Accelerators Mark Mandelkern. For producing beams of energetic particles Protons, antiprotons and...

30
Accelerators Mark Mandelkern

Transcript of Accelerators Mark Mandelkern. For producing beams of energetic particles Protons, antiprotons and...

Accelerators

Mark Mandelkern

For producing beams of energetic particles

• Protons, antiprotons and light ions

• heavy ions

• electrons and positrons

• (secondary) neutral beams (photons, neutrons, neutrinos)

Some accelerator applications

• particle and nuclear physics• synchrotron radiation

– materials science, biology

• medical radiation therapy• isotope production• plasma heating• high energy X-ray production

– non-destructive testing, food sterilization

Accelerators in particle physics

• probe small-scale structure• = h/p10-13 cmp(MeV/c)• electrons, positrons

– Pointlike (also neutrinos), no strong interactions

– costly to accelerate (synchrotron radiation)

• protons and antiprotons– complicated structures make interpretation difficult

– easier to accelerate to ultra-high energies

Accelerator types

• electrostatic– battery, lightning, van de Graff, Pellatron: to about 30

MeV; for nuclear physics and isotope production

• cascade– Cockcroft-Walton: to several MeV; cheap; for X-ray

sources and injectors

• Linear– RFQ

– drift-tube(Wideroe, Alvarez):preaccelerators, LAMPF

– Waveguide:electrons only(SLAC, NLC)

Pelletron

Van de Graff

Cockcroft-Walton principle

ISIS Cockcroft-Walton

Wideroe Linac

Alvarez Linac

Radiofrequency Quadrupole RFQ

SLAC Linac

SLAC Waveguide

Phase Stability

Circular Accelerators

• betatron– electrons only, cheap, portable, to ~500 MeV

• cyclotron– Protons to ~500 MeV (TRIUMF, PSI)

• Synchrotron– 100 GeV electrons (LEP)– 1 TeV protons and antiprotons (FNAL)– 7 TeV protons (LHC)

Cyclotron animation

First cyclotron

TRIUMF

Strong focusing principle

Strong focusing animation

HEP Accelerator Systems

• FNAL Tevatron(1 TeV p)– CW(750 keV):Linac:Booster(8 GeV):Main

Injector(120 GeV): Tevatron Ring

• CERN SPS/LEP(400 GeV p/100 GeV e+-)

– RFQ (750 keV):Linac (50 MeV):PS(28 GeV):SPS:LEP

FNAL Tevatron Tunnel

Synchrotron radiation

W=(e2/)(4R) loss per turn

Ec=(hc/232R) peak energy

E/mc2

LEP: 100 GeV/beam: R=4.9km W~3 GeV Ec~ 90 keV(hard X-ray) 288 SC RF cavities

evatron: E=1 TeV R=1.1km W~ 10 eV Ec~0.4 eV

LHC: E=7 TeV R=4.9 kmW~5 keV, Ec~27 eV

Colliders

• Circular

– e- e+ below 10 GeV (BEPS/PEP-2/KEKB)

– 1 TeV p/1 TeV pbar (Tevatron-FNAL),

– 27.5 GeV e-/920 GeV p (HERA-DESY)

– 105 GeV e-/105 GeV e+ (LEP-CERN)

– 7 TeV p/7TeV p (LHC-CERN)

• Linear

– 50 GeV e-/50 GeV e+ (SLC-SLAC)

– ~1 TeV e-/~1 TeV e+ (NLC-?)

Why Colliders?

• Fixed target (pp)– Ecm

2=mb2+mt

2+2Ebmt

– Eb=1 TeV mb=mt=0.938 GeV Ecm=43.3 GeV

• Symmetrical Collider – Ecm=Eb+Et

– Eb=Et= 1 TeV Ecm=2 TeV

How Colliders?

Event Rate = LL=f n1n2/(4xy)

n1 n2 particles per bunch

x,y rms horizontal (vertical) beam profile

Thus intense bunched beams with tiny beam spots at the interaction points

LEP

LHC

SLC/NLC