Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan,...

22
Accuracy-Aware Aquatic Accuracy-Aware Aquatic Diffusion Process Diffusion Process Profiling Using Robotic Profiling Using Robotic Sensor Networks Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State University

Transcript of Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan,...

Page 1: Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State.

Accuracy-Aware Aquatic Accuracy-Aware Aquatic Diffusion Process Diffusion Process

Profiling Using Robotic Profiling Using Robotic Sensor NetworksSensor Networks

Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan

Michigan State University

Page 2: Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State.

• Diffusion profiling• source location, concentration, diffusion speed• high accuracy, short delay

• Physical uncertainties– temporal evolution, sensor biases, environmental noises

04/19/2012 IPSN'12, Beijing, China 2

Harmful Diffusion ProcessesHarmful Diffusion Processes

Unocal oil spillSanta Barbara, CA, 1969http://en.wikipedia.org

BP oil spill,Gulf of Mexico, 2010

http://en.wikipedia.org

Chemicals/Waste Water PollutionUK, 2009, Reuters

Page 3: Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State.

04/19/2012IPSN'12, Beijing, China 3

Traditional ApproachesTraditional Approaches

• Manual sampling – labor intensive– coarse spatiotemporal

granularity

• Fixed buoyed sensors– expensive, limited coverage, poor adaptability

• Mobile sensing via AUVs and sea gliders– expensive (>$50K), bulky, heavy

Page 4: Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State.

04/19/2012 IPSN'12, Beijing, China 4

Aquatic Sensing via Robotic Aquatic Sensing via Robotic FishFish

• On-board sensing, control, and wireless comm.

• Low manufacturing cost: ~$200-$500

• Limited power supply and sensing capability

Smart Microsystems Lab, MSU

Page 5: Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State.

04/19/2012 IPSN'12, Beijing, China 5

Problem StatementProblem Statement

diffusion source

robotic sensors

•Maximize profiling accuracy w/ limited power supply

•Collaborative sensing: source location, concentration, speed•Scheduling sensor movement to increase profiling accuracy

Page 6: Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State.

04/19/2012 IPSN'12, Beijing, China 6

RoadmapRoadmap

• Motivation

• Background

• Profiling and Accuracy Modeling

• Movement Scheduling

• Trace Collection & Evaluation

Page 7: Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State.

yc

uxc

uz

cD

y

cD

x

cD

tc

yxzyx

2

2

2

2

2

2

04/19/2012 IPSN'12, Beijing, China 7

Diffusion Process ModelDiffusion Process Model

• Concentration at position (x,y,z) and time instance t

• Diffusion and water speed• Diffusion profile (source loc, α, β)

)exp(),( 2dtdc

Page 8: Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State.

04/19/2012 IPSN'12, Beijing, China 8

Sensor Measurement ModelSensor Measurement Model

• Sensor measurement• Actual concentration

– distance to diffusion source– elapsed time

• Sensor bias• Random noise,

nbcz

Page 9: Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State.

04/19/2012 IPSN'12, Beijing, China 9

Collaborative Diffusion Collaborative Diffusion Profiling Profiling

• Each sensor samples periodically• Samples from different sensors are fused

via Maximum Likelihood Estimation (MLE)

• How to model the accuracy of profiling? • How does the accuracy metric guide the

movement of sensors?

Page 10: Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State.

'4)''(

'

)(

21

22121

21

0

yLyLxLyLyLxL

xLxL

AxCRB

04/19/2012 IPSN'12, Beijing, China 10

Cramér-Rao Bound (CRB)Cramér-Rao Bound (CRB)

• Lower bound of estimate variance• Highly non-linear expression

e.g.

2121 ,,, yLyLxLxL

row vectors of all sensor coordinates

Page 11: Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State.

N

iiyCRBxCRB

A100 )(

1)(

1

04/19/2012 IPSN'12, Beijing, China 11

A New Accuracy MetricA New Accuracy Metric

• Sum of contributions of individual sensors

fixed in each profiling iteration node i's contribution tooverall profiling accuracy

),,( minddf ii distance b/w source

and sensor i min distance

to source

diffusion parameter

Page 12: Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State.

04/19/2012 IPSN'12, Beijing, China 12

Sensor Movement SchedulingSensor Movement Scheduling

Objective: find movement schedule for each sensor, s.t. profiling accuracy ω is maximized

Constraint:

• Movement Schedule: {orientation, # of steps}

MmN

ii

1

number of steps for sensor i

Page 13: Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State.

• Assign orientation– Find di

* that maximizes – If di > di

*, toward estimated source, otherwise

away from

• Allocate moving steps

– Maximize Σω(Δi), Δi – # of steps of sensor i

– Decomposition → dynamic programming

04/19/2012 IPSN'12, Beijing, China 13

Radial Scheduling AlgorithmRadial Scheduling Algorithm

di*

),,( minddf ii

Page 14: Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State.

diffusion source

robotic sensors

Putting All TogetherPutting All Together

1

2

3

• Collaborative profiling• Sampling• TX samples to node 2• Profiling via MLE estimation Estimated source location

• Movement scheduling• Orientation determination • DP-based step allocation

Page 15: Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State.

04/19/2012 IPSN'12, Beijing, China 15

Evaluation MethodologyEvaluation Methodology

• Trace collection– Rhodamine-B diffusion model– On-water Zigbee communication– GPS localization, robotic fish movement

• Trace-driven simulation– Profiling accuracy, scalability etc.

• Implementation on TelosB motes– Computation complexity

Page 16: Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State.

04/19/2012 IPSN'12, Beijing, China 16

Rhodamine-B DiffusionRhodamine-B Diffusion

discharge Rhodamine-B in saline water periodically capture diffusion with a camera expansion of contour → diffusion evolution

grayscale

model verification

Page 17: Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State.

04/19/2012 IPSN'12, Beijing, China 17

On-water ZigBee On-water ZigBee CommunicationCommunication

• PRR measurement using ZigBee radios on Lake Lansing

• 50% drop of comm. range compared to on land

Page 18: Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State.

04/19/2012 IPSN'12, Beijing, China 18

GPS and Movement ErrorsGPS and Movement Errors

• GPS localization errors– groundtruth vs. GPS measurement– average error is 2.29 m

• Robotic fish movement– 3m×1m water tank– tail beating frequency: 0.9 Hz,

amplitude: 23o

expected speed: 2.5 m/min

Linx GPS module

Page 19: Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State.

04/19/2012 IPSN'12, Beijing, China 19

Trace-driven SimulationsTrace-driven Simulations

• Profiling accuracy vs. elapsed time

profiling accuracy improves as time elapses

< SNR-based scheduling >orientation: gradient-ascent of

SNR# of steps: proportion to SNR

Page 20: Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State.

04/19/2012 IPSN'12, Beijing, China 20

Time ComplexityTime Complexity

• Implemented MLE estimation and scheduling algorithm on TeobsB motes

Page 21: Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State.

04/19/2012 IPSN'12, Beijing, China 21

ConclusionsConclusions

• Collaborative diffusion profiling using robotic fish– New accuracy profiling metric– Movement scheduling algorithm

• Evaluation in trace-driven simulation & real implementation

– High accuracy & low overhead

Page 22: Accuracy-Aware Aquatic Diffusion Process Profiling Using Robotic Sensor Networks Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan Michigan State.

04/19/2012 IPSN'12, Beijing, China 23

Trace-driven SimulationsTrace-driven Simulations

• Profiling accuracy vs. number of sensors

profiling accuracy improves as more sensors are deployed