Dr. Juan P. Solano

Technical University of CartagenaTechnical University of Cartagena

Spain

Departamento de Ingenieria Termica y de FluidosUniversidad Politecnica de Cartagena

Reciprocating Scraped SurfaceHeat Exchanger (RSSHE)

2

Introduction

Characteristics

Spring Session PIN NL – Utrecht, May 11th , 2011

• Hydraulic Piston

Advantages:

Characteristics

•Reciprocating Movement

• Scraping inner walls

HRS‐Spiratube, S.L.

• Self‐cleaning

• Tube‐side enhancement

• No down‐time

Page 2: Active Enhancement in Industrial Heat Exchangers 1 Active Enhancement in Industrial Heat Exchangers Dr. Juan P. Solano TechnicalUniversityof Cartagena Spain Departamento de IngenieriaTermica

09/05/2011

2

3

Applications• Food industry: sticky, long running times 

Introduction

E t i l i

Spring Session PIN NL – Utrecht, May 11th , 2011

• Evaporator: pig slurries

• Bio‐fuels: continuous thermal hydrolisis

• Ice slurry production

Research methodology

4

Thermal

• pressure drop

• heat transfer

• scraping power

• performance evaluation

Spring Session PIN NL – Utrecht, May 11th , 2011

Heat transfer enhancement

Thermal‐hydraulicdata

heat transfer performance evaluation

enhancement

Numerical simulation

Flow pattern

• local shear stress

• local heat transfer

• pressure forces

• scraper design

• macroscopicstructures

• pressure dropmechanisms

Page 3: Active Enhancement in Industrial Heat Exchangers 1 Active Enhancement in Industrial Heat Exchangers Dr. Juan P. Solano TechnicalUniversityof Cartagena Spain Departamento de IngenieriaTermica

09/05/2011

3

Outline

5

Spring Session PIN NL – Utrecht, May 11th , 2011

o Experimental technique

o Flow pattern description

o Thermal‐hydraulic results

o Performance evaluation

o Conclusions

Outline

6

Spring Session PIN NL – Utrecht, May 11th , 2011

o Experimental technique

o Flow pattern description

o Thermal‐hydraulic results

o Performance evaluation

o Conclusions

Page 4: Active Enhancement in Industrial Heat Exchangers 1 Active Enhancement in Industrial Heat Exchangers Dr. Juan P. Solano TechnicalUniversityof Cartagena Spain Departamento de IngenieriaTermica

09/05/2011

4

Visualization test rig

7

Experimental technique

acrylic tube

Spring Session PIN NL – Utrecht, May 11th , 2011

propylenglycol/water

D=32 mm

Q(ℓ/h) =[100 – 250]

T (oC) = [20 – 70]

Reh =  [20 – 20000]

hydraulic piston

electric heater

flow meter MAG

gear pump

Particle Image Velocimetry (PIV)

8

laser

Spring Session PIN NL – Utrecht, May 11th , 2011

CMOScamera

external trigger

seededflow

• quasi‐steady flow: phase‐averaged

counter‐current

co‐current

time (s)

f

s

v

v• velocity ratio

• fs = 500 Hz

• 160 × 80 mm • resolution 90 μm/pix

• 1280 × 1024 pix

• adaptive cross‐correlation

Page 5: Active Enhancement in Industrial Heat Exchangers 1 Active Enhancement in Industrial Heat Exchangers Dr. Juan P. Solano TechnicalUniversityof Cartagena Spain Departamento de IngenieriaTermica

09/05/2011

5

Thermal‐hydraulic test rig

9

Ti T

10

15

16 peq pccp 1

p 211 128 9

13 14

Experimental technique Spring Session PIN NL – Utrecht, May 11th , 2011

Tin Tout17

13

l

lp

h

23

T

19

11

21

22

p1

4

2 18 245 20

• secondary circuit

• chiller loop

Features• test circuit

Isothermal tests Data logger

• Regulation NI FieldPoint

• HP 34970A

• Control LabView

Uniform heat flux

• D=18 mm   ‐ L=3 m

• propylene‐glycol

2

3h

22

ph

m32

DdDpf

)x(T)x(T

IV

kD

DNu

pfmppi

ee

h

hh

2t

pp

4

SDDW

cceq2

p2c

• Joule effect

• PT100 – TC Type T

Outline

10

Spring Session PIN NL – Utrecht, May 11th , 2011

o Experimental technique

o Flow pattern description

o Thermal‐hydraulic results

o Performance evaluation

o Conclusions

Page 6: Active Enhancement in Industrial Heat Exchangers 1 Active Enhancement in Industrial Heat Exchangers Dr. Juan P. Solano TechnicalUniversityof Cartagena Spain Departamento de IngenieriaTermica

09/05/2011

6

Visualization plane

11

Experimental flow description

zr

θ

Spring Session PIN NL – Utrecht, May 11th , 2011

SIDE   A

θ

P=5D

over the symmetry plane

Features

• periodic flow

• radial inversion every p/2

• assembly

SIDE   B

0

,,2

,,2

zv

rzvrPzv

rzvrPzv

rr

zz

12

Experimental flow description Spring Session PIN NL – Utrecht, May 11th , 2011

vortex

high velocity region

recirculation

g y g

Page 7: Active Enhancement in Industrial Heat Exchangers 1 Active Enhancement in Industrial Heat Exchangers Dr. Juan P. Solano TechnicalUniversityof Cartagena Spain Departamento de IngenieriaTermica

09/05/2011

7

Motionless scraper

13

Experimental flow description

mean flow directionReh=36

Spring Session PIN NL – Utrecht, May 11th , 2011

3

Reh=36

Reh=58

Reh=87

Reh=106

Reh=72

Reh=106

0

1

2

V/V

me

d

tubo concéntrico

3

Reh=132

Reh=170

Reh=213

Reh=265

0,25 0,5 0,75 1 0

1

2

r/R

V/V

med

Reh=265

tubo concéntrico

Counter‐current motion 

14

ω=0

Experimental flow description

mean flow directionReh=80  ω=‐0.5

Spring Session PIN NL – Utrecht, May 11th , 2011

ω=‐0.5

ω=‐1

Reh=80  ω=‐1

ω=‐2

Reh=80  ω=‐2

Page 8: Active Enhancement in Industrial Heat Exchangers 1 Active Enhancement in Industrial Heat Exchangers Dr. Juan P. Solano TechnicalUniversityof Cartagena Spain Departamento de IngenieriaTermica

09/05/2011

8

15

Co‐current motion

Experimental flow description

mean flow directionReh=80  ω=0.5

Spring Session PIN NL – Utrecht, May 11th , 2011

Blockage parameter

f

rf

v

vv

0

0

h

Reh=80  ω=1

fv

0

Reh=80  ω=2

Outline

16

Spring Session PIN NL – Utrecht, May 11th , 2011

o Experimental technique

o Flow pattern description

o Thermal‐hydraulic results

o Performance evaluation

o Conclusions

Page 9: Active Enhancement in Industrial Heat Exchangers 1 Active Enhancement in Industrial Heat Exchangers Dr. Juan P. Solano TechnicalUniversityof Cartagena Spain Departamento de IngenieriaTermica

09/05/2011

9

17

Time‐dependent pressure drop

Pressure drop tests Spring Session PIN NL – Utrecht, May 11th , 2011

Features

• periodic signal

• square wave

• overpressure incounter‐current

Processing

counter‐current

• end‐of‐stroketransients

• n > 30

• average window

time (s)

co‐current

18

101

CP=0=0,1=0,5=1=1,5

CP =0=0,1=0,3=0,5

0f

CP=0=0,1=0,5=1=1 5

counter‐current co‐current averaged

Pressure drop tests Spring Session PIN NL – Utrecht, May 11th , 2011

101

102

103

10-1

100

Re

fh,cc

=2

tubo liso

101

102

103

10-1

100

R

fh,eq

=0,75=1

tubo liso

101

102

103

10-1

100

R

fh 1,5

=2

tubo liso

plain tubeplain tube

laminar turbulent

0≤ω<1

1≤ω≤2

21 mmh1cc,h 1,0ReCf

2m

5h

43cc,h

5

C

1,0

Re

ClogCf

2m

8h

76cc,h

6

CRe

ClogCf

33 mm

h2cc,h ReCf

Reh Re

hRe

h

Page 10: Active Enhancement in Industrial Heat Exchangers 1 Active Enhancement in Industrial Heat Exchangers Dr. Juan P. Solano TechnicalUniversityof Cartagena Spain Departamento de IngenieriaTermica

09/05/2011

10

19

Measurement of the scraping power Spring Session PIN NL – Utrecht, May 11th , 2011

0

0

ω=0.1

ω=0.5ω=1

ω=2

40

60

g power (W)

20

30

40

g power (W)

friction

counter‐current

0

0

0 500 1000

20

flow rate (l/h)

scraping

400 600 800 1000 12000

10

flow rate (l/h)

scrapin

hydraulicpiston

co‐current

20

Heat transfer results

102

CP =0

Spring Session PIN NL – Utrecht, May 11th , 2011

101

Nu h

Pr=150Pr=300Pr=700

I II III

laminar turbulent

ω=0

0.1≤ω<1

1≤ω≤2

21 mmh1h PrReCNu

3

mh

m2m

h1m

hCRe

CReCPrNu

4

321

23 mmh2h PrReCNu

101

102

103

Reh

Page 11: Active Enhancement in Industrial Heat Exchangers 1 Active Enhancement in Industrial Heat Exchangers Dr. Juan P. Solano TechnicalUniversityof Cartagena Spain Departamento de IngenieriaTermica

09/05/2011

11

Outline

21

Spring Session PIN NL – Utrecht, May 11th , 2011

o Experimental technique

o Flow pattern description

o Thermal‐hydraulic results

o Performance Evaluation

o Conclusions

22

Performance evaluation ‐Motionless Spring Session PIN NL – Utrecht, May 11th , 2011

Heat transfer enhancement for:

• same pumping power• same heat transfer area

smooth

augmented

Nu

NuR 3

233 ha dDDf

RR

SMX

Kenics

• same heat transfer area 3

33

hs

h,ah,as

D

d

fReRe

Kenics

Page 12: Active Enhancement in Industrial Heat Exchangers 1 Active Enhancement in Industrial Heat Exchangers Dr. Juan P. Solano TechnicalUniversityof Cartagena Spain Departamento de IngenieriaTermica

09/05/2011

12

23

Performance evaluation ‐ Dynamic Spring Session PIN NL – Utrecht, May 11th , 2011

scrapingpumping WWW Total power consumption   smooth

augmented

Nu

NuR 3

scrah

h,ah,as

s WD

D

dDDfRe

fRe

3

22

3

233 21

Conclusions

24

o Definition of flow mechanism: recirculation bubble acceleration and vortex

Flow pattern

Spring Session PIN NL – Utrecht, May 11th , 2011

o Definition of flow mechanism: recirculation bubble, acceleration and vortex

o Time‐resolved and time‐averaged measurement of pressure drop. Correlations

Heat transfer and pressure drop

o Time‐averaged measurement of heat transfer. Correlations

o Influence of velocity ratio on the flow structures

o Mechanism of the power consumption: piston, friction and flow resistances

Performance evaluation

o Performance comparison with static mixers

o Positive effect of the scrapers motion for Res>1000

Page 13: Active Enhancement in Industrial Heat Exchangers 1 Active Enhancement in Industrial Heat Exchangers Dr. Juan P. Solano TechnicalUniversityof Cartagena Spain Departamento de IngenieriaTermica

09/05/2011

13

Thank you for your attention!