ACE3P – Advanced Computational …...ACE3P – Advanced Computational Electromagnetics Code Suite...

2
ACE3P – Advanced Computational Electromagnetics Code Suite Omega3P (Frequency domain) ACE3P (Advanced Computa5onal Electromagne5cs 3D Parallel) is a comprehensive set of conformal, higherorder, parallel finiteelement electromagne6c codes with two unique features Based on higherorder curved finite elements for highfidelity modeling and improved solu6on accuracy Implemented on massively parallel computers for increased memory (problem size) and speed - Real eigenmodes in lossless or periodic cavi6es - Complex eigenmodes in lossy or externally loaded cavi6es - Mode damping in dielectric and ferrite materials - Linear, quadra6c and nonlinear eigensolvers - Sparameters of rf components and open structures - Dielectric and ferrite materials - Effects due to surface impedance on conductor walls - Integrated EM, thermal and mechanical effects - Nonlinear thermal conduc6vity and heat flux - Convec6ve boundary condi6ons - Shell elements for surface coa6ng - Mechanical eigensolver and harmonic solver - Par6cle tracking code in external rf and sta6c fields - Mul6pac6ng and dark current in cavi6es and couplers - Surface physics for field and secondary emissions - Transient and wakefield from source excita6on - Moving window technique for broadband pulse and short beam propaga6on - Absorbing boundary condi6on for far fields - Impedance boundary condi6on for thin coa6ng - Self consistent par6clein cell (PIC) modeling of beamcavity interac6ons in spacecharge dominated devices - Userspecified par6cle emission model S3P (Frequency domain) T3P (Time domain) Pic3P (Time domain) Track3P (Par3cle tracking) TEM3P (Mul3 physics)

Transcript of ACE3P – Advanced Computational …...ACE3P – Advanced Computational Electromagnetics Code Suite...

ACE3P – Advanced Computational Electromagnetics Code Suite

Omega3P  (Frequency  domain)          

ACE3P  (Advanced  Computa5onal  Electromagne5cs  3D  Parallel)    is  a  comprehensive  set  of  conformal,  higher-­‐order,  parallel  finite-­‐element  electromagne6c  codes  with  two  unique  features  •  Based  on  higher-­‐order  curved  finite  elements  for  high-­‐fidelity  modeling  and  improved  solu6on  accuracy  •  Implemented  on  massively  parallel  computers  for  increased  memory  (problem  size)  and  speed  

­ Real  eigenmodes  in  lossless  or  periodic  cavi6es  ­ Complex  eigenmodes  in  lossy  or  externally  loaded  cavi6es  ­ Mode  damping  in  dielectric  and  ferrite  materials  ­ Linear,  quadra6c  and  nonlinear  eigensolvers  

­ S-­‐parameters  of  rf  components  and  open  structures  ­ Dielectric  and  ferrite  materials  ­ Effects  due  to  surface  impedance  on  conductor  walls  

­ Integrated  EM,  thermal  and  mechanical  effects  ­ Non-­‐linear  thermal  conduc6vity  and  heat  flux  ­ Convec6ve  boundary  condi6ons  ­ Shell  elements  for  surface  coa6ng  ­ Mechanical  eigensolver  and  harmonic  solver  

­ Par6cle  tracking  code  in  external  rf  and  sta6c  fields  ­ Mul6pac6ng  and  dark  current  in  cavi6es  and  couplers  ­ Surface  physics  for  field  and  secondary  emissions  

­ Transient  and  wakefield  from  source  excita6on  ­ Moving  window  technique  for  broadband  pulse  and  short  beam  propaga6on  ­ Absorbing  boundary  condi6on  for  far  fields  ­ Impedance  boundary  condi6on  for  thin  coa6ng  

­ Self  consistent  par6cle-­‐in-­‐cell  (PIC)  modeling  of  beam-­‐cavity  interac6ons  in  space-­‐charge  dominated  devices  ­ User-­‐specified  par6cle  emission  model  

S3P  (Frequency  domain)          

T3P  (Time  domain)           Pic3P  (Time  domain)          

Track3P  (Par3cle  tracking)           TEM3P  (Mul3  physics)          

ACE3P Simulation Workflow Using High Performance Computing

(1)  Preprocessing  -­‐  Cubit  ­ Cubit  builds  CAD  models  and  generates  finite  element  meshes.  ­ ACE3P  inputs  curved  finite-­‐element  meshes  for  high-­‐fidelity  representa6on  of  geometry.  

hSp://cubit.sandia.gov    

(2)  Running  ACE3P  ­ On  NERSC  computer  facili6es  through  submiWng  simple  command  files  ­ Dedicated  CPU  alloca6ons  on  NERSC    ­ NERSC’s  Cori  with  632,672  compute  cores,  1  petabytes  of  memory,  and  27.9  petaflops/sec  peak  performance    

hSp://www.nersc.gov    

(3)  Postprocessing  -­‐  ParaView  ­ ParaView  visualizes  unstructured  meshes,  field  and  par6cle  data.  ­ SLAC  postprocessing  tools  for  extrac6ng  rf  parameters  and  field  informa6on  

hSp://www.paraview.org    

ACE3P  TUTORIALS  AND  DOCUMENTATION    hLps://confluence.slac.stanford.edu/display/AdvComp/Materials+for+cw16  

CONTACT  INFORMATION  Computa5onal  Electrodynamics  Department  [email protected]