Accelerated Molecular Dynamics at Surfaces

14
1 Accelerated Molecular Dynamics at Surfaces Kristen A. Fichthorn Departments of Chemical Engineering and Physics The Pennsylvania State University University Park, PA 16802 USA Temperature-Programmed Desorption QMS: Intensity θ ν θ = T k E dt d B d exp 0 T = T 0 t E d from Intensity Maximum….. Goal: To Simulate TPD with MD!!

Transcript of Accelerated Molecular Dynamics at Surfaces

1

Accelerated Molecular Dynamics at Surfaces

Kristen A. FichthornDepartments of Chemical Engineering and Physics

The Pennsylvania State UniversityUniversity Park, PA 16802

USA

Temperature-Programmed Desorption

QMS: Intensity

θνθ⎟⎟⎠

⎞⎜⎜⎝

⎛−=−

TkE

dtd

B

dexp0

T = T0 + β t

Ed from IntensityMaximum…..

Goal: To SimulateTPD with MD!!

2

n-Alkanes: An Unusual Case

Propane: C3H8

Polyethylene

CH3-[CH2]N-2

-CH3

Methane

CH4

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18

Ru(0001)Au(111)Cu(001)GraphiteAl2O3(0001)Pt(111)

Brand et al., J. Chem. Phys.92, 5136 (1990).

Wetterer et al., J. Phys. Chem. B 102, 9266 (1998).

Teplyakov et al., Surf. Sci.396, 340 (1998).

Paserba and Gellman,PRL 86, 4338 (2001).

Slayton et al., J. Phys.Chem. 99, 2151 (1995).

Bishop et al., J. Phys. Chem.B 104, 754 (2000).

Weaver et al., J. Chem. Phys.110, 10585 (1999).

Number of Carbons

E d(k

J / m

ol)

Binding Energies vs. Chain Length

3

Wetterer et al., J. Phys. Chem. B 102, 9266 (1998).

Paserba and Gellman,PRL 86, 4338 (2001).

Tait et al., JCP 125, 234308 (2006).10

12

14

16

18

20

22

0 10 20 30 40 50

Number of Carbons

Log 1

0 (νo

)

Au(111)C(0001)C(0001)

ν0 ≈ 1019.6

ν0 = 1013

ν0 increases

Preexponential Factors vs. Chain Length

Why??

Accelerated MD of an Alkane Chain

OPLS All-Atom Force Field [1]

2eqiib KV )()( θθθ θ −=

( )[ ]∑ +==

3

1jijit j1V2

1V ϕϕ cos)(

Constrained Bond Stretching: RATTLE [2]Steele’s Potential for Molecule-Surface Interaction [3]

[1] Jorgensen et al., J. Am. Chem. Soc. 118, 11225 (1996) [2] H.C. Andersen, J. Comput. Phys. 52, 24 (1983)[3] W. A. Steele, Surf. Sci. 36, 317 (1973)

LJtbintra VVVV ++=

4

∫ −

∫ −−

=→A

TBkVA

TBkV

BATSTkB

)/)(exp(

)/)(exp(*)(

, R

RRRδν

Accelerated Molecular Dynamics(Hyperdynamics) A. Voter, J. Chem. Phys. 106, 11 (1997).

Detailed Balance!

V (R)

**

ABC

**

BA

C

-V (R) -V (R)

-V (R) -V (R)

∫ ∫∫ ∫−

=

⎟⎟⎠

⎞⎜⎜⎝

⎛ −=

∫ −∫ −−

=

)/exp(/)(/)/exp()/exp(/)/exp()(

)(exp)(

)(/)/)(exp()()(/)/)(exp()()(

*

*

TkWTkTkTkk

TkVW

WTkVWWTkVWk

BB

BBBTST

B

B

BBTST

RRR

RR

RRRRRRRR

δν

δν

Accelerated Molecular Dynamics(Hyperdynamics) A. Voter, J. Chem. Phys. 106, 11 (1997).

Detailed Balance!

ABC

**

kTST,A→C / ⟨ 1/W(R)⟩A

=

=

=

CATST

BATST

CATST

BATST

kk

k

k

,

,

,

, kTST,A→B / ⟨ 1/W(R)⟩A

kTST,A→BkTST,A→C

MD Time: tMD= NΔt

AMD Time: ( )∑∑==

ΔΔ=Δ

=N

ii

N

i i

kTVtRWtt

11

/exp)(

⎟⎠⎞

⎜⎝⎛ Δ=

kTVexpBoost

5

h

bR*

Weighting Functions:Single-Molecule Limit

Temperature AccelerationDesorb at sT, scale back to T

K. Fichthorn and R. Miron, Phys. Rev. Lett. 89, 196103 (2002).

totaliW1

boxiW1

TST

i

i

b1k

⎟⎠⎞

⎜⎝⎛∑

⎟⎠⎞

⎜⎝⎛∑

1ss

V≥= ,)(RV(R)

Bond Boost PotentialWeaken the Molecule-Surface Interaction

)(exp)( ⎟⎟⎠

⎞⎜⎜⎝

⎛ −=

TkVW

B

RR V (R)

1VVVV LJbts <+++= ααα ,V(R)

n-Alkanes on Au(111)K. Fichthorn and R. Miron, Phys. Rev. Lett. 89, 196103 (2002).

6

Arrhenius Plot: Graphite

kTETST ek /−=ν

Simulation Time =100 ps – 5 nsWhat a Boost!!

Activation Energy: Graphite

Paserba, Gellman, JCP 115, 6737, (2001).Tait et al., JCP 125, 234308 (2006).

7

Prefactor: Graphite

Paserba, Gellman, JCP 115, 6737, (2001).

Increase forShort Chains

~ Constant forLong Chains

1018.3 vs. 1019.6

in Expt.

Tait et al., JCP 125, 234308 (2006).

K. Becker and K. Fichthorn,JCP 125, 184706 (2006).

Prefactor Analysis BkSoo e

QQ /Δ== ννν

Chain Length

ΔS

Rigid body r

otatio

n incre

ases ν Torsion

decreases ν

vibration

hindered torsion free torsion

Torsion BarrierIndependent ofChain Length

K. Becker and K. Fichthorn,JCP 125, 184706 (2006).

8

GaAs Surface ReconstructionsGaAs Surface Reconstructions

L. Daweritz, R. Hey, Surf. Sci. 236, 15 (1990) GaAs(001)β2(2x4)

Molecular Beam Epitaxy

ArsenicGallium

What is the Structure of a Real GaAs(001)β2(2x4) Surface?

D.W. Pashley, J.H. Neave, B.A. Joyce, Surf. Sci. 582, 189 (2005)

STM

Hypothesis: Disordering Involves Shifting of Dimer Rows and Trenches

(2x4) Unit Cell

How Does this Surface Disorder?What Does This Mean forGrowth, Phase Transitions??

9

Modified Tersoff Potential for Modified Tersoff Potential for GaAsGaAs

( ) ( ) ( ) ( ) ( )[ ]ijA

ijijijijR

ijiji

ijc

ijpot rVrBrVrfE ⋅−⋅= ∑≠,2

1,..., N1 rr

Pair: Repulsive

Pair: Attractive

( ) ( )( )[ ]( ) ( ) ( ) ( )( )[ ]

( ) ( ) ⎟⎟

⎜⎜

−+−+=

⋅⋅=

⋅+=−

22

2

2

2

21

cos1

1

ijkikik

ik

ik

ikikijkik

rrijkikik

ijk

cikijij

nnijijijijij

hdc

dc

g

egrfr

rrBikm

ikijik

ijij

θδθ

θχ

χγα

Cutoff

Three Body:

Bond Order

K. Albe, K. Nordlund, A. Nord, A. Kuronen, Phys. Rev. B 66, 035205 (2002)*

*With modified As-As cutoff distance: T. Hammerschmidt et al.

DFTDFTComparisonComparison

As

Ga

PW GGA-II: A. Kley, P. Ruggerone, M. Scheffler, PRL 79, 5278 (1997).

PBE GGA, LDA: P. Kratzer, C. Morgan, M. Scheffler, Prog. Surf. Sci. 59, 135 (1998).

2

5

4

3-1

-3

Binding Preference

(eV)

1

Site Potential PW GGA-II PBE GGA LDA1 -3.20 - -1.9 -2.82 -2.95 -3.2 -2.1 -2.63 -2.91 -2.6 -1.9 -2.54 -2.42 -2.5 -1.5 -2.25 -2.30 -2.2 - -

10

Accelerated Molecular DynamicsThe Bond Boost Method

R. Miron & K. Fichthorn, J. Chem. Phys. 119, 6210 (2003)

EmpiricalThreshold

Accelerated Molecular DynamicsDetails of the Bond Boost Method

Channels the Boost intothe Bond that’s Readyto Break

11

Adaptive BondAdaptive Bond--Boost Method: Boost Method: Rough Potential SurfacesRough Potential Surfaces

Ai

Af

*

ΔE

kTST

**

Adjust the Magnitudeof the Boost

Use Variable BoostThresholds

M. Mignogna and K. A. Fichthorn(In preparation)

Boost Parameters AreAdjusted On the Fly!

ββ2(2x4)2(2x4) Reconstruction at 300KReconstruction at 300K

Atoms vibrate, but remain in perfect surface positions

After ~3μs

12

Bond Boost ValidationBond Boost Validation

-8-6-4-20

0.002 0.003 0.003 0.004

MD

AcceleratedMD

1/T (K-1)

lnra

te (p

s-1 )

Trench Dimer Splitting

Barrier = 0.3 ±0.01 (eV)Prefactor = 3.08x1014 ( s-1)

Boost: 102 – 103

ββ2(2x4)2(2x4) reconstruction at 350Kreconstruction at 350K

Open trench dimerBuried Ga

As atom leaves trench:Newdimer forms

<100ns

570ns

13

250ns

350K

Row dimers zigzag:

Leaves lone As row atoms

New row dimer forms:

Row shifts

Concerted Trench ShiftConcerted Trench ShiftA trench shifted from perfect induces neighboring trenches to shift

T=410K

Movie length: 38 ns

14

Strain FieldStrain FieldTotal change in distance from perfect surface positions (Å)

Shifted trench

Strain from moving one trench extends to neighboring trenches

Furthest significant change in position

0.1

0.01

0.001

0.0001

0.00001

Collaborators

FundingNSF ECC-0085604, IGERT DGE-9987598, DMR-0514336,

NIRT CCR-0303976, CBET-0730987ACS PRF, DOE

Kelly BeckerMozhgan AlimohammadiMaria MignognaDerek TriplettYogesh TiwaryDr. Hong-Fei WuDr. Yushan WangDr. Leonidas GergidisJosh Howe

AlumniDr. Radu “Alex” MironDr. Jee-Ching WangDr. Som PalFritz-Haber-InstitutProf.-Dr. Matthias SchefflerDr. Rossitza PentchevaDr. Thomas HammerschmidtDr. Peter Kratzer