Accelerators Design for Reliability · 2018. 11. 21. · LINAC Accelerators Adrian Pitigoi –...

1
LINAC Accelerators Adrian Pitigoi Empresarios Odei Rey Orozco Universitaet Stuttgart (D INTROD MAX MAX (MYRRHA Accelerator (MYRRHA Accelerator eXperiment eXperiment) MAX Task 4.2 SNS (ORNL) Linac Reliability modeling (methodology MAX Task 4.2 SNS (ORNL) Linac Reliability modeling (methodology currently applied for NPPs –with RiskSpectrum (RSPSA) MAX Task 4 4 MYRRHA Linac MAX Task 4.4 MYRRHA Linac Reliability model LINAC ACCELERATORS MODELLING SNS Li li bilit l i S SNS Linac reliability analysis Feedback on SNS Linac performance Modeling tool for Task 4 4 S Modeling tool for Task 4.4 Draft preliminary conclusions and recommendations: Maximize the reliability/availability/safety of MYRRHA Acc. Guidance for designing the MYRRHA Accelerator. SNS Linac Risk S t dl Spectrum model M rrha Linac desi n Myrrha Linac design: Low energy section – Injector/Linac front end: Multicell cavities – Modularity & fault tolerance not applicable Parallel Redundancy 2 parallel Injectors with fast switching M ( Ser Myrrha Linac Risk Spectrum model Outcomes of the simulations: Outcomes of the simulations: Without/With Without/With Injector redundancy Injector redundancy ‐‐ ‐‐A v A v to to MTBFs of MTBFs of diagnostics diagnosticsreliability target reliability target v of compensation of compensation function reliability function reliability ‐‐ ‐‐ A v A v Superconducting part Superconducting partassuming larger assuming larger components components (better comps. Reliability) better comps. Reliability)‐‐ ‐‐ Linac Linac Fault Frequency Fault Frequency could evolve from could evolve from than 10/3mths than 10/3mths Myrte Myrte WP2 WP2 Task 2.9: Linac4 Task 2.9: Linac4 CERN & CERN & Linac Linac for for Myrrha Myrrha reliability mo reliability mo Li l Li Linac4 to replace Linac2 complex (from 2020) Availabilitycritical (targ Reliability Run (RR) star Development of commo Ui l RR f il Using relevant RR failur CONCLU High Highreliability for MYRRHA reliability for MYRRHA Linac Linac anticipated in the anticipated in the CONCLU design design of the machine. of the machine. Compensation (fault Compensation (faulttolerance) tolerance) solution to minimize the effect of RF/magnets solution to minimize the effect of RF/magnets failures failures failures failures Double injector Double injector improving the overall reliability improving the overall reliability (avoid trips caused by (avoid trips caused by components in the front components in the frontend), assuming a high end), assuming a highreliable switching magnet reliable switching magnet Parallel redundancy Parallel redundancy for power supplies and controllers for power supplies and controllers (and other components in the SCL and HEBT) Design for Reliability Agrupados Internacional (EAI), SPAIN DE), Jan Uythoven (CERN) , Andrea Apollonio (CERN) DUCTION MYRTE MYRTE Research activities to demonstrate the feasibility of Research activities to demonstrate the feasibility of transmutation of high transmutation of highlevel nuclear waste at industrial scale level nuclear waste at industrial scale transmutation of high transmutation of highlevel nuclear waste at industrial scale level nuclear waste at industrial scale (MYRRHA (MYRRHA long term supporting research facility for Accelerator Driven long term supporting research facility for Accelerator Driven Spallation Spallation system (ADS) system (ADS) MYRTE WP2 MYRTE WP2– continues MAX activities continues MAX activities aimed to demonstrate high reliability of aimed to demonstrate high reliability of Myrrha Myrrha Linac is achievable Linac is achievable MODELLING RESULTS SNS Reliability Analysis Accelerator downtime t ib ti (b t ) SNS Reliability Analysis Most affected SNS Linac parts/systems : SCL systems ( ) Accelerator trip failures frequency (by system) contribution (by system) FrontEnd systems (IS, LEBT, MEBT) Diagnostics & Controls SCL RF system SCL Power Supplies and PS Controllers RF System failures (no. & SNS RS Model results RF System failures (no. & durationhours) SNS RS Model results in line with SNS Logbook data statistics: RF system and electrical failures most frequent Electrical systems failures most contributing to accelerator downtime Medium and High energy section – Independentlyphased superconducting section Highly modular (individual, independently controlled accelerating cavities). rial redundancy strong tolerance to faults. vailability from 70% vailability from 70% o 75% o 75% value + value + target value target value vailability to 80%. vailability to 80%. r MTBF for r MTBF for Availability to 97%. Availability to 97%. m 100/3mths to less 100/3mths to less odelling odelling i CERN I j 2in CERN Injector get > 95%) rted in July 2017) n input format d f M h Li e data for Myrrha Linac USIONS Myrte Myrte WP2 WP2 Task 2.9 Next Steps Task 2.9 Next Steps USIONS AFT for LINAC4; Reliability Run data used to refine & validate the LINAC4 Reliability model LINAC d li l i d i f M h Li hi h LINAC4 modeling conclusions recommendations for Myrrha Linac highreliability (1 st phase: LINAC Injector + Accelerator up to 100 MeV) [in consideration of previous recommendations from D4.4(MAX) reliability report.]

Transcript of Accelerators Design for Reliability · 2018. 11. 21. · LINAC Accelerators Adrian Pitigoi –...

  • LINAC Accelerators Adrian Pitigoi – Empresarios

    Odei Rey Orozco ‐ Universitaet Stuttgart (D

    INTROD

    MAXMAX ‐‐ (MYRRHA Accelerator  (MYRRHA Accelerator  eXperimenteXperiment)) MAX Task 4.2 ‐ SNS (ORNL) Linac ‐ Reliability modeling (methodology 

    MAX Task 4.2 SNS (ORNL) Linac Reliability modeling (methodology currently applied for NPPs –with RiskSpectrum (RS‐PSA)

    MAX Task 4 4 MYRRHA Linac

    MAX Task 4.4 ‐MYRRHA LinacReliability model

    LINAC ACCELERATORS MODELLING

    SNS Li   li bilit   l i SSNS Linac reliability analysis

    ‐ Feedback on SNS Linac performance 

    ‐Modeling tool for  Task 4 4

    S

    Modeling tool for  Task 4.4

    Draft preliminary conclusions and recommendations:

    ‐Maximize the reliability/availability/safety of MYRRHA Acc.y y y

    ‐ Guidance for designing the MYRRHA Accelerator.

    SNS Linac Risk S t   d lSpectrum model

    M rrha Linac desi nMyrrha Linac design:Low energy section – Injector/Linac front end:  Multicell cavities – Modularity & fault tolerance not 

    applicable Parallel Redundancy ‐ 2  parallel Injectors with fast switching

    M(

    Ser

    Myrrha Linac Risk Spectrum model

    Outcomes of the simulations:Outcomes of the simulations:Without/WithWithout/With Injector redundancy Injector redundancy ‐‐‐‐AvAv

    totoMTBFs of MTBFs of diagnosticsdiagnostics‐‐reliability targetreliability target vvof compensationof compensation function reliability function reliability ‐‐‐‐ AvAv Superconducting partSuperconducting part‐‐ assuming larger assuming larger componentscomponents ((better comps. Reliability)better comps. Reliability)‐‐‐‐ LinacLinac Fault FrequencyFault Frequency could evolve fromcould evolve fromthan 10/3mthsthan 10/3mths

    MyrteMyrte WP2 WP2 –– Task 2.9: Linac4 Task 2.9: Linac4 ‐‐CERN &  CERN &  LinacLinac for for MyrrhaMyrrha –– reliability moreliability mo

    Li      l  Li Linac4  to replace Linac2

    complex (from 2020)

    Availability‐critical (targy g

    Reliability Run (RR) star

    Development of commo

    U i   l  RR f il Using relevant RR failur

    CONCLU

    HighHigh‐‐reliability for MYRRHA reliability for MYRRHA LinacLinac ‐‐ anticipated in the anticipated in the 

    CONCLU

    gg yy ppdesigndesign of the machine.of the machine. Compensation (faultCompensation (fault‐‐tolerance)tolerance) ‐‐ solution to minimize the effect of RF/magnets solution to minimize the effect of RF/magnets failuresfailuresfailuresfailures

    Double injector Double injector ‐‐ improving the  overall reliabilityimproving the  overall reliability (avoid trips caused by (avoid trips caused by components in the frontcomponents in the front‐‐end), assuming a  highend), assuming a  high‐‐reliable switching magnetreliable switching magnet

    Parallel redundancyParallel redundancy for power supplies and controllersfor power supplies and controllers (and other components in the SCL and HEBT)

    ‐ Design for ReliabilityAgrupados Internacional (EAI), SPAIN

    DE), Jan Uythoven (CERN) , Andrea Apollonio (CERN)

    DUCTION

    MYRTEMYRTE ‐‐ Research activities to demonstrate the feasibility of Research activities to demonstrate the feasibility of transmutation of hightransmutation of high‐‐level nuclear waste at industrial scale level nuclear waste at industrial scale transmutation of hightransmutation of high‐‐level nuclear waste at industrial scale level nuclear waste at industrial scale (MYRRHA (MYRRHA ‐‐ long term supporting research facility for  Accelerator Driven long term supporting research facility for  Accelerator Driven SpallationSpallationsystem (ADS)system (ADS)

    MYRTE WP2MYRTE WP2–– continues MAX activities continues MAX activities aimed to demonstrate high reliability of aimed to demonstrate high reliability of g yg yMyrrhaMyrrha Linac is achievableLinac is achievable

    MODELLING RESULTS

    SNS Reliability Analysis Accelerator downtime t ib ti  (b   t )SNS Reliability AnalysisMost affected SNS Linac parts/systems :

    SCL systems ( )

    Accelerator trip failures frequency (by system)

    contribution (by system)

    Front‐End systems (IS, LEBT, MEBT) Diagnostics & Controls

    SCL RF system SCL Power Supplies and PS Controllers

    RF System failures (no. & 

    SNS RS Model results

    RF System failures (no. & duration‐hours)

    SNS RS Model results‐ in line with SNS Logbook data statistics: RF system and electrical failures ‐most frequent Electrical systems failures ‐ most contributing to accelerator downtime 

    Medium and High energy section – Independently‐phased superconducting section ‐Highly modular (individual, independently controlled accelerating cavities). rial redundancy ‐ strong tolerance to faults.

    vailability from 70% vailability from 70% o 75%o 75%value + value + target value target value vailability to 80%.vailability to 80%.r MTBF for r MTBF for Availability to 97%.Availability to 97%.m m 100/3mths to less 100/3mths to less 

    odelling odelling 

     i  CERN I j  2 in CERN Injector 

    get > 95%)g 95

    rted in July 2017)

    n input format

     d  f  M h  Lie data for Myrrha Linac

    USIONS

    MyrteMyrte WP2 WP2 –– Task 2.9 Next StepsTask 2.9 Next Steps

    USIONS

    AFT for LINAC4; Reliability Run  data used to  refine & validate the LINAC4 Reliability model

    LINAC   d li   l i   d i  f  M h  Li  hi hLINAC4 modeling conclusions  recommendations for Myrrha Linac high‐reliability (1st  phase: LINAC Injector + Accelerator up to 100 MeV)

    [in consideration of previous recommendations from D4.4 (MAX) reliability p 4 4 ( ) yreport.]