Activation of the Farnesoid X-receptor in breast cancer...

33
This is a repository copy of Activation of the Farnesoid X-receptor in breast cancer cell lines results in cytotoxicity but not increased migration potential . White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/118394/ Version: Accepted Version Article: Alasmael, N, Mohan, R, Meira, LB et al. (2 more authors) (2016) Activation of the Farnesoid X-receptor in breast cancer cell lines results in cytotoxicity but not increased migration potential. Cancer Letters, 370 (2). pp. 250-259. ISSN 0304-3835 https://doi.org/10.1016/j.canlet.2015.10.031 © 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ [email protected] https://eprints.whiterose.ac.uk/ Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.

Transcript of Activation of the Farnesoid X-receptor in breast cancer...

This is a repository copy of Activation of the Farnesoid X-receptor in breast cancer cell lines results in cytotoxicity but not increased migration potential.

White Rose Research Online URL for this paper:http://eprints.whiterose.ac.uk/118394/

Version: Accepted Version

Article:

Alasmael, N, Mohan, R, Meira, LB et al. (2 more authors) (2016) Activation of the Farnesoid X-receptor in breast cancer cell lines results in cytotoxicity but not increased migration potential. Cancer Letters, 370 (2). pp. 250-259. ISSN 0304-3835

https://doi.org/10.1016/j.canlet.2015.10.031

© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

[email protected]://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.

1

ActivationoftheFarnesoidX-receptorinbreastcancercelllinesresultsincytotoxicitybut

notincreasedmigrationpotential

NouraAlasmael*1,RatiMohan*

1,LisianeB.Meira

1,KarenE.Swales

2andNickJ.Plant

1

1.! SchoolofBiosciencesandMedicine,FacultyofHealthandMedicalSciences,University

ofSurrey,Guildford,Surrey,GU27XH,UK

2.! ClinicalPDBiomarkerGroup,TheInstituteofCancerResearch,Sutton,SM25NG,UK,

*Theseauthorscontributedequallytothemanuscript

AuthorforCorrespondence:DrNickPlant,SchoolofBiosciencesandMedicine,Facultyof

HealthandMedicalSciences,UniversityofSurrey,Guildford,Surrey,GU27XH,UK

Tel:+44(0)1483686412;Fax:+44(0)1483686401;email:[email protected]

2

Abstract

Breastcanceristhecommonestformofcancerinwomen,butsuccessfultreatmentis

confoundedbytheheterogeneousnatureofbreasttumours:Effectivetreatmentsexistfor

hormone-sensitivetumours,buttriple-negativebreastcancerresultsinpoorsurvival.An

areaofincreasinginterestismetabolicreprogramming,wherebydrug-inducedalterationsin

themetaboliclandscapeofatumourslowtumourgrowthand/orincreasesensitivityto

existingtherapeutics.Nuclearreceptorsaretranscriptionfactorscentraltotheexpression

ofmetabolicandtransportproteins,andthusrepresentpotentialtargetsformetabolic

reprogramming.WeshowthatactivationofthenuclearreceptorFXR,eitherbyits

endogenousligandCDCAorthesyntheticGW4064,leadstocelldeathinfourbreastcancer

celllineswithdistinctphenotypes:MCF-10A(normal),MCF-7(receptorpositive),MDA-MB-

231andMDA-MB-468(triplenegative).Furthermore,weshowthatthemechanismofcell

deathispredominantlythroughtheintrinsicapoptoticpathway.Finally,wedemonstrate

thatFXRagonistsdonotstimulatemigrationinbreastcancercelllines,animportant

potentialadverseeffect.Together,ourdatasupportthecontinuedexaminationofFXR

agonistsasanovelclassoftherapeuticsforthetreatmentofbreastcancer.

Keywords:Apoptosis,Autophagy,NuclearReceptor,Triplenegativebreastcancer,Bile

acids,

Abbreviations:CDCA=chenodexoycholicacid;ER=estrogenreceptor;FXR=FarnesoidX-

receptor;Her2=Humanepidermalgrowthfactorreceptor2;PR=progesteronereceptor;

TNBC=Triplenegativebreastcancer

3

1.! Introduction

BreastcancerrepresentsoneofthelargestkillersofwomenintheWesternworld,witha

lifetimeriskofoneineight[1].Inthepastdecadesanumberofsuccessfultherapeutics

targetingbreastcancerhavebeendeveloped,usedinbothsingleandcombination

therapies.However,improvementsinthefiveyearsurvivalratehavenotbeenashighas

hoped.Thisistoalargedegreeduetotheheterogeneousnatureofbreasttumours,with

multiplemolecularlandscapesbeingclassifiedasasingledisease.Thesediversetumour

phenotypesresultinvariedresponsestotherapeuticintervention,oftenleadingtosub-

optimalpatientresponse[2].Toaidoptimisationoftreatmentregimens,breasttumoursare

commonlyclassifiedintothreeclinicallysignificantgroups:hormonesensitive,Her2positive

andtriplenegativebreastcancers(TNBC)[3].BothhormonesensitiveandHer2-positive

tumourshavearangeofgoodtherapeuticoptions,butTNBCtumoursarecharacterizedby

alackofmoleculartargetsandtendencytodevelopdrugresistance.Notsurprisingly,TNBC

representstheleadingcauseofdeathinbreastcancer[4].Itisthusimperativetodevelop

noveltherapeuticoptionsthatwouldexploittumourvulnerabilities,mitigatedrug

resistanceandleadtoimprovedpatientresponse,andespeciallyinthecaseofTNBC

tumours.

Twoareasoftherapeuticinterventionhavereceivedincreasingattentioninthepastfew

years:Syntheticlethalityandmetabolicvulnerability.Theserelatedconceptsexploitthe

greaterunderstandingofnetworkbiologytopredictsynergisticcombinationtherapies[5].

Insyntheticlethality,theconceptof‘rescuepathways’isexploited:Inessence,targetingof

asinglespeciesinabiologicalpathwayisoftennegatedbyre-routingofthebiological

networktoexploitasecondarypathway.Insyntheticlethality,drugcombinationsareused

4

totargetboththeprimaryandsecondarypathways,producingasynergisticcytotoxicity[6].

Inmetabolicvulnerability,thistheoryofnetworktargetingisfurtherexpanded,lookingfor

novelagentsthatwillworkwithexistingtherapeutics.Tumourcellshaveahighmetabolic

load,duetotheirrequirementtomakealltheprecursorsrequiredforconstantcell

proliferation[7].Assuch,thedevelopmentofdrugsthattargetmetabolismmayreducecell

proliferation,andsynergisewithexistingdrugstoproducemoreeffectivecombination

therapies[8].

Membersofthenuclearreceptorfamilyofligand-activatedtranscriptionfactorsgenerally

regulateexpressionofgenesthatencodeproteinsinvolvedinmetabolicandtransport

processes[9].Assuch,theymayrepresentimportanttargetstoinstigatemetabolic

reprogrammingoftumourcells,leadingtoareductioninsupplyofthecomponents

requiredforcellgrowth[10].Nuclearreceptorexpressioniswidespreadthroughoutthe

body[11],withanumberbeing(over)expressedinbreasttumours[12].Indeed,twoofthe

threemajorclassifiersforbreastcancer,theestrogenreceptor(ER;NR3A1)andthe

progesteronereceptor(PR;NR3C3),arenuclearreceptors,anddisruptionoftheirregulatory

actionisasuccessfultreatmentinreceptorpositivetumours[13,14].ThefarnesoidX-

receptor(FXR;NR1H4)isanadoptednuclearreceptorwithoxysterolssuchasprimaryand

secondarybileacidsasitsendogenousligands[15,16].Bileacidsarethemetabolicproducts

ofcholesterol,andcanbetoxictothebodyathighconcentrations.FXRactstoprevent

accumulationofbileacidsbyinducingexpressionofasecondnuclearreceptorsmall

heterodimerpartner(SHP,NR0B2),whichinhibitsexpressionofCYP7A1,therate-limiting

enzymeinbileacidsynthesis[17,18].Themainsiteofbileacidproductionandsecretion

aretheliverandintestine,respectively,andthisismirroredbyhighlevelsofFXRexpression

intheseorgans[19].However,asapproximately70%ofbileacidsarere-absorbedbythe

5

body,theycanreachmicromolarconcentrationsintheplasma,whichmayunderliethe

expressionofFXRinanumberofothertissues[20].FXRhasbeenshowntobeexpressedin

bothnormalbreasttissueandbreasttumours,withitsactivationinvitrostimulates

apoptosisandinhibitsaromatase[21].ThesefeaturessuggestthatFXRagonistsmay

representanovelclassofbreastcancertherapeuticsduetotheirabilitytoaltertheFXR-

regulatedmetabolicnetwork.

Inthepresentwork,wefirstfullydelineatethemolecularmechanismsbywhichFXR

agonistsactivateapoptosisinbreastcancercelllines,demonstratingthistobethroughthe

intrinsicpathway.Next,weexaminetheabilityofFXRagoniststostimulatemigrationin

thesecelllines,concludingthattheydonotpossessthisability.Together,thesedata

supportthefurtherexaminationofFXRagonistsascancerchemotherapeutics.

2.! MaterialsandMethods

2.1.! Materials

ThebreasttumourcelllineMDA-MB-468(ATCC-HTB-132),andthenormalbreastcellline

MCF10A(ATCC-CRL-10317)werepurchasedfromtheATCC(Teddington,UK),whilethe

breasttumourcelllinesMCF-7(ECACC86012803)andMDA-MB-231(ECACC92020424)

werepurchasedfromtheECACC(PortonDown,UK).CDCAandGW4064werepurchased

fromSigmaAldrich(Poole,UK)andTocrisBiosciences(Abingdon,UK),respectively.

2.2.! CellCulture

MCF7,MDA-MB-468andMDA-MB-231cellsweregrowninDulbecco’smodifiedeagle

medium(DMEM)withphenolredandL-glutamine,supplementedwith10%foetalbovine

serum,100units/mlpenicillin,0.1mg/mlstreptomycinsulphate,and0.25µg/ml

amphotericinB.MCF10AcellswereculturedinDulbecco’smodifiedeaglemedium/F12(1:1

6

v/vDMEM/F12)withphenolred,supplementedwith5%horseserum,100ng/mlcholera

toxin,0.5µg/mlhydrocortisone,10µg/mlinsulin,20ng/mlepidermalgrowthfactor,100

µg/mlstreptomycin,and100units/mlpenicillin.

2.3.! ViabilityAssay

Cellviabilitywasassessedbythe3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium

bromide(MTT)assay,aspreviouslydescribed[22].Briefly,breastcancercelllineswere

platedin96-welltissuecultureflasksatadensityof5x104cellsperwell,andallowedto

attachovernight.Forexperimentsusingserum-starvedconditions,cellsweregrownfora

further24hoursinserum-freemedium.Next,cellswereexposedtotestchemicalsforthe

requiredtime;duringthefinal60minofincubation,0.5mg/mLMTTwasadded.Attheend

oftheincubationperiod,theresultantformazansaltwasdissolvedinDMSOandits

absorbancemeasuredat540nm.Resultsareexpressedasapercentageofvehiclecontrol;

eachdatapointrepresentsthemeanofaminimumofthreeindependentexperimentsof6

wellsperexperiment,witherrorbarsrepresentingthestandarderrorofthemean(SEM).

2.4.! CaspaseAnalysis

CaspaseactivitywasmeasuredusingtheCaspase-Gloassaysystem(Promega,UK)as

previouslyreported[23].Briefly,breastcancercelllineswereseededin96-wellplatesata

densityof1x104cellsperwell,allowedtoattachovernight,serum-starvedfor24hours,

andthenexposedtotestchemicals(±specificcaspaseinhibitor)asrequired.Next,Caspase-

Gloreagentwasadded,mixed,incubatedatroomtemperatureforonehour,andthen

luminescencemeasured.Resultsareexpressedasapercentageofvehiclecontrol;eachdata

pointrepresentsthemeanofaminimumofthreeindependentexperimentsof6wellsper

experiment,witherrorbarsrepresentingthestandarderrorofthemean(SEM).

2.5.! ProteinAnalysis

7

Westernblotanalysiswasundertakenaspreviouslydescribed[22].Briefly,totalproteinwas

extractedusingRIPAbuffer,andproteinquantifiedbythemethodofSmith[24].Thirty

microgramsoftotalproteinwasseparatedonprecast6-18%polyacrylamidegels,andthen

transferredtoPVDFmembrane.Proteinweredetectedovernightat4˚Cusingthefollowing

primaryantibodiesanddilutions:FXR1:500(sc13063,SantaCruzBiotechnology);MMP2

1:200(sc-10736,SantaCruzBiotechnology);MMP91:200(sc-10737,SantaCruz

Biotechnology);PARP1:1000(#9542,CellSignalling);cytochromec1:500(sc-7159,Santa

CruzBiotechnology);Bax1:250(sc-493,SantaCruzBiotechnology);Bcl21:250(sc-7382,

SantaCruzBiotechnology);SHP1:250(sc-15283,SantaCruzBiotechnology);LC31:1000

(#2775,CellSignalling);and,B-actin1:2,000(A2228,Sigma-Aldrich).Next,membraneswere

incubatedwithanIRDye800CWgoat,anti-rabbitsecondaryantibody(1:10,000)forone

houratroomtemperature,andimagedusinganOdysseyCLxinfraredimagingsystem(LI-

CORBiosciences).

2.6.! AutophagyAnalysis

InadditiontoexaminationofautophagythroughWesternblottingofLC3cleavage(see

above),theaccumulationofwasp62/SQSTM1inautophagosomeswasquantifiedusingthe

PremoAutophagySensorGFP-p62assay(MolecularProbes,OR,USA)[25].Breastcancer

celllineswereseededin24-wellplatesatadensityof2x105cellsperwell,allowedto

attachovernight,exposedtopGFP-62inductionmixinserum-freemediumfor24hours,

andthenexposedtotestchemicalsasrequired.p62/SQSTM1fluorescencewasquantified

andexpressedasapercentageofvehiclecontrol;eachdatapointrepresentsthemeanofa

minimumofthreeindependentexperiments,witherrorbarsrepresentingthestandard

errorofthemean(SEM).3-methyladenineandrapamycin(Sigma-Aldrich)wereusedas

inhibitorsandactivatorsofautophagy,respectively[26-28].

8

2.7.! CellMigrationAnalysis

Forthetranswellassay,24-welltranswellinsertswithan8μmporesize(CorningInc,USA)

wereused.Breastcancercelllineswereseededintotheupperchamberatadensityof

1x105cellsperwellinserum-freemedium.Plateswereincubated24-72hours,andthen

cellsinthelowerchambercounted;toensurecountingofallmigratedcells,thelower

surfaceofthetranswellwasexposedto1xtrypsin:EDTAfor30minutes.

Forthewound-healingassay,35mmwoundhealing-inserts(Ibidi,Martinsried,Germany)

wereused.Breastcancercelllineswereseededintothechamberatadensityof1x105cells

perwellinserum-freemediumandallowedtoattachovernight.Insertswereremoved,and

gapclosuremeasuredattime0and12hoursafterexposuretotestchemicalusingtScratch

program[29].

2.8.! InhibitionofFXRactivitybyFXRdominant-negativeover-expression

TodemonstratethattheobservedeffectswereFXR-dependent,experimentswere

undertakenusingover-expressionofadominantnegativeFXRmutant[30].MCF-7and

MDA-MB-231cellsweretransfectedwiththeFXR-DNexpressingplasmidusingFugene6

(Promega,UK)accordingtothemanufacturer’sinstruction,andincubatedovernightto

allowproteinexpression.CellswerethenexposedtoGW4064andanalysedaspreviously

described.

2.9.! StatisticalAnalysis

StatisticalanalysiswasundertakenusingGraphPadPrismv6.01(GraphPadSoftwareInc.,La

Jolla,USA).Datasetswerecomparedthrougheitheraone-wayANOVAwithTukey’s

multiplecomparisontestoratwo-wayANOVAwithSidak’smultiplecomparisontest,as

appropriate.Thelevelofstatisticalsignificancewassetaprioriatp<0.05.

9

3.! ResultsandDiscussion

3.1.! ActivationofFXRinducescelldeathinbreastcancercelllines

ThenuclearreceptorFXRisclassicallyassociatedwithbileacidhomeostasisinthebodyand

itstargetgenesimpactonthemetabolicandtransporter-mediatedclearanceofbothbile

acidsandtheirprecursors[15].However,FXRactivationhasalsobeenreportedtoelicita

numberofotherphenotypes,includingcelldeath.Toconfirmthisphenotypeinbreast

cancercelllines,weexaminedtheeffectoftheendogenousligandCDCAandthemore

potentandselectiveartificialligandGW4064[31].Fourcelllineswerechosentorepresent

differentbreastcancerphenotypes:normal(i.e.MCF-10A),receptorpositivetumour(i.e.

MCF-7)andtriplenegativetumours(i.e.MDA-MB-231andMDA-MB-468).Weconfirmed

thatFXRisexpressedinthesecelllines,andforMCF-7andMDA-MB-231cellsthattheFXR-

dependentsignallingcascadeisintact,withactivationofSHPexpressioninresponsetoFXR

activation(supplementalfigureS1).

BothCDCAandGW4064causedaconcentration-dependenttoxicityinallcelllines(Figure

1),withtheeffectgenerallybeingmoremarkedinserum-freeconditions.Thisisconsistent

withtheobservationthatbothCDCAandGW4064arelipophilic,withLogPvaluesof4.15

and8.3,respectively[20].Inserum-containingmedium,thefreeconcentrationofboth

compoundsareexpectedtobereducedduetoproteinbinding[32].IC50valueswere

determinedforallconditionsandarepresentedinTable1.Wenotethat,asexpected,IC50

valuesforGW4064areapproximatelythreeordersofmagnitudelowerthanforCDCA,

consistentwiththehigheraffinityofthisligandforFXR[GW4064Kd=0.01μMversusCDCA

Kd=50μM[15,31]].DataconsistentwiththesevalueswerealsoobtainedwithMTTanalysis

following72hoursofexposureofcelllinestoeachcompound(datanotshown).

10

Despitethediversephenotypesofthefourcelllinesstudied,allrespondedinthesame

mannertoCDCAandGW4064,bothqualitativelyandquantitatively,withnostatistically

significantdifferencesinresponseforeitheragonistbetweencelllines.Thiswouldsuggest

thatFXR-dependentcytotoxicityisageneralcellresponse,andnotdependentofany

emergentphenotypicpropertyofthedifferentgenotypesofeachcellline.

3.2.! FXR-mediatedcytotoxicityismediatedthroughtheintrinsicapoptoticcascade

HavingdeterminedthatFXRagonistsstimulatecytotoxicityinallfourbreastcancercell

lines,wenextexaminedthemolecularmechanismsunderlyingthisresponseinthereceptor

positiveMCF-7andtriplenegativeMDA-MB-231celllines.

ActivationofFXRhasbeenpreviouslyreportedtocauseapoptoticcelldeathinbreast

cancerMCF-7andMDA-MB-468celllines[21].AsdepictedinFigure2,exposureofMCF-7

andMDA-MB-231cellstoGW4064orCDCAfor24hoursresultedinastatisticallysignificant

activationoftheexecutionercaspases3/7,andcleavageofitssubstratepoly(ADP-

ribose)polymerase-1(PARP)[33].ThisconfirmsthedataofSwalesetal,andextendsitto

coveranothertriplenegativecellline.Inaddition,wenoteSwalesetalusedhigh

concentrationsofGW4064(30µM;3,000xKd);hereweusealowerconcentrationthatwill

cause99.9%receptoroccupancywhilereducingtheriskofoff-targeteffects[31].FXR

agonist-mediatedactivationofcaspases3/7,andsubsequentPARPcleavage,ismorepotent

intheMDA-MB-231celllinecomparedtotheMCF-7cellline.Thisisconsistentwithreports

thattheMCF-7celllinelacksexpressionofcaspase3[34,35],meaningonlycaspase7

activityispresent.

HavingconfirmedthatFXRactivationbyGW4064orCDCAcausesapoptosisinbreastcancer

celllines,wenextexaminedthemolecularmechanism(s)underlyingthiseffect.The

apoptoticcascadecanoccurthroughtheintrinsicandextrinsicpathways,witheachbeing

11

composedofdistinctmoleculareventsthatconvergeattheactivationofexecutioner

caspasessuchascaspase3and7[36].Caspase8activationisclassicallyassociatedwiththe

extrinsicapoptoticpathway,whilecaspase9activationisindicativeofapoptosisviathe

intrinsicpathway.ExposureofMCF-7andMDA-MB-231cellstoeither3µMGW4064or

30µMCDCAfor9hourscausedastatisticallysignificantincreaseincaspase9activity,which

couldbepreventedbyco-incubationwiththecaspase-9inhibitorZ-LEHD-FMK(Figure3a).

Foldincreasesincaspase9activitywerethesameorderofmagnitudeasthatobservedwith

thepositivecontrol,1µMstaurosporine.Incontrast,neithercompoundwasabletoactivate

caspase8activityineitherMCF-7orMDA-MB-231celllines(Figure3b);presenceofa

functionalextrinsicpathwaywasdemonstratedthroughtheuseofthepositivecontrol

chemicalFasligand[37].Together,thesedataareconsistentwithactivationofFXRresulting

incelldeaththroughactivationoftheintrinsicpathwayofapoptosis.

ToconfirmtheabilityofGW4064andCDCAtoinduceintrinsicpathway-mediatedapoptosis,

weexaminedseveralothermolecularmarkersforthispathway.Akeystageintheintrinsic

pathway,andonethatdistinguishesitfromtheextrinsicpathway,ismitochondrial

dysfunction.MembersoftheBCL2familyarecentralregulatorsofthisprocess,withthe

relativeexpressionofpro-(e.g.Bcl2)andanti-(e.g.BAX)apoptoticfamilymembers

determiningcellfate[36].Figure4ademonstratesthatFXRactivationresultsinasignificant

increaseinBAX:Bcl2ratio,withGW4064increasingtheratioby2.9±0.3-foldand4.8±1.0-

fold,andCDCAby2.8±0.4-foldand2.5±0.2-foldinMCF-7andMDA-MB-231cells,

respectively.Alterationinthisratioisassociatedwithchangesinmitochondrialmembrane

integrity,leadingtocytochromecreleaseintothecytoplasm,whichcomplexeswithApaf-1

toformtheapoptosome[38].Weobserveatime-dependentreleaseofcytochromec

followingexposureofMCF-7andMDA-MB-231cellstobothGW4064andCDCA(Figure4b).

12

Asnotedabove,theMCF-7celllinemayhavelimitedapoptoticcapacityduetoalackof

expressionofcaspase3[34,35].Undersuchconditions,alternativepathwaysmaybe

initiated.Autophagyisacellrescuepathwayinvolvingdegradationandrecyclingof

damagedcellcomponents[39],andtherelativerolesofautophagyandapoptosisin

determiningcellfateappearstobehighlycontextdependent,withfactorsincludingcellular

background,typeofperturbation,anddegreeofdamage.ConjugationofcytosolicLC3-Ito

phosphatidylethanolamine,formingautophagosomalLC3-IIisanimportantmarkerof

autophagy[40],andinFigure5awepresenttheimpactofGW4064andCDCAontheLC3-

I:LC3-IIratioinbothcelllines.InMCF-7cells,GW4064isobservedtocausea4.4±0.3-fold

increaseinthisratio,consistentwithactivationoftheautophagypathway,butCDCAdoes

notelicitasimilarresponse.InMDA-MB-231cells,neithercompoundwasabletoelicita

significantchangeinLC3-I:LC3-II.Asecondexperimentalapproachwasusedtoconfirmthe

activationofautophagy,namelyaccumulationofp62/SQSTM1,aubiquitin-bindingprotein

thattargetsubiquitinylatedproteinsfordegradationviaautophagy[41].Both3µM

GW4064and30µMCDCAelicitedastatisticallysignificantincreaseinp62-GFPfluorescence

inMCF-7cells,butnotinMDA-MB-231cells.Thisincreasewasreducedbytheadditionof

5mM3-methyladenine,aninhibitorofautophagy.Assayspecificitywasdemonstratedby

thepositivecontrolcompound2.5µMrapamycin[26].

ThesedataareconsistentwithMCF-7cellsusingtheautophagicresponseasacomplement

toapoptosis,whichisnecessaryduetothecompromisedcapacitytoundergoapoptosis

causedbylackofexpressionoftheexecutionercaspase3.Insupportofthis,when

autophagyisinhibitedby3-methyladenine,nosignificantincreaseincaspase3/7activation

isseeninMCF-7cells,suggestingthatthecellsarealreadyutilisingthecaspase-dependent

apoptoticcelldeathpathwayatclosetoitscapacity(Figure5c).

13

3.3.! InductionofapoptosisandautophagyinbreastcancercelllinesisFXR-dependent

Aspreviouslynoted,whileGW4064isahighlyselectiveligandagainstFXR,theactionsof

CDCAaremorepromiscuous.Itisthusimportanttodemonstratethattheobservedeffects

aremediatedviaFXRandnotanalternatemechanism.Toexaminethis,wehaveuseda

dominantnegativeFXRmutant(FXR-DN)tosquelchFXR-mediatedsignalling[21,30,42].As

canbeseenfromfigure6a,transfectionoftheFXR-DNplasmidintoMCF-7andMDA-MB-

231cellseffectivelyblocksFXR-dependentsignalling,asevidencedbytheablationofSHP

induction,aclassicalFXRtargetgene,inresponsetoGW4064.

BlockadeofFXRsignallingbyFXR-DNalsoreducesGW4064andCDCA-dependentcelldeath

(Figure6b),consistentwithpreviousreportsthatthisisFXRdependent[21].Thereduction

incelldeathisduetodecreasedapoptosisinbothcelllines,asevidencebyreduced

activationoftheexecutioncaspases3/7(Figure6c).Aspreviouslydemonstrated,MCF-7

cells,whicharedeficientincaspase-3,arealsostimulatedtoundergoautophagyby

GW4064,andwedemonstratethatthisisalsoFXR-dependent,beingreducedinthe

presenceoftheFXR-DNmutant(figure6d).

Together,thesedatastronglysupportthattheobservedeffectsaremediatedthroughthe

actionofFXR,andnotviaanother,non-specific,mechanism.

3.4.! ActivationofFXRinbreastcancercelllinesdoesnotcauseanincreaseincell

migration

ThedatapresentedhereinsupportsthecytotoxicpotentialofFXRactivationinbreast

cancercelllines.Inaddition,wefurtherelucidatethemolecularmechanismsunderlying

this,whicharethroughtheprogrammedapoptoticandautophagicpathways.Assuch,these

datawouldsupportthepotentialofFXRagonistsascancerchemotherapeuticagents.

14

However,anumberofreportshavesuggestedthatactivationofFXRcanalterthe

migration/invasionphenotypeoftumourcells,althoughthedatainthisareais

controversial.Forexample,Fukaseetal.havereportedapositiveactiononmigrationinthe

Hep3Bhepatomacellline[43],whileStrauchetal.demonstratedasimilareffectin

intestinalepithelialcells[44].Conversely,ZhangetalreportedthatFXRsuppression

promotedproliferationandmigrationofHepG2andHep3Bhepatomacelllines[45],while

Yoyoetal.demonstratedarepressiveeffectonvascularsmoothmusclecellmigration[46].

Anypotentialforenhancedcellmigration/invasionisamajorliabilityinthedevelopmentof

atherapeuticagent,andwethereforeexaminedthepotentialofGW4064andCDCAto

effectmigrationinbreastcancercells.

Inthetranswellmigrationassaywewereabletodetectasignificantnumberofmigrated

cellsfollowing72hoursincubationforbothMCF-7andMDA-MB-231celllines,importantas

MCF-7areconsideredpoorlyinvasive[47].Exposureofcellsintheupperchambertoeither

3µMGW4064or30µMCDCAthroughouttheincubationperioddidnotresultinany

increaseinmigrationrates(Figure7a).Inaddition,wenotethatextensionoftheincubation

periodtoincludea1-hourpre-incubationwithFXRagonistalsodidnotimpactupon

migrationrates(datanotshown).Asecondexperimentalapproachwasalsousedto

examinemigration,thescratchassay.Datafromthisassaywasconsistentwiththetranswell

assay;whilesignificantmigrationcouldbeobservedoverthe24hourincubationperiod,

therewasnosignificantincreasewhenMCF-7orMDA-MB-231cellswereexposedtoFXR

agonists(Figure7b).

ThisdataappearsinconflictwiththatofSilvaetal,whodemonstratedthatthesecondary

bileaciddeoxycholatecouldinducemigrationofMDA-MB-231,butnotMCF-7cells[48].

However,themethodologyusedbySilvaetalwassignificantlydifferentfromthepresent

15

work,andonlythesecondarybileaciddeoxycholatewasexamined.Thisbileacidisa

productofbacterialmetabolismofCDCA,andattheconcentrationusedlikelytocauseboth

FXR-dependentandFXR-independenteffects[49].

Giventheimportantnegativeliabilityassociatedwithanypro-migratoryeffect,andthe

conflictingdatainthisarea,wealsoexaminedMCF10AandMDA-MB-468cellsfortheir

migratoryresponseuponFXRactivation.AspresentedinsupplementaryfigureS2,no

evidencewasfoundtosupportapro-migratoryphenotypeineitherofthesecelllines.As

such,thesedatasupportthenotionthatFXRactivationinbreastcancercelllinesdoesnot

enhancemigratorypotential.ThissuggeststhatanyinteractionbetweenFXRandcell

migration/invasioniscomplex,andalmostcertainlycontext-dependent.

Conflictofinterest

KESisanemployeeoftheInstituteofCancerResearch.NA,RM,LMandNJPdeclarethat

theyhavenoconflictsofinterest

Acknowledgements

NAwasfundedbytheKingdomofSaudiArabiaMinistryofEducation.

References

[1]J.Ferlay,I.Soerjomataram,R.Dikshit,S.Eser,C.Mathers,M.Rebelo,D.M.Parkin,D.

Forman,F.Bray,Cancerincidenceandmortalityworldwide:Sources,methodsandmajor

patternsinGLOBOCAN2012,Int.J.Cancer,136(2015)E359-E386.

16

[2]B.Weigelt,A.Mackay,R.A'Hern,R.Natrajan,D.S.P.Tan,M.Dowsett,A.Ashworth,J.S.

Reis-Filho,Breastcancermolecularprofilingwithsinglesamplepredictors:aretrospective

analysis,LancetOncology,11(2010)339-349.

[3]J.S.Reis-Filho,L.Pusztai,BreastCancer2Geneexpressionprofilinginbreastcancer:

classification,prognostication,andprediction,Lancet,378(2011)1812-1823.

[4]J.Crown,J.O'Shaughnessy,G.Gullo,Emergingtargetedtherapiesintriple-negative

breastcancer,Ann.Oncol.,23(2012)56-65.

[5]A.Kolodkin,F.C.Boogerd,N.Plant,F.J.Bruggeman,V.Goncharuk,J.Lunshof,R.Moreno-

Sanchez,N.Yilmaz,B.M.Bakker,J.L.Snoep,R.Balling,H.V.Westerhoff,Emergenceofthe

siliconhumanandnetworktargetingdrugs,EurJPharmSci,46(2012)190-197.

[6]W.G.Kaelin,Theconceptofsyntheticlethalityinthecontextofanticancertherapy,Nat.

Rev.Cancer,5(2005)689-698.

[7]D.Hanahan,R.A.Weinberg,Thehallmarksofcancer,Cell,100(2000)57-70.

[8]B.Al-Lazikani,U.Banerji,P.Workman,Combinatorialdrugtherapyforcancerinthepost-

genomicera,NatureBiotechnology,30(2012)679-691.

[9]N.Plant,S.Aouabdi,Nuclearreceptors:thecontrollingforceindrugmetabolismofthe

liver?,Xenobiotica,39(2009)597-605.

[10]H.Gronemeyer,J.A.Gustafsson,V.Laudet,Principlesformodulationofthenuclear

receptorsuperfamily,Nat.Rev.DrugDiscov.,3(2004)950-964.

[11]A.L.Bookout,Y.Jeong,M.Downes,R.T.Yu,R.M.Evans,D.J.Mangelsdorf,Anatomical

profilingofnuclearreceptorexpressionrevealsahierarchicaltranscriptionalnetwork,Cell,

126(2006)789-799.

[12]M.Uhlen,L.Fagerberg,B.M.Hallstroem,C.Lindskog,P.Oksvold,A.Mardinoglu,A.

Sivertsson,C.Kampf,E.Sjoestedt,A.Asplund,I.Olsson,K.Edlund,E.Lundberg,S.Navani,

17

C.A.-K.Szigyarto,J.Odeberg,D.Djureinovic,J.O.Takanen,S.Hober,T.Alm,P.-H.Edqvist,H.

Berling,H.Tegel,J.Mulder,J.Rockberg,P.Nilsson,J.M.Schwenk,M.Hamsten,K.von

Feilitzen,M.Forsberg,L.Persson,F.Johansson,M.Zwahlen,G.vonHeijne,J.Nielsen,F.

Ponten,Tissue-basedmapofthehumanproteome,Science,347(2015)394-+.

[13]N.E.Hynes,H.A.Lane,ERBBreceptorsandcancer:Thecomplexityoftargeted

inhibitors,Nat.Rev.Cancer,5(2005)341-354.

[14]X.J.Cui,R.Schiff,G.Arpino,C.K.Osborne,A.V.Lee,Biologyofprogesteronereceptor

lossinbreastcanceranditsimplicationsforendocrinetherapy,J.Clin.Oncol.,23(2005)

7721-7735.

[15]M.Makishima,A.Y.Okamoto,J.J.Repa,H.Tu,R.M.Learned,A.Luk,M.V.Hull,K.D.

Lustig,D.J.Mangelsdorf,B.Shan,Identificationofanuclearreceptorforbileacids,Science,

284(1999)1362-1365.

[16]D.J.Parks,S.G.Blanchard,R.K.Bledsoe,G.Chandra,T.G.Consler,S.A.Kliewer,J.B.

Stimmel,T.M.Willson,A.M.Zavacki,D.D.Moore,J.M.Lehmann,Bileacids:Naturalligands

foranorphannuclearreceptor,Science,284(1999)1365-1368.

[17]B.Goodwin,S.A.Jones,R.R.Price,M.A.Watson,D.D.McKee,L.B.Moore,C.Galardi,

J.G.Wilson,M.C.Lewis,M.E.Roth,P.R.Maloney,T.M.Willson,S.A.Kliewer,Aregulatory

cascadeofthenuclearreceptorsFXR,SHP-1,andLRH-1repressesbileacidbiosynthesis,

MolecularCell,6(2000)517-526.

[18]G.Rizzo,B.Renga,A.Mencarelli,R.Pellicciari,S.Fiorucci,RoleofFXRinregulatingbile

acidhomeostasisandrelevanceforhumandiseases.,CurrentDrugTargetsforImmune,

EndocrinologyandMetabolicDisorders,5(2005)289-303.

[19]G.R.Mishra,M.Suresh,K.Kumaran,N.Kannabiran,S.Suresh,P.Bala,K.Shivakumar,N.

Anuradha,R.Reddy,T.M.Raghavan,S.Menon,G.Hanumanthu,M.Gupta,S.Upendran,S.

18

Gupta,M.Mahesh,B.Jacob,P.Mathew,P.Chatterjee,K.S.Arun,S.Sharma,K.N.Chandrika,

N.Deshpande,K.Palvankar,R.Raghavnath,R.Krishnakanth,H.Karathia,B.Rekha,R.Nayak,

G.Vishnupriya,H.G.M.Kumar,M.Nagini,G.S.S.Kumar,R.Jose,P.Deepthi,S.S.Mohan,

T.K.B.Gandhi,H.C.Harsha,K.S.Deshpande,M.Sarker,T.S.K.Prasad,A.Pandey,Human

proteinreferencedatabase-2006update,NucleicAcidsRes.,34(2006)D411-D414.

[20]D.S.Wishart,T.Jewison,A.C.Guo,M.Wilson,C.Knox,Y.Liu,Y.Djoumbou,R.Mandal,

F.Aziat,E.Dong,S.Bouatra,I.Sinelnikov,D.Arndt,J.Xia,P.Liu,F.Yallou,T.Bjorndahl,R.

Perez-Pineiro,R.Eisner,F.Allen,V.Neveu,R.Greiner,A.Scalbert,HMDB3.0-TheHuman

MetabolomeDatabasein2013,NucleicAcidsRes.,41(2013)D801-D807.

[21]K.E.Swales,M.Korbonits,R.Carpenter,D.T.Walsh,T.D.Warner,B.-B.D.,Thefarnesoid

Xreceptorisexpressedinbreastcancerandregulatesapoptosisandaromataseexpression.,

CancerRes.,66(2006)10120-10126.

[22]R.H.Gee,J.N.Spinks,J.M.Malia,J.D.Johnston,N.J.Plant,K.E.Plant,Inhibitionof

prenyltransferaseactivitybystatinsinbothliverandmusclecelllinesisnotcausativeof

cytotoxicity,Toxicology,329(2015)40-48.

[23]K.E.Plant,E.Anderson,N.Simecek,R.Brown,S.Forster,J.Spinks,N.Toms,G.G.

Gibson,J.Lyon,N.Plant,Theneuroprotectiveactionofthemoodstabilizingdrugslithium

chlorideandsodiumvalproateismediatedthroughtheup-regulationofthehomeodomain

proteinSix1,Toxicol.Appl.Pharmacol.,235(2009)124-134.

[24]P.K.Smith,R.I.Krohn,G.T.Hermanson,A.K.Mallia,F.H.Gartner,M.D.Provenzano,E.K.

Fujimoto,N.M.Goeke,B.J.Olson,D.C.Klenk,Measurementofproteinusingbicinchoninic

acid,AnalyticalBiochemistry,150(1985)76-85.

19

[25]N.J.Dolman,K.M.Chambers,B.Mandavilli,R.H.Batchelor,M.S.Janes,Toolsand

techniquestomeasuremitophagyusingfluorescencemicroscopy,Autophagy,9(2013)

1653-1662.

[26]Y.-p.Yang,L.-f.Hu,H.-f.Zheng,C.-j.Mao,W.-d.Hu,K.-p.Xiong,F.Wang,C.-f.Liu,

Applicationandinterpretationofcurrentautophagyinhibitorsandactivators,Acta

Pharmacol.Sin.,34(2013)625-635.

[27]Y.Sheng,B.Sun,W.-T.Guo,Y.-H.Zhang,X.Liu,Y.Xing,D.-L.Dong,3-Methyladenine

inducescelldeathanditsinteractionwithchemotherapeuticdrugsisindependentof

autophagy,Biochem.Biophys.Res.Commun.,432(2013)5-9.

[28]K.A.Tekirdag,G.Korkmaz,D.G.Ozturk,R.Agami,D.Gozuacik,MIR181Aregulates

starvation-andrapamycin-inducedautophagythroughtargetingofATG5,Autophagy,9

(2013)374-385.

[29]T.Gebaeck,M.M.P.Schulz,P.Koumoutsakos,M.Detmar,TScratch:anovelandsimple

softwaretoolforautomatedanalysisofmonolayerwoundhealingassays,Biotechniques,46

(2009)265-+.

[30]T.A.Kocarek,S.D.Shenoy,N.A.Mercer-Haines,M.Runge-Morris,Useofdominant

negativenuclearreceptorstostudyxenobiotic-induciblegeneexpressioninprimary

culturedhepatocytes,J.Pharmacol.Toxicol.Methods,47(2002)177-187.

[31]P.R.Maloney,D.J.Parks,C.D.Haffner,A.M.Fivush,G.Chandra,K.D.Plunket,K.L.

Creech,L.B.Moore,J.G.Wilson,M.C.Lewis,S.A.Jones,T.M.Willson,Identificationofa

chemicaltoolfortheorphannuclearreceptorFXR,JournalofMedicinalChemistry,43

(2000)2971-2974.

[32]T.Ghafourian,Z.Amin,QSARmodelsforthepredictionofplasmaproteinbinding,

BioImpacts:BI,3(2013)21-27.

20

[33]S.H.Kaufmann,S.Desnoyers,Y.Ottaviano,N.E.Davidson,G.G.Poirier,Specific

proteolyticcleavageofpoly(adp-ribose)polymerase-anearlymarkerofchemotherapy-

inducedapoptosis,CancerRes.,53(1993)3976-3985.

[34]M.J.Abedin,D.Wang,M.A.McDonnell,U.Lehmann,A.Kelekar,Autophagydelays

apoptoticdeathinbreastcancercellsfollowingDNAdamage,CellDeathandDifferentiation,

14(2007)500-510.

[35]R.U.Jaenicke,MCF-7breastcarcinomacellsdonotexpresscaspase-3,BreastCancer

ResearchandTreatment,117(2009)219-221.

[36]S.Elmore,Apoptosis:Areviewofprogrammedcelldeath,ToxicologicPathology,35

(2007)495-516.

[37]S.Nagata,P.Golstein,TheFASdeathfactor,Science,267(1995)1449-1456.

[38]H.Zou,Y.C.Li,H.S.Liu,X.D.Wang,AnAPAF-1centerdotcytochromecmultimeric

complexisafunctionalapoptosomethatactivatesprocaspase-9,J.Biol.Chem.,274(1999)

11549-11556.

[39]D.J.Klionsky,S.D.Emr,Cellbiology-Autophagyasaregulatedpathwayofcellular

degradation,Science,290(2000)1717-1721.

[40]Y.Kabeya,N.Mizushima,T.Uero,A.Yamamoto,T.Kirisako,T.Noda,E.Kominami,Y.

Ohsumi,T.Yoshimori,LC3,amammalianhomologueofyeastApg8p,islocalizedin

autophagosomemembranesafterprocessing,EmboJournal,19(2000)5720-5728.

[41]S.Barth,D.Glick,K.F.Macleod,Autophagy:assaysandartifacts,JournalofPathology,

221(2010)117-124.

[42]F.T.He,J.Li,Y.Mu,R.Kuruba,Z.Ma,A.Wilson,S.Alber,Y.Jiang,T.Stevens,S.Watkins,

B.Pitt,W.Xie,S.Li,Downregulationofendothelin-1byfarnesoidXreceptorinvascular

endothelialcells,CirculationResearch,98(2006)192-199.

21

[43]K.Fukase,H.Ohtsuka,T.Onogawa,H.Oshio,T.Ii,M.Mutoh,Y.Katayose,T.Rikiyama,

M.Oikawa,F.Motoi,S.Egawa,T.Abe,M.Unno,BileacidsrepressE-cadherinthroughthe

inductionofSnailandincreasecancerinvasivenessinhumanhepatobiliarycarcinoma,

CancerScience,99(2008)1785-1792.

[44]E.D.Strauch,J.Yamaguchi,B.L.Bass,J.Y.Wang,Bilesaltsregulateintestinalepithelial

cellmigrationbynuclearfactor-kappaB-inducedexpressionoftransforminggrowthfactor-

beta,JournaloftheAmericanCollegeofSurgeons,197(2003)974-984.

[45]Y.Zhang,W.Gong,S.Dai,G.Huang,X.Shen,M.Gao,Z.Xu,Y.Zeng,F.He,

DownregulationofHumanFarnesoidXReceptorbymiR-421PromotesProliferationand

MigrationofHepatocellularCarcinomaCells,MolecularCancerResearch,10(2012)516-

522.

[46]Y.T.Y.Li,K.E.Swales,G.J.Thomas,T.D.Warner,D.Bishop-Bailey,FarnesoidXreceptor

ligandsinhibitvascularsmoothmusclecellinflammationandmigration,Arteriosclerosis

ThrombosisandVascularBiology,27(2007)2606-2611.

[47]D.A.Zajchowski,M.F.Bartholdi,Y.Gong,L.Webster,H.L.Liu,A.Munishkin,C.

Beauheim,S.Harvey,S.P.Ethier,P.H.Johnson,Identificationofgeneexpressionprofilesthat

predicttheaggressivebehaviorofbreastcancercells,CancerRes.,61(2001)5168-5178.

[48]J.Silva,S.Dasgupta,G.H.Wang,K.Krishnamurthy,E.Ritter,E.Bieberich,Lipidsisolated

fromboneinducethemigrationofhumanbreastcancercells,JournalofLipidResearch,47

(2006)724-733.

[49]P.Lefebvre,B.Cariou,F.Lien,F.Kuipers,B.Staels,RoleofBileAcidsandBileAcid

ReceptorsinMetabolicRegulation,Physiol.Rev.,89(2009)147-191.

22

Table1:IC50valuesforCDCA-andGW4064-elicitedcelldeathinbreastcancercelllines

CDCA GW4064

Complete

medium

Serum-free

medium

Complete

medium

Serum-free

medium

MCF-7 n.d. 244.7±9.5µM 10.6±2.6µM 12.6±2.8µM

MDA-MB-231 n.d. 273.3±32.2µM 9.5±3.9µM 3.7±3.3µM

MDA-MB-468 n.d. 188.5±124.4µM n.d. 4.8±1.4µM

MCF-10A n.d. 142.0±87.4µM 2.6±2.6µM 3.8±1.1µM

n.d.=notdeterminedasslopedidnotconverge

23

Figure1:TheFXRagonistsGW4064andCDCAcauseconcentration-dependenttoxicityin

breastcancercelllines.MCF-10A(A),MCF-7(B),MDA-MB-231(C)andMDA-MB-468(D)

cellswereexposedtovaryingconcentrationsofGW4064orCDCAincompleteorserum-free

medium.Following48or72hoursofexposure,cellviabilitywasassessedbyMTT.Eachdata

pointrepresentsthemeanofthreeindependentexperiments,whileerrorbarsrepresent

thestandarderrorofthemean(SEM).*=p<0.05,**=p<0.01,***=p<0.001

24

Figure2:TheFXRagonistsGW4064andCDCAcauseconcentration-dependentactivation

ofcaspase3andcaspase7intheMCF-7andMDA-MB-231celllines.(A)MCF-7andMDA-

MB-231cellswereexposedto3µMGW4064,30µMCDCA,or1µMstaurosporineinserum-

freemedium,inthepresenceorabsenceofspecificcaspaseinhibitorsfor24hours,and

thenCaspase3andcaspase7activitymeasured.(B)MCF-7andMDA-MB-231cellswere

exposedtoindicatedconcentrationsofGW4064,CDCAorstaurosporineinserum-free

mediumfor24hoursandthenpoly(ADP-ribose)polymerase-1(PARP)cleavageassessedby

Westernblot.Eachdatapointrepresentsthemeanofthreeindependentexperiments,

25

whileerrorbarsrepresentthestandarderrorofthemean(SEM).*=p<0.05,**=p<0.01,

***=p<0.001

Figure3:TheFXRagonistsGW4064andCDCAactivatecaspase9,butnotcaspase8,

activityintheMCF-7andMDA-MB-231celllines.MCF-7andMDA-MB-231cellswere

exposedto3µMGW4064,30µMCDCAor1µMstaurosporineinserum-freemediumfor24

hours,andthenCaspase8andcaspase9activitymeasured.Eachdatapointrepresentsthe

meanofthreeindependentexperiments,whileerrorbarsrepresentthestandarderrorof

themean(SEM).*=p<0.05,**=p<0.01,***=p<0.001

26

Figure4:TheFXRagonistsGW4064andCDCAstimulateapoptosisthroughtheintrinsic

pathwayinMCF-7andMDA-MB-231celllines.MCF-7andMDA-MB-231cellswere

exposedto3µMGW4064,30µMCDCAor1µMstaurosporineinserum-freemedium.(A)

Subcellularlocalisationofcytochromecwasexaminedfollowing0,4,6and8hoursof

exposure,withLDHasamarkerforthecytosolicfraction.(B)BaxandBcl2proteinlevels

weremeasuredintotalproteinfollowing24hoursofexposure.Eachdatapointrepresents

themeanofthreeindependentexperiments,whileerrorbarsrepresentthestandarderror

ofthemean(SEM).*=p<0.05,**=p<0.01,***=p<0.001

27

Figure5:TheFXRagonistGW4064stimulatesautophagyinMCF-7cells.MCF-7andMDA-

MB-231cellswereexposedto3µMGW4064or30µMCDCAinserum-freemediumfor24

hoursandautophagyassessedby(A)LC3cleavageand(B)p62/SQSTM1accumulation.5mM

3-methyladenineand2.5µMrapamycinwereincludedwhereindicatedasaninhibitorand

activatorofautophagy,respectively.Eachdatapointrepresentsthemeanofthree

independentexperiments,whileerrorbarsrepresentthestandarderrorofthemean(SEM).

*=p<0.05,***=p<0.001

28

29

Figure6:InductionofapoptosisandautophagyinbreastcancercelllinesbyGW6064and

CDCAisFXR-dependent.MCF-7andMDA-MB-231cellswereexposedtoGW4064orCDCA

inserum-freemediumfor24hoursinthepresenceorabsenceofadominantnegativeFXR

protein(FXR-DN).(A)Cellswereexposedto3µMGW4064or30µMCDCAandexpression

oftheFXRtargetgeneSHPmonitoredbyWesternblotting.(B)CellswereexposedtoIC50

concentrationofGW4064orCDCAandcellviabilityassessedbyMTTassay.(C)Cellswere

exposedto3µMGW4064or30µMCDCAandapoptosisassessedbycaspase3/7activity

assay.(D)Cellswereexposedto3µMGW4064or30µMCDCAandautophagyassessedby

p62/SQSTM1accumulation.Eachdatapointrepresentsthemeanofthreeindependent

experiments,whileerrorbarsrepresentthestandarderrorofthemean(SEM).*=p<0.05,

**=p<0.01,***=p<0.001

30

Figure7:TheFXRagonistsGW4064andCDCAdonotstimulatemigrationofMCF-7or

MDA-MB-231celllines.(A)MCF-7andMDA-MB-231cellswereseededintranswellplates

andexposedto3µMGW4064or30µMCDCAinserum-freemediumfor72hours.The

numberofcellsmigratingintothebottomchamberwasquantified.(B)MCF-7andMDA-

MB-231cellswereseededinawound-healingassayformatandexposedto3µMGW4064or

30µMCDCAinserum-freemediumfor24hours.Cellmigrationwasquantifiedbyclosureof

thescratchareausingthetScatchprogram.Eachdatapointrepresentsthemeanofthree

independentexperiments,whileerrorbarsrepresentthestandarderrorofthemean(SEM).

31

SupplementaryFigures

ActivationoftheFarnesoidX-receptorinbreastcancercelllinesresultsincytotoxicitybut

notincreasedmigrationpotential

NouraAlasmael,RatiMohan,LisianeB.Meira,KarenE.SwalesandNickJ.Plant

SupplementaryFigure1:BreastcancercelllinesexpressafunctionalFXRgeneregulatory

network

FigureS1:BreastcancercelllinesexpressafunctionalFXRgeneregulatorynetwork.(A)

MCF-10A,MCF-7,MDA-MB-231andMDA-MB-468cellswereexposedto3µMGW4064,

30µMCDCAorvehiclecontrolinserum-freemediumfor24hours,andthenFarnesoidX-

receptor(FXR)expressionassessedbyWesternblot.(B)MCF-7,MDA-MB-231orHepG2

(positivecontrol)cellswereexposedto3µMGW4064,30µMCDCAorvehiclecontrolin

serum-freemediumfor24hours,andthensmallheterodimerpartner(SHP)expression

assessedbyWesternblot.Eachdatapointrepresentsthemeanofthreeindependent

experiments,whileerrorbarsrepresentthestandarderrorofthemean(SEM).**=p<0.01,

***=p<0.001

32

SupplementaryFigureS2:TheFXRagonistsGW4064andCDCAdonotstimulatemigration

ofMCF-10AorMDA-MB-468celllines

FigureS2:TheFXRagonistsGW4064andCDCAdonotstimulatemigrationofMCF-10Aor

MDA-MB-468celllines.(A)MCF-10AandMDA-MB-468cellswereseededintranswell

platesandexposedto3µMGW4064or30µMCDCAinserum-freemediumfor72hours.

Thenumberofcellsmigratingintothebottomchamberwasquantified.(B)MCF-7and

MDA-MB-231cellswereseededinawound-healingassayformatandexposedto3µM

GW4064or30µMCDCAinserum-freemediumfor24hours.Cellmigrationwasquantified

byclosureofthescratchareausingthetScatchprogram.Eachdatapointrepresentsthe

meanofthreeindependentexperiments,whileerrorbarsrepresentthestandarderrorof

themean(SEM).