Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach...

26
Slide 1 Los Alamos NATIONAL LABORATORY Accelerated Molecular Dynamics Timothy C. Germann Materials Science (X-7) Arthur F. Voter Theoretical Chemistry and Molecular Physics (T-12) Los Alamos National Laboratory “Summer School on Computational Materials Science,” University of Illinois at Urbana-Champaign, June 2001 Collaborators: Mads R. Sørensen, Francesco Montalenti, Sriram Swaminarayan James Sprague (NRL) Slide 2 Los Alamos NATIONAL LABORATORY Outline of the Lectures Motivation: Why Accelerated MD? Infrequent events and transition state theory Hyperdynamics Basic concept Mathematical justification Trial applications Parallel Replica Dynamics Temperature Accelerated Dynamics Application to thin film growth at experimental deposition rates

Transcript of Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach...

Page 1: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

1

Slide1

Los AlamosN A T I O N A L L A B O R A T O R Y

AcceleratedMolecular Dynamics

Timothy C. GermannMaterialsScience(X-7)

Arthur F. VoterTheoreticalChemistryandMolecularPhysics(T-12)

Los AlamosNationalLaboratory

“SummerSchoolonComputationalMaterialsScience,”

Universityof Illinois at Urbana-Champaign,June2001

Collaborators:MadsR. Sørensen,FrancescoMontalenti,SriramSwaminarayan

JamesSprague(NRL)

Slide2

Los AlamosN A T I O N A L L A B O R A T O R Y

Outline of the Lectures

� Motivation:Why AcceleratedMD?� Infrequenteventsandtransitionstatetheory� Hyperdynamics� Basicconcept� Mathematicaljustification� Trial applications� ParallelReplicaDynamics� TemperatureAcceleratedDynamics� Applicationto thin film growth at experimentaldepositionrates

Page 2: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

2

Slide3

Los AlamosN A T I O N A L L A B O R A T O R Y

Conventional Molecular DynamicsCapabilities

� Themaximumintegrationtimestepin MD simulationsis determined

by thefastestmotionin thesystem,typically vibrations.� Typicalmolecularvibrationfrequenciesrangeup to 3000cm���(period= 10 fs), andopticalphononfrequenciesareon theorderof

10 THz (period= 100fs).� A typicalMD timestepis thereforeon theorderof 1 fs.� Millions of timestepsonly reachnsof simulationtime.� High-frequency stretchor bendmodescanbefrozenin molecular

systems(e.g.SHAKE/RATTLE) or multiple timestepsused(e.g.

r-RESPA), but thegainis typically only a factorof 2-3.

Slide4

Los AlamosN A T I O N A L L A B O R A T O R Y

Needfor AcceleratedMolecular DynamicsMethods

Many importantproblemslie beyondthetimescalesaccessibleto

conventionalMD, dueto theinfrequentsurfaceor bulk diffusion

mechanismsinvolved,including:� Vapor-depositedthin film growth (metalsandsemiconductors)

especiallyheteroepitaxiallayers� Stress-assisteddiffusionof point defects,defectclusters,and

dislocations� Ion implantationor radiationdamageannealing

especiallyfor complex crystalphasessuch as ��� Pu

Page 3: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

3

Slide5

Los AlamosN A T I O N A L L A B O R A T O R Y

Vapor-depositedthin film growth

� Eachdepositioneventlastslessthan

2 ps– ideallysuitedfor traditionalMD.� Experimental growth conditions are

typically 1 monolayerper secondor

slower.� A delicateinterplayof variousdiffusionbarrierscausesa

nonmonotonictemperaturedependenceof thefinal surface

roughness,from smoothlayer-by-layergrowth to rough3D

growth andbackto layer-by-layer.� Theseactivatedprocesses,which determinethefinal morphology,

occuron timescalesfar longerthanthatof traditionalMD.

Slide6

Los AlamosN A T I O N A L L A B O R A T O R Y

Neutron/ion bombardment simulations� Radiationdamageor ion implantationsimulationsinvolvea rapid

(ps)dissipationof theprimaryknock-onatom(PKA) kinetic energy,

which is againwell-suitedto standardmoleculardynamics.� However, thetypical � decayrateor ion flux is many ordersof

magnitudeslower; for instance,���

Puundergoes� decaywith a

half-life of 24,400years.Onaverage,eachPuatomis displacedfrom

its latticesiteonceevery 10years,andduringthesametimeperiod,

411 � -decayswill occurfor every million Puatoms.

PuU He

Cascade size 7.5 nm2290 Frenkel pairs

Cascade size 0.8 m265 Frenkel pairs

Frenkel pair:VacancySelf-interstitial

86 keV 5 MeV

U range 12 nm He range 10 m

Page 4: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

4

Slide7

Los AlamosN A T I O N A L L A B O R A T O R Y

Onepossiblesolution: kinetic Monte Carlo

� kMC is extremelyusefulandhasbeenappliedto eachof these

problems,sometimesin combinationwith directMD:� Simulationsof energetic beamdeposition:Frompicosecondsto seconds,

J.Jacobsen,B.H. Cooper, andJ.P. Sethna,Phys.Rev. B 58, 15847(1998).� Self-decay-induceddamage productionandmicro-structureevolutionin fcc

metals:An atomic-scalecomputersimulationapproach,

T. Diazdela Rubiaetal., J.Comp.-AidedMat. Design5, 243(1998).� kMC requiresaprior knowledge(catalog)of all possibleevents.� Evenfor oneof thesimplestsystems– submonolayerdiffusionon a

fcc(100)surface– new diffusionmechanismsdiscoveredduringthe

1990sraisequestionsaboutthecompletenessof kMC ratecatalogs.. .

Slide8

Los AlamosN A T I O N A L L A B O R A T O R Y

Unexpectedevents� Before1990,mostkMC catalogsfor fcc(100)surfacediffusiononly

containedahopratedependenton thelocalenvironment(occupancy

of sites1-10):

hop1 2 3 4

5 6

7 8 9 10� A concertedexchangemechanism,only discoveredin 1990,is

dominantfor somemetals:exchange

(Feibelman 1990)

� Thesituationbecomesnearlyhopelessif we areinterestedin grain

boundaries,strainedsystems(asin lattice-mismatched

heteroepitaxialgrowth), or complex crystalstructures.. .

Page 5: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

5

Slide9

Los AlamosN A T I O N A L L A B O R A T O R Y

Complexcrystal phases: -Pu

Thelow-temperaturephaseof plutonium(stablebelow 388K at � � � )resemblesa distortedhcplattice:

hexagonallattice

monoclinic � phase

� Predictingdiffusionmechanismsfor the � -phasestructureis outof

thequestion;evenif they couldall beenumerated,theresultingrate

catalogmaybeprohibitively large.

Slide10

Los AlamosN A T I O N A L L A B O R A T O R Y

kMC with on-the-fly saddlesearching

Onepossibilityis to computeakMC ratecatalogwheneveranew stateis

entered,usingoneof severalsaddle-findingmethods:� Mode-following techniques;particularlypromisingin thisclassis thedimermethod,sincenoHessianmatrix is required:

A dimermethodfor findingsaddlepointsonhigh dimensionalpotentialsurfaces

usingonly firstderivatives,

G. HenkelmanandH. Jonsson,J.Chem.Phys.111, 7010(1999).� High-temperaturesamplingof possibleescaperoutes

Canoneever besurethatall relevantmechanismshave beenseen?

An ideal computational method for studying thesephenomenawouldbeMD-lik e, in that nothing about the possibleescapepathsneedstobespecifiedin advance,only the interatomic potential (and not eventhat, in the caseof ab initio MD).

Page 6: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

6

Slide11

Los AlamosN A T I O N A L L A B O R A T O R Y

Activation-RelaxationTechnique(ART)

Event-BasedRelaxationof ContinuousDisorderedSystems,

G.T. BarkemaandN. Mousseau,Phys.Rev. Lett. 77, 4358(1996).

Theactivation-relaxationtechnique: an efficient

algorithmfor samplingenergy landscapes,

G.T. BarkemaandN. Mousseau,Comput.Mater. Sci.20, 285(2001).� Theactivationsteppushestheconfigurationupa valley towardsa

saddlepointusingthemodifiedforce� � �������������������! #"$�� #"� Relaxationlocatesthebasinon theothersideof thesaddlepoint.� A MetropolisMonteCarloprobabilitymaybeusedto acceptor

rejectthisevent,or it maysimply beaddedto a kMC ratecatalog.

Slide12

Los AlamosN A T I O N A L L A B O R A T O R Y

Infr equentEvent Systems� All of theseareexamplesof a moregeneralclassof problems,thatof

infrequent(or activated) eventsystems:

� Thesystemvibrates(andvibratesandvibrates.. . ) in a

many-dimensionalpotentialbasinthevastmajorityof thetime.� Occasionally– but only very rarely– it escapesthroughadividing

surfaceto a new potentialbasin.� Theobjective is to acceleratetheseescapeswithoutcorruptingthe

relative escapeprobabilitiesfor variousexit pathways.

Page 7: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

7

Slide13

Los AlamosN A T I O N A L L A B O R A T O R Y

Transition StateTheory (TST)� For infrequenteventsystems,assumingnocorrelatedcrossingevents

A

BEa

� %'&)(*&+-,/. � equilibriumflux throughaparticulardividing surface� 0�132�1546�87)�:9 +� ;=<#>@?BAC�D�FEHGJI % .�K � LM� harmonicapproximation� No dynamicsrequired(althoughminimaldynamicsin thedividing

surfaceregion canbeusedto improve theclassicalTSTrate,or in

various“quantumtransitionstatetheory”methods)� Canwe exploit TST to developmethodswhich donot requireany

knowledgeof wheredividing surfacesare?

Slide14

Los AlamosN A T I O N A L L A B O R A T O R Y

Thr eeRecentMethods for Infr equentEvents

HyperdynamicsA methodfor accelerating themoleculardynamicssimulationof infrequentevents,

A.F. Voter, J.Chem.Phys.106, 4665(1997).

Hyperdynamics:AcceleratedMolecularDynamicsof InfrequentEvents,

A.F. Voter, Phys.Rev. Lett. 78, 3908(1997).� Assumptions:infrequentevents,TST

Parallel Replica DynamicsParallel replicamethodfor dynamicsof infrequentevents,

A.F. Voter, Phys.Rev. B 57, R13985(1998).� Assumption:infrequentevents

Temperature AcceleratedDynamicsTemperature-acclerateddynamicsfor simualationof infrequentevents,

M.R. SørensenandA.F. Voter, J.Chem.Phys.112, 9599(2000).� Assumptions:infrequentevents,harmonicTST, lower boundonpreexponentialfactor

Page 8: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

8

Slide15

Los AlamosN A T I O N A L L A B O R A T O R Y

Hyperdynamics: BasicApproach� ConsidertheVineyard(harmonicTST)expressionfor therate:

NPO�QSRTQUWVYX[Z]\_^a` bDcd:egf=h e ikj Ueblcnmpod e frqts�u j USXe v mSwyxz_{D|}x QB A C

EaB

EaC� Theratioof any two escaperatesfrom stateA only dependson the

local propertiesat thesaddles:%a~ &-(�&+),C. � K �% ~ &-(�&+),�� � K � � �}� ����k� ;S� G���� +p��; � G���� +).� �������z � � xz������ x &

Slide16

Los AlamosN A T I O N A L L A B O R A T O R Y

Hyperdynamics: BasicApproach� Thereforewe arefreeto modify thebasinshoweverwe like,aslong

asthesaddlepropertiesareunaffected.Add a positivebiaspotential���S� ���!� to thepotentialsurface� ���k� in thewells:

B A C

� TheTST ratesincreaseby�r���r� � ��¡ ����� x & (neglectingtheprefactor)� Sincetheescaperatesareuniformly raised,a valid state-to-state

sequenceis obtained,but atanacceleratedpace.� In fact,harmonicTST is not required,only to assumeTST is exact

(implying no correlatedcrossingevents),aswe now show. . .

Page 9: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

9

Slide17

Los AlamosN A T I O N A L L A B O R A T O R Y

Hyperdynamics: Mathematical Foundations

Thetransitionstatetheory(TST) thermalrateconstantis givenby the

canonicalphase-spaceaverage0�9 + of theflux throughadividing surface:% &)(*&+-, ¢ 0�132 + 1£4 + ���k�:9 +Onabiasedpotential

� ���k�-� ��� � ���k� , using ¤¦¥ �rI % . K ,% &-(*&+), ¢ 01§2 + 154 + ���k� ��¨©���r� � � � 9 + �0 � ¨*�ª�=� � � � 9 + �But since

��� �T« �!¬ ¢®­ whenever 4 + « �!¬°¯¢®­ ,% &)(*&+-, ¢ 01§2 + 154 + « �k¬:9 + �0 � ¨*�ª� � � � � 9 + �SotheTST escaperateon thebiasedsurfaceis relatedto thaton the

originalPESby % &-(*&+ � , ¢ % &)(*&+-, 0 � ¨*��� � � � � 9 + �

Slide18

Los AlamosN A T I O N A L L A B O R A T O R Y

Hyperdynamics: Mathematical Foundations

Theaverageescapetime ±a²³ �l´ ¢ µr¶k·S¸-¹�¸²)º , soinvertingtheprevious

expressiongives ± ²³ �l´ ¢ ± ² �³ �l´H» � ¨*�ª� � � � ��¼ ² �Evaluating » ¼ ² � from a ½�¾8¿�¾ -stepMD trajectoryon thebiasedsurface,± ²³:À ´ ¢ ± ² �³:À ´ µ½�¾8¿�¾ ÁkÂ�ÃÄÂÅaÆÈÇ ¨*�ª�=�É � É ¾ËÊ8Ì8ÌEventsarethusacceleratedby theaverage“boost” factor±a²³:À ´± ² �³:À ´ ¢ µ½ ¾Í¿D¾ Á Â�ÃÄÂÅWÆ®Ç ¨*�ª� � É � É ¾ Ê Ì8Ìandwe cansimply runa hyperclockwhich advancesby�/Î�Ï�ÐÑ ³�Ò ¢ �/Î�Ó[Ô Ç ¨*�ª� � É � Ê Ì eachtimestep.

Page 10: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

10

Slide19

Los AlamosN A T I O N A L L A B O R A T O R Y

Defining a bias potential

Considerthesimplestpossible�S�

:

B A C

Simplebiaspotentialfor boostingmoleculardynamicswith thehyperdynamicsscheme,M.M. Steiner, P.-A. Genilloud,andJ.W. Wilkins, Phys.Rev. B 57, 10236(1998).� Very costeffective (zeroor negativeoverhead)� Workswell for low-dimensionalsystems(few atoms)� Vanishingboostfor largesystems

Conclusion:maybeusefulfor smallfirst principlesapplications,but not

for generalmany-dimensionalsystems(tensof atoms)

Slide20

Los AlamosN A T I O N A L L A B O R A T O R Y

RecognizingSaddlePoints

The dividing (hyper-) surface

has an intrinsically nonlocal

definition. However, an ap-

proximatelocal criterionmay

beobtainedby notingthat:Õ At afirst-ordersaddlepoint, thegradientÖ ¢ × andtheHessianØhasexactly onenegativeeigenvalue.Õ Thecorrespondingeigenvector ÙÛÚ pointsalongthereaction

coordinate,andis orthogonalto thedividing surface.Õ Similarly, theridgeline hasat leastonenegativeeigenvalue, Ü Ú°Ý ­ ,andthegradientalong ÙÛÚ is zero.

Page 11: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

11

Slide21

Los AlamosN A T I O N A L L A B O R A T O R Y

Defining a bias potentialÕ Along a ridgeline, thelowesteigenvalue( Ü Ú ) of theHessianis

negative,andalongits eigenvector( ÙÛÚ ), thegradientis zero.Õ Therefore,apossiblebiaspotentialis onethatturnsonsmoothly

wheneitherof theseconditionsis violated:ÞàßSá «Íâ ¬ ¢®ãåä « Ü Ú ¬�Ü�æ Úèç�é « Ù Úªê Ö-¬Dækëwhere ä «íì ¬ is astepfunction(1 when

ìïî ­ and0 whenì Ý ­ ) andð is thepotentialgradient,ð Æ ¥®ñ ß «�â ¬ ¶ ñ ì Æ .Õ Alternatively, abiaspotentialwhichexactly “fills in” acosine

potentialß «8ì ¬ ¢ «�ò ¶�ó ¬Bô@õ*ö «8ì ¶k÷ ¬ with barrierheight

òandperiodóTø�÷ maybeused:Þ�ß ´ ¿ Àá «8ì ¬ ¢ ò ó ù µ ç Ü Ú« Ü æ Ú ç « Ù Ú�ê Ö)¬ æ ¶k÷ æ ¬ Ú:ú æBû

Slide22

Los AlamosN A T I O N A L L A B O R A T O R Y

Extracting a relevant “boosted” timeÕ Eachtimestepwe advancetheÎ�Ï�Ð�Ñ ³�Ò clock by anamountÞ/Î�Ï�ÐÑ ³�Ò ¢ Þ/Î�ÓÛÔMü@ý6þ « Þ�ßSá «�â Æ ¬ ¶k·åÿ�� ¬Õ Theresulting

Î�Ï�ÐÑ ³�Ò evolution is highly nonlinear:

Page 12: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

12

Slide23

Los AlamosN A T I O N A L L A B O R A T O R Y

Example: Two-dimensionalmodel potential��

A. F. Voter, J.Chem.Phys.106, 4665(1997).

Arrheniusplot with boostfactors:

harmonic TSTTST + dynamical correctionshyperdynamicsdirect MD

Slide24

Los AlamosN A T I O N A L L A B O R A T O R Y

2-D modelwith various biaspotentials

Õ Exponential boost

factoris apparent:Õ In the lab, you can

experimentwith dif-

ferent bias potential

choicesÕ More complex

variants by adding

another cos term

and/or additional

“ � -like” degrees of

freedom

-1.5

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

V(x

,ym

in)�

x

-2

0

2

4

6

8

10

12

14

16

18

0 0.5 1.0 1.5 2 2.5

x po

sitio

n�Simulation Time (x 10^6)

tMD = 106

tMD = 104

(boost = 189)

tMD = 2 x 105 (boost = 11)

tMD = 2500(boost = 933)

Page 13: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

13

Slide25

Los AlamosN A T I O N A L L A B O R A T O R Y

EmbeddedAtom Method (EAM) PotentialsÕ Pair potentials(e.g.Lennard-Jones)areunableto capturemany-body

effectsin covalentspeciesandmetalsÕ EAM is basedondensityfunctionaltheoryÕ Usedfor metals,especiallythosewith emptyor filled d bands� ¾8¿�¾� ÅWÆ� Æ « � Æ ¬ ç µó Å Æ ���� � Æ ����� Æ ���where � Æ � Å � �� Æ ���� � � Æ ���Õ Æ representstheembeddingenergy for eachatominto ahost

electrongasdueto neighboringatomsÕ � Æ � is acore-coreelectrostatic(repulsive)pair interaction

Slide26

Los AlamosN A T I O N A L L A B O R A T O R Y

Hessian-freebias potentials�

For largesystems(100or moreatoms),settingupanddiagonalizingthe

HessianØ becomesa seriousbottleneck.Sinceonly thelowest

eigenvalue(or lowestfew eigenvalues)is needed,iterative Lanczos-type

methodscanbeused.Betteryet is a biaspotentialwhichdoesnot even

requireanexplicit Hessianconstruction:Õ Thelowesteigenvalue Ü�Ú correspondsto thedirection �JÚ which

minimizesthesecondderivative ñ æ ß � â � ¶ ñ�� æ Ú .Õ ExpressÜ Ú asanumericalderivative,Ü�Ú � �TÚ ��� ß � â ç � �JÚ � ç ß � â"! � �TÚ � ! ó ß � â �� æÕ Usingsteepestdescentor conjugategradientmethods,vary the

direction �JÚ to minimize Ü@Ú .�A. F. Voter, Phys.Rev. Lett. 78, 3908(1997).

Page 14: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

14

Slide27

Los AlamosN A T I O N A L L A B O R A T O R Y

“ # method” for $&%('*)In additionto Ü Ú , we alsoneedthegradientprojectionon its eigenvector,ð Ú Ñ,+ Ù Ú ê Ö andits derivative. This is donein thesamespirit:Õ NumericallydeterminethelowesteigenvaluesÜ.- for themodified

HessianØ /10WÖaÖ32 by minimizing

Ü - � � ��� ß � â ç � � � ç ß � â4! � � � ! ó ß � â �� æ /(0 ù ß � â ç � � � ç ß � â5! � � �ó � û æÕ Combineto approximateð Ú Ñ as � ð Ú Ñ � æ � Ü76 ! Ü98ó 0Õ Only a few dimeriterationsareneededto converge Ü - using :TÚ asa

first guessto :Õ Gradientof ð Ú Ñ hasasimpleformÕ But numericalinstabilitiesfor small 0 needto beinvestigated

Slide28

Los AlamosN A T I O N A L L A B O R A T O R Y

Mor e on bias potentials.. .

This iterative ; -scalingapproach:Õ only requiresfirst derivativesofß � â �Õ typically requires20-50forcecallsfor EAM potentials

For numericalstability andotherproblems(e.g., ð Ú Ñ(< = ) whenthe

lowesttwo eigenvaluescross,anaddedeigenvaluerepulsiontermis

useful: Þ�ß?>A@á � BCED ã�FHG !JILK æ ç ó KNMPO if Ü æ ! Ü Ú4Q Þ Ü7R=otherwise

whereK + � Ü æ ! Ü Ú �TS Þ ÜUR . By maintainingorthogonalityof � æ to the

numericallydetermined�JÚ , Ü æ canbecomputedin asimilarmanneras Ü@Ú .Thefinal biaspotentialis

Þ�ßSá � Þ�ß RWV Àá ç Þàß >@á, with the

Þàß RXV Àáheightò

setto besomewhatlessthanthelowestanticipatedbarrier.

Page 15: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

15

Slide29

Los AlamosN A T I O N A L L A B O R A T O R Y

Ramping up the bias potential

An automaticproceduremayalsobeusedto setthebiasstrengthò

dynamicallyduringasimulationin a “safe” manner:Õ If no eventhasoccuredafterrunningdynamicsfor a time Y , thenwe

canputa lowerboundon thelowestbarrier� � for escapefrom this

state,usinga typical prefactor Z\[ � G = Ú æ :Y Ý G S (fastestrate)

fastestrate � G = Ú æ9] 8_^a`abdce ú.fhg�iÕ Therefore,�kjmlon� î1p ÿ �rqts � G = Ú æ Y � andthebiaspotentialstrength

òcanbesetto a valueslightly below thisvalue.Õ Reset

ò � = (or somesafeminimumvalue)andrestartthisprocedure

aftereachtransitionto safelyrampup thebiaspotential.

Slide30

Los AlamosN A T I O N A L L A B O R A T O R Y

Example: Ag %Uu /Ag(111)diffusion�

aver

age

boos

t = 8

310

�A. F. Voter, Phys.Rev. Lett. 78, 3908(1997).

v averageboost= 8310v overheadperstep � 20v computationalboost= 400

Page 16: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

16

Slide31

Los AlamosN A T I O N A L L A B O R A T O R Y

Systemsizeeffectsv Increasingthesystemsizeby addingspectatoratomshasno effecton

theperformance(only makingeachMD stepmoreexpensive).v Theachievableboostdropsasthenumberof “active” atomsin the

system(i.e., thenumberof low-frequency eigenmodes)is increased,

andit takeslongerto convergetheeigenvalues:

100 200 300 400 500

2000

4000

6000

8000

number of moving atoms

aver

age

boos

t fac

tor

Ag10 /Ag(111)(T = 300 K, h = 0.3 eV)

single Ag bulk vacancy(T = 400 K, h = 0.4 eV)

100 200 300 400 500

10

20

30

40

number of moving atomsav

erag

e ite

ratio

ns to

con

verg

e ei

genv

alue

s

Ag10 /Ag(111)(T = 300 K, h = 0.3 eV)

single Ag bulk vacancy(T = 400 K, h = 0.4 eV)

Slide32

Los AlamosN A T I O N A L L A B O R A T O R Y

The Low-Barrier Problem

Often,asetof statesmaybeconnectedby transitionswith small

activationenergies,limiting theboostwhich couldbeachievedoncea

morestableconfigurationis reachedvia a higher-� � mechanism:

This is still anunsolvedproblemfor hyperdynamics!

Page 17: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

17

Slide33

Los AlamosN A T I O N A L L A B O R A T O R Y

Parallel ReplicaDynamics: BasicConceptv Harnessparallelor distributedprocessorsto extendsimulationtime

for infrequenteventsystemsby independentlyexploring phasespace

replicate dephase(~2 ps)

run independenttrajectories until atransition occurson any processorv Whenany processordetectsa transition,sumthetrajectorytimes

from all processors,andrestartall processorsin thenew state.

Slide34

Los AlamosN A T I O N A L L A B O R A T O R Y

DetectingTransitionsv Do a periodic(say, every 2 ps)steepestdescentor conjugategradient

minimizationjust long enoughto ascertainwhethertheconfiguration

hascrossedto adifferentbasin.

v Usually, only a few stepsarerequiredto sayno transitionhas

occured.v Nearsaddlepoints,100stepsmaybeneeded.

Page 18: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

18

Slide35

Los AlamosN A T I O N A L L A B O R A T O R Y

Parallel ReplicaDynamics: Mathematical Foundationsv Assumeonly infrequenteventshaving afirst-orderrateprocess,with

a total escaperateequalto thesumof all w individualescapepath

rates:pyx{z|x�} ~ nl p l .v Theescape-timeprobabilitydistribution is � � YT� }��yx{z|x|�L�_�P�o��� x .v If we run � replicas,we have � w escapepathswith a total escape

rate � � x{z|x , whoseprobabilitydistribution functionis� �{�7� � } � � x zXx � �����P�o��� x��where�P� is thesimulationtime accumulatedon any oneprocessor.v Rewrite thisusing �T�W����� � �7� :� �{� �W��� � } �� �r� �T�W���� � } �yx{z|x�� �_� �t��� x{� ���wheretheleft equalitycomesfrom � �{�T� � �|  �T� � } � �¡� �X  � .

Slide36

Los AlamosN A T I O N A L L A B O R A T O R Y

Parallel ReplicaDynamics: Mathematical Foundationsv Wethereforeobtainthecorrectescape-timedistribution,� �{�T�W��� � }�� x{z|x � �_�P�o��� x ���h�v Thesameanalysisis valid for inequivalentprocessors;� is replaced

by a real-valuedquantity(thesumof relativeprocessorspeeds),and

thesummedtime becomes�T�W��� } ~ �¢ � ¢ .v Only infrequenteventdynamicswasassumed;TST is not required.v Recrossingor othercorrelatedeventsareallowedto occurby

continuingthedynamicson theprocessorwhich detecteda transition

for anadditionaltime £ �¥¤ z|¦U¦¨§ © ps.

Page 19: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

19

Slide37

Los AlamosN A T I O N A L L A B O R A T O R Y

Further Developments

Multiplicative speedupsmaybeobtainedby runningacceleratedMD

trajectoriesoneachreplica,e.g.usinghyperdynamics:

v Ag bulk vacancy diffusionv 16 Pentium processors

(200MHz)v Rampedbiaspotentialv 1.9 ms simulationtime in

65 hours(10events)

Slide38

Los AlamosN A T I O N A L L A B O R A T O R Y

Cu/Cu(100)epitaxial growth

Thecombinedparallelreplicahyperdynamicshasbeendemonstratedon

epitaxialsurfacegrowth atexperimentaldepositionrates:

0

50

100

150

200

250

300

350

0 5 10 15 20 25

Sim

ulat

ion

Tim

e (m

illis

econ

ds)

ª

Wall Clock Time (hours)

Cu/Cu(100)

10 ML/sec

T = 100 K

T = 120 K

« 100K and120K« 10 monolayers(ML)

persecond« 1200ASCI Red

(333 MHz Pentium II)

processors« 24 hourswall-clock time« 0.3secboosted

simulationtime(3 ML)

Rampingof biaspotentialmayhavebeenoverly aggressive.. .

Page 20: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

20

Slide39

Los AlamosN A T I O N A L L A B O R A T O R Y

Other Applications of Parallel ReplicaDynamics« Sincetheonly assumptionis infrequentevents,theparallelreplica

methodhaspotentialusesbeyondthoseconsideredhere(entropic

bottlenecks,non-atomisticsystems,. . . )« Folding@home:V.S.PandeGroup(Stanford)« Someproteinsareknown to exhibit anexponentialdistribution of

time-to-folding.« Thefastestproteinsfold on a ¬ s timescale« Usefreeenergy monitoringto detecttransition« Widely distributedandheterogeneousprocessors(like

SETI@home)« SurfaceDiffusion@home,anyone?

Slide40

Los AlamosN A T I O N A L L A B O R A T O R Y

Temperature AcceleratedDynamics

Again, thebasicconceptis rathersimple:« Runa trajectoryatanelevatedtemperature­¯® ¢±° ® , but rejectall

attemptedtransitions(moreonhow this is donein a bit. . . ).« Extrapolatethehigh-temperatureescapetimes ² � ¢ ³ ® ¢±° ®µ´ to times² � ¢ ³·¶ z|¸ ´ at thelower temperature­ ¶ z|¸ , usingtheArrhenius

relationshipandmeasuredactivationenergies ²º¹ ¢» ´ .« Acceptthetransitionwith theshortest� ¢�³·¶ z|¸ .

Thekey questionis how longoneneedsto run the ­ ® ¢±° ® simulation.. .

Page 21: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

21

Slide41

Los AlamosN A T I O N A L L A B O R A T O R Y

High-Temperature Sampling« Vineyard(harmonicTST):� ®9¼_½µ¼ � ­"� } w¿¾ » x ®À.Á ¢Äà � ¢oÅ¢À.Á � � ¢ à � »9Æ¢ � �_ÇÉÈ9ÊP�hË ¼

« Competitionbetweenentropicprefactorandactivationenergy ¹ »« High ­ will tendto favor pathwayswith soft à � »9Æ¢ (e.g.A Ì B) over

thosewith smallbarriers(e.g.A Ì C):

B A C

q

V(q)

Slide42

Los AlamosN A T I O N A L L A B O R A T O R Y

Basin-ConfinedTrajectories

B A C

q

time

t1

t2

t3

« Monitor trajectoryfor transi-

tions(usingperiodicquench)« When a transitionoccursfor

thefirst time,carefullyfind its

saddlepoint to calculatethe

activationenergy ¹ » .« Recordtransitiontime � ¢ ³ ® ¢H° ®and ¹ ¢» .« Reflect trajectory back into

basinA andcontinue.« This gives ² � ¢ ³ ® ¢H° ® ´ properly

sampledfrom an exponential

distribution for eachpathway.

Page 22: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

22

Slide43

Los AlamosN A T I O N A L L A B O R A T O R Y

Finding the SaddlePoint« Periodicallysave configurationsasthetrajectoryproceeds« When a transition is de-

tected, find the two saved

configurations which

bracket thedividing surface

« Usethenudgedelasticbandmethod(H. Jonssonetal., 1998)to

optimizetheminimumenergy pathandlocatethesaddlepoint.« Checkthatsteepestdescentin eachdirectionleadsto theright basins.

Slide44

Los AlamosN A T I O N A L L A B O R A T O R Y

TAD: Mathematical Foundations« Assumeinfrequenteventswith first-orderkinetics,i.e.aprobability

distribution for eachescapepath Í givenby �¯Î � ¢ � }�� ¢ �L�_�PÏ x .« AssumeharmonicTST, with anArrheniusform� ¢ } à ¢ � �_Ç ÏÈ ÊP�hË ¼ .« Finally, assumethattheprefactorsà ¢ havea lowerbound,à � ¢tÅ .« Runbasin-constrainedsimulationatahigh temperature­ ® ¢H° ® to

obtaina sequenceof waiting times ² � ¢ ³ ® ¢±° ® ´ .« Extrapolatetheseto asequenceof low-temperaturewaiting times² � ¢ ³·¶ z|¸ ´ usingtheArrheniusrelationship:² � ¢ ³Ð¶ zX¸ ´ } ² � ¢ ³ ® ¢H° ®µ´aÑhÒÔÓÖÕ ¹ ¢» Î{× ¶ z|¸ÙØ × ® ¢±° ® �ÛÚwhere× � � � �ÝÜ ­ .« Thetransitionwith theshortest� ¢�³·¶ z|¸ is acceptedandthe ­ ¶ z|¸ clock

is advancedby this time.

Page 23: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

23

Slide45

Los AlamosN A T I O N A L L A B O R A T O R Y

The Arrhenius view� ¢ } Ã ¢ �L�_Ç ÏÈ ÊP� Ë ¼B A C

q

time

t1

t2

t3

1 / T1 / Thigh 1 / Tlow

ln (

1 / t

)

Thigh tim

e

Tlow tim

e

slope = Ea i / k

B

*

Slide46

Los AlamosN A T I O N A L L A B O R A T O R Y

When canwe stop?« Theaveragefirst occurrence

timefor event Í is Þ ¢ � � � � ¢« There is probability ß that

event Í will first occurafter� } Þ ¢Nàoá Î � � ßâ�« Weassumedà � ¢oÅ« With confidence� Ø ß , all

transitions with slope

(i.e., ¹ » ) less than

the line with interceptÃÔãTä ä� ¢oÅ } à � ¢oÅ � àtá Î � � ßN�have occured.

1 / T1 / Thigh 1 / Tlow

ln (

1 / t

)

ln (νmineff )

ln (νmin)

Thigh tim

e

Tlow tim

e

stop

� �Wå{æ ¾® ¢±° ®Öç Î Ã*ãTä�ä� ¢tÅ � � ® æ ¦ å¶ æ ¸ � ¼Nè ��é�Ê ¼âê Ïoë ê � Ã*ãTä�ä� ¢tÅ

Page 24: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

24

Slide47

Los AlamosN A T I O N A L L A B O R A T O R Y

SynthetickMC Mode for the Low Barrier Problem« Keep cumulative history of

states.« Whena fastprocesshasbeen

attempteda numberof times,

estimatetherate.Putthepro-

cessin thesyntheticclass.« Exclude synthetic transitions

from the time-extrapolation

scheme.« Generate random escape

times for syntheticprocesses

from exponentialdistribution

usingestimatedrate.

0ì 5í 10 15í 20ì 25 30 35 40Computational work (equivalent MD time in ns)î0

50

100

150

200

250

300

Tim

e at

T

ï low (

ns)

0ì 50 100ì 150í 200ìComputational work (equivalent MD time in ns)î0

2

4

6

Tim

e at

T

ï low (

ms)

0.570 eV0.217 eV

(a)

(b)

Slide48

Los AlamosN A T I O N A L L A B O R A T O R Y

TAD Example: 1/4ML Cu/Cu(111)at 150K ð1 [t=0] 2 [1.0 ns] 3

4 5 6 [1.0 ms]

7 8 [1.0 s] 9 [1.0 h]ñM.R. SørensenandA.F. Voter, J.Chem.Phys.112, 9599(2000).

Page 25: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

25

Slide49

Los AlamosN A T I O N A L L A B O R A T O R Y

Recap:Comparison of Differ ent Methods

Hyperdynamicsòassumesinfrequentevents,TSTòrequiresconstructionof avalid biaspotentialòlow barriersareaproblem

Parallel Replica Dynamicsòonly assumesinfrequenteventsòcanbecombinedwith hyperMD(done)or TAD (harder)òfull parallelefficiency if Þ�óUô�õ÷ö�øÉù9ó æ|úüû Þºý ã ùºþ�ÿ�� ã � Þ úWæ ó7ó

Temperature AcceleratedDynamicsòassumesinfrequentevents,harmonicTST, minimumprefactoròsynthetic(kMC) modereduceslow-barrierproblemòprobablythemostpowerful of thethree,givenits assumptions

Slide50

Los AlamosN A T I O N A L L A B O R A T O R Y

Application to Thin Film Growth

òUseembeddedatommethod(EAM) potentialsfor Cu,Ag, . . .òPeriodicboundaryconditionsin lateraldirectionsòFor eachdepositionevent,selecta randompositionabove thesurface

andrunordinaryMD for 2 psòUseaccelerateddynamics(hyper+ parallel,TAD, . . . ) to follow

activatedprocessesbetweendepositions( � secto sec)òStudymorphology, mechanisms,etc.asfunctionof thedeposition

parameters(rate,temperature,impactenergy, incidenceangle,. . . )

Page 26: Accelerated Molecular Dynamics - Illinois Germann/AccelMD.pdf · Millions of timesteps only reach ns of simulation time. High-frequency stretch or bend modes can be frozen in molecular

26

Slide51

Los AlamosN A T I O N A L L A B O R A T O R Y

Application to Thin Film GrowthòHomoepitaxialgrowth at temperaturesup to 100K have been

demonstratedusinghyper+ parallelreplicadynamics(TCG and

AFV) at ratesup to 10 monolayerspersecond,andusingon-the-fly

kinetic MonteCarlowith thedimermethodby Henkelmanand

Jonssonat 1 monolayerpermillisecond.òWork is in progresswith FrancescoMontalenti(LANL) andJames

Sprague(NRL) usingTAD atexperimentaldepositionrates(e.g.,one

monolayerevery 15seconds)for Cu/Cu(100),Ag/Ag(100),and

Ag/Cu(100).òAll of thesesimulationsexhibit asurprisinglylargenumberof

concerted,multiatomeventswhich wouldbeomittedfrom most(if

not all) kinetic MonteCarloratecatalogs.òStaytuned.. .

Slide52

Los AlamosN A T I O N A L L A B O R A T O R Y

ConcertedSmoothingEvents

SeveralmultiatomconcertedeventsseenduringCu/Cu(100)growth:

0.58 eV -0.79 eV

0.45 eV -1.42 eV

3-atomexchange

step-down

Dimer exchange

step-down

(4-atom)