ACS 4 March 2012 Azra

30
 ASL Conference 2011 Azra Daud Winthrop Prof. Carolyn Oldham Dr Suzanne McDonald ³Inside Informal, Outside Stormy´

Transcript of ACS 4 March 2012 Azra

Page 1: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 1/30

 ASL Conference 2011

Azra Daud

Winthrop Prof. Carolyn Oldham

Dr Suzanne McDonald

³Inside Informal, Outside Stormy´

Page 2: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 2/30

Sunday, March 04, 2012 2

Motivation

Aims

Introduction

Approach

Methodology

Challenges

Outcomes

Take home message

OUTLINES

Page 3: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 3/30

Sunday, March 04, 2012 3

DOC controls geochemical andecological processes in aquatic

ecosystems.

Quantifying and characterising DOC,

including its spatial and temporal

variability, is critical to understand itsrole in these processes.

Metal-humic issue can be acute in

wetland affected by acid sulfate soils

or acid mine drainage, whichfrequently contain high DOC and

metal concentrations under low pH

conditions.

MOTIVATION

Page 4: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 4/30

Page 5: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 5/30

5.8 x 106 ha

in Australia 0.76%

Potential ASS

Actual ASS

INTRODUCTION

Sunday, March 04, 2012 5

Page 6: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 6/30

ASS are of major environmental concern for many wetlands

and is made up of oxidisable sulfidic material, usually pyrite,FeS2 (Green et al ., 2006)

INTRODUCTION

Iron is one of the main

weathering products of pyrite, Fe2SO4 (Peiffer et 

al ., 1999)

Sunday, March 04, 2012 6

Page 7: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 7/30

Sunday, March 04, 2012 7

INTRODUCTION

Swan Coastal Plain, 180 km south of 

Perth, Western Australia ~30 ha

Hot dry summers (16 ± 30¶C) and

Cool wet winter (7 ± 17¶C)

Rainfall: ~700 mm

Evaporation: ~1500 mm A

 A¶

Page 8: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 8/30

Page 9: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 9/30

Sunday, March 04, 2012 9

Field measurement : pH, EC, ORP, Temp, depth

Laboratory analysis : HPSEC, UV-vis, TOC, cation

exchange, fractionation, phenanthroline, ICP-AES

Survey work ± site elevation

Collecting meteorological data from BOM, WA

Damkohler number  Water and chemical mass balance

Reaction rate

APPROACH

Inside:

Outside:

Model:

Page 10: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 10/30

Sunday, March 04, 2012 10

METHODOLOGY

DOM

Natural Organic Matter 

Humus Undecomposed Matter 

Humin Humic Substances

Humic Acid Fulvic Acid

0.45 µm membrane

syringe filter 

DOC

Page 11: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 11/30

Sunday, March 04, 2012 11

METHODOLOGY

Pure

Sample

DOC

Characterization

Laboratory

 Analysis

0.45 µm filter 

SRFAFe Total TOC

 APHA

Method5310A

5 310C

SECSUVA

Phenanthroline

pH adjustment

LOI

254 nm

Optimum

510 nm

Without Fe

With

known Fe(20 ± 1000

mg/L)

Mw 

Mn

3 years sampling

August 09 ± July 11

Seasonal

High water table

Low water table

CE RF

Page 12: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 12/30

Sunday, March 04, 2012 12

CHALLENGES & SOLUTIONS

1. Loss on ignition method was not applicable for [C] measurement

(negative reading of [C] ± TOC analysis).

2. TOC Standard Method 5310A was not consistent, and no similarity

as compared to Method 5310C. Optimisation was performed and

results were validated (5 months).

3. Results by phenanthroline method were not in the range.

Modification was undertaken. Reduce sample volume, 1:10 ratio to

standard).

4. Purification of carbon by reverse osmosis did not succeed.

 Aggregation problem occur, less [C] were measured. (CationExchange and Rapid Fractionation).

Page 13: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 13/30

Page 14: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 14/30

Sunday, March 04, 2012 14

TAKE HOME MESSAGES

1. Multiple tools analysis provides different view of characterisingDOC and provides improved understanding in the variability of 

DOC characteristics and reactivity.

2. When dealing with waters and organic matter under variable pHs,

method validation is very CRUCIAL !

3. Surface and ground water in an aquatic system do not always

exhibit similar behavior spatially and temporally, especially under 

high variability of DOC, heavy metals and pHs.

4. Results have flagged significant remarks on handling naturalwaters affected by ASS.

Page 15: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 15/30

Sunday, March 04, 2012 15

ACKNOWLEDGEMENT

Funding Malaysian Ministry of Higher Education (Tuition)

Universiti Tun Hussein Onn Malaysia (Stipend)

Australian Government (Natural Heritage Trust Regional (project 53454)

Curtin Water Quality Research Centre (Laboratories)

People Adam Lilicrap

Bibhash Nath

Daniel Boland

Laura Ellis

SESE postgrads

Family

Page 16: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 16/30

Sunday, March 04, 2012 16

THANK YOU«

Page 17: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 17/30

Sunday, March 04, 2012 17

CHALLENGES : [DOC] and [FET]

0

2

4

6

810

12

14

16

18

2 4 4.5 6 8

   D   O   C   (  m  g   /   L

   )

pH

1.5 mL

3.0 mL

5.0 mL

HTC

0

5

10

15

20

25

30

35

40

1 3 5 7

   D   O   C   (  m  g   /   L   )

Bores

1.5 mL, 3%

3.0 mL, 4%

HTC

0

10

20

30

40

50

60

70

80

2 4 4.5 6 8

   D   O   C   (  m  g   /   L   )

pH

1.5 mL

3.0 mL

5.0 mL

HTC

Page 18: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 18/30

Sunday, March 04, 2012 18

RESULTS AND DISCUSSION : PAPER 1 & 2

50 mg/L C from International Humic Substances Society Suwannee

River Fulvic Acid with different known concentrations of Fe

0

20

40

60

80

100

120

100010000100000

A b  s 2 

 5 4 nm

Mw

1000mg/L Fe

200mg/L Fe

100mg/L Fe

80mg/L Fe

60mg/L Fe

40mg/L Fe

20mg/L Fe

Without Fe

Page 19: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 19/30

Sunday, March 04, 2012 19

RESULTS AND DISCUSSION : PAPER 1

Trends of pH, Fe and DOC across

wetland in wet season (2009)

0

10

20

30

40

50

60

70

0

1

2

3

4

5

6

7

8

9

Bore1

Bore2

Bore3

Bore4

Bore5

Bore6

Bore7

Bore8

SWN SWS

pH Fe DOC

     p       H

Sample

 F  e ,D  O C  (   m g

 /  L  )  

Sample DOC Fe pH Mw SUVA

Name Wet Oxidation

High Temp

Catalytic (mg/L) at pH 7

Bore 1 8.0 - 19.8 8.0 4.92 8.1 2492 1.26 0.22

Bore 3 36.5 - 37.2 31.0 0.19 7.9 3074 1.13 1.44

Bore 5 2.6 - 4.3 3.4 62.14 3.2 1379 3.46 0.77

Bore 7 18.0 - 20.1 16.0 19.92 2.9 1670 3.06 3.04

SUVA

values for 

waters in

Bore 1, 3,

5 and 7

Page 20: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 20/30

Sunday, March 04, 2012 20

RESULTS AND DISCUSSION : PAPER 1

0

20

40

60

80

100

120

100010000

A b  s 2  5 4 nm

MwBore1 pH7 Bore2 pH7 Bore3 pH7 Bore4 pH7 Bore5 pH7Bore6 pH7 Bore7 pH7 Bore8 pH7 N pH7 S pH7

i ii

0

20

40

60

80

100

120

100010000

A b  s 2  5 4 nm

Mw

Bore1 pH8.09 Bore2 pH8.43 Bore3 pH7.90 Bore4 pH8.25 Bore5 pH3.17

Bore6 pH8.48 Bore7 pH2.93 Bore8 pH8.22 N pH2.69 S pH2.76

i ii

Page 21: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 21/30

Page 22: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 22/30

Sunday, March 04, 2012 22

METHOD:BACKGROUND

Physicochemical parameters:

pH

Loss on ignition

Electrical conductivity

Temperature

Oxidation reduction (redox) potential

Chemical analysis: Fe

DOC

Al

QA/QC:

Sample collected Samples were stored on ice, transferred to

the laboratory and then stored in the darkat 4oC until analysis.

Depth to groundwater (relative to LocalDatum) was measured prior to samplecollection.

Page 23: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 23/30

Sunday, March 04, 2012 23

BACKGROUND

Page 24: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 24/30

Sunday, March 04, 2012 24

RESULTS AND DISCUSSION

Trends of pH, Fe andDOC across wetland in

wet season (2009)

Trends of pH, Fe andDOC across wetland in

wet season (2010)

0

10

20

30

40

50

60

70

0

1

2

3

4

5

6

7

8

9

Bore1

Bore2

Bore3

Bore4

Bore5

Bore6

Bore7

Bore8

SWNSWS

pH Fe DOC

     p       H

Sample

 F  e ,D  O C  (   m g /  L  )  

0

10

20

30

40

50

60

70

0

1

2

3

4

5

6

7

8

9

Bore1

Bore2

Bore3

Bore4

Bore5

Bore6

Bore7

Bore8

SWN SWS

pH Fe DOC

Sampl

 F  e ,D  O C  (   m g /  L  )  

      p       H

Page 25: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 25/30

Sunday, March 04, 2012 25

ASS are of major environmental concern for many wetlands

and is made up of oxidisable sulfidic material, usually pyrite,

FeS2 (Green et al ., 2006)

INTRODUCTION

Iron is one of the main

weathering products of pyrite (Peiffer et al ., 1999)

Page 26: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 26/30

Sunday, March 04, 2012 26

METHODOLOGY

Size Exclusion Chromatography (SEC)

Chromatographic method (molecules in

solution are separated by size)

Also known as permeation gel method

Use organic solvent as a mobile phase

Provide good molar mass distribution for 

polymers

Principles:

A very large molecule will elute earlier when

mobile phase passed through the column.

A small molecule will elute late when the

pore- and interparticle volume passed throughthe column.

Page 27: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 27/30

Sunday, March 04, 2012 27

BACKGROUND

FeS2(s) + O2 SO42- + Fe(II)

Fe(II) + S22-

(dissolved)

(slow)

+ O2

(a)

(a¶)

(b)

+ O2

(c)

(oxidized)

(fast)

+F

eS2(s)

Fe(III) Fe(OH)3 (s)

(soluble)

Releasing

additional acidity

and new Fe(II)

Page 28: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 28/30

Sunday, March 04, 2012 28

BACKGROUND

DOM

Natural Organic Matter 

Humus Undecomposed Matter 

Humin Humic Substances

Humic Acid Fulvic Acid

0.45 micron filter DOC

Page 29: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 29/30

Sunday, March 04, 2012 29

RESULTS AND DISCUSSION

SampleDOC

Fe pH Mw SUVA

 Name Wet Oxidation High Temp Catalytic (mg/L) at pH 7

Bore 1 8.0 - 19.8 8.0 8.1 2492 1.26 0.22

Bore 3 36.5 - 37.2 31.0 7.9 3074 1.13 1.44

Bore 5 2.6 - 4.3 3.4 3.2 1379 3.46 0.77

Bore 7 18.0 - 20.1 16.0 2.9 1670 3.06 3.04

Page 30: ACS 4 March 2012 Azra

8/2/2019 ACS 4 March 2012 Azra

http://slidepdf.com/reader/full/acs-4-march-2012-azra 30/30

Sunday, March 04, 2012 30

Site Description

Small seasonally inundated wetland in the MinningupWetland Chain

10 km south of Bunbury

Mediterranean type climate (wet and dry)

Average annual rainfall : 850 mm (May-Oct) and 130 mm

(Nov-Apr)

Air temperature : 8.2o

C (July) - 27.6o

C (Feb) Annual potential evaporation : 1400 -1600 mm

BACKGROUND