Abstract 10

137
Type :JOURNAL (Ty) Journal Title - Journal of Physical Chemistry B (T2) Volume - 109 (VL) Issue - 42 (IS) Start page - 19839 (SP) End Page - 19844 (EP) Published Year - 2005 (PY) Morphological and spectroscopic properties of thin films of self- assembling amphiphilic porphyrins on a hydrophilic surface as revealed by scanning near-field optical microscopy (T1) Nagahara, T 1 . Imura, K 2 . Okamoto, H 3 . Oguro, A 4 . Imahori, H 5 . (AU) Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan (AD) Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8585, Japan Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-Ku, Kyoto 615-8510, Japan Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4, Takano- Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan Abstract (AB) We fabricated porphyrin thin films on mica surfaces from acidic aqueous solutions of the preorganized H-aggregates of amphiphilic porphyrins by the simple spin-coating method. The morphological and spectroscopic properties of the film were investigated by scanning near-field optical microscopy. The results obtained in this study demonstrate that the preorganized structure in solution can be transferred as a thin film with a

description

tesssss

Transcript of Abstract 10

Page 1: Abstract 10

Type :JOURNAL (Ty)

Journal Title - Journal of Physical Chemistry B (T2)

Volume - 109 (VL)

Issue - 42 (IS)

Start page - 19839 (SP)

End Page - 19844 (EP)

Published Year - 2005 (PY)

Morphological and spectroscopic properties of thin films of self-assembling amphiphilic

porphyrins on a hydrophilic surface as revealed by scanning near-field optical microscopy

(T1)

Nagahara, T1. Imura, K2. Okamoto, H3. Oguro, A4. Imahori, H5. (AU)

Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan (AD)

Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8585, Japan

Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-Ku,

Kyoto 615-8510, Japan

Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4, Takano-Nishihiraki-cho, Sakyo-ku, Kyoto 606-

8103, Japan

Abstract (AB)

We fabricated porphyrin thin films on mica surfaces from acidic aqueous solutions of the

preorganized H-aggregates of amphiphilic porphyrins by the simple spin-coating method. The

morphological and spectroscopic properties of the film were investigated by scanning near-field

optical microscopy. The results obtained in this study demonstrate that the preorganized structure

in solution can be transferred as a thin film with a thickness of the monolayer level without

losing their substantial structure and photophysical properties. © 2005 American Chemical

Society.

Cited By (since 1996):8 (N1)

Export Date: 14 October 2014 (N1)

Database: Scopus (DB)

References: (N1)

Page 2: Abstract 10

Honda, K., (1998) Functionality of Molecular Systems, , Springer-Verlag: Heidelberg, Germany;

Nakamura, T., Matsumoto, T., Tada, H., Sugiura, K.-I., (2003) Chemistry of Nanomolecular

Systems: Towards the Realization of Nanomolecular Devices, , Springer-Verlag: Heidelberg,

Germany;

Nagahara, T., Imura, K., Okamoto, H., (2003) Chem. Phys. Lett., 381, p. 368;

Nagahara, T., Imura, K., Okamoto, H., (2004) Rev. Sci. Instrum., 75, p. 4528;

Nagahara, T., Imura, K., Okamoto, H., (2004) Scanning, 26, p. 110;

Yao, M., Iwamura, Y., Inoue, H., Yoshioka, N., (2005) Langmuir, 21, p. 595;

Mukundan, N.E., Petho, G., Dixon, D.W., Kim, M.S., Marzilli, L.G., (1994) Inorg. Chem., 33, p.

4676;

Ohno, O., Kaizu, Y., Kobayashi, H., (1993) J. Chem. Phys., 99, p. 4128;

Okada, S., Segawa, H., (2003) J. Am. Chem. Soc., 125, p. 2792;

Rosa, A., Ricciardi, G., Baerends, E.J., Romeo, A., Scolaro, L.M., (2003) J. Phys. Chem. A, 107,

p. 11468;

Kano, K., Fukuda, K., Wakami, H., Nishiyabu, R., Pasternack, R.F., (2000) J. Am. Chem. Soc.,

122, p. 7494;

Osuka, A., Maruyama, K., (1988) J. Am. Chem. Soc., 110, p. 4454;

Elangovan, T., Krishnan, V., (1992) Chem. Phys. Lett., 194, p. 139;

Maiti, N.C., Mazumdar, S., Periasamy, N., (1998) J. Phys. Chem. B, 102, p. 1528;

Iosif, A., Grummt, U.-W.J., (1997) Prakt. Chem., 339, p. 420;

Imahori, H., Hosomizu, K., Mori, Y., Sato, T., Ahn, T.K., Kim, S.K., Kim, D., Matano, Y.,

(2004) J. Phys. Chem. B, 108, p. 5018;

Yamada, H., Imahori, H., Nishimura, Y., Yamazaki, I., Ahn, T.K., Kim, S.K., Kim, D.,

Fukuzumi, S., (2003) J. Am. Chem. Soc., 125, p. 9129;

Valaskovic, G.A., Holton, M., Morrison, G.H., (1995) J. Microsc., 179, p. 29

UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-

27744594658&partnerID=40&md5=cd1c188c90e864fda2c1a090f264ee91

ER -

Page 3: Abstract 10

Type - JOURNAL

Journal Title - Journal of Alloys and Compounds

Volume - 612

Start Page - 34

End Page - 41

Published Year - 2014

A method based on optical and atomic force microscopes for instant imaging of non-

homogeneous electro-mechanical processes and direct estimation of d ij coefficients in

piezoelectric materials at the local level

Stamopoulos, D. Zhang, S.J.

Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, National Center

for Scientific Research 'Demokritos', 15310 Agia Paraskevi, Greece

Materials Research Institute, Pennsylvania State University, University Park, PA 16801, United States

Abstract

Ferroelectric materials have attracted much interest due to their wide and important

technological applications. Regarding their piezoelectric properties, these materials are evaluated

by means of relatively complicate global methods. In this work a comparatively simple and

efficient local method for the direct estimation of the dij coefficients is presented. The method is

based on conventional optical microscopy (OM) and advanced Atomic Force Microscopy (AFM)

employed to image the local deformation of a specimen upon variation of a dc electric field. The

feasibility and reliability of the method is demonstrated at room temperature in single crystals of

(1-x)Pb(Mg1/3Nb 2/3)O3-xPbTiO3. Non-homogeneous electro-mechanical processes are

detected. Accordingly, the estimated d ij coefficients exhibit a spatial variation over the crystal

surface. Except for electro-mechanical systems, the introduced local method could find wide

application for the investigation of spatially non-homogeneous properties that possibly exist in

Page 4: Abstract 10

relevant magneto-mechanical and thermo-mechanical complex systems. © 2014 Elsevier B.V.

All rights reserved.

Keyword: Atomic force microscope, Non-homogeneous electro-mechanical processes, Optical

microscope, Piezoelectric coefficients, Strain-electric field curve

Cited By (since 1996):1

Export Date: 14 October 2014

Database: Scopus

References:

Zhang, S., Li, F., (2012) J. Appl. Phys., 111, p. 031301;

Li, F., Zhang, S., Xu, Z., Wei, X., Luo, J., Shrout, T.R., (2010) J. Appl. Phys., 108, p. 034106;

Vittayakorn, N., Boonchom, B., (2011) J. Alloys Comp., 509, pp. 2304-2310;

Wang, Z., Zhang, R., Sun, E., Cao, W., (2012) J. Alloys Comp., 527, pp. 101-105;

Wang, Y., Sun, E., Song, W., Li, W., Zhang, R., Cao, W., (2014) J. Alloys Comp., 601, pp. 154-

157;

Zhang, S., Luo, J., Xia, R., Rehrig, P.W., Randall, C.A., Shrout, T.R., (2006) Solid State

Commun., 137, pp. 16-20;

Uchino, K., (2000) Ferroelectric Devices, , Dekker New York;

Scott, J., (2000) Ferroelectric Memories, , Springer Verlag Berlin;

Tadigadapa, S., Mateti, K., (2009) Meas. Sci. Technol., 20, p. 092001;

Cheng, Z.X., Wang, X.L., Dou, S.X., Osada, M., Kimura, H., (2011) Appl. Phys. Lett., 99, p.

092103;

Chen, S.Y., Zheng, Y.X., Ye, Q.Y., Xuan, H.C., Cao, Q.Q., Deng, Y., Wang, D.H., Huang, Z.G.,

(2011) J. Alloys Comp., 509, pp. 8885-8887;

Zhu, Q.X., Yang, M.M., Zheng, M., Wang, W., Wang, Y., Li, X.M., Luo, H.S., Zheng, R.K.,

(2013) J. Alloys Comp., 581, pp. 530-533;

Stamopoulos, D., Zeibekis, M., Zhang, S.J., (2013) J. Appl. Phys., 114, p. 134309;

Güthner, P., Dransfeld, K., (1992) Appl. Phys. Lett., 61, p. 1137;

Franke, K., Besold, J., Haessler, W., Seegebarth, C., (1994) Surface Sci., 302, pp. 283-L288;

Zhao, Y., Li, X., Hu, G., Xu, J., (2013) J. Alloys Comp., 577, pp. 606-609;

Harnagea, C., Pignolet, A., Alexe, M., Hesse, D., Gösele, U., (2000) Appl. Phys. A, 70, pp.

261-267;

Page 5: Abstract 10

Shin, H., Shin, J.K., Hong, S., Jeon, J.U., Song, H.W., Hong, J.I., No, K., (2001) Integr.

Ferroelectr., 38, pp. 31-38;

Gruverman, A., Kalinin, S.V., (2006) J. Mater. Sci., 41, pp. 107-116;

Soergel, E., (2011) J. Phys. D: Appl. Phys., 44, p. 464003;

Song, Y., Bhushan, B., (2008) J. Phys.: Condens. Matter, 20, p. 225012;

Stamopoulos, D., Aristomenopoulou, E., Sandim, M.J.R., Sandim, H.R.Z., Pissas, M., EPJ Web

of Conferences, in Press;

Stamopoulos, D., Manios, E., Pissas, M., (2007) Supercond. Sci. Technol., 20, pp. 1205-1222;

Stamopoulos, D., Manios, E., Pissas, M., (2007) Phys. Rev. B, 75, p. 184504;

Stamopoulos, D., Aristomenopoulou, E., Manios, E., Niarchos, D., (2013) J. Supercond. Nov.

Magn., 26, pp. 1931-1938;

Stamopoulos, D., Zhang, S., EPJ Web of Conferences, , in press;

Noheda, B., Cox, D.E., Shirane, G., Gao, J., Ye, Z.-G., (2002) Phys. Rev. B, 66, p. 054104;

Kong, L.B., Ma, J., Zhu, W., Tan, O.K., (2002) J. Alloys Comp., 336, pp. 236-242;

Li, J.-B., Rao, G., Liu, G., Chen, J., Lu, L., Jing, X., Li, S., Liang, J., (2006) J. Alloys Comp.,

425, pp. 373-378;

Chen, J., Fan, H., Ke, S., Chen, X., Yang, C., Fang, P., (2009) J. Alloys Comp., 478, pp. 853-

857;

Chen, J., Qiu, S., Chen, X., Xiao, G., Yang, X., (2010) J. Alloys Comp., 497, pp. 155-158;

Vittayakorn, N., Rujijanagul, G., Cann, D.P., (2007) J. Alloys Comp., 440, pp. 259-264;

Kumar, A., Bhanu Prasad, V.V., Raju, K.C.J., James, A.R., (2014) J. Alloys Comp., 599, pp. 53-

59;

Frunza, R., Ricinschi, D., Gheorghiu, F., Apetrei, R., Luca, D., Mitoseriu, L., Okuyama, M.,

(2011) J. Alloys Comp., 509, pp. 6242-6246;

Kihara, T., Katakura, I., Tokunaga, M., Matsuo, A., Kawaguchi, K., Kondo, A., Kindo, K.,

Kainuma, R., (2013) J. Alloys Comp., 577, pp. 722-S725;

Zhang, D., Terasaki, H., Komizo, Y.-I., (2009) J. Alloys Comp., 484, pp. 929-933;

Rubio-Marcos, F., Del Campo, A., Lopez-Juarez, R., Romero Fanego, J.J., Fernandez, J.F.F.,

(2012) J. Mater. Chem., 22, pp. 9714-9720

UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-

84902688924&partnerID=40&md5=ca2d7baa4071c9d0f35ec804ab7c2cf1

Page 6: Abstract 10

ER -

Type - JOURNAL

Journal Title - Reviews of Modern Physics

Volume - 75

Issue - 3

Start Page - 949

End Page - 983

Published Year - 2003

Advances in atomic force microscopy

Giessibl, F.J.

Experimentalphysik VI, Institute of Physics, Augsburg University, D-86135 Augsburg, Germany

Abstract

This article reviews the progress of atomic force microscopy in ultrahigh vacuum, starting with

its invention and covering most of the recent developments. Today, dynamic force microscopy

allows us to image surfaces of conductors and insulators in vacuum with atomic resolution, The

most widely used technique for atomic-resolution force microscopy in vacuum is frequency-

modulation atomic force microscopy (FM-AFM). This technique, as well as other dynamic

methods, is explained in detail in this article. In the last few years many groups have expanded

the empirical knowledge and deepened our theoretical understanding of frequency-modulation

atomic force microscopy. Consequently spatial resolution and ease of use have been increased

dramatically. Vacuum atomic force microscopy opens up new classes of experiments, ranging

from imaging of insulators with true atomic resolution to the measurement of forces between

individual atoms.

Cited By (since 1996):806

Export Date: 15 October 2014

Scopus

References:

Page 7: Abstract 10

Abdurixit, A., Baratoff, A., Meyer, E., Molecular dynamics simulations of dynamic force

microscopy: Application to the Si(111)-7×7 surface (1999) Appl. Surf. Sci., 157, pp. 355-360;

Abramowitz, M., Stegun, I., (1970) Handbook of Mathematical Functions, 9th Ed., , Dover, New

York;

Akamine, S., Barrett, R.C., Quate, C.F., Improved atomic force microscopy images using

cantilevers with sharp tips (1990) Appl. Phys. Lett., 57, pp. 316-318;

Albrecht, T.R., (2000), private communicationAlbrecht, T.R., Akamine, S., Carver, T.E., Quate,

C.F., Microfabrication of cantilever styli for the atomic force microscope (1990) J. Vac. Sci.

Technol. A, 8, pp. 3386-3396;

Albrecht, T.R., Grutter, P., Horne, H.K., Rugar, D., Frequency modulation detection using high-

Q cantilevers for enhanced force microscope sensitivity (1991) J. Appl. Phys, 69, pp. 668-673;

Allers, W., Schwarz, A., Schwarz, U.D., (2002) Noncontact Atomic Force Microscopy, pp. 233-

256. , edited by S. Morita, R. Wiesendanger, and E. Meyer (Springer, Berlin), Chap. 14;

Allers, W., Schwarz, A., Schwarz, U.D., Wiesendanger, R., Dynamic scanning force microscopy

at low temperatures on a van der Waals surface: Graphite (0001) (1999) Appl. Surf. Sci., 140,

pp. 247-252;

Allers, W., Schwarz, U.D., Schwarz, A., Wiesendanger, R., A scanning force microscope with

atomic resolution in ultrahigh vacuum and at low temperatures (1998) Rev. Sci. Instrum., 69, pp.

221-225;

Allers, W., Schwarz, U.D., Schwarz, A., Wiesendanger, R., Dynamic scanning force microscopy

at low temperatures on a noble-gas crystal: Atomic resolution on the xenon [111] surface (1999)

Europhys. Lett., 48, pp. 276-279;

Anczykowski, B., Gotsmann, B., Fuchs, H., Cleveland, J.P., Elings, V.B., How to measure

energy dissipation in dynamic mode atomic force microscopy (1999) Appl. Surf. Sci., 140, pp.

376-382;

Anczykowski, B., Krüger, D., Fuchs, H., Cantilever dynamics in quasinpncontact force

microscopy: Spectroscopic aspects (1996) Phys. Rev. B, 53, pp. 15485-15488;

Arai, T., Tomitori, M., (2002) Noncontact Atomic Force Microscopy, pp. 79-92. , edited by S.

Morita, R. Wiesendanger, and E. Meyer (Springer, Berlin), Chap. 4;

Ashcroft, N.W., Mermin, N.D., (1981) Solid State Physics, , Saunders College, Philadelphia;

Page 8: Abstract 10

Bammerlin, M., Lüthi, R., Meyer, E., Baratoff, A., Lü, J., Guggisberg, M., Gerber, C.,

Güntherodt, H.J., True atomic resolution on the surface of an insulator via ultrahigh vacuum

dynamic force microscopy (1997) Probe Microsc., 1, pp. 3-9;

Baratoff, A., Perturbation theory of large-amplitude dynamic force microscopy (1997) First

International Workshop on Noncontact-Atomic Force Microscopy, , Osaka, Japan (unpublished);

Barth, C., Reichling, M., Imaging the atomic arrangements on the high-temperature

reconstructed a-Al2O3(0001) surface (2001) Nature (London), 414, pp. 54-56;

Barth, C., Reichling, M., (2002) Noncontact Atomic Force Microscopy, pp. 135-146. , edited by

S. Morita, R. Wiesendanger, and E. Meyer (Springer, Berlin), Chap. 8;

Bartzke, K., Antrack, T., Schmidt, K.-H., Dammann, E., Schatterny, C., The needle sensor - A

micromechanical detector for atomic force microscopy (1993) Int. J. Optoelectron., 8, pp. 669-

676;

Baym, G., (1969) Lectures on Quantum Mechanics, , Benjamin, New York;

Bazant, M.Z., Kaxiras, E., Environment-dependent interatomic potential for bulk silicon (1997)

Phys. Rev. B, 56, pp. 8542-8552;

Becker, R., (1969) Theorie der Wärme, 3rd Ed., , Springer, Berlin;

Bennewitz, R., Bammerlin, M., Meyer, E., (2002) Noncontact Atomic Force Microscopy, pp. 93-

108. , edited by S. Morita, R. Wiesendanger, and E. Meyer (Springer, Berlin), Chap. 5;

Bennewitz, R., Gerber, C., Meyer, E., (2000) Appl. Surf. Sci., 157, pp. 207-428. , Proceedings of

the Second International Workshop on Noncontact Atomic Force Microscopy, Pontresina,

Switzerland, September 1-4, 1999;

Bennewitz, R., Pfeiffer, O., Schär, S., Barwich, V., Meyer, E., Kantorovich, L., Atomic

corrugation in nc-AFM of alkali halides (2002) Appl. Surf. Sci., 188, pp. 232-237;

Bielefeldt, H., Giessibl, F.J., A simplified but intuitive analytical model for intermittent-contact

mode force microscopy based on Hertzian mechanics (1999) Surf. Sci., 440, pp. L863-L867;

Binnig, G., (1986) Atomic Force Microscope and Method for Imaging Surfaces with Atomic

Resolution, , US Patent No. 4,724,318;

Binnig, G., Force microscopy (1992) Ultramicroscopy, 42-44, pp. 7-15;

Binnig, G., (1997) Aus dem Nichts, 2nd Ed., , Piper, München;

Binnig, G., Quate, C.F., Gerber, C., Atomic force microscope (1986) Phys. Rev. Lett., 56, pp.

930-933;

Page 9: Abstract 10

Binnig, G., Rohrer, H., The scanning tunneling microscope (1985) Sci. Am., 253 (2), pp. 40-46;

Binnig, G., Rohrer, H., Nobel Lecture: Scanning tunneling microscopy-from birth to adolescence

(1987) Rev. Mod. Phys., 59, pp. 615-625;

Binnig, G., Rohrer, H., In touch with atoms (1999) Rev. Mod. Phys., 71, pp. S324-S330;

Binnig, G., Rohrer, H., Gerber, C., Weibel, E., Surface studies by scanning tunneling microscopy

(1982) Phys. Rev. Lett., 49, pp. 57-61;

Binnig, G., Rohrer, H., Gerber, C., Weibel, E., 7×7 reconstruction on Si(111) resolved in real

space (1983) Phys. Rev. Lett., 50, pp. 120-123;

Burnham, N., Colton, R.J., Measuring the nanomechanical and surface forces of materials using

an atomic force microscope (1989) J. Vac. Sci. Technol. A, 7, pp. 2906-2913;

Chen, C.J., (1993) Introduction to Scanning Tunneling Microscopy, , Oxford University Press,

New York;

Ciraci, S., Baratoff, A., Batra, I.P., Tip-sample interaction effects in scanning-tunneling and

atomic-force microscopy (1990) Phys. Rev. B, 41, pp. 2763-2775;

Coulson, C.A., McWeeny, R., (1991) Coulson's Valence, , Oxford University Press, New York;

Crommie, M.F., Lutz, C.P., Eigler, D.M., Confinement of electrons to quantum corrals on a

metal surface (1993) Science, 262, pp. 218-220;

De Lozanne, A., Atomic force microscopy: You may squeeze the atoms but don't mangle the

surface (2001) Science, 291, pp. 2561-2562;

Denk, W., Pohl, D.W., Local electrical dissipation imaged by scanning force microscopy (1991)

Appl. Phys. Lett., 59, pp. 2171-2173;

Drakova, D., Theoretical modelling of scanning tunneling microscopy, scanning tunneling

spectroscopy and atomic force microscopy (2001) Rep. Prog. Phys., 64, pp. 205-290;

Dürig, U., Conservative and dissipative interactions in dynamic force microscopy (1999) Surf.

Interface Anal., 27, pp. 467-473;

Dürig, U., Relations between interaction force and frequency shift in large-amplitude dynamic

force microscopy (1999) Appl. Phys. Lett., 75, pp. 433-435;

Dürig, U., Interaction sensing in dynamic force microscopy (2000) New J. Phys., 2, pp. 51-

512;

Dürig, U., Gimzewski, J.K., Pohl, D.W., Experimental observation of forces acting during

scanning tunneling microscopy (1986) Phys. Rev. Lett., 57, pp. 2403-2406;

Page 10: Abstract 10

Dürig, U., Steinauer, H.P., Blanc, N., Dynamic force microscopy by means of the phase-

controlled oscillator method (1997) J. Appl. Phys., 82, pp. 3641-3651;

Dürig, U., Züger, O., Pohl, D.W., Observation of metallic adhesion using the scanning

tunneling microscope (1990) Phys. Rev. Lett., 65, pp. 349-352;

Dürig, U., Züger, O., Stalder, A., Interaction force detection in scanning probe microscopy:

Methods and applications (1992) J. Appl. Phys., 72, pp. 1778-1798;

Edwards, H., Taylor, L., Duncan, W., Fast, high resolution atomic force microscopy using a

quartz tuning fork as actuator and sensor (1997) J. Appl. Phys., 82, pp. 980-984;

Eguchi, T., Hasegawa, Y., High-resolution atomic force microscopic imaging of the Si(111)(7Ã

—7) surface: Contribution of short-range force to the images (2002) Phys. Rev. Lett., 89, p.

266105;

Eigler, D.M., Schweizer, E.K., Positioning single atoms with a scanning tunnelling microscope

(1990) Nature (London), 344, pp. 524-526;

Erlandsson, R., Olsson, L., Martensson, P., Inequivalent atoms and imaging mechanisms in ac-

mode atomic-force microscopy of Si(111)(7×7) (1997) Phys. Rev. B, 54, pp. R8309-R8312;

Foster, A., Shluger, A., Barth, C., Reichling, M., (2002) Noncontact Atomic Force Microscopy,

pp. 305-348. , edited by S. Morita, R. Wiesendanger, and E. Meyer (Springer, Berlin), Chap. 17;

French, R.H., Origins and applications of London dispersion forces and Hamaker constants in

ceramics (2000) J. Am. Ceram. Soc., 83, pp. 2117-2146;

Fukui, K., Iwasawa, Y., (2002) Noncontact Atomic Force Microscopy, pp. 167-182. , edited by

S. Morita, R. Wiesendanger, and E. Meyer (Springer, Berlin), Chap. 10;

Fukui, K., Onishi, H., Iwasawa, Y., Atom-resolved image of the TiO2(110) surface by

noncontact atomic force microscopy (1997) Phys. Rev. Lett., 79, pp. 4202-4205;

Garcia, R., Perez, R., Dynamic atomic force microscopy methods (2002) Surf. Sci. Rep., 47, pp.

197-301;

Gauthier, M., Kantorovich, L., Tsukada, M., (2002) Noncontact Atomic Force Microscopy, pp.

371-394. , edited by S. Morita, R. Wiesendanger, and E. Meyer (Springer, Berlin), Chap. 19;

Gauthier, M., Perez, R., Arai, T., Tomitori, M., Tsukada, M., Interplay between nonlinearity,

scan speed, damping, and electronics in frequency modulation atomic-force microscopy (2002)

Phys. Rev. Lett., 89, p. 146104;

Page 11: Abstract 10

Gauthier, M., Sasaki, N., Tsukada, M., Dynamics of the cantilever in noncontact dynamic force

microscopy: The steady-state approximation and beyond (2001) Phys. Rev. B, 64, p. 085409;

Gauthier, M., Tsukada, M., Theory of noncontact dissipation force microscopy (1999) Phys.

Rev. B, 60, pp. 11716-11722;

Giessibl, F.J., (1991) Rastertunnel- und Rasterkraftmikroskopie bei 4,2 K im Ultrahochvakuum, ,

Ph.D. thesis (Ludwig-Maximilians-Universität, München, Germany);

Giessibl, F.J., Theory for an electrostatic imaging mechanism allowing atomic resolution of ionic

crystals by atomic force microscopy (1992) Phys. Rev. B, 45, pp. 13815-13818;

Giessibl, F.J., Atomic force microscopy in ultrahigh vacuum (1994) Jpn. J. Appl. Phys., Part 1,

33, pp. 3726-3734;

Giessibl, F.J., Atomic resolution of the silicon (111)-(7×7) surface by atomic force

microscopy (1995) Science, 267, pp. 68-71;

Giessibl, F.J., (1996) Vorrichtung zum Berührungslosen Abtasten Einer Oberfläche und

Verfahren Dafür, , Offenlegungsschrift German Patent Office DE 196 33 546;

Giessibl, F.J., Forces and frequency shifts in atomic resolution dynamic force microscopy (1997)

Phys. Rev. B, 56, pp. 16010-16015;

Giessibl, F.J., High-speed force sensor for force microscopy and profilometry utilizing a quartz

tuning fork (1998) Appl. Phys. Lett., 73, pp. 3956-3958;

Giessibl, F.J., Atomic resolution on Si(111)-(7×7) by noncontact atomic force microscopy

with a force sensor based on a quartz tuning fork (2000) Appl. Phys. Lett., 76, pp. 1470-1472;

Giessibl, F.J., A direct method to calculate tip-sample forces from frequency shifts in frequency-

modulation atomic force microscopy (2001) Appl. Phys. Lett., 78, pp. 123-125;

Giessibl, F.J., (2002) Noncontact Atomic Force Microscopy, pp. 11-46. , edited by S. Morita, R.

Wiesendanger, and E. Meyer (Springer, Berlin), Chap. 2;

Giessibl, F.J., Bielefeldt, H., Physical interpretation of frequency-modulation atomic force

microscopy (2000) Phys. Rev. B, 61, pp. 9968-9971;

Giessibl, F.J., Bielefeldt, H., Hembacher, S., Mannhart, J., Calculation of the optimal imaging

parameters for frequency modulation atomic force microscopy (1999) Appl. Surf. Sci., 140, pp.

352-357;

Page 12: Abstract 10

Giessibl, F.J., Bielefeldt, H., Hembacher, S., Mannhart, J., Imaging of atomic orbitals with the

atomic force microscope-experiments and simulations (2001) Ann. Phys. (Leipzig), 10, pp. 887-

910;

Giessibl, F.J., Binnig, G., (1992) Atomic Resolution of Potassium Bromide (001) with an Atomic

Force Microscope and Calculation of Tip Shape, , unpublished;

Giessibl, F.J., Binnig, G., True atomic resolution on KBr with a low-temperature atomic force

microscope in ultrahigh vacuum (1992) Ultramicroscopy, 42-44, pp. 281-286;

Giessibl, F., Gerber, C., Binnig, G., A low-temperature atomic force/scanning tunneling

microscope for ultrahigh vacuum (1991) J. Vac. Sci. Technol. B, 9, pp. 984-988;

Giessibl, F.J., Hembacher, S., Bielefeldt, H., Mannhart, J., Subatomic features on the silicon

(111)-(7×7) surface observed by atomic force microscopy (2000) Science, 289, pp. 422-425;

Giessibl, F.J., Hembacher, S., Bielefeldt, H., Mannhart, J., Response to technical comment:

Subatomic features in atomic force microscopy images (2001) Science, 291, pp. 2509a;

Giessibl, F.J., Hembacher, S., Bielefeldt, H., Mannhart, J., Imaging silicon with

crystallographically oriented tips by atomic force microscopy (2001) Appl. Phys. A: Mater. Sci.

Process., 72, pp. 15-17;

Giessibl, F.J., Herz, M., Mannhart, J., Friction traced to the single atom (2002) Proc. Natl. Acad.

Sci. U.S.A., 99, pp. 12006-12010;

Giessibl, F.J., Tortonese, M., Self oscillating mode for frequency modulation non-contact atomic

force microscopy (1997) Appl. Phys. Lett., 70, pp. 2529-2531;

Giessibl, F.J., Trafas, B.M., Piezoresistive cantilevers utilized for scanning tunneling and

scanning force microscope in ultrahigh vacuum (1994) Rev. Sci. Instrum., 65, pp. 1923-1929;

Gnecco, E., Bennewitz, R., Meyer, E., Abrasive wear on the atomic scale (2002) Phys. Rev.

Lett., 88, p. 215501;

Goldstein, H., (1980) Classical Mechanics, , Addison-Wesley, Reading, MA;

Gotsmann, B., Schmidt, C., Seidel, C., Fuchs, H., Molecular resolution of an organic monolayer

by dynamic AFM (1998) Eur. Phys. J. B, 4, pp. 267-268;

Gotsmann, B., Schmidt, C., Seidel, C., Fuchs, H., Determination of tip-sample interaction forces

from measured dynamic force spectroscopy curves (1999) Appl. Surf. Sci., 140, pp. 314-319;

Güntherodt, H.-J., Wiesendanger, R., (1991) Scanning Tunneling Microscopy I-III, , Springer,

Berlin;

Page 13: Abstract 10

Güthner, P., (1992) Untersuchung der Lokalen Elektrischen Eigenschaften Dünner

Ferroelektrischer Polymere, 357. , Ph.D. thesis (University of Konstanz) konstanzer

Dissertationen;

Güthner, P., Simultaneous imaging of Si(111)7×7 with atomic resolution in scanning

tunneling microscopy, atomic force microscopy, and atomic force microscopy noncontact mode

(1996) J. Vac. Sci. Technol. B, 14, pp. 2428-2431;

Güthner, P., Fischer, U.C., Dransfeld, K., Scanning near-field acoustic microscopy (1989)

Appl. Phys. B: Lasers Opt., 48, pp. 89-92;

Hamaker, H.C., The London-van der Waals attraction between spherical particles (1937) Physica

(Amsterdam), 4, pp. 1058-1072;

Hartmann, U., Theory of van der Waals microscopy (1991) J. Vac. Sci. Technol. B, 9, pp. 465-

469;

Hembacher, S., Giessibl, F.J., Mannhart, J., Evaluation of a force sensor based on a quartz tuning

fork for operation at low temperatures and ultra-high vacuum (2002) Appl. Surf. Sci., 188, pp.

445-449;

Herz, M., Giessibl, F.J., Mannhart, J., Probing the shape of atoms in real space (2003) Phys. Rev.

B, 68, p. 045301;

Hölscher, H., (2002) Noncontact Atomic Force Microscopy, pp. 349-370. , edited by S. Morita,

R. Wiesendanger, and E. Meyer (Springer, Berlin), Chap. 18;

Hölscher, H., Allers, W., Schwarz, U.D., Schwarz, A., Wiesendanger, R., Calculation of the

frequency shift in dynamic force microscopy (1999) Appl. Surf. Sci., 140, pp. 344-351;

Hölscher, H., Schwarz, A., Allers, W., Schwarz, U.D., Wiesendanger, R., Quantitative analysis

of dynamic-force-spectroscopy data on graphite(0001) in the contact and noncontact regimes

(2000) Phys. Rev. B, 61, pp. 12678-12681;

Hölscher, H., Schwarz, U.D., Wiesendanger, R., Determination of tip-sample interaction

potentials by dynamic force spectroscopy (1999) Phys. Rev. Lett., 83, pp. 4780-4783;

Hoffmann, P., (2003) Appl. Surf. Sci., , Proceedings of the Fifth International Conference on

Noncontact Atomic Force Microscopy, Montreal, Canada, August 12-14, 2002 (to be published);

Hoffmann, P.M., Jeffery, S., Pethica, J.B., Özgr Özer, H., Oral, A., Energy dissipation in

atomic force microscopy and atomic loss processes (2001) Phys. Rev. Lett., 87, p. 265502;

Page 14: Abstract 10

Hoffmann, P.M., Oral, A., Grimble, R.A., Özer, H., Jeffrey, S., Pethica, J.B., Direct

measurement of interatomic force gradients using an ultra-low-amplitude atomic force

microscope (2001) Proc. R. Soc. London, Ser. A, 457, pp. 1161-1174;

Horowitz, P., Hill, W., (1989) The Art of Electronics, 2nd Ed., , Cambridge University Press,

Cambridge/New York;

Hosoi, H., Sueoka, K., Hayakawa, K., Mukasa, K., (2002) Noncontact Atomic Force

Microscopy, pp. 125-134. , edited by S. Morita, R. Wiesendanger, and E. Meyer (Springer,

Berlin), Chap. 7;

Howald, L., (1994) Rasterkraftmikroskopie an Silizium und Lonenkristallen in

Ultrahochvakuum, , Ph.D. thesis (Universität Basel, Switzerland);

Howald, L., Lüthi, R., Meyer, E., Güthner, P., Güntherodt, H.-J., Scanning force

microscopy on the Si(111)7×7 surface reconstruction (1994) Z. Phys. B: Condens. Matter, 93,

pp. 267-268;

Huang, M., Cuma, M., Liu, F., Seeing the atomic orbital: First-principles study of the effect of

tip geometry on atomic force microscopy (2003) Phys. Rev. Lett., 90, p. 256101;

Hug, H.J., Baratoff, A., (2002) Noncontact Atomic Force Microscopy, pp. 395-432. , edited by

S. Morita, R. Wiesendanger, and E. Meyer (Springer, Berlin), Chap. 20;

Hug, H.J., Lantz, M.A., Abdurixit, A., Van Schendel, P.J.A., Hoffmann, R., Kappenberger, P.,

Baratoff, A., Technical Comment: Subatomic features in atomic force microscopy images (2001)

Science, 291, pp. 2509a;

Israelachvili, J., (1991) Intermolecular and Surface Forces, 2nd Ed., , Academic, London;

Itoh, T., Lee, C., Suga, T., Deflection detection and feedback actuation using a self-excited

piezoelectric Pb(Zr,Ti)O3 microcantilever for dynamic scanning force microscopy (1996) Appl.

Phys. Lett., 69, pp. 2036-2038;

Jarvis, M.R., Prez, R., Payne, M.C., Can atomic force microscopy achieve atomic resolution in

contact mode? (2001) Phys. Rev. Lett., 86, pp. 1287-1290;

Jarvis, S.P., Tokumoto, H., Pethica, J.B., (1997) Measurement and Interpretation of Forces in the

Atomic Force Microscope," Probe Microsc., 1, pp. 65-79;

Jarvis, S.P., Yamada, H., Tokumoto, H., Pethica, J.B., Direct mechanical measurement of

interatomic potentials (1996) Nature (London), 384, pp. 247-249;

Page 15: Abstract 10

Kantorovich, L.N., A simple non-equilibrium theory of non-contact dissipation force microscopy

(2001) J. Phys.: Condens. Matter, 13, pp. 945-958;

Karrai, K., Grober, R.D., Piezoelectric tip-sample distance control for near field optical

microscopes (1995) Appl. Phys. Lett., 66, pp. 1842-1844;

Ke, S.H., Uda, T., Stich, I., Terakura, K., First-principles simulation of atomic force microscopy

image formation on a GaAs(110) surface: Effect of tip morphology (2001) Phys. Rev. B, 63, p.

245323;

Ke, S.-H., Uda, T., Terakura, K., Perez, R., Stich, I., (2002) Noncontact Atomic Force

Microscopy, pp. 279-304. , edited by S. Morita, R. Wiesendanger, and E. Meyer (Springer,

Berlin), Chap. 16;

Kitamura, S., Iwatsuki, M., Observation of 7×7 reconstructed structure on the silicon(111)

surface using ultrahigh vacuum noncontact atomic force microscopy (1995) Jpn. J. Appl. Phys.,

Part 2, 34, pp. L145-L148;

Kitamura, S., Iwatsuki, M., Observation of silicon surfaces using ultrahigh-vacuum noncontact

atomic force microscopy (1996) Jpn. J. Appl. Phys., Part 2, 35, pp. L668-L671;

Kitamura, S., Iwatsuki, M., High-resolution imaging of contact potential difference with

ultrahigh-vacuum non-contact atomic force microscopy (1998) Appl. Phys. Lett., 72, pp. 3154-

3156;

Kliewer, J., Berndt, R., Crampin, S., Controlled modification of individual adsorbate electronic

structure (2000) Phys. Rev. Lett., 85, pp. 4936-4939;

Kobayashi, K., Yamada, H., Itoh, H., Horiuchi, T., Matsushige, K., Analog frequency

modulation detector for dynamic force microscopy (2001) Rev. Sci. Instrum., 72, pp. 4383-4387;

Krupp, H., Particle adhesion theory and experiment (1967) Adv. Colloid Interface Sci., 1, pp.

111-239;

Kuchling, H., (1982) Taschenbuch der Physik, , Deutsch, Thun and Frankfurt/Main;

Kuk, Y., Silverman, P.J., Scanning tunneling microscope instrumentation (1988) Rev. Sci.

Instrum., 60, pp. 165-180;

Landau, L., Lifshitz, E.M., (1990) Lehrbuch der Theoretischen Physik I, 13th Ed., , Akademie

Verlag, Berlin;

Page 16: Abstract 10

Lantz, M., Hug, H.J., Hoffmann, R., Van Schendel, P., Kappenberger, P., Martin, S., Baratoff,

A., Güntherodt, H.-J., Quantitative measurement of short-range chemical bonding forces

(2001) Science, 291, pp. 2580-2583;

Lantz, M., Hug, H.J., Van Schendel, P., Hoffmann, R., Martin, S., Baratoff, A., Abdurixit, A.,

Güntherodt, H.-J., Low-temperature scanning force microscopy of the Si(111)(77) surface

(2000) Phys. Rev. Lett., 84, pp. 2642-2645;

Law, B.M., Rieutord, F., Electrostatic forces in atomic force microscopy (2002) Phys. Rev. B,

66, p. 035402;

Livshits, A., Shluger, A., Rohl, A., Contrast mechanism in non-contact SFM images of ionic

surfaces (1999) Appl. Surf. Sci., 140, pp. 327-332;

Livshits, A., Shluger, A., Rohl, A., Foster, A., Model of noncontact scanning force microscopy

on ionic surfaces (1999) Phys. Rev. B, 59, pp. 2436-2448;

Loppacher, C., Bennewitz, R., Pfeiffer, O., Guggisberg, M., Bammerlin, M., Schär, S.,

Barwich, V., Meyer, E., Phase variation experiments in non-contact dynamic force microscopy

using phased-locked-loop techniques (1998) Appl. Surf. Sci., 140, pp. 287-292;

Loppacher, C., Bennewitz, R., Pfeiffer, O., Guggisberg, M., Bammerlin, M., Schär, S.,

Barwich, V., Meyer, E., Quantitative measurement of short-range chemical bonding forces

(2000) Phys. Rev. B, 62, pp. 13674-13679;

Lüthi, R., Meyer, E., Bammerlin, M., Baratoff, A., Howald, L., Gerber, C., Güntherodt, H.-

J., Ultrahigh vacuum atomic force microscopy: True atomic resolution (1997) Surf. Rev. Lett., 4,

pp. 1025-1029;

Lüthi, R., Meyer, E., Bammerlin, M., Lehmann, T., Howald, L., Gerber, C., Güntherodt, H.-

J., Atomic resolution in dynamic force microscopy across steps on Si(111)7×7 (1996) Z.

Phys. B: Condens. Matter, 100, pp. 165-167;

Madelung, O., Schultz, M., Weiss, H., (1982) Numerical Data and Functional Relationships in

Science and Technology, 17 A. , Landolt-Börnstein (Springer, Berlin);

Manoharan, H., Lutz, C., Eigler, D., Quantum mirages formed by coherent projection of

electronic structure (2000) Nature (London), 403, pp. 512-515;

Marcus, R., Ravi, T., Gmitter, T., Chin, K., Liu, D., Orvis, W., Ciarlo, D., Trujillo, J., Formation

of silicon tips with 1 nm radius (1990) Appl. Phys. Lett., 56, pp. 236-238;

Page 17: Abstract 10

Martin, Y., Williams, C.C., Wickramasinghe, H.K., Atomic force microscope-force mapping and

profiling on a sub 100-Ã… scale (1987) J. Appl. Phys., 61, pp. 4723-4729;

Mate, M., McClelland, G.M., Erlandsson, R., Chiang, C., Atomic-scale friction of a tungsten tip

on a graphite surface (1987) Phys. Rev. Lett., 59, pp. 1942-1945;

McClelland, G.M., Erlandsson, R., Chiang, S., Atomic force microscopy: General principles and

a new implementation (1987) Rev. Prog. Quant. Nondestr. Eval., 6 B, pp. 1307-1314;

Meyer, E., Heinzelmann, H., Brodbeck, D., Overney, G., Howald, L., Hug, H., Jung, T.,

Güntherodt, H.-J., Atomic resolution on the surface of LiF(001) by atomic force microscopy

(1990) J. Vac. Sci. Technol. B, 9, pp. 1329-1332;

Meyer, E., Heinzelmann, H., Rudin, H., Güntherodt, H.-J., Atomic resolution on LiF(001) by

atomic force microscopy (1990) Z. Phys. B: Condens. Matter, 79, pp. 3-4;

Meyer, G., Amer, N.M., Optical-beam-deflection atomic force microscopy: The NaCl(100)

surface (1990) Appl. Phys. Lett., 56, pp. 2100-2101;

Meyer, G., Zöphel, S., Rieder, K.-H., Scanning tunneling microscopy manipulation of native

substrate atoms: A new way to obtain registry information on foreign adsorbates (1996) Phys.

Rev. Lett., 77, pp. 2113-2116;

Minobe, S.O.T., Uchihashi, T., Sugawara, Y., Morita, S., The atomic resolution imaging of

metallic Ag(111) surface by noncontact atomic force microscopy (1999) Appl. Surf. Sci., 140,

pp. 243-246;

Mody, C., (2002) Probe Microscopists at Work and at Play: the Growth of American STM in the

1980s, , unpublished;

Momosaki, E., (1997) Proceedings of the 1997 IEEE International Frequency Contr.

Symposium, 56, pp. 552-565. , IEEE, New York;

Morita, S., (2002) Noncontact Atomic Force Microscopy, pp. 1-10. , edited by S. Morita, R.

Wiesendanger, and E. Meyer (Springer, Berlin), Chap. 1;

Morita, S., Sugawara, Y., (2002) Noncontact Atomic Force Microscopy, pp. 47-78. , edited by S.

Morita, R. Wiesendanger, and E. Meyer (Springer, Berlin), Chap. 3;

Morita, S., Tsukada, M., Proceedings of the First International Workshop on Noncontact Atomic

Force Microscopy, Osaka, Japan, July 21-23, 1998 (1999) Appl. Surf. Sci., 140, pp. 243-456;

Morita, S., Wiesendanger, R., Meyer, E., (2002) Noncontact Atomic Force Microscopy,

Nanoscience and Technology, , Springer, Berlin;

Page 18: Abstract 10

Nakagiri, N., Suzuki, M., Okiguchi, K., Sugimura, H., Site discrimination of adatoms in Si(111)-

7×7 by noncontact atomic force microscopy (1997) Surf. Sci. Lett., 373, pp. L329-L332;

Ohnesorge, F., Binning, G., True atomic resolution by atomic force microscopy through

repulsive and attractive forces (1993) Science, 260, pp. 1451-1456;

Olsson, L., Lin, N., Yakimov, V., Erlandsson, R., A method for in situ characterization of tip

shape in ac-mode atomic force microscopy using electrostatic interaction (1998) J. Appl. Phys.,

84, pp. 4060-4064;

Oral, A., Grimble, R.A., Özgur Özer, H., Hoffmann, P.M., Pethica, J.B., Quantitative atom-

resolved force gradient imaging using noncontact atomic force microscopy (2001) Appl. Phys.

Lett., 79, pp. 1915-1917;

Pang, C.L., Thornton, G., (2002) Noncontact Atomic Force Microscopy, pp. 147-166. , edited by

S. Morita, R. Wiesendanger, and E. Meyer (Springer, Berlin), Chap. 9;

Park, S.I., Barrett, R.C., (1993) Scanning Tunneling Microscopy, pp. 31-76. , edited by J. A.

Stroscio and W. J. Kaiser (Academic, Boston), Chap. 2;

Partin, J., Atomic resolution of an insulator by noncontact AFM (1995) 12th International

Conference on Scanning Tunneling Microscopy 1995, , Snowmass, Colorado, USA;

Pauling, L., (1957) The Nature of the Chemical Bond, , Cornell University, Ithaca, NY;

Perez, R., Stich, I., Payne, M.C., Terakura, K., Role of covalent tip-surface interactions in

noncontact atomic force microscopy on reactive surfaces (1997) Phys. Rev. Lett., 78, pp. 678-

681;

Perez, R., Stich, I., Payne, M.C., Terakura, K., Surface-tip interactions in noncontact atomic-

force microscopy on reactive surfaces: Si(111) (1998) Phys. Rev. B, 58, pp. 10835-10849;

Pethica, J.B., Comment on 'Interatomic forces in scanning tunneling microscopy: Giant

corrugations of the graphite surface,' (1986) Phys. Rev. Lett., 57, p. 3235;

Pethica, J.B., Egdell, R., The insulator uncovered (2001) Nature (London), 414, pp. 27-29;

Pfeiffer, O., Bennewitz, R., Baratoff, A., Meyer, E., Lateral-force measurements in dynamic

force microscopy (2002) Phys. Rev, B, 65, pp. 161403R;

Raza, H., Pang, C.L., Haycock, S.A., Thornton, G., Evidence of concrete bond breaking steps in

the 1×1 to 1×3 phase transition of TiO2(100) (1999) Phys. Rev. Lett., 82, pp. 5265-5268;

Reichling, M., Barth, C., Scanning force imaging of atomic size defects on the CaF2(111)

surface (1999) Phys. Rev. Lett., 83, pp. 768-771;

Page 19: Abstract 10

Reichling, M., Barth, C., (2002) Noncontact Atomic Force Microscopy, pp. 109-124. , edited by

S. Morita, R. Weisendanger, and E. Meyer (Springer, Berlin), Chap. 6;

Rensen, W.H.J., Van der Hulst, N.F., Ruiter, A.G.T., West, P.E., Atomic steps with tuning-fork-

based noncontact atomic force microscopy (1999) Appl. Phys. Lett., 75, pp. 1640-1642;

Riordon, J., Physical Review Letters' Top Ten. Number 4: Atomic force microscopy (2003) APS

News, 12 (5), p. 3;

Rugar, D., Hansma, P., Atomic force microscopy (1990) Phys. Today, 43 (10), pp. 23-30;

Ruiter, A., Veerman, J., Van der Werf, K.O., Van Hulst, N., Dynamic behavior of tuning fork

shear-force feed-back (1997) Appl. Phys. Lett., 71, pp. 28-30;

Rychen, J., Ihn, T., Studerus, P., Herrmann, A., Ensslin, K., A low-temperature dynamic mode

scanning force microscope operating in high magnetic fields (1999) Rev. Sci. Instrum., 70, pp.

2765-2768;

Sarid, D., (1994) Scanning Force Microscopy, 2nd Ed., , Oxford University Press, New York;

Sasahara, A., Onishi, H., (2002) Noncontact Atomic Force Microscopy, pp. 215-232. , edited by

S. Morita, R. Weisendanger, and E. Meyer (Springer, Berlin), Chap. 13;

Sasaki, N., Tsukada, M., The relation between resonance curves and tip-surface interaction

potential in noncontact atomic-force microscopy (1998) Jpn. J. Appl. Phys., Part 2, 37, pp. L533-

L535;

Sasaki, N., Tsukada, M., Theory for the effect of the tip-surface interaction potential on atomic

resolution in forced vibration system of noncontact AFM (1999) Appl. Surf. Sci., 140, pp. 339-

343;

Sasaki, N., Tsukada, M., Effect of microscopic non-conservative process on noncontact atomic

force microscopy (2000) Jpn. J. Appl. Phys., Part 2, 39 (12 B), pp. L1334-L1337;

Schiller, C., (2003) Charakterisierung Von STM/AFM Spitzen und Atomar Aufgelöste

Messungen Zum Abklingverhalten Des Tunnelstroms, , Diploma thesis (University of Augsburg)

(English translation: "Characterization of STM/AFM tips and atomically resolved measurements

of the decay characteristics of the tunneling current);

Schimmel, T., Koch, T., Küppers, J., Lux-Steiner, M., True atomic resolution under ambient

conditions obtained by atome force microscopy in the contact mode (1999) Appl. Phys. A:

Mater. Sci. Process, 68, pp. 399-402;

Page 20: Abstract 10

Schirmeisen, A., Cross, G., Stalder, A., Grütter, P., Dürig, U., Metallic adhesion and

tunnelling at the atomic scale (2000) New J. Phys., 2, pp. 291-2910;

Schwarz, A., Allers, W., Schwarz, U., Wiesendanger, R., Simultaneous imaging of the in and As

sublattice on InAs(110)-(1×1) with dynamic scanning force microscopy (1999) Appl. Surf.

Sci., 140, pp. 293-297;

Schwarz, U.D., Hölscher, H., Wiesendanger, R., (2001) Appl. Phys. A: Mater. Sci. Process., 72

(SUPPL.), pp. S1-S141. , Proceedings of the Third International Conference on Non-Contact

Atomic Force Microscopy, Hamburg, Germany, July 16-19, 2000;

Shluger, A.L., Kantorovich, L.N., Livshits, A.I., Gillan, M.J., Ionic and electronic processes at

ionic surfaces induced by atomic-force-microscope tips (1997) Phys. Rev. B, 56, pp. 15332-

15344;

Shluger, A.L., Livshits, A.I., Foster, A.S., Catlow, C.R.A., Models of image contrast in scanning

force microscopy on insulators (1999) J. Phys.: Condens. Matter, 11, pp. R295-R322;

Smith, D.P.E., Limits of force microscopy (1995) Rev. Sci. Instrum., 66, pp. 3191-3195;

Sokolov, I.Y., Henderson, G.S., Wicks, F.J., Pseudo-non-contact AFM imaging? (1999) Appl.

Surf. Sci., 140, pp. 362-365;

Stillinger, F.H., Weber, T.A., Computer simulation of local order in condensed phases of silicon

(1985) Phys. Rev. B, 31, pp. 5262-5271;

Stroscio, J.A., Kaiser, W.J., (1994) Scanning Tunneling Microscopy, 2nd Ed., , Academic,

Boston;

Sugawara, Y., (2002) Noncontact Atomic Force Microscopy, pp. 183-192. , edited by S. Morita,

R. Wiesendanger, and E. Meyer (Springer, Berlin), Chap. 11;

Sugawara, Ohta, Y.M., Ueyama, H., Morita, S., Defect motion on an InP(110) surface observed

with noncontact atomic force microscopy (1995) Science, 270, pp. 1646-1648;

Sugawara, Y., Ueyama, H., Uchihashi, T., Ohta, M., Yanase, Y., Shigematsu, T., Suzuki, M.,

Morita, S., (1997) Proceedings E: Defects in Electric Materials II, p. 16. , Materials Research

Society 1996 Fall Meeting (Boston, December 1996), edited by J. Michel, T. Kennedy, K. Wada,

and K. Thonke (Materials Research Society, Warrendale, PA);

Tabor, D., Winterton, R.H.S., Direct measurement of normal and retarded van der Waals forces

(1969) Proc. R. Soc. London, Ser. A, 312, pp. 435-450;

Page 21: Abstract 10

Takayanagi, K., Tanishiro, Y., Takahashi, M., Takahashi, S., Structural analysis of Si(111)-7×

7 by UHV-transmission electron diffraction and microscopy (1985) J. Vac. Sci. Technol. A, 3,

pp. 1502-1506;

Tobik, J., Stich, I., Terakura, K., Effect of tip morphology on image formation in noncontact

atomic force microscopy: InP(110) (2001) Phys. Rev. B, 63, p. 245324;

Todorovic, M., Schulz, S., Magnetic force microscopy using nonoptical piezoelectric quartz

tuning fork detection design with applications to magnetic recording studies (1998) J. Appl.

Phys., 83, pp. 6229-6231;

Tomlinson, G.A., A molecular theory of friction (1929) Philos. Mag., 7, pp. 905-939;

Tortonese, M., Barrett, R.C., Quate, C., Atomic resolution with an atomic force microscope

using piezoresistive detection (1993) Appl. Phys. Lett., 62, pp. 834-836;

Tsai, D.P., Lu, Y.Y., Tapping-mode tuning fork force sensing for near-field scanning optical

microscopy (1998) Appl. Phys. Lett., 73, pp. 2724-2726;

Tsukada, M., Morita, S., (2002) Appl. Surf. Sci., 188, pp. 231-554. , Proceedings of the Fourth

International Conference on Noncontact Atomic Force Microscopy, Kyoto, Japan, September

21-23, 2001;

Tsukada, Sasaki, M.N., Gauthier, M., Tagami, K., Watanabe, S., (2002) Noncontact Atomic

Force Microscopy, pp. 257-278. , edited by S. Morita, R. Wiesendanger, and E. Meyer (Springer,

Berlin), Chap. 15;

Ueyama, H., Sugawara, Y., Morita, S., Stable operation mode for dynamic noncontact atomic

force microscopy (1998) Appl. Phys. A: Mater. Sci. Process., 66 (SUPPL.), pp. S295-S297;

Walls, F.L., (1985) Precision Frequency Control, pp. 276-279. , edited by E. Gerber and A.

Ballato (Academic, Orlando, FL);

Wang, L., Analytical descriptions of the tapping-mode atomic force microscopy response (1998)

Appl. Phys. Lett., 73, pp. 3781-3783;

Wickramasinghe, H.K., Scanned-Probe Microscopes (1989) Sci. Am., 261 (4), pp. 74-81;

Wiesendanger, R., (1994) Scanning Probe Microscopy and Spectroscopy: Methods and

Applications, , Cambridge University Press, Cambridge, UK;

Wiesendanger, R., (1998) Scanning Probe Microscopy: Analytical Methods, , Springer, Berlin;

Wolter, O., Bayer, T., Greschner, J., Micromachined silicon sensors for scanning force

microscopy (1991) J. Vac. Sci. Technol. A, 9, pp. 1353-1357;

Page 22: Abstract 10

Yamada, H., (2002) Noncontact Atomic Force Microscopy, pp. 193-214. , edited by S. Morita,

R. Wiesendanger, and E. Meyer (Springer, Berlin), Chap. 12;

Yokoyama, K., Ochi, T., Sugawara, Y., Morita, S., Atomically resolved silver imaging on the

Si(111)-(√3 ×√3)-Ag surface using a noncontact atomic force microscope (1999) Phys.

Rev. Lett., 83, pp. 5023-5026;

Zhong, Q., Innis, D., Kjoller, K., Elings, V.B., Fractured polymer silica fiber surface studied by

tapping mode atomic-force microscopy (1993) Surf. Sci., 290, pp. L688-L692

UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-

0141990921&partnerID=40&md5=a01f80a74adac4f22121e2d67580891f

ER -

Type JOURNAL

Journal Title - Sensors and Actuators, A: Physical

Volume - 216

Start Page - 231

End Page - 236

Published Year - 2014

Fabrication and characterization of large-area flexible microfluidic organic light-emitting

diode with liquid organic semiconductor

Tsuwaki, M. Kasahara, T. Edura, T. Matsunami, S. Oshima, J. Shoji, S. Adachi, C. Mizuno, J.

Department of Nanoscience and Nanoengineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555,

Japan

Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi,

Fukuoka 819-0395, Japan

Nissan Chemical Industries, Ltd., 2-10-1 Tsuboi-nishi, Funabashi, Chiba 274-8507, Japan

Institute for Nanoscience and Nanotechnology, Waseda University, 513 Waseda tsurumakicho, Shinjuku, Tokyo

162-0041, Japan

Abstract

Page 23: Abstract 10

We propose simple and high-throughput fabrication of large-area flexible microfluidic organic

light-emitting diodes (microfluidic OLEDs). Flexible electro-SU-8-microchannels with a liquid

emission layer were fabricated by the following four steps: (a) screen printing for transparent

electrodes, (b) novel belttransfer exposure for SU-8, (c) heterogeneous low-temperature bonding

using self-assembled monolayers (SAMs), and (d) injecting a liquid emitter into the

microchannels. 1-Pyrenebutyric acid 2-ethylhexyl ester (PLQ), which is on of liquid organic

semiconductors, was used as a liquid emitter. The liquid emitter successfully filled the flexible

microchannels, and electroluminescence was obtained both in flat and curved states. The

proposed microfluidic OLED is applicable for future flexible posters or displays, and can be

adopted around curved surfaces. © 2014 Elsevier B.V. All rights reserved.

Keywords: Belt-transfer exposure, Flexible OLED, Liquid emitter, Liquid OLED, Liquid organic semiconductor,

Microfluidic OLED

Export Date: 15 October 2014

Database: Scopus

References:

Xiao, L., Chen, Z., Qu, B., Luo, J., Kong, S., Gong, Q., Kido, J., Recent progresses on materials

for electrophosphorescent organic light-emitting devices (2011) Adv. Mater., 23, pp. 926-952;

D'Andrade, B.W., Forrest, S.R., White organic light-emitting devices for solid-state lighting

(2004) Adv. Mater., 16, pp. 1585-1595;

Burrowsa, P.E., Graffa, G.L., Grossa, M.E., Martina, P.M., Shia, M.K., Halla, M., Masta, E.,

Sullivan, M.B., Ultra barrier flexible substrates for flat panel displays (2001) Displays, 22, pp.

65-69;

Gu, G., Burrows, P.E., Venkatesh, S., Forrest, S.R., Thompson, M.E., Vacuum-deposited,

nonpolymeric flexible organic light-emitting devices (1997) Opt. Lett., 22, pp. 172-174;

Görrn, P., Sander, M., Meyer, J., Kröger, M., Becker, E., Johannes, H.H., Kowalsky, W.,

Riedl, T., Towards see-through displays: Fully transparent thin-film transistors driving

transparent organic light-emitting diodes (2006) Adv. Mater., 18, pp. 738-741;

Hirata, S., Heo, H.J., Shibano, Y., Hirata, O., Yahiro, M., Adachi, C., Improved device lifetime

of organic light emitting diodes with an electrochemically stable π-conjugated liquid host in the

liquid emitting layer (2012) Jpn. J. Appl. Phys., 51, p. 041604;

Page 24: Abstract 10

Hirata, S., Kubota, K., Jung, H.H., Hirata, O., Goushi, K., Yahiro, M., Adachi, C., Improvement

of electroluminescence performance of organic light-emitting diodes with a liquid-emitting layer

by introduction of electrolyte and a hole-blocking layer (2011) Adv. Mater., 23, pp. 889-893;

Shim, C.H., Hirata, S., Oshima, J., Edura, T., Hattori, R., Adachi, C., Uniform and refreshable

liquid electroluminescent device with a back side reservoir (2012) Appl. Phys. Lett., 101, p.

113302;

Kubota, K., Hirata, S., Shibano, Y., Hirata, O., Yahiro, M., Adachi, C., Liquid carbazole

substituted with a poly(ethylene oxide) group and its application for liquid organic light-emitting

diodes (2012) Chem. Lett., 41, pp. 934-936;

Kasahara, T., Matsunami, S., Edura, T., Oshima, J., Adachi, C., Shoji, S., Mizuno, J., Fabrication

and performance evaluation of microfluidic organic light emitting diode (2013) Sens. Actuators

A: Phys., 195, pp. 219-223;

Whitesides, G.M., The origins and the future of microfluidics (2006) Nature, 442, pp. 368-373;

Tang, L., Lee, N.Y., A facile route for irreversible bonding of plastic-PDMS hybrid

microdevices at room temperature (2010) Lab Chip, 10, pp. 1274-1280;

Lee, N.Y., Chung, B.H., Novel poly(dimethylsiloxane) bonding strategy via room temperature

chemical gluing (2009) Langmuir, 25, pp. 3861-3866;

Mizuno, J., Li, L., Kawaguchi, Y., Tsunozaki, K., Shinohara, H., Shoji, S., Anti-sticking curing

of fluorinated polymers for improvement of mold releasability (2011) J. Photopolym. Sci.

Technol., 24, pp. 89-93;

Zhao, Z., Chen, S., Lam, J.W.Y., Wang, Z., Lu, P., Mahtab, F., Sung, H.H.Y., Tang, B.Z.,

Pyrene-substituted ethenes: Aggregation-enhanced excimer emission and highly efficient

electroluminescence (2011) J. Mater. Chem., 21, pp. 7210-7216;

Chan, K.L., Lim, J.P.F., Yang, X., Dodabalapur, A., Jabbour, G.E., Sellinger, A., High-

efficiency pyrene-based blue light emitting diodes: Aggregation suppression using a calixarene

3D-scaffold (2012) Chem. Commun., 48, pp. 5106-5108

UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-

84903279705&partnerID=40&md5=f8490722549f45f0ea9393c3a6becf90

ER -

Page 25: Abstract 10

Type - JOURNAL

Journal Title -Journal of Surface Science and Nanotechnology

Volume - 12

Start Page - 157

End Page - 164

Published Year - 2014

Manipulation of organic molecules in ambient condition and liquid studied by scanning

tunneling microscopy

Takami, T.

Department of Physics, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, South Korea

VRI Inc. 4-13-13 Jingumae, Shibuya, Tokyo 150-0001, Japan

Abstract

This review describes how the manipulation of single molecules on solid state surface is

available in air or at the liquid/solid interface, observed with scanning tunneling microscope

(STM). First, the influences of the STM tip on the observation and manipulation of molecules

are discussed. Then how the STM tip induced the ordering and how the molecular structures on

the surface can be manipulated are shown. Second, the manipulation of single molecules with

STM tip is demonstrated. Last, the STM observations of the manipulation of molecules by

changing the ambient conditions such as solvent, photon irradiation, and electrochemical

potential, are shown. © 2014 The Surface Science Society of Japan.

Keywords: Atom/molecule manipulation, Graphite, Phthalocyanine, Porphyrin, Scanning

tunneling microscopy, Self-assembled monolayer

Page 26: Abstract 10

Export Date: 14 October 2014

Database: Scopus

References:

Eigler, D.M., Schweizer, K., (1990) Nature, 344, p. 524;

Jung, T.A., Schlittler, R.R., Gimzewski, J.K., Tang, H., Joachim, C., (1996) Science, 217, p. 181;

Mayne, A.J., Dujardin, G., (2011) Atomic and Molecular Manipulation, , Elsevier, Oxford;

Binnig, G., Rohrer, H., (1982) Helv. Phys. Acta, 55, p. 726;

Hla, S.-W., (2005) J. Vac. Sci. Technol. B, 23, p. 1351;

Tseng, A.A., Li, Z., (2007) J. Nanosci. Nanotechnol., 7, p. 2582;

Gomer, R., (1990) Rep. Prog. Phys., 53, p. 917;

Kanai, M., Kawai, T., Motai, K., Wan, X.D., Hashizume, T., Sakurai, T., (1995) Surf. Sci., 329,

pp. L619;

Sugiura, K.-I., Miyasaka, H., Ishii, T., Yamashita, M., (2003) Chemistry of Nanomolecular

Systems, p. 65. , T. Nakamura, T. Matsumoto, H. Tada, and K.-I. Sugiura, Eds. (Springer,

Heidelberg;

Moresco, F., Gourdon, A., (2005) Proc. Nat. Acad. Sci., 102, p. 8809;

Shirai, Y., Osgood, A.J., Zhao, Y., Yao, Y., Saudan, L., Yang, H., Yu-Hung, C., Tour, J.M.,

(2006) J. Am. Chem. Soc., 128, p. 4854;

Chiang, P.-T., Mielke, J., Godoy, J., Guerrero, J.M., Alemany, L.B., Villagomez, C.J., Saywell,

A., Tour, J.M., (2012), 6, p. 592. , ACS NanoGourdon, A., (1998) Eur. J. Org. Chem., p. 2797;

Yu, M., Xu, W., Benjalal, Y., Barattin, R., Lagsgaard, E., Stensgaard, I., Hliwa, M.,

Besenbacher, F., (2009) Nano Res., 2, p. 254;

Yoshimoto, S., Itaya, K., (2013) Annu. Rev. Anal. Chem., 6, p. 213;

Moresco, F., (2004) Phys. Rep., 399, p. 175;

Lorente, N., Rurali, R., Tang, H., (2005) J. Phys. Condens. Matter., 17, pp. S1049;

Li, Z., Li, B., Yang, J., Hou, J.G., (2010) Acc. Chem. Res., 43, p. 954;

Zhao, A., Tan, S., Li, B., Wang, B., Yang, J., Hou, J.G., (2013) Phys. Chem. Chem. Phys., 15, p.

12428;

Prutton, M., (1994) Introduction to Surface Physics, p. 154. , Oxford University Press, New

York;

Biro, L.P., Lambin, P., (2010) Carbon, 48, p. 2677;

Page 27: Abstract 10

Binnig, G., Rohrer, H., Gerber, C., Weibel, E., (1983) Phys. Rev. Lett., 50, p. 120;

Takayanagi, K., Tanishiro, Y., Takahashi, M., Takahashi, S., (1985) J. Vac. Sci. Technol. a, 3, p.

1502;

Soe, W.-H., Manzano, C., Wong, H.S., Joachim, C., (2012) J. Phys. Condens. Matter, 24, p.

354011;

Kroger, I., Stadtmuller, B., Kleimann, C., Rajput, P., Kumpf, C., (2011) Phys. Rev. B, 83, p.

195414;

Girard, C., Joachim, C., Chavy, C., Sautet, P., (1993) Surf. Sci., 282, p. 400;

Moresco, F., Meyer, G., Rieder, K.-H., Tang, H., Gourdon, A., Joachim, C., (2001) Appl. Phys.

Lett., 78, p. 306;

Moresco, F., Meyer, G., Rieder, K.-H., Ping, J., Tang, H., Joachim, C., (2002) Surf. Sci., 499, p.

94;

Hara, M., Iwakabe, Y., Tochigi, K., Sasabe, H., Garito, A.F., Yamada, A., (1990) Nature, 344, p.

228;

Takami, T., Mazur, U., Hipps, K.W., (2009) J. Chem. Phys. C, 113, p. 17479;

Takami, T., (2010) Hyomen Kagaku, 31, p. 208. , in Japanese;

Chiang, S., (1997) Chem. Rev., 97, p. 1083;

Ohtani, H., Wilson, R.J., Chiang, S., Mate, C.M., (1988) Phys. Rev. Lett., 60, p. 2398;

Lippel, P.H., Wilson, R.J., Miller, M.D., Woll, C., Chiang, S., (1989) Phys. Rev. Lett., 62, p.

171;

Hallmark, V.M., Chiang, S., Brown, J.K., Woll, C., (1991) Phys. Rev. Lett., 66, p. 48;

Griessl, S.J.H., Lackinger, M., Jamitzky, F., Markert, T., Hietschold, M., Heckl, W.M., (2004) J.

Chem. Phys. B, 108, p. 11556;

Cuberes, M.T., Schlittler, R.R., Gimzewski, J.K., (1996) Appl. Phys. Lett., 69, p. 3016;

Shigekawa, H., Miyake, K., Sumaoka, J., Harada, A., Komiyama, M., (2000) J. Am. Chem. Soc.,

122, p. 5411;

Scudiero, S., Hipps, K.W., (2007) J. Phys. Chem. C, 111, p. 17516;

Lafferentz, L., Ample, F., Yu, H., Hecht, S., Joachim, C., Grill, L., (2009) Science, 323, p. 1193;

Okawa, Y., Mandal, S.K., Hu, C., Tateyama, Y., Goedecker, S., Tsukamoto, S., Hasegawa, T.,

Aono, M., (2011) J. Am Chem. Soc., 133, p. 8227;

Page 28: Abstract 10

Kumar, A., Ye, T., Takami, T., Yu, B.C., Flatt, A.K., Tour, J.M., Weiss, P.S., (2008), 8, p.

1644. , Nano LettYe, T., Kumar, A.S., Saha, S., Takami, T., Huang, T.J., Stoddart, J.F., Weiss,

P.S., (2010), 4, p. 3697. , ACS NanoTakami, T., Clark, A., Caldwell, R., Mazur, U., Hipps,

K.W., (2010), 26, p. 12709. , LangmuirTakami, T., Ye, T., Pathem, B.K., Arnold, D.P., Bian, Y.,

Jiang, J., Weiss, P.S., (2010) J. Am. Chem. Soc., 132, p. 16460;

Penrose, R., (1974) Bull. Inst. Math. and its Appl., 10, p. 266;

Lu, P.J., Steinhardt, P.J., (2007) Science, 315, p. 1106;

Ah Qune, L.F.N., Tamada, K., Hara, M., (2008) E-J. Surf. Sci. Nanotech., 6, p. 119;

Shechtman, D., Blech, I., Gratias, D., Cahn, J.W., (1984) Phys. Rev. Lett., 53, p. 1951;

Ino, S., (1966) J. Phys. Soc. Jpn., 21, p. 346;

Ledieu, J., Munz, A.W., Parker, T.M., McGrath, R., Diehl, R.D., Delaney, D.W., Lograsso, T.A.,

(1999) Surf. Sci., 433-435, p. 666;

Ledieu, J., McGrath, R., (2003) J. Phys. Condens. Matter, 15, pp. S3113;

KrajÄÃ� , M., Hafner, J., Ledieu, J., McGrath, R., (2006) Phys. Rev. B, 73, p. 024202;

Carrasco, J., Michaelides, A., Forster, M., Haq, S., Raval, R., Hodgson, A., (2009) Nat. Mater.,

8, p. 427;

Merz, L., Parschau, M., Siegel, J.S., Ernst, K.-H., (2009) Chimia, 63, p. 214;

Tahara, K., Balandina, T., Furukawa, S., De Feyter, S., Tobe, Y., (2011) Cryst. Ng. Commun.,

13, p. 5551;

Douady, S., Couder, Y., (1996) J. Theor. Biol., 178, p. 255;

Couder, Y., (1998) Acta Soc. Bot. Pol., 67, p. 129;

Todd, J., Merlin, R., Clarke, R., Mohanty, K.M., Axe, J.D., (1986) Phys. Rev. Lett., 57, p. 1157;

Dharma-Wardana, M.W.C., Macdonald, A.H., Lockwood, D.J., Baribeau, J.-M., Houghton,

D.C., (1987) Phys. Rev. Lett., 58, p. 1761

UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-

84899002682&partnerID=40&md5=a4b8a64c52480cc00a50e301b835ace1

ER -

Type – JOURNAL

Journal Title - Applied Surface Science

Volume - 313

Page 29: Abstract 10

Start Page - 311

End Page - 319

Published Year - 2014

Effect of nitrogen incorporation on the structural, optical and dielectric properties of

reactive sputter grown ITO films

Gartner, M. Stroescu, H. Marin, A. Osiceanu, P. Anastasescu, M. Stoica, M. Nicolescu, M. Duta,

M. Preda, S. Aperathitis, E. Pantazis, A. Kampylafka, V. Modreanu, M. Zaharescu, M.

Institute of Physical Chemistry Ilie Murgulescu, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest,

Romania

FORTH-IESL, Crete, Greece

Tyndall National Institute, University College Cork, Cork, Ireland

Abstract

The changes in the optical, microstructural and electrical properties, following the nitrogen

incorporation into indium tin oxide thin films are investigated. The films are formed by r.f.

sputtering from an indium-tin-oxide (80% In2O3-20% SnO2) target in a mixture of Ar and N2

plasma (75% N2-25% Ar and 100% N2 respectively) on fused silica glass substrate. The impact

of rapid thermal annealing (up to 500 °C, in N2 ambient) on the properties of indium tin

oxynitride (ITON) thin films is also reported. The UV-vis-NIR ellipsometry (SE)

characterization of ITON films was performed assuming several realistic approaches based on

various oscillator models, using a chemical composition gradient depth profiling, in agreement

with the X-ray photoelectron spectroscopy measurements. The Hall measurements show that the

ITON films prepared by r.f. sputtering in 75% N2 and annealed at 500 °C behave as degenerate

semiconductors. X-ray diffraction analysis proved that ITON thin films retain an amorphous

structure even after RTA at 500 °C in N 2 ambient and atomic force microscopy showed the

formation of continuous and smooth ITON thin films, with a morphology consisting in

quasispherical nanometric particles. © 2014 Elsevier B.V. All rights reserved.

Keywords: Hall measurements, ITON, r.f. sputtering, Spectroscopic ellipsometry, Surface

chemistry, Surface morphology

Export Date: 15 October 2014

Page 30: Abstract 10

Data Base - Scopus

References:

Granqvist, C.G., (2007) Sol. Energy Mater. Sol. Cells, 91, pp. 1529-1598;

Granqvist, C.G., Hultåker, A., (2002) Thin Solid Films, 411, pp. 1-5;

Betz, U., Kharrazi Olsson, M., Marthy, J., Escolá, M.F., (2008) Thin Solid Films, 516, pp.

1334-1340;

Hamberg, I., Granqvist, C.G., (1986) J. Appl. Phys., 60, pp. 123-R160;

Dao, V.A., Choi, H., Heo, J., Park, H., Yoon, K., Lee, Y., Kim, Y., Yi, J., (2010) Curr. Appl.

Phys., 10, pp. 506-S509;

Zhao, L., Zhou, Z., Peng, H., Cui, R., (2005) Appl. Surf. Sci., 252, pp. 385-392;

Balestrieri, M., Pysch, D., Becker, J.-P., Hermle, M., Warta, W., Glunz, S.W., (2011) Sol.

Energy Mater. Sol. Cells, 95, pp. 2390-2399;

Vargas, M., Rubio, E.J., Gutierrez, A., Ramana, C.V., (2014) J. Appl. Phys., 115, p. 133511;

Singh, M., Mehta, B.R., Varandani, D., Singh, V.N., (2009) J. Appl. Phys., 106, p. 053709;

Furubayashi, Y., Hitosugi, T., Yamamoto, Y., Inaba, K., Kinoda, G., Hirose, Y., Shimada, T.,

Hasegawa, T., (2005) Appl. Phys. Lett., 86, p. 252101;

Wasa, K., Hayakawa, S., (1991) Handbook of Sputter Deposition Technology, , Noyes

Publications NJ, USA;

Facchetti, A., Marks, T.J., (2010) Transparent Electronics: From Synthesis to Applications, ,

John Wiley & Sons New York;

Ginley, D.S., Hosono, H., Paine, D.C., (2010) Handbook of Transparent Conductors, , Springer

New York;

Herrero, J., Guillén, C., (2004) Thin Solid Films, 451-452, pp. 630-633;

Fallah, H.R., Ghasemi, M., Hassanzadeh, A., (2007) Physica e, 39, pp. 69-74;

Fallah, H.R., Ghasemi Varnamkhasti, M., Vahid, M.J., (2010) Renew. Energy, 35 (7), pp. 1527-

1530;

Bunshah, R.F., (1994) Handbook of Deposition Technologies for Films and Coatings, , second

ed. Noyes Publications Park Ridge, NJ, USA;

Kundu, S., Biswas, P.K., (2008) Opt. Mater., 31, pp. 429-433;

Beaurian, A., Luxembourg, D., Dufour, C., Koncar, V., Capoen, B., Bouazaoui, M., (2008) Thin

Solid Films, 516, pp. 4102-4106;

Page 31: Abstract 10

Stoica, T.F., Gartner, M., Losurdo, M., Teodorescu, V., Blanchin, M., Stoica, T., Zaharescu, M.,

(2004) Thin Solid Films, 455-456, pp. 509-512;

Alam, M.J., Cameron, D.C., (2002) Thin Solid Films, 420-421, pp. 76-82;

Sathiaraj, T.S., (2008) Microelectron. J., 39, pp. 1444-1451;

Buchanan, M., Webb, J.B., Williams, D.F., (1980) Appl. Phys. Lett., 37 (2), pp. 213-215;

Teixeira, V., Cui, H.N., Meng, L.J., Fortunato, E., Martins, R., (2002) Thin Solid Films, 420-

421, pp. 70-75;

Kang, M., Kim, I., Chu, M., Kim, S.W., Ryu, J.-W., (2011) J. Korean Phys. Soc., 59 (5), pp.

3280-3283;

Aperathitis, E., Bender, M., Cimalla, V., Ecke, G., Modreanu, M., (2003) J. Appl. Phys., 94 (2),

pp. 1258-1266;

Himmerlich, M., Koufaki, M., Ecke, G., Mauder, C., Cimalla, V., Schaefer, J.A., Kondilis, A.,

Aperathitis, E., (2009) ACS Appl. Mater. Interface, 1 (7), pp. 1451-1456;

Stroescu, H., Anastasescu, M., Preda, S., Nicolescu, M., Stoica, M., Stefan, N., Kampylafka, V.,

Gartner, M., (2013) Thin Solid Films, 541, pp. 121-126;

Tompkins, H.G., Irene, E.A., (2005) Handbook of Ellipsometry, , William Andrew Publishing,

Springer Norwich, NY;

Aspnes, D.E., Theeten, J.B., Hottier, F., (1979) Phys. Rev. B, 20 (8), pp. 3292-3302;

Synowicki, R.A., (1998) Thin Solid Films, 313-314, pp. 394-397;

Jung, Y.S., (2004) Thin Solid Films, 467 (12), pp. 36-42;

Koida, T., Kondo, M., Tsutsumi, K., Sakaguchi, A., Suzuki, M., Fujiwara, H., (2010) J. Appl.

Phys., 107. , 033514-1-033514-11;

Lai, F., Lin, L., Gai, R., Lin, Y., Huang, Z., (2007) Thin Solid Films, pp. 7387-7392;

Baer, D.R., Engelhard, M.H., Lea, A.S., Nachimuthu, P., Droubay, T.C., Kim, J., Lee, B.,

Wright, B.S., (2010) J. Vac. Sci. Technol. A, 28 (5), pp. 1060-1072;

Naumkin, A.V., Kraut-Vass, A., Gaarenstroom, S.W., Powell, C.J., (2012) NIST X-ray

Photoelectron Spectroscopy Database. NIST Standard Reference Database 20, v.4.1;

Moulder, F., Stickle, W.F., Sobol, P.E., Bomben, K.D., (1995) Handbook of X-ray Photoelectron

Spectroscopy, , ULVAC-PHI Inc. Chigasaki, Japan;

Himmerlich, M., Koufaki, M., Mauder, Ch., Ecke, G., Cimalla, V., Schaefer, J.A., Aperathitis,

E., Krischok, S., (2007) Surf. Sci., 601, pp. 4082-4086;

Page 32: Abstract 10

Van Meerssche, M., Feneau-Dupont, J., (1984) Introduction À la Cristallographie et À la

Chimie Structurale, , Editions Peeters Leuven

UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-

84904809297&partnerID=40&md5=138c91c40105b9699a4ed15932c2b353

Type - JOURNAL

Volume - 314

Start Page - 1082

End Page - 1086

Published Year - 2014

Journal Title - Applied Surface Science

Electrical properties of SAM-modified ITO surface using aromatic small molecules with

double bond carboxylic acid groups for OLED applications

Can, M. Havare, A.K. Aydin, H. Yagmurcukardes, N. Demic, S. Icli, S. Okur, S.

Izmir Katip Celebi University, Faculty of Engineering, Department of Engineering Sciences, Çiǧli, Izmir, Turkey

Toros University, Faculty of Engineering, Electric and Electronic Department, Mersin, Turkey

Izmir Institute of Technology, Material Science and Engineering, Izmir, Turkey

Izmir Katip Celebi University, Faculty of Engineering, Department of Material Science and Engineering, Çiǧli,

Izmir, Turkey

Ege University, Solar Energy Institute, Izmir, Turkey

Abstract

5-[(3-Methylphenyl)(phenyl)amino]isophthalic acid (5-MePIFA) and 5-

(diphenyl)amino]isophthalic acid (5-DPIFA) organic molecules were synthesized to form self-

assembled monolayer on indium tin oxide (ITO) anode to enhance hole transport from ITO to

organic hole transport layers such as TPD. The modified surface was characterized by scanning

tunneling microscopy (STM). The change in the surface potential was measured by Kelvin probe

force microscopy (KPFM). Our Kelvin probe force microscopy (KPFM) measurements showed

that the surface potentials increased more than 100 mV with reference to bare indium tin-oxide.

The results show that the threshold voltage on OLEDs with modified ITO is lowered

Page 33: Abstract 10

significantly compared to OLEDs with unmodified ITO. The hole mobility of TPD has been

estimated using space-charge-limited current measurements (SCLC). © 2014 Elsevier B.V.

Keywords: Carboxylic acid, OLED, SAM, SCLC

Export Date: 15 October 2014

Data Base - Scopus

References:

Tang, C.W., Van Slyke, S.A., (1987) Appl. Phys. Lett., 51 (12), pp. 913-915;

Huang, Q., Li, J., Marks, T.J., (2007) J. Appl. Phys., 101, p. 093101;

Li, C.N., Kwong, C.Y., Djurišic, P.T., (2005) Thin Solid Films, 477, pp. 57-62;

Rosenwaks, Y., Shikler, R., Glatzel, Th., Sadewasser, S., (2004) Phys. Rev. B, 70, p. 085320;

Blom, P.W.M., Vleggaar, J.J.M., (1996) Appl. Phys. Lett., 68, p. 3308;

Bozano, L., Carter, S.A., Scott, J.C., Malliaras, G.G., Brock, P.J., (1999) Appl. Phys. Lett., 74, p.

1132;

Chu, T.Y., Song, O.K., (2007) Appl. Phys. Lett., 90, p. 203512;

Malliaras, G.G., Salem, J.R., Brock, B.H., Scott, C., (1998) Phys. Rev. B., 58, p. 13411;

Tirapattur, S., Belletête, M., Leclerc, M., Durocher, G., (2003) J. Mol. Struc. (THEOCHEM),

625, pp. 141-148

UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-

84906785720&partnerID=40&md5=d87b3ab0826115e8082f5ca700a2ed4d

ER -

Type - JOURNAL

Journal Title - Applied Surface Science

Volume - 297

Start Page - 195

End Page - 204

Published Year - 2014

Thermally induced evolution of sol-gel grown WO3 films on ITO/glass substrates

Caruso, T. Castriota, M. Policicchio, A. Fasanella, A. De Santo, M.P. Ciuchi, F. Desiderio, G. La Rosa, S. Rudolf,

P. Agostino, R.G. Cazzanelli, E.

Dipartimento di Fisica, Università della Calabria, ponte Bucci cubo 31c, I-87036 Arcavacata di Rende, CS, Italy

Page 34: Abstract 10

CNR-IPCF UOS di Cosenza, Center of Excellence CEMIF.CAL, Licryl Laboratory, 87036 Rende, CS, Italy

Consiglio Nazionale Interuniversitario di Scienze Fisiche della Materia, via della Vasca Navale, 84, 00146 Roma,

Italy

Sincrotrone Trieste, Area Science Park, S.S. 14 km 163.5, I-34012 Basovizza, Trieste, Italy

Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen,

Netherlands

Abstract

The electronic, morphological and structural properties of WO3 thin films, synthesized via a sol-

gel route and deposited on ITO/glass substrates by spin-coating, were analyzed as a function of

annealing temperature (100-700 C range) by Scanning Electron Microscopy, Atomic Force

Microscopy, micro-Raman spectroscopy, X-ray Diffraction and Photoelectron Spectroscopy. We

have found evidence of two competing processes when the film is annealed at high temperatures

(600-700 C): a structural phase transition from amorphous to crystalline WO3 and a temperature-

activated diffusion of sodium ions, from the substrate into the WO3 film, which induces the

formation of sodium tungstate. The surface of the films was found to be oxygen deficient after

deposition but reverted to fully oxidized WO3 after high temperature annealing in air. The

annealing also induced a restructuring of the films with formation of nano-crystalline aggregates.

The influence of film thickness on these processes was also investigated. © 2014 Elsevier B.V.

All rights reserved.

Keywords: Photoelectron spectroscopy, Raman spectroscopy, Sodium diffusion, Sol-gel, Thin

film annealing, Tungsten trioxide

Cited By (since 1996):1

Export Date: 15 October 2014

Data Base - Scopus

References:

Deb, S.K., (1973) Philos. Mag., 27, p. 801;

Blanc, J., Staebler, D.L., (1971) Phys. Rev. B, 4, p. 3548;

Crandall, R.S., Faughnan, B.W., (1975) Appl. Phys. Lett., 26, pp. 120-121;

Dallacasa, V., Manfredi, M., Schianchi, G., (1982) Thin Solid Films, 91, pp. 1-8;

Yoshimura, T., (1984) J. Appl. Phys., 57, pp. 911-919;

Lampert, C.M., (1998) Solar Energy Mater., 52, pp. 207-221;

Granqvist, C.G., (1995) Handbook of Inorganic Electrochromic Materials, , Elsevier Amsterdam;

Page 35: Abstract 10

Bange, K., (1999) Solar Energy Mater. Solar Cells, 58, pp. 1-131;

Petra, A., Auddy, K., Ganguli, D., Livage, J., Biswas, P.K., (2004) Mater. Lett., 58, pp. 1059-

1063;

Bessière, A., Marcel, C., Morcrette, M., Tarascon, J.-M., Lucas, V., Viana, B., Baffier, N.,

(2002) J. Appl. Phys., 91, pp. 1589-1594;

Castriota, M., (2004) Development and Spectroscopic Characterization of Materials for

Applications in Electrochromic Devices and Novel Liquid Crystalline Cells (Ph.D. Thesis), ,

University of Calabria Rende, Cosenza, Italy;

Biswas, P.K., Pramanik, N.C., Mahapatra, M.K., Ganguli, D., Livage, J., (2003) Mater. Lett., 57,

pp. 4429-4432;

Lee, W.J., Shinde, P.S., Go, G.H., Doh, C.H., (2013) Appl. Surf. Sci., 270, pp. 267-271;

Zheng, H., Tachibana, Y., Kalantar-Zadeh, K., (2010) Langmuir, 26 (24), pp. 19148-19152;

Vemuri, R.S., Engelhard, M.H., Ramana, C.V., (2012) ACS Appl. Mater. Interfaces, 4, pp. 1371-

1377;

Zheng, H., Ou, J.Z., Strano, M.S., Kaner, R.B., Mitchell, A., Kalantar-Zadeh, K., (2011) Adv.

Funct. Mater., 21, pp. 2175-2196;

Gullapalli, S.K., Vemuri, R.S., Ramana, C.V., (2010) Appl. Phys. Lett., 96, p. 171903;

Strangi, G., Lucchetta, D.E., Cazzanelli, E., Scaramuzza, N., Versace, C., Bartolino, R., (1999)

Appl. Phys. Lett., 74, pp. 534-536;

Strangi, G., Scaramuzza, N., Versace, C., Cazzanelli, E., Simone, F., Pennisi, A., Bartolino, R.,

(1999) Ionics, 5, pp. 275-285;

Strangi, G., Cazzanelli, E., Scaramuzza, N., Versace, C., Bartolino, R., (2000) Phys. Rev. e, 62,

pp. 2263-2268;

Cazzanelli, E., Scaramuzza, N., Strangi, G., Versace, C., Pennisi, A., Simone, F., (1999)

Electrochim. Acta, 44, pp. 3101-3109;

Castriota, M., Marino, S., Versace, C., Strangi, G., Scaramuzza, N., Cazzanelli, E., (2005) Mol.

Cryst. Liq. Cryst., 429, pp. 237-253;

Breedon, M., Spizzirri, P., Taylor, M., Du Plessis, J., McCulloch, D., Zhu, J., Yu, L., Kalantar-

Zadeh, K., (2010) Cryst. Growth Des., 10 (1), pp. 430-439;

Sun, X., Cao, H., Liu, Z., Li, J., (2009) Appl. Surf. Sci., 255, pp. 8629-8633;

Ozer, N., (1997) Thin Solid Films, 304, pp. 310-314;

Page 36: Abstract 10

Livage, J., Ganguli, D., (2001) Solar Energy Mater. Solar Cells, 68, pp. 365-381;

Krings, L.H.M., Talen, W., (1998) Solar Energy Mater. Solar Cells, 54, pp. 27-37;

Barbo, F., Bertolo, M., Bianco, A., Cautero, G., Fontana, S., Johal, T.K., La Rosa, S.,

Kaznacheyev, K., (2000) Rev. Sci. Instrum., 71, p. 5;

Dudin, P., Lacovig, P., Fava, C., Nicolini, E., Bianco, A., Cautero, G., Barinov, A., (2010) J.

Synchrotron Radiat., 17, pp. 445-450;

Powell, C.J., Jablonski, A., (2010) NIST Electron Inelastic-Mean-Free-Path Database - Version

1.2, , National Institute of Standards and Technology Gaithersburg, MD;

Deniz, D., Frankel, D.J., Lad, R.J., (2010) Thin Solid Films, 518, p. 4095;

Castro-Hurtado, I., Tavera, T., Yurrita, P., Perez, N., Rodriguez, A., Mandayo, G.G., Castano,

E., (2013) Appl. Surf. Sci., 276, pp. 229-235;

Cazzanelli, E., Papalino, L., Pennisi, A., Simone, F., (2001) Electrochim. Acta, 46, pp. 1937-

1944;

Kuzmin, A., Purans, J., Cazzanelli, E., Vinegoni, C., Mariotto, G., (1998) J. Appl. Phys., 84, pp.

5515-5524;

Cazzanelli, E., Vinegoni, C., Mariotto, G., Kuzmin, A., Purans, J., (1999) J. Solid State Chem.,

143, pp. 24-32;

Cazzanelli, E., Vinegoni, C., Mariotto, G., Kuzmin, A., Purans, J., (1999) Solid State Ionics, 123,

pp. 67-74;

Dinescu, M., Filipescu, M., Ossi, P.M., Santo, N., (2010) Thin Solid Films, 518, p. 4493;

Boulova, M., Lucazeau, G., (2002) J. Solid State Chem., 167, pp. 425-434;

Ramana, C.V., Utsunomiya, S., Ewing, R.C., Julien, C.M., Becker, U., (2006) J. Phys. Chem. B,

110, pp. 10430-10435;

Fang, G.J., Liu, Z.L., Sun, G.C., Yao, K.L., (2001) Phys. Status Solidi A, 184, pp. 129-137;

Kim, C.-Y., Huh, S.-H., Riu, D.-H., (2009) Mater. Chem. Phys., 116, p. 527;

Cremonesi, A., Djaoued, Y., Bersani, D., Lottici, P.P., (2008) Thin Solid Films, 516, p. 4128;

Picquart, M., Castro-Garcia, S., Livage, J., Julien, C., Haro-Poniatowski, E., (2000) J. Sol-Gel

Sci. Technol., 18, pp. 199-206;

Schofield, K., (2003) Energy & Fuels, 17, pp. 191-203;

Luz Lima, C., Saraiva, G.D., Freire, P.T.C., MacZka, M., Paraguassu, W., De Sousa, F.F.,

Mendes Filho, J., (2011) J. Raman Spectrosc., 42, pp. 799-802;

Page 37: Abstract 10

Chatterjee, S., Mahapatra, P.K., Choudhary, R.N.P., Thakur, A.K., (2004) Phys. State Solidi A,

201, pp. 588-595;

MacZka, M., (1997) J. Solid State Chem., 129, pp. 287-297;

Hanuza, J., MacAlik, L., MacZka, M., Lutz, E.T.G., Van Der Maas, J.H., (1999) J. Mol. Struct.,

511-512, pp. 85-106;

Ottaviano, L., Bussolotti, F., Lozzi, L., Passacantando, M., La Rosa, S., Santucci, S., (2003) Thin

Solid Films, 436, pp. 9-16;

Santucci, S., Lozzi, L., MacCallini, E., Passacantando, M., Ottaviano, L., Cantalini, C., (2001) J.

Vac. Sci. Technol. A, 19, pp. 1467-1473;

Barrie, A., Street, F.J., (1977) J. Electron Spectrosc. Relat. Phenom., 7, p. 1;

Citrin, P.H., (1973) Phys. Rev. B, 8, p. 8;

Ho, S.F., Contarini, S., Rabalais, J.W., (1987) J. Phys. Chem., 91, p. 4779;

Patel, K.J., Panchal, C.J., Kheraj, V.A., Desai, M.S., (2009) Mater. Chem. Phys., 114, pp. 475-

478;

Chan, C.C., Hsu, W.C., Chang, C.C., Hsu, C.S., (2011) Sens. Actuators B, 157, pp. 504-509;

Epifani, M., Arbiol, J., DÃaz, R., Andreu, T., Siciliano, P., Morante, J.R., (2010) Thin Solid

Films, 518, pp. 4512-4514;

Garavand, N.T., Mahdavi, S.M., Irajizad, A., Ahadi, K., (2012) Mater. Lett., 82, pp. 214-216;

Azimirad, R., Akhavan, O., Moshfegh, A.Z., (2009) J. Phys. Chem. C, 113, pp. 13098-13102

UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-

84894622567&partnerID=40&md5=674fc9a537f9196f30ebcff5cf0b2575

Type - JOURNAL

Journal Title - Journal of Industrial and Engineering Chemistry

Volume - 20

Issue - 4

Start Page - 1198

End Page - 1208

Published Year - 2014

Page 38: Abstract 10

Organic materials for organic electronic devices

Lee, C.W. Kim, O.Y. Lee, J.Y.

Department of Polymer Science and Engineering, Dankook University, Jukjeon-dong, Suji-gu, Gyeonggi-do,

Yongin-si 448-701, South Korea

Abstract

In recent years, organic electronic devices which use organic materials as an active layer have

gained considerable interest as light-emitting devices, energy converting devices and switching

devices in many applications. In these organic electronic devices, the organic materials play a

key role of managing the device performances and various organic materials have been

developed to improve the device performances of organic electronic devices. In this paper, recent

developments of organic electronic materials for organic light-emitting diodes and organic solar

cells were reviewed. © 2013 The Korean Society of Industrial and Engineering Chemistry.

Keywords: Organic electronic devices, Organic light-emitting diode, Organic materials, Organic

solar cells

Cited By (since 1996):1

Export Date: 15 October 2014

Data Base - Scopus

References:

Baldo, M.A., Obrien, D.F., You, Y., Shoustikov, A., Sibley, S., Thompson, M.E., Forrest, S.R.,

(1998) Nature, 395, p. 151;

Holmes, R.J., Forrest, S.R.-J.T.Y., Kwong, R.C., Brown, J.J., Garon, S., Thompson, M.E.,

(2003) Appl. Phys. Lett., 82, p. 2422;

Adachi, C., Baldo, M.A., Thompson, M.E., Forrest, S.R., (2001) J. Appl. Phys., 90, p. 5048;

Lee, J., Yoo, Y., (2012) J. Ind. Eng. Chem., 16, p. 1647;

Song, I.S., Heo, S.W., Lee, J.H., Haw, J.R., Moon, D.K., (2012) J. Ind. Eng. Chem., 18, p. 312;

Yook, K.S., Lee, J.Y., (2012) J. Ind. Eng. Chem., 18, p. 309;

Forrest, S.R., (2004) Nature, 428, p. 911;

Kim, O.Y., Lee, J.Y., (2012) J. Ind. Eng. Chem., 18, p. 1029;

Page 39: Abstract 10

Tang, C.W., (1986) Appl. Phys. Lett., 48, p. 183;

Wçhrle, D., Meissner, D., (1991) Adv. Mater., 3, p. 129;

Peumans, P., Uchida, S., Forrest, S.R., (2003) Nature, 425, p. 158;

Xue, J., Uchida, S., Rand, B.P., Forrest, S.R., (2004) Appl. Phys. Lett., 85, p. 5757;

Barry, P.R., Jan, G., Paul, H., Jef, P., (2007) Prog. Photovoltaics Res. Appl., 15, p. 659;

Kim, J.Y., Lee, K., Coates, N.E., Moses, D., Nguyen, T.-Q., Dante, M., Heeger, A.J., (2007)

Science, 317, p. 222;

Spanggaard, H., Krebs, F.C., (2004) Sol. Energy Mater. Sol. Cells, 83, p. 125;

Genes, S., Neugebauer, H., Sariciftci, N.S., (2007) Chem. Rev., 107, p. 1324;

Cheng, Y.-J., Yang, S.-H., Hsu, C.-S., (2009) Chem. Rev., 109, p. 5868;

Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., Yang, Y., (2005) Nat. Mater.,

4, p. 864;

Chen, H.-Y., Hou, J., Zhang, S., Liang, Y., Yang, G., Yang, Y., Yu, L., Li, G., (2009) Nat.

Photonics, 3, p. 649;

Huo, L., Hou, J., Zhang, S., Chen, H.-Y., Yang, Y., (2010) Angew. Chem., 122, p. 1542;

Yun, D., Yoo, H., Heo, S., Song, H., Moon, D., Woo, J., Park, Y., (2013) J. Ind. Eng. Chem., 19,

p. 421;

Jeon, S.O., Lee, J.Y., (2012) J. Ind. Eng. Chem., 18, p. 661;

Hocevar, M., Krasovec, U.O., Bokalic, M., Topic, M., Veurman, W., Brandt, H., Hinsch, A.,

(2013) J. Ind. Eng. Chem., 19, p. 1464;

Kim, D.Y., Kim, J., Kim, J., Kim, A., Lee, G., Kang, M., (2012) J. Ind. Eng. Chem., 18, p. 1;

Kim, H., Jeon, J., Kim, D.Y., Lee, J., Kwak, S., (2012) J. Ind. Eng. Chem., 18, p. 1807;

Seo, Y., Kim, J.H., (2013) J. Ind. Eng. Chem., 19, p. 488;

Park, J.T., Roh, D.K., Chi, W.S., Patel, R., Kim, J.H., (2012) J. Ind. Eng. Chem., 18, p. 449;

Lee, S.H., Lim, Y.D., Seo, D.W., Hossain, M.A., Jang, H.H., Lee, H.C., Kim, W.G., (2013) J.

Ind. Eng. Chem., 19, p. 322;

Ahn, C.H., Jeon, J., Kwak, S., (2012) J. Ind. Eng. Chem., 18, p. 2184;

Jin, H.M., Seo, D.W., Lee, S.H., Lim, Y.D., Islam, M.M., Kim, W.G., (2012) J. Ind. Eng. Chem.,

18, p. 1499;

Lee, J., Hong, K.S., Shin, K., Jho, J.Y., (2012) J. Ind. Eng. Chem., 18, p. 19;

Im, J.S., Lee, S.K., Yun, J., Lee, Y., (2012) J. Ind. Eng. Chem., 18, p. 1023;

Page 40: Abstract 10

Singh, M., Singh, V.K., Surana, K., Bhattacharya, B., Singh, P.K., Rhee, H., (2013) J. Ind. Eng.

Chem., 19, p. 819;

Ju, S.H., Han, S., Kim, J.S., (2013) J. Ind. Eng. Chem., 19, p. 272;

Kim, J., Jha, S.K., Lee, D., Chand, R., Jeun, J., Kim, Y., (2012) J. Ind. Eng. Chem., 18, p. 1642;

Choi, H., Jin, S., Park, J., Kim, S.Y., Gal, Y., (2012) J. Ind. Eng. Chem., 18, p. 814;

Sirringhaus, H., Brown, P.J., Friend, R.H., Nielsen, M.M., Bechgaard, K., Langeveld-Voss,

B.M.W., Spiering, A.J.H., de leeuw, D.M., (1999) Nature, 401, p. 685;

Dimitrakopoulos, C.D., Purushothaman, S., Kymissis, J., Callegari, A., Shaw, J.M., (1999)

Science, 283, p. 822;

Katz, H.E., Lovinger, A.J., Johnson, J., Kloc, C., Siegrist, T., Li, W., Lin, Y.Y., Dodabalapur, A.,

(2000) Nature, 404, p. 478;

Halik, M., Klauk, H., Zschieschang, U., Schmid, G., Dehm, C., Schutz, M., Maisch, S., Stellacci,

F., (2004) Nature, 431, p. 963;

Muccini, M., (2006) Nat. Mater., 5, p. 605;

Briseno, A.L., Mannsfeld, S.C.B., Ling, M.M., Liu, S., Tseng, R.J., Reese, C., Roberts, M.E.,

Bao, Z., (2006) Nature, 444, p. 913;

Noh, Y.-Y., Zhao, N., Caironi, M., Sirringhaus, H., (2007) Nat. Nanotechnol., 2, p. 784;

Calhoun, M.F., Sanchez, J., Olaya, D., Gershenson, M.E., Podzorov, V., (2008) Nat. Mater., 7, p.

84;

Kim, C., Facchetti, A., Marks, T.J., (2007) Science, 318, p. 76;

Jung, M., Jeong, E., Kim, Y., Lee, Y., (2013) J. Ind. Eng. Chem., 19, p. 1315;

Ragupathy, D., Lee, S.C., Al-Deyab, S.S., Rajendran, A., (2013) J. Ind. Eng. Chem., 19, p. 1082;

Pope, M., Kallman, H., Magnante, P., (1963) J. Chem. Phys., 38, p. 2042;

Tang, C.W., VanSlyke, S.A., (1987) Appl. Phys. Lett., 51, p. 913;

VanSlyke, S.A., Chen, C.H., Tang, C.W., (1996) Appl. Phys. Lett., 69, p. 2160;

Elschner, A., Bruder, F., Heuer, H.-W., Jonas, F., Karbach, A., Kirchmeyer, S., Thurm, S.,

Wehrmann, R., (2000) Synth. Met., 111, p. 139;

Shirota, Y., Kuwabara, Y., Okuda, D., Okuda, R., Ogawa, H., Inada, H., Wakimoto, T., Imai, K.,

(1997) J. Lumin., 72, p. 985;

Park, Y., Kim, B., Lee, C., Hyun, A., Jang, S., Lee, J.-H., Gal, Y.-S., Park, J., (2011) J. Phys.

Chem. C, 115, p. 4843;

Page 41: Abstract 10

Adachi, C., Tsutsui, T., Saito, S., (1991) Optoelectron. Devices Technol., 6, p. 25;

O'Brien, D.F., Burrows, P.E., Forrest, S.R., Koene, B.E., Loy, D.E., Thompson, M.E., (1998)

Adv. Mater., 10, p. 1108;

Shirota, Y., Okumoto, K., Wayaku, K., Noda, T., Kageyama, H., (2000) Synth. Met., p. 473;

Kwak, J., Lyu, Y.-Y., Noh, S., Lee, H., Park, M., Choi, B., Char, K., Lee, C., (2012) Thin Solid

Films, 520, p. 7157;

Sun, Y., Forrest, S.R., (2007) Appl. Phys. Lett., 91, p. 236503;

Eom, S.-H., Zheng, Y., Chopra, N., Lee, J., So, F., Xue, J., (2008) Appl. Phys. Lett., 93, p.

123309;

Lee, C.W., Lee, J.Y., (2013) Org. Electron., 14, p. 370;

Lee, C.W., Lee, J.Y., (2013) Synth. Met., 167, p. 1;

Adachi, C., Tsutsui, T., Saito, S., (1989) Appl. Phys. Lett., 55, p. 1489;

Kim, H.-S., Noh, S.-H., Tsutsui, T., (1999) Korea Polym. J., 7, p. 18;

Johansson, N., Salbeck, J., Bauer, J., Weissortel, F., Broms, P., Andersson, A., Salaneck, W.R.,

(1998) Adv. Mater., 10, p. 1136;

Mahns, B., Roth, F., Grobosch, M., Lindner, S., Knupfer, M., Saragi, T.P.I., Reichert, T., Hahn,

T., (2012) J. Chem. Phys., 136, p. 124702;

Bettenhausen, J., Strohriegl, P., (1996) Macromol. Rapid Commun., 17, p. 623;

Tsai, M.-H., Lin, H.-W., Su, H.-C., Ke, T.-H., Wu, C.-C., Fang, F.-C., Liao, Y.-L., Wu, C.-L.,

(2006) Adv. Mater., 18, p. 1216;

Tao, Y.-T., Balasubramaniam, E., Danel, A., Jarosz, B., Tomasik, P., (2000) Appl. Phys. Lett.,

77, p. 1575;

Shih, H.-T., Lin, C.-H., Shih, H.-H., Cheng, C.-H., (2002) Adv. Mater., 14, p. 1409;

Anthopoulos, T.D., Markham, J.P.J., Namdas, E.B., Samuel, I.D.W., Lo, S.-C., Burn, P.L.,

(2003) Appl. Phys. Lett., 82, p. 4824;

O'Brien, D.F., Baldo, M.A., Thompson, M.E., Forrest, S.R., (1999) Appl. Phys. Lett., 74, p. 442;

Su, S.-J., Chiba, T., Takeda, T., Kido, J., (2008) Adv. Mater., 20, p. 2125;

Tanaka, D., Agata, Y., Takeda, T., Watanabe, S., Kido, J., (2007) Jpn. J. Appl. Phys., 46, pp.

L117;

Jeon, S.O., Jang, S.E., Son, H.S., Lee, J.Y., (2011) Adv. Mater., 23, p. 1436;

Hosokawa, C., Tokailin, H., Higashi, H., Kusumoto, T., (1993) Appl. Phys. Lett., 63, p. 1322;

Page 42: Abstract 10

Lee, M.-T., Liao, C.-H., Tsai, C.-H., Chen, C.H., (2005) Adv. Mater., 17, p. 2493;

Yersin, H., (2004) Curr. Chem., 241, p. 1;

Chopra, N., Lee, J., Zheng, Y., Eom, S.-H., Xue, J., So, F., (2008) Appl. Phys. Lett., 93, p.

143307;

Xiao, L., Su, S.-J., Agata, Y., Lan, H., Kido, J., (2009) Adv. Mater., 21, p. 1271;

Lee, C.W., Lee, J.Y., (2013) Adv. Mater., 25, p. 596;

Oh, C.S., Lee, C.W., Lee, J.Y., (2013) Dyes Pigm., 98, p. 372;

Jeong, S.H., Seo, C.W., Cho, N.S.L.J.Y., Kim, J.K., Yang, J.H., (2011) Chem. Asian J., 6, p.

2895;

Lee, C.W., Lee, J.Y., (2013) Adv. Mater., , DOI: 10. 1002/adma. 201301091;

Sajoto, T., Djurovich, P.I., Tamayo, A., Yousufuddin, M., Bau, R., Thompson, M.E., (2005)

Inorg. Chem., 44, p. 7992;

Chang, C.-F., Cheng, Y.-M., Chi, Y., Chiu, Y.-C., Lin, C.-C., Lee, G.-H., Chou, P.-T., Wu, C.-

C., (2008) Angew. Chem. Int. Ed., 47, p. 4542;

Hang, X.-C., Fleetham, T., Turner, E., Brooks, J., Li, J., (2013) Angew. Chem. Int. Ed., 52, p.

6753;

Chen, C.H., Tang, C.W., Shi, J., Klubek, K.P., (2000) Thin Solid Films, 363, p. 327;

Fox, J.L., Chen, C.H., (1988) US Patent 4,736,032;

Luo, X.D., Gu, H., Ding, B.D., Wang, L., Zhang, X.W., Zhu, W.Q., Jiang, X.Y., Zhang, Z.L.,

(2011) Curr. Appl. Phys., 11, p. 844;

Okumoto, K., Kanno, H., Hamada, Y., Takahashi, H., Shibata, K., (2006) Appl. Phys. Lett., 89,

p. 013502;

Huang, T.-H., Lin, J.T., Tao, Y.T., Chuen, C.-H., (2003) Chem. Mater., 15, p. 4584;

Xia, Z.-Y., Su, J.-H., Fan, H.-H., Cheah, K.-W., Tian, H., Chen, C.H., (2010) J. Phys. Chem. C,

114, p. 11602;

Tong, Q.-X., Lai, S.-L., Chan, M.-Y., Lai, K.-H., Tang, J.-X., Kwong, H.-L., Lee, C.-S., Lee, S.-

T., (2007) Appl. Phys. Lett., 91, p. 153504;

Baldo, M.A., Lamansky, S., Burrows, P.E., Thompson, M.E., Forrest, S.R., (1999) Appl. Phys.

Lett., 75, p. 4;

Kang, D.M., Kang, J.W., Park, J.W., Jung, S.O., Lee, S.H., Park, H.D., Kim, Y.H., Kwon, S.K.,

(2008) Adv. Mater., 20, p. 2003;

Page 43: Abstract 10

Kim, J.Y., Lee, K., Coates, N.E., Moses, D., Nguyen, T., Dante, M., Heeger, A.J., (2007)

Science, 317, p. 222;

Hoppe, H., Sariciftci, N.S., (2006) J. Mater. Chem., 16, p. 45;

Zhou, Q., Hou, Q., Zheng, L., Deng, X., Yu, G., Cao, Y., (2004) Appl. Phys. Lett., 84, p. 1653;

Yang, R., Tian, R., Yan, J., Zhang, Y., Yang, J., Hou, Q., Yang, W., Cao, Y., (2005)

Macromolecules, 38, p. 244;

Svensson, M., Zhang, F., Veenstra, S.C., Verhees, W.J.H., Hummelen, J.C., Kroon, J.M.,

Inganas, O., Andersson, M.R., (2003) Adv. Mater., 15, p. 988;

Slooff, L.H., Veenstra, S.C., Kroon, J.M., Moet, D.J.D., Sweelssen, J., Koetse, M.M., (2007)

Appl. Phys. Lett., 90, p. 143506;

Shi, C., Yao, Y., Yang, Y., Pei, Q., (2006) J. Am. Chem. Soc., 128, p. 8980;

Blouin, N., Michaud, A., Leclerc, M., (2007) Adv. Mater., 19, p. 2295;

Zou, Y., Najari, A., Berrouard, P., Beaupré, S., Aïch, B.R., Tao, Y., Leclerc, M., (2010) J.

Am. Chem. Soc., 132, p. 5330;

Zhang, Y., Hau, S.K., Yip, H.-L., Sun, Y., Acton, O., Jen, A.K.-Y., (2010) Chem. Mater., 22, p.

2696;

Piliego, C., Holcombe, T.W., Douglas, J.D., Woo, C.H., Beaujuge, P.M., Fréchet, J.M.J.,

(2010) J. Am. Chem. Soc., 132, p. 7595;

Zhang, G., Fu, Y., Zhang, Q., Xie, Z., (2010) Chem. Commun., 46, p. 4997;

Yuan, M.-C., Chiu, M.-Y., Liu, S.-P., Chen, C.-M., Wei, K.-H., (2010) Macromolecules, 43, p.

6936;

Xue, J., Uchida, S., Rand, B.P., Forrest, S.R., (2004) Appl. Phys. Lett., 84, p. 3013;

Uchida, S., Xue, J., Rand, B.P., Forrest, S.R., (2004) Appl. Phys. Lett., 84, p. 4218;

Xue, J., Rand, B.P., Uchida, S., Forrest, S.R., (2005) Adv. Mater., 17, p. 66;

Gebeyehu, D., Mnnig, B., Drechsel, J., Leo, K., Pfeiffer, M., (2003) Sol. Energy Mater. Sol.

Cells, 79, p. 81;

Sun, Y., Welch, G.C., Leong, W.L., Takacs, C.J., Bazan, G.C., Heeger, A.J., (2011) Nat. Mater.,

6, p. 44;

Sakai, J., Taima, T., Saito, K., (2008) Org. Electron., 9, p. 582;

Schulze, K., Uhrich, C., Schappel, R., Leo, K., Pfeiffer, M., Brier, E., Reinold, E., Bauerle, P.,

(2006) Adv. Mater., 18, p. 2872;

Page 44: Abstract 10

Schulze, K., Riede, M., Brier, E., Reinold, E., Bauerle, P., Leo, K., (2008) J. Appl. Phys., 104, p.

074511;

Uhrich, C., Schueppel, R., Petrich, A., Pfeiffer, M., Leo, K., Brier, E., Kilickiran, P., Bauerle, P.,

(2007) Adv. Funct. Mater., 17, p. 2991;

Barckstümmer, H., Kronenberg, N.M., Meerholz, K., Wurthner, F., (2010) Org. Lett., 12, p.

3666;

Nelson, J., Kirkpatrick, J., Ravirajan, P., (2004) Phys. Rev. B: Condens. Matter, 69, p. 035337;

Fan, B., Castro, D., Chu, B.T.-T., Heier, J., Opris, D., Hany, R., Naesch, F., (2010) J. Mater.

Chem., 20, p. 2952;

Fan, B., de Castro, F.A., Heier, J., Hany, R., Naesch, F., (2010) Org. Electron., 11, p. 583;

Silvestri, F., Irwin, M.D., Beverina, L., Facchetti, A., Pagani, G.A., Marks, T.J., (2008) J. Am.

Chem. Soc., 130, p. 17640;

Bagnis, D., Beverina, L., Huang, H., Silvestri, F., Yao, Y., Yan, H., Pagani, G.A., Facchetti, A.,

(2010) J. Am. Chem. Soc., 132, p. 4074;

Mayerhçffer, U., Deing, K., Gruß, K., Braunschweig, H., Meerholz, K., Wurthner, F., (2009)

Angew. Chem., 121, p. 8934;

Silvestri, F., Lopez-Duarte, I., Seitz, W., Beverina, L., Martinez-Diaz, M.V., Marks, T.J., Guldi,

D.M., Torres, T., (2009) Chem. Commun., p. 4500;

Wei, G., Wang, S., Renshaw, K., Thompson, M.E., Forrest, S.R., (2010) ACS Nano, 4, p. 1927;

Wei, G., Wang, S., Sun, K., Thompson, M.E., Forrest, S.R., (2011) Adv. Energy Mater., 1, p.

184;

Wei, G., Lunt, R.R., Sun, K., Wang, S., Thompson, M.E., Forrest, S.R., (2010) Nano Lett., 10, p.

3555;

Kronenberg, N.M., Deppisch, M., Wurthner, F., Lademann, H.W.A., Deing, K., Meerholz, K.,

(2008) Chem. Commun., p. 6489

UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-

84900814102&partnerID=40&md5=0cf92f87ed315fd78289fd5521ed92b0

Page 45: Abstract 10

Type - JOURNAL

Journal Title - Journal of Polymer Engineering

Volume - 34

Issue - 4

Start Page - 279

End Page - 338

Published Year - 2014

Organic semiconductors for device applications: Current trends and future prospects

Ahmad, S.

Center of Excellence in Nanotechnology, Confederation of Indian Industry Western Region, Ahmedabad, Gujarat

380006, India

Abstract

With the rich experience of developing silicon devices over a period of the last six decades, it is

easy to assess the suitability of a new material for device applications by examining charge

carrier injection, transport, and extraction across a practically realizable architecture; surface

passivation; and packaging and reliability issues besides the feasibility of preparing mechanically

robust wafer/substrate of single-crystal or polycrystalline/ amorphous thin films. For material

preparation, parameters such as purification of constituent materials, crystal growth, and thin-

film deposition with minimum defects/disorders are equally important. Further, it is relevant to

know whether conventional semiconductor processes, already known, would be useable directly

or would require completely new technologies. Having found a likely candidate after such a

screening, it would be necessary to identify a specific area of application against an existing list

of materials available with special reference to cost reduction considerations in large-scale

production. Various families of organic semiconductors are reviewed here, especially with the

objective of using them in niche areas of large-area electronic displays, flexible organic

electronics, and organic photovoltaic solar cells. While doing so, it appears feasible to improve

mobility and stability by adjusting-conjugation and modifying the energy bandgap. Higher

conductivity nanocomposites, formed by blending with chemically conjugated C-allotropes and

Page 46: Abstract 10

metal nanoparticles, open exciting methods of designing flexible contact/interconnects for

organic and flexible electronics as can be seen from the discussion included here. © 2014

Walter de Gruyter GmbH, Berlin/Boston.

Keywords: Conjugated polymers, Crystalline/polycrystalline organic compounds, Hopping

conduction, Organic field-effect transistors, Organic semiconductors

Export Date: 15 October 2014

Data Base - Scopus

References:

Dodabalapur, A., Katz, H.E., Torsi, L., Haddon, R.C., (1995) Science, 269, pp. 1560-1562;

Friend, R.H., Gymer, R.W., Holmes, A.B., Burroughes, J.H., Marks, R.N., Taliani, C., Bradley,

D.D.C., Salaneck, W.R., (1999) Nature, 397, pp. 121-128;

Sirringhaus, H., Brown, P.J., Friend, R.H., Nielsen, M.M., Bechgaard, K., Langeveld-Voss,

B.M.W., Spiering, A.J.H., De Leeuw, D.M., (1999) Nature, 401, pp. 685-688;

Kagan, C.R., Mitzi, D.B., Dimitrakopoulos, C.D., (1999) Science, 286, pp. 945-947;

Crone, B., Dodabalapur, A., Lin, Y.Y., Filas, R.W., Bao, Z., Laduca, A., Sarpeshkar, R., Li, W.,

(2000) Nature, 403, pp. 521-523;

Coe, S., Woo, W.-K., Bawendi, M., Bulovic, V., (2002) Nature, 420, pp. 800-803;

Malliaras, G., Friend, R., (2005) Phys. Today, 58, pp. 53-58;

Jurchescu, O.D., (2006) Molecular Organic Semiconductors for Electronic Devices, , Ph.D.

thesis, Materials Science Centre, University of Groningen: The Netherlands;

Naber, R.C.G., Tanase, C., Blom, P.W.M., Gelinck, G.H., Marsman, A.W., Touwslager, F.J.,

Setayesh, S., De Leeuw, D.M., (2005) Nat. Mater., 4, pp. 243-248;

Tashiro, K., (1955) Ferroelectric Polymers Chemistry, Physics, and Applications, pp. 63-181. ,

Nalwa HS, Ed., Marcel Dekker, Inc.: New York;

Guo, X., Small, J.P., Klare, J.E., Wang, Y., Purewal, M.S., Tam, I.W., Hong, B.H., Nuckolls, C.,

(2006) Science, 311, pp. 356-359;

Bonfiglio, A., De Rossi, D., Kirstein, T., Locher, I., Mameli, F., Paradiso, R., Vozzi, G., (2005)

IEEE Trans. Inf. Tech. Biomed., 9, pp. 319-324;

Rollable Display, , http://phys.org/news6180.html;

Gundlach, D.J., Jackson, T.N., Schlom, D.G., Nelson, S.F., (1999) Appl. Phys. Lett., 74, pp.

3302-3304;

Page 47: Abstract 10

Meijer, E.J., Gelinck, G.H., Van Veenendaal, E., Huisman, B.-H., De Leeuw, D.M., Klapwijk,

T.M., (2003) Appl. Phys. Lett., 82, pp. 4576-4578;

Kline, R.J., McGehee, M.D., Kadnikova, E.N., Liu, J., Fréchet, J.M.J., (2003) Adv. Mater.,

15, pp. 1519-1522;

Zhang, Y., Petta, J.R., Ambily, S., Shen, Y., Ralph, D.C., Malliaras, G.G., (2003) Adv. Mater.,

15, pp. 1632-1635;

Podzorov, V., Pudalov, V.M., Gershenson, M.E., (2003) Appl. Phys. Lett., 82, pp. 1739-1741;

De Boer, R.W.I., Klapwijk, T.M., Morpurgo, A.F., (2003) Appl. Phys. Lett., 83, pp. 4345-4347;

Lang, D.V., Chi, X., Siegrist, T., Sergent, A.M., Ramirez, A.P., (2004) Phys. Rev. Lett., 93, p.

086802;

Sundar, V.C., Zaumseil, J., Podzorov, V., Menard, E., Willett, R.L., Someya, T., Gershenson,

M.E., Rogers, J.A., (2004) Science, 303, pp. 1644-1646;

Gelinck, G.H., Huitema, H.E.A., Van Veenendaal, E., Cantatore, E., Schrijnemakers, L., Van

Der-Putten, J.B.P.H., Geuns, T.C.T., De Leeuw, D.M., (2004) Nat. Mater., 3, pp. 106-110;

Chua, L.L., Zaumseil, J., Chang, J.-F., Ou, E.C.-W., Ho, P.K.-H., Sirringhaus, H., Friend, R.H.,

(2005) Nature, 434, pp. 194-199;

Dimitrakopoulos, C.D., Malenfant, P.R.L., (2002) Adv. Mater., 14, pp. 99-117;

Bao, Z., Rogers, J.A., Katz, H.E., (1999) J. Mater. Chem., 9, pp. 1895-1904;

Horowitz, G., (1999) J. Mater. Chem., 9, pp. 2021-2026;

Murphy, A.R., Fechet, J.M.J., (2007) Chem. Rev., 107, pp. 1066-1096;

Mas-Torrent, M., Rovira, C., (2008) Chem. Soc. Rev., 37, pp. 827-838;

Bao, Z., Feng, Y., Dodabalapur, A., Raju, V.R., Lovinger, A.J., (1997) Chem. Mater., 9, pp.

1299-1301;

Bharathan, J., Yang, Y., (1998) Appl. Phys. Lett., 72, pp. 2660-2662;

Chang, S.-C., Bharathan, J., Yang, Y., Helgeson, R., Wudl, F., Ramey, M.B., Reynolds, J.R.,

(1998) Appl. Phys. Lett., 73, pp. 2561-2563;

Hebner, T.R., Sturm, J.C., (1998) Appl. Phys. Lett., 73, pp. 1775-1777;

Hebner, T.R., Wu, C.C., Marcy, D., Lu, M.H., Sturm, J.C., (1998) Appl. Phys. Lett., 72, pp. 519-

521;

Rogers, J.A., Bao, Z., Raju, R.V., (1998) Appl. Phys. Lett., 72, pp. 2716-2718;

Rogers, J.A., Bao, Z., Makhija, (1999) Adv. Mater., 11, pp. 741-745;

Page 48: Abstract 10

Rogers, J.A., Huang, Y., (2009) Proc. Natl. Acad. Sci., 106, pp. 10875-10876;

Rogers, J.A., Someya, T., Huang, Y., (2010) Science, 327, pp. 1603-1607;

Sekitani, T., Noguchi, Y., Zschieschang, U., Klauk, H., Someya, T., (2008) Proc. Natl. Acad.

Sci., 105, pp. 4976-4980;

Service, R.F., (1997) Science, pp. 383-384;

De Boer, R.W.I., Gershenson, M.E., Morpurgo, A.F., Podzorov, V., (2004) Phys. Stat. Solid. A,

201, pp. 1302-1331;

Reese, C., Bao, Z., (2007) Mater. Today, 10, pp. 20-27;

Hasegawa, T., Takeya, J., (2009) Sci. Technol. Adv. Mater., 10 (1-16), p. 024314;

Jiang, L., Dong, H., Hu, W., (2010) J. Mater. Chem., 20, pp. 4994-5007;

Dimitrakopoulos, C.D., Mascaro, D.J., (2001) IBM J. Res. Dev., 45, pp. 11-28;

Warta, W., Karl, N., (1985) Phys. Rev. B, 32, pp. 1172-1182;

Sundar, V.C., Eisler, H.-J., Deng, T., Chan, Y., Thomas, E.L., Bawendi, M.G., (2004) Adv.

Mater., 16, pp. 2137-2141;

Ramos, M.M.D., Barbosa, H.M.C., (2009) Eur. Phys. J. Appl. Phys., 46, p. 12509. ,

doi:10.1051/epjap/2009024;

Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., MacKay, K., Friend, R.H., Burns,

P.L., Holmes, A.B., (1990) Nature, 347, pp. 539-541;

Forrest, S.R., (2004) Nature, 428, pp. 911-918;

Brabec, C.J., (2004) Sol. Energy Mater. Sol. Cells, 83, pp. 273-292;

Brabec, C.J., Sariciftci, N.S., (2000) Semiconducting Polymers, , Hadziiannou G, van Hutten PF,

Eds., Wiley: New York, Ch. 15;

Gowrishankar, V., Hardin, B.E., McGehee, M.D., (2008) Organic Photovoltaics: Materials,

Device Physics and Manufacturing Technologies., p. 27. , Wiley-VCH Verlag GmbH & Co.:

Weinheim;

Koster, L.J.A., Mihailetchi, V.D., Lenes, M., Blom, P.W.M., (2008) Organic Photovoltaics:

Materials, Device Physics, and Manufacturing Technologies, , Brabec CC, Dyakonov V, Scherf

U, Eds., WILEY-VCH Verlag GmbH & Co.: KGaA, Weinheim, Copyright-ISBN: 978-3-527-

31675-5;

Neuteboom, E.E., Van Hal, P.A., Janssen, R.A.J., (2004) J. Chem. Eur. J., 10, pp. 3907-3918;

Scerf, U., Gutacker, A., Koenen, N., (2008) Acc. Chem. Res., 41, pp. 1086-1097;

Page 49: Abstract 10

Schueppel, R., Schmidt, K., Uhrich, C., Schulze, K., Wynands, D., Brédas, J.L., Baeuerle, P.,

Leo, K., (2008) Phys. Rev., B77, pp. 085311-085324;

Sun, S.S., (2003) Sol. Energy Mater. Sol. Cells, 79, pp. 257-264;

Gunes, S., Neugebauer, H., Sariciftci, N.S., (2007) Chem. Rev., 107, pp. 1324-1338;

Liang, Y.Y., Yu, L.P., (2010) Acc. Chem. Res., 43, pp. 1227-1236;

Bao, Z., Lovinger, A.J., Dodabalapur, A., (1996) Appl. Phys. Lett., 69, pp. 3066-3068;

Horowitz, G., (1998) Adv. Mater., 10, pp. 365-377;

Chang, J., Sun, B., Breiby, D.W., Nielsen, M.M., Sölling, T.I., Giles, M., McCulloch, I.,

Sirringhaus, H., (2004) Chem. Mater., 16, pp. 4772-4776;

Sun, Y., Liu, Y., Zhu, D., (2005) J. Mater. Chem., 15, pp. 53-65;

Roncali, J., Leriche, P., Cravino, A., (2007) Adv. Mater., 19, pp. 2045-2060;

Cornil, J., Beljonne, D., Calbert, J.-P., Brédas, J.-L., (2001) Adv. Mater., 13, pp. 1053-1067;

Brédas, J.L., Calbert, J.P., Da Silva-Filho, D.A., Cornil, J., (2002) Proc. Natl. Acad. Sci., 99,

pp. 5804-5809;

Kazukauskas, V., Tzeng, H., Chen, S.A., (2002) Appl. Phys. Lett., 80, pp. 2017-2019;

Smits, E.C.P., Anthopoulos, T.D., Setayesh, S., Van Veenendaal, E., Coehoorn, R., Blom,

P.W.M., De Boer, B., De Leeuw, D.M., (2006) Phys. Rev. B, 73 (1-9), p. 205316;

Inokuchi, H., (2006) Org. Electron., 7, pp. 62-76;

Akamatu, H., Inokuchi, H., Matsunaga, Y., (1954) Natus, 173, pp. 168-169;

Coropceanu, V., Cornil, J., Da Silva-Filho, D.A., Olivier, Y., Silbey, R., Brédas, J.-L., (2007)

Chem. Rev., 107, pp. 926-952;

Anthony, J.E., (2006) Chem. Rev., 106, pp. 5028-5048;

Tour, J.M., Wu, R., Schumm, J.S., (1992) Molecular Electronics-Science and Technology, pp.

77-84. , Aviram A, Ed., American Institute of Physics: New York;

Yassar, A., Delabouglise, D., Hmyene, M., Nessak, B., Horowitz, G., Garnier, F., (1992) Adv.

Mater., 4, pp. 490-494;

Guay, J., Kasai, P., Diaz, A., Wu, R., Tour, J.M., Dao, L.H., (1992) Chem. Mater., 4, pp. 1097-

1105;

Bäuerle, P., Fischer, T., Bidlingmeier, B., Rabe, J.P., Stabel, A., (1995) Angew. Chem. Int.

Ed., 34, pp. 303-307;

Nakanishi, H., Sumi, N., Aso, Y., Otsubo, T., (1998) J. Org. Chem., 63, pp. 8632-8633;

Page 50: Abstract 10

Noda, T., Shirota, Y., (1998) J. Am. Chem. Soc., 120, pp. 9714-9715;

Noda, T., Ogawa, H., Shirota, Y., (1999) Adv. Mater., 11, pp. 283-285;

Kunugi, Y., Takimiya, K., Negishi, N., Otsubo, T., Aso, Y., (2004) J. Mater. Chem., 14, pp.

2840-2841;

Hotta, S., Waragai, K., (1991) J. Mater. Chem., 1, pp. 835-842;

Bäuerle, P., Götz, G., Hiller, M., Scheib, S., Fischer, T., (1993) Synth. Metals, 61, pp. 71-79;

Graf, D.D., Campbell, J.P., Miller, L.L., Mann, K.R., (1996) J. Am. Chem. Soc., 118, pp. 5480-

5481;

Shirota, Y., Kageyama, H., (2007) Chem. Rev., 107, pp. 953-1010;

Hughes, G., Bryce, M.R., (2005) J. Mater. Chem., 15, pp. 94-107;

Shirota, Y., (2005) J. Mater. Chem., 15, pp. 75-93;

Okumoto, K., Shirota, Y., (2003) Chem. Mater., 15, pp. 699-707;

Pang, J., Tao, Y., Freiberg, S., Yang, X.-P., D'Iorio, M., Wang, S., (2002) J. Mater. Chem., 12,

pp. 206-212;

Lupton, J.M., Samuel, I.D.W., Beavington, R., Frampton, M.J., Burn, P.L., Bassler, H., (2001)

Phys. Rev. B, 63 (1-8), p. 155206;

Barron, J.A., Bernhard, S., Houston, P.L., Abruña, H.D., (2003) Phys. Chem. A, 107, pp. 8130-

8133;

Gambino, S., Stevenson, S.G., Knights, K.A., Burn, P.L., Samuel, I.D.W., (2009) Adv. Funct.

Mater., 19, pp. 317-323;

Dhanabalan, A., Van Duren, J.K.J., Van Hal, P.A., Van Dongen, J.L.J., Janssen, R.A.J., (2001)

Adv. Funct. Mater., 11, pp. 255-262;

Coakley, K.M., McGehee, M.D., (2004) Chem. Mater., 16, pp. 4533-4542;

Colladet, K., Fourier, S., Cleij, T.J., Lutsen, L., Gelan, J., Vanderzande, D., (2007)

Macromolecules, 40, pp. 65-72;

Demadrille, R., Delbosc, N., Kervella, Y., Firon, M., De Bettignies, R., Billon, M., Rannou, P.,

Pron, A., (2007) J. Mater. Chem., 17, pp. 4661-4669;

Roncali, J., (2007) Macromol. Rapid Commun., 28, pp. 1761-1775;

Soci, C., Hwang, I., Moses, D., Zhu, Z., Waller, D., Gaudiana, R., Brabec, C.J., Heeger, A.J.,

(2007) Adv. Funct. Mater., 17, pp. 632-636;

Page 51: Abstract 10

Zhu, Z., Waller, D., Gaudiana, R., Morana, M., Mühlbacher, D., Scharber, M., Brabec, C.,

(2007) Macromolecules, 40, pp. 1981-1986;

Zhan, X., Zhu, D., (2010) Polym. Chem., 1, pp. 409-419;

Shaheen, S.E., Brabec, C.J., Sariciftci, N.S., Padinger, F., Fromherz, T., Hummelen, J.C., (2001)

Appl. Phys. Lett., 78, pp. 841-843;

Kobashi, M., Takeuchi, H., (1998) Macromolecules, 31, pp. 7273-7278;

Mozer, A.J., Sariciftci, N.S., Pivrikas, A., Österbacka, R., Juška, G., Brassat, L., Bässler, H.,

(2005) Phys. Rev. B, 71 (1-9), p. 035214;

Karl, N., (2001) Organic Electronic Materials, pp. 283-326. , Farchioni R, Grosso G, Eds.,

Springer-Verlag: Berlin;

Hannewald, K., Bobbert, P.A., (2004) Appl. Phys. Lett., 85, pp. 1535-1537;

Hannewald, K., Bobbert, P.A., (2005) AIP Conf. Proc., 772, pp. 1101-1102;

Dinelli, F., Murgia, M., Levy, P., Cavalleni, M., Biscarini, F., De Leeuw, D.M., (2004) Phys.

Rev. Lett., 92 (1-4), p. 116802;

Kiguchi, M., Nakayama, M., Shimada, T., Saiki, K., (2005) Phys. Rev. B, 71 (1-5), p. 035332;

De Boer, R.W.I., Iosad, N.N., Stassen, A.F., Klapwijk, T.M., Morpurgo, A.F., (2005) Appl.

Phys. Lett., 86, p. 032103;

Panzer, M.J., Frisbie, C.D., (2006) Appl. Phys. Lett., 88, p. 203504;

Houili, H., Picon, J.D., Zuppiroli, L., (2005) Cond. Mater., p. 0510751. ,

http://arxiv.org/pdf/cond-mat/0510751v1.pdf;

Riordan, M., Hoddeson, L., (1997) Crystal Fire: The Birth of Information Age, , W.W. Norton

and Co.: New York;

Wu, Y., Liu, P., Li, Y., Ong, B.S., Lasers and electro-optics society, 2006. LEOS 2006 Proc.

19th Annual Meeting of the IEEE, pp. 434-435;

Lim, J.A., Lee, W.H., Lee, H.S., Lee, J.H., Park, Y.D., Cho, K., (2008) Adv. Funct. Mater., 18,

pp. 229-234;

Wang, Y.-W., Cheng, H.-L., (2009) Solid-State Electron., 53, pp. 1107-1111;

Huang, J.-H., Yang, C.-Y., Hsu, C.-Y., Chen, C.-L., Lin, L.-Y., Wang, R.-R., Ho, K.-C., Chu,

C.-W., (2009) ACS Appl. Mater. Interf., 1, pp. 2821-2828;

Choi, K.N., Kim, K.S., Chung, K.S., Hosun, L., (2009) IEEE Trans. Dev. Mater. Reliab., 9, pp.

489-493;

Page 52: Abstract 10

Wang, C., Dong, H., Hu, W., Liu, Y., Zhu, D., (2012) Chem. Rev., 112, pp. 2208-2267;

Klauk, H., Halik, M., Zschieschang, U., Schmid, G., Radlik, W., Weber, W., (2002) J. Appl.

Phys., 92, pp. 5259-5263;

Kang, K.S., Chen, Y., Lim, H.K., Cho, K.Y., Han, K.J., Kim, J., (2009) Thin Solid Films, 517,

pp. 6096-6099;

Wu, Y., Liu, P., Ong, B.S., Srikumar, T., Zao, N., Botton, G., Zhu, S., (2005) Appl. Phys. Lett.,

86, p. 142102;

Pingel, P., Zen, A., Neher, D., Lieberwirth, I., Wegner, G., Allard, S., Scherf, U., (2009) Appl.

Phys. A Mater. Sci. Process., 95, pp. 67-72;

Ong, B.S., Wu, Y., Liu, P., Gardner, S., (2004) J. Am. Chem. Soc., 126, pp. 3378-3379;

Ong, B.S., Wu, Y., Liu, P., Gardner, S., (2005) Adv. Mater., 17, pp. 1141-1144;

Cahyadi, T., Kasim, J., Tan, H.S., Kulkarni, S.R., Ong, B.S., Wu, Y., Chen, Z.-K., Mhaisalkar,

S.G., (2009) Adv. Funct. Mater., 19, pp. 378-385;

Liu, P., Wu, Y., Li, Y., Ong, B.S., Zhu, S., (2006) J. Am. Chem. Soc., 128, pp. 4554-4555;

Wu, Y., Li, Y., Ong, B.S., (2006) J. Am. Chem. Soc., 128, pp. 4202-4203;

Cosseddu, P., Mattana, G., Orgiu, E., Bonfiglio, A., (2009) Appl. Phys. A, 95, pp. 49-54;

Kato, Y., Iba, S., Teramoto, R., Sekitani, T., Someya, T., Kawaguchi, H., Sakurai, T., (2004)

Appl. Phys. Lett., 84, pp. 3789-3791;

Parashkov, R., Becker, E., Ginev, G., Riedl, T., Johannes, H.-H., Kowalsky, W., (2004) J. Appl.

Phys., 95, pp. 1594-1596;

Oku, S., Nagase, T., Nagamatsu, S., Takashima, W., Kaneto, K., (2010) Jpn. J. Appl. Phys., 49

(1-4), pp. 01AB14;

Fukuda, K., Sekitani, T., Someya, T., (2009) Appl. Phys. Lett., 95 (1-3), p. 023302;

Yun, H.J., Ham, Y.H., Shin, H.-S., Jeong, K.-S., Park, J.-G., Choi, D.-S., Lee, G.-W., (2011) J.

Nanosci. Nanotechnol., 11, pp. 5640-5644;

Yun, H.-J., Baek, K.-H., Do, L.-M., Jeong, K.-S., Kim, Y.-M., Yang, S.-D., Lee, S.-Y., Lee, G.-

W., (2013) J. Nanosci. Nanotechnol., 13, pp. 3313-3316;

Wu, Y., Li, Y., Ong, B.S., (2007) J. Am. Chem. Soc., 129, pp. 1862-1863;

Li, Y., Wu, Y., Ong, B.S., (2005) J. Am. Chem. Soc., 127, pp. 3266-3267;

Crispin, X., Jakobsson, F.L.E., Crispin, A., Grim, P.C.M., Andersson, P., Volodin, A., Van

Haesendonck, C., Berggren, M., (2006) Chem. Mater., 18, pp. 4354-4360;

Page 53: Abstract 10

Sonar, P., Lim, J.P.F., Chan, K.L., (2011) Energy Environ. Sci., 4, pp. 1558-1574;

Li, Y., Sonar, P., Murphy, L., Hong, W., (2013) Energy. Environ. Sci., 6, pp. 1684-1710;

Liu, S.-W., Wen, J.-M., Lee, C.-C., Su, W.-C., Wang, W.-L., Chen, H.-C., Lin, C.-F., (2013)

Thin Solid Films, 534, pp. 640-644;

Pasquier, A.D., Unalan, H.E., Kanwal, A., Miller, S., Chhowalla, M., (2005) Appl. Phys. Lett.,

87 (1-3), p. 203511;

Bo, X.Z., Lee, C.Y., Strano, M.S., Goldfinger, M., Nuckolls, C., Blanchet, G.B., (2005) Appl.

Phys. Lett., 86, pp. 182102-182103;

Liu, S., Mannsfeld, S.C.B., Lemieux, M.C.H., Lee, W., Bao, Z., (2008) Appl. Phys. Lett., 92 (1-

3), p. 053306;

Geng, Q., Guo, Q., Cao, C., Wang, L., (2008) Ind. Eng. Chem. Res., 47, pp. 2561-2568;

Hsieh, G.-W., Li, F.M., Beecher, P., Nathan, A., Wu, Y., Ong, B.S., Milne, W.I., (2009) J. Appl.

Phys., 106, pp. 123706-123707;

Yeong, D.P., Lim, J.A., Kwak, D., Cho, J.H., Cho, K., (2009) Electrochem. Solid State Lett., 12,

pp. H312-H314;

Bahr, J.L., Tour, J.M., (2002) J. Mater. Chem., 12, pp. 1952-1958;

Zhao, C., Ji, L., Liu, H., Hu, G., Zhang, S., Yang, M., Yang, Z., (2004) J. Solid State Chem.,

177, pp. 4394-4398;

Oliveira, M.M., Zarbin, A.J.G., Activity Report 2008, , http://lnls.cnpem.br/PDF/1084.pdf;

Stefopoulos, A.A., Chochos, C.L., Prato, M., Pistolis, G., Papagelis, K., Petraki, F., Kennou, S.,

Kallitsis, J.K., (2008) Eur. J., 14, pp. 8715-8724;

Konatham, D., Striolo, A., (2008) Nano. Lett., 8, pp. 4630-4641;

Villar-Rodil, S., Paredes, J.I., MartÃnez-Alonso, A., Tascón, J.M.D., (2009) J. Mater. Chem.,

19, pp. 3591-3593;

Ansari, S., Giannelis, E.P., (2009) J. Polym. Sci. B, 47, pp. 888-897;

Eda, G., Chhowalla, M., (2009) Nano. Lett., 9, pp. 814-818;

Tkachenko, L.I., Efimov, O.N., Anoshkin, I.V., Kulova, T.L., Roshchupkina, O.S., Shul'ga,

Y.M., Petrova, N.K., (2009) Russ. J. Electrochem., 45, pp. 296-303;

Song, Y.J., Lee, J.U., Jo, W.H., (2010) Carbon, 48, pp. 389-395;

Mickelson, E.T., Huffman, C.B., Rinzler, A.G., Smalley, R.E., Hauge, R.H., Margrave, J.L.,

(1998) Chem. Phys. Lett., 296, pp. 188-194;

Page 54: Abstract 10

Kelly, K.F., Chiang, I.W., Mickelson, E.T., Hauge, R.H., Margrave, J.L., Wang, X., Scuseria,

G.E., Halas, N.J., (1999) Chem. Phys. Lett., 313, pp. 445-450;

Touhara, H., Inahara, J., Mizuno, T., Yokoyama, Y., Okanao, S., Yanagiuch, K., Mukopadhyay,

I., Tomita, A., (2002) Fluorine Chem., 114, pp. 181-188;

Stevens, J.L., Huang, A.A.Y., Peng, H., Chiang, I.W., Khabashesku, V.N., Margrave, J.L.,

(2003) Nano. Lett., 3, pp. 331-336;

Zhang, Q., Chen, D., (2004) J. Mater. Sci., 39, pp. 1751-1757;

Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C., Haddon, R.C., (1998)

Science, 282, pp. 95-98;

Hu, H., Zhao, B., Hamon, M.A., Kamaras, K., Itkis, M.E., Haddon, R.C., (2003) J. Am. Chem.

Soc., 125, pp. 14893-14900;

Holzinger, M., Steinmetz, J., Samaille, D., Glerup, M., Paillet, M., Bernier, P., Ley, L.,

Graupner, R., (2004) Carbon, 42, pp. 941-947;

Unger, E., Graham, A., Kreupl, F., Liebau, M., Hoenlein, W., (2002) Curr. Appl. Phys., 2, pp.

107-111;

Kim, K.S., Bae, D.J., Kim, J.R., Park, K.A., Lim, S.C., Kim, J.-J., Choi, W.B., Lee, Y.H., (2002)

Adv. Mater., 14, pp. 1818-1821;

Tagmatarchis, N., Prato, M., (2004) J. Mater. Chem., 14, pp. 437-439;

Esumi, K., Ishigami, M., Nakajima, A., Sawada, K., Honda, H., (1996) Carbon, 34, pp. 279-281;

Yu, R.Q., Chen, L., Liu, Q., Lin, J., Tan, K.-L., Ng, S.C., Chan, H.S.O., Hor, T.S.A., (1998)

Chem. Mater., 10, pp. 718-722;

Sham, M.L., Kim, J.K., (2006) Carbon, 44, pp. 768-777;

Ma, P.C., Kim, J.K., Tang, B.Z., (2006) Carbon, 44, pp. 3232-3238;

Wang, S.C., Chang, K.S., Yuan, C.J., (2009) Electrochim. Acta, 54, pp. 4937-4943;

Ãvila-Orta, C.A., Cruz-Delgado, V.J., Neira-Velázquez, M.G., Hernández-Hernández, E., �Méndez-Padilla, M.G., MedellÃn-RodrÃguez, F.J., (2009) Carbon, 47, pp. 1916-1921;

Liu, P., (2005) Eur. Polym. J., 41, pp. 2693-2703;

Hamon, M.A., Hui, H., Bhowmik, P., Itkis, H.M.E., Haddon, R.C., (2002) Appl. Phys. A, 74, pp.

333-338;

Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P.J., Lu, A., Smalley, R.E.,

(1998) Science, 280, pp. 1253-1256;

Page 55: Abstract 10

Stephenson, J.J., Sadana, A.K., Higginbotham, A.L., Tour, J.M., (2006) Chem. Mater., 18, pp.

4658-4661;

McCarthy, B., Coleman, J.N., Czerw, R., Dalton, A.B., Carroll, D.L., Blau, W.J., (2001) Synth.

Metals, 121, pp. 1225-1226;

Hill, D.E., Lin, Y., Rao, A.M., Allard, L.F., Sun, Y.-P., (2002) Macromolecules, 35, pp. 9466-

9471;

Gong, X., Liu, J., Baskaran, S., Voise, R.D., Young, J.S., (2000) Chem. Mater., 12, pp. 1049-

1052;

Cui, S., Canet, R., Derre, A., Couzi, M., Delhaes, P., (2003) Carbon, 41, pp. 797-809;

Strano, M.S., Moore, V.C., Miller, M.K., Allen, M.J., Haroz, E.H., Kittrell, C., Hauge, R.H.,

Smalley, R.E., (2003) J. Nanosci. Nanotechnol., 3, pp. 81-86;

Islam, M.F., Rojas, E., Bergey, D.M., Johnson, A.T., Yodh, A.G., (2003) Nano. Lett., 3, pp. 269-

273;

Whitsitt, E.A., Barron, A.R., (2003) Nano. Lett., 3, pp. 775-778;

Vaisman, L., Wagner, H.D., Marom, G., (2006) Adv. Colloid Interf. Sci., 128-130, pp. 37-46;

Grossiord, N., Loos, J., Regev, O., Koning, C.E., (2006) Chem. Mater., 18, pp. 1089-1099;

Yu, J., Grossiord, N., Koning, C.E., Loos, J., (2007) Carbon, 45, pp. 618-623;

Kim, S.T., Lim, J.Y., Park, B.J., Choi, H.J., (2007) Macromol. Chem. Phys., 208, pp. 514-519;

Georgakilas, V., Gournis, D., Tzitzios, V., Pasquato, L., Guldi, D.M., Prato, M., (2007) J. Mater.

Chem., 17, pp. 2679-2694;

Tsang, S.C., Guo, Z., Chen, Y.K., Green, M.L.H., Hill, H.A.O., Hambley, T.W., Sadler, P.J.,

(1997) Angew. Chem. Int. Ed., 36, pp. 2198-2200;

Hirsch, A., (2002) Angew. Chem. Int. Ed., 41, pp. 1853-1859;

Li, J., Ma, P.C., Chow, W.S., To, C.K., Tang, B.Z., Kim, J.-K., (2007) Adv. Funct. Mater., 17,

pp. 3207-3215;

Ajayan, P.M., Stephan, O., Colliex, C., Trauth, D., (1994) Science, 265, pp. 1212-1214;

http://www.scopus.com, Summary atDu, J.H., Bai, J., Cheng, H.M., (2007) Exp. Polym. Lett., 1,

pp. 253-273;

Moniruzzaman, M., Winey, K.I., (2006) Macromolecules, 39, pp. 5194-5205;

Kim, J.Y., Kim, S.H., (2006) J. Polym. Sci. B, 44, pp. 1062-1071;

Page 56: Abstract 10

Aneli, J.N., Khananasvili, L.M., Zaikov, G.E., (1998) Structuring and Conductivity of Polymer

Composites, pp. 1-100. , Nova Science Publishers: New York;

Sham, M.L., Li, J., Ma, P.C., Kim, J.K., (2009) J. Compos. Mater., 43, pp. 1537-1564;

Zhang, W., Dehghani-Sanij, A.A., Blackburn, R.S., (2007) J. Mater. Sci., 42, pp. 3408-3418;

Gul, V.E., (1996) Structure and Properties of Conducting Polymer Composites, pp. 27-123. ,

VSP: Netherlands;

Sandler, J.K.W., Kirk, J.E., Kinloch, I.A., Shaffer, M.S.P., Windle, A.H., (2003) Polymer, 44,

pp. 5893-5899;

Martin, C.A., Sandler, J.K.W., Windle, A.H., Schwarz, M.-K., Bauhofer, W., Schulte, K.,

Shaffer, M.S.P., (2005) Polymer, 46, pp. 877-886;

Moisala, A., Li, Q., Kinloch, I.A., Windle, A.H., (2006) Compos. Sci. Technol., 66, pp. 1285-

1288;

Ma, P.C., Kim, J.-K., Tang, B.Z., (2007) Compos. Sci. Technol., 67, pp. 2965-2972;

Bauhofer, W., Kovacs, J.Z., (2009) Compos. Sci. Technol., 69, pp. 1486-1498;

Ma, P.C., Tang, B.Z., Kim, J.-K., (2008) Carbon, 46, pp. 1497-1505;

Buldum, A., Lu, J.P., (2001) Phys. Rev. B, 63, pp. 1-4;

Stadermann, M., Papadakis, S.J., Falvo, M.R., Novak, J., Snow, E., Fu, Q., Liu, J., Fridman, Y.,

(2004) Phys. Rev. B, 69, pp. 1-3;

Peng, H., Jain, M., Peterson, D.E., Zhu, Y., Jia, Q., (2008) Small, 4, pp. 1964-1967;

Bokobza, L., Rahmani, M., Belin, C., Bruneel, J.-L., El Bounia, N.-E., (2008) J. Polym. Sci. B,

46, pp. 1939-1951;

Li, J., Wong, P.S., Kim, J.K., (2008) Mater. Sci. Eng. A, 483-484, pp. 660-663;

Kim, J.-K., Ma, P.-C., (2011) Carbon Nanotubes for Polymer Reinforcement, , Boca Raton: CRC

Press;

Sumfleth, J., Adroher, X.C., Schulte, K., (2009) J. Mater. Sci., 44, pp. 3241-3247;

Sun, Y., Bao, H.-D., Guo, Z.-X., Yu, J., (2009) Macromolecules, 42, pp. 459-463;

Ma, P.C., Liu, M.-Y., Zhang, H., Wang, S.-Q., Wang, R., Wang, K., Wong, Y.-K., Kim, J.-K.,

(2009) ACS Appl. Mater. Interf., 1, pp. 1090-1096;

Niyogi, S., Bekyarova, E., Itkis, M.E., Zhang, H., Shepperd, K., Hicks, J., Sprinkle, M., Haddon,

R.C., (2010) Nano. Lett., 10, p. 4061;

Page 57: Abstract 10

Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour,

J.M., (2009) Nature, 458, pp. 872-876;

Sinitskii, A., Dimiev, A., Corley, D.A., Fursina, A.A., Kosynkin, D.V., Tour, J.M., (2010) ACS

Nano, 4, pp. 1949-1954;

Jin, Z., Lomeda, J.R., Price, B.K., Lu, W., Zhu, Y., Tour, J.M., (2009) Chem. Mater., 21, pp.

3045-3047;

Lomeda, J.R., Doyle, C.D., Kosynkin, D.V., Hwang, W.-F., Tour, J.M., (2008) J. Am. Chem.

Soc., 130, pp. 16201-16206;

Bekyarova, E., Itkis, M.E., Ramesh, P., Berger, C., Sprinkle, M., De Heer, W.A., Haddon, R.C.,

(2009) J. Am. Chem. Soc., 131, pp. 1336-1337;

Sharma, R., Baik, J.H., Perera, C.J., Strano, M.S., (2010) Nano. Lett., 10, pp. 398-405;

Hossain, M.Z., Walsh, M.A., Hersam, M.C., (2010) J. Am. Chem. Soc., 132, pp. 15399-15403;

Liu, H., Ryu, S., Chen, Z., Steigerwald, M.L., Nuckolls, C., Brus, L.E., (2009) J. Am. Chem.

Soc., 131, pp. 17099-17101;

Georgakilas, V., Bourlinos, A., Gournis, D., Tsoufis, T., Trapalis, C., Mateo-Alonso, A., Prato,

M., (2008) J. Am. Chem. Soc., 130, pp. 8733-8740;

Georgakilas, V., Guldi, D.M., Signorini, R., Bozio, R., Prato, M., (2003) J. Am. Chem. Soc.,

125, pp. 14268-14269;

Kordatos, K., Bosi, S., Da Ros, T., Bosi, S., Vázquez, E., Bergamin, M., Cusan, C., Prato, M.,

(2001) J. Org. Chem., 66, pp. 4915-4920;

Cioffi, C., Campidelli, S., Brunetti, F.G., Meneghetti, M., Prato, M., (2006) Chem. Commun.,

pp. 2129-2131;

Singh, R., Pantarotto, D., Lacerda, L., Pastorin, G., Klumpp, C., Prato, M., Bianco, A.,

Kostarelos, K., (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 3357-3362;

Kostarelos, K., Lacerda, L., Pastorin, G., Wu, W., Wieckowski, S., Luangsivilay, J., Godefroy,

S., Bianco, A., (2007) Nat. Nanotechnol., 2, pp. 108-113;

Bourlinos, A.B., Georgakilas, V., Zboril, R., Steriotis, T.A., Stubos, A.K., (2009) Small, 5, pp.

1841-1845;

Georgakilas, V., Bourlinos, A.B., Zboril, R., Steriotis, T.A., Dallas, P., Stubos, A.K., Trapalis,

C., (2010) Chem. Commun., 46, pp. 1766-1768;

Page 58: Abstract 10

Zhang, X., Hou, L., Cnossen, A., Coleman, A.C., Ivashenko, O., Rudolf, P., Van Wees, B.J.,

Feringa, B.L., (2011) Chem. Eur. J., 17, pp. 8957-8964;

Quintana, M., Spyrou, K., Grzelczak, M., Browne, W.R., Rudolf, P., Prato, M., (2010) ACS

Nano, 4, pp. 3527-3533;

Liu, C., Minari, T., Lu, X., Kumatani, A., Takimiya, K., Tsukagoshi, K., (2010) Adv. Mater., 23,

pp. 523-526;

Vadukumpully, S., Gupta, J., Zhang, Y., Xu, G.Q., Valiyaveettil, S., (2011) Nanoscale, 3, pp.

303-308;

He, H., Gao, C., (2010) Chem. Mater., 22, pp. 5054-5064;

Zhong, X., Jin, J., Li, S., Niu, Z., Hu, W., Li, R., Ma, J., (2010) Chem. Commun., 46, pp. 7340-

7342;

Chen, T., Pan, G.-B., Yan, H.-J., Wan, L.-J., Matsuo, Y., Nakamura, E., (2010) J. Phys. Chem.

C, 114, pp. 3170-3174;

Hummers, W.S., Offeman, R.E., (1958) J. Am. Chem. Soc., 80, p. 1339;

Huh, J.W., Moon, J., Lee, J.W., Lee, J., Cho, D.-H., Shin, J.-W., Han, J.-H., Chu, H.Y., (2013)

Org. Electron., 14, pp. 2039-2045;

Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y.,

Ruoff, R.S., (2007) Carbon, 4, pp. 1558-1565;

Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S., (2010) Chem. Soc. Rev., 39, pp. 228-240;

Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.B.T., Ruoff, R.S., (2006) J. Mater.

Chem., 16, pp. 155-158;

Bourlinos, A.B., Gournis, D., Petridis, D., Szabó, T., Szeri, A., Dékány, I., (2003)

Langmuir, 19, pp. 6050-6055;

McAllister, M.J., Li, J.-L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-

Alonso, M., Aksay, I.A., (2007) Chem. Mater., 19, pp. 4396-4404;

Schniepp, H.C., Li, J.-L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H.,

Prud'homme, R.K., Aksay, I.A., (2006) J. Phys. Chem. B, 110, pp. 8535-8539;

Niyogi, S., Bekyarova, E., Itkis, M.E., McWilliams, J.L., Hamon, M.A., Haddon, R.C., (2006) J.

Am. Chem. Soc., 128, pp. 7720-7721;

Su, Q., Pang, S., Alijani, V., Li, C., Feng, X., Müllen, K., (2009) Adv. Mater., 21, pp. 3191-

3195;

Page 59: Abstract 10

Liang, Y., Wu, Y., Feng, D., Tsai, S.-T., Son, H.-J., Li, G., Yu, L., (2009) J. Am. Chem. Soc.,

131, pp. 56-57;

Watcharotone, S., Dikin, D.A., Stankovich, S., Piner, R., Jung, I., Dommett, G.H.B.,

Evmenenko, G., Ruoff, R.S., (2007) Nano. Lett., 7, pp. 1888-1892;

Chen, G.H., Weng, W.G., Wu, D., Wu, C., (2003) Eur. Polym. J., 39, pp. 2329-2335;

Verdejo, R., Barroso-Bujans, F., Rodriguez-Perez, M.A., De Saja, J.A., Lopez-Manchado, M.A.,

(2008) J. Mater. Chem., 18, pp. 2221-2226;

Patil, A.J., Vickery, J.L., Scott, T.B., Mann, S., (2009) Adv. Mater., 21, pp. 3159-3164;

Salas, E.C., Sun, Z., Lüttge, A., Tour, J.M., (2010) ACS Nano, 4, pp. 4852-4856;

Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A., Ruoff, R.S.,

(2011) Science, 332, pp. 1537-1541;

Moon, I.K., Lee, J., Ruoff, R.S., Lee, H., (2010) Nature Comm., p. 1. , Art No: 73;

Dubin, S., Gilje, S., Wang, K., Tung, V.C., Cha, K., Hall, A.S., Farrar, J., Kaner, R.B., (2010)

ACS Nano, 4, pp. 3845-3852;

Yu, D., Yang, Y., Durstock, M., Baek, J.-B., Dai, L., (2010) ACS Nano, 4, pp. 5633-5640;

Xu, Y., Liu, Z., Zhang, X., Wang, Y., Tian, J., Huang, Y., Ma, Y., Chen, Y., (2009) Adv. Mater.,

21, pp. 1275-1279;

Karousis, N., Sandanayaka, A.S.D., Hasobe, T., Economopoulos, S.P., Sarantopoulou, E.,

Tagmatarchis, N., (2011) J. Mater. Chem., 21, pp. 109-117;

Zhang, X., Feng, Y., Huang, D., Li, Y., Feng, W., (2010) Carbon, 48, pp. 3236-3241;

Landolt-Börnstein, K.N., (1985) Semiconductors, Organic Semiconductors, 17, pp. 106-218. ,

Group III, Madelung O, Ed., Springer, Berlin;

Silinsh, E.A., (1980) Organic Molecular Crystals - Their Electronic States, Springer Series in

Solid State Sciences, 16. , Springer-Verlag: Berlin/Heidelberg/New York;

Pope, S., (1999) Electronic Processes in Organic Crystals and Polymers, pp. 337-340. , 2nd ed.,

Oxford University Press;

Skotheim, T.A., Elsembaumer, R.L., Reynolds, J.R., (1998) Handbook of Conducting

Polymers, , Marcel Dekker: New York;

Borsenberger, P.M., Weiss, D.S., (1993) Organic Photoreceptors for Imaging Systems, , Marcel

Dekker: New York;

Tang, C.W., (1986) Appl. Phys. Lett., 48, pp. 183-185;

Page 60: Abstract 10

Koezuka, H., Tsumura, A., Ando, T., (1987) Synth. Metals, 270 (18), pp. 699-704;

Burroughes, J.H., Jones, C.A., Friend, R.H., (1988) Nature, 335, pp. 137-141;

Horowitz, G., Fichou, D., Peng, X., Xu, Z., Garnier, F., (1989) Solid State Commun., 72, p. 381;

Tang, C.W., Vanslyke, S.A., (1987) Appl. Phys. Lett., 51, pp. 913-915;

Burrows, P.E., Forrest, S.R., Sapochak, L.S., Schwartz, J., Fenter, P., Buma, T., Ban, V.S.,

Forrest, J.L., (1995) J. Cryst. Growth, 156, pp. 91-98;

Kloc, C., Simpkins, P.G., Siegrist, T., Laudise, R.A., (1997) J. Cryst. Growth, 182, pp. 416-427;

Baldo, M., Deutsch, M., Burrows, P., Gossenberger, H., Gerstenberg, M., Ban, V., Forrest, S.,

(1998) Adv. Mater., 10, pp. 1505-1514;

Laudise, R.A., Kloc, C., Simpkins, P.G., Siegrist, T., (1998) J. Cryst. Growth, 187, pp. 449-454;

Schön, J.H., Kloc, C., Bucher, E., Batlogg, B., (2000) Nature, 403, pp. 408-410;

Ostoja, P., Guerri, S., Rossini, S., Servidori, M., Taliani, C., Zamboni, R., (1993) Synth. Metals,

54, pp. 447-452;

Nelson, S.F., Lin, Y.-Y., Grundlach, D.J., Jackson, T.N., (1998) Appl. Phys. Lett., 72, p. 1854;

Lin, Y.Y., Gundlach, D.I., Nelson, S.F., Jackson, T.N., (1997) IEEE Trans. Electron Devices, 44,

pp. 1325-1331;

Dimitrakopoulos, C.D., Purushothaman, S., Kymissis, J., Callegari, A., Shaw, J.M., (1999)

Science, 283, pp. 822-824;

Karl, N., Marktanner, J., Stehle, R., Warta, W., (1991) Synth. Met., 41-43, pp. 2473-2481;

Schön, J.H., Batlogg, B., (2001) J. Appl. Phys., 89, pp. 336-342;

Burland, D.M., (1974) Phys. Rev. Lett., 33, pp. 833-835;

Burland, D.M., Konzelmann, U., (1977) J. Chem. Phys., 67, pp. 319-331;

Silinsh, E.A., Capek, V., (1994) Organic Molecular Crystals: Interaction, Localization, and

Transport Phenomena, , AIP: New York;

Martel, R., Schmidt, T., Shea, H.R., Hertel, T., (1998) Appl. Phys. Lett., 73, pp. 2447-2449;

Collins, P.G., Arnold, M.S., Avouris, P., (2001) Science, 292, pp. 706-709;

Dimitrakopoulos, C.D., Furman, B.K., Graham, T., Hegde, S., Purushothaman, S., (1998) Synth.

Metals, 92, pp. 47-52;

Malenfant, P.R.L., Dimitrakopoulos, C.D., Gelorme, J.D., Kosbar, L.L., Graham, T.O., Curioni,

A., Andreoni, W., (2002) Appl. Phys. Lett., 80, pp. 2517-2519;

Dimitrakopoulos, C.D., Brown, A.R., Pomp, A., (1996) J. Appl. Phys., 80, pp. 2501-2508;

Page 61: Abstract 10

Jentzsch, T., Juepner, H.J., Brzezinka, K.-W., Lau, A., (1998) Thin Solid Films, 315, pp. 273-

280;

Minakata, T., Ozaki, M., Imai, H., (1992) J. Appl. Phys., 72, pp. 4178-4182;

Minakata, T., Ozaki, M., Imai, H., (1993) J. Appl. Phys., 74, pp. 1079-1082;

Horowitz, G., Peng, X., Fichou, D., Garnier, F., (1992) Synth. Metals, 51, pp. 419-424;

Garnier, F., Assar, A., Hajiloui, R., Horowitz, G., Deloffre, F., Servet, B., Ries, S., Alnot, P.,

(1993) J. Am. Chem. Soc., 115, pp. 8716-8721;

Lin, Y.-Y., Gundlach, D.J., Jackson, T.N., (1996) 54th Annual Device Research Conference

Digest, pp. 80-81;

Campbell, R.B., Robertson, J.M., Trotter, J., (1961) Acta Cryst., 14, pp. 705-711;

Kosbar, L.L., Dimitrakopoulos, C.D., Mascaro, D.J., (2001) Mater. Res. Soc. Symp. Proc., 665. ,

C10.6.1;

Heringdorf, F.-J.M., Reuter, M.C., Tromp, R.M., (2001) Nature, 412, pp. 517-520;

Horowitz, G., (2004) J. Mater. Res., 19, pp. 1946-1962;

Takeya, J., Goldmann, C., Haas, S., Pernstich, K.P., Ketterer, B., Batlogg, B., (2003) J. Appl.

Phys., 94, pp. 5800-5804;

Butko, V.Y., Chi, X., Lang, D.V., Ramirez, A.P., (2003) Appl. Phys. Lett., 83, pp. 4773-4775;

Goldmann, C., Haas, S., Krellner, C., Pernstich, K.P., Gundlach, D.J., Batlogg, B., (2004) J.

Appl. Phys., 96, pp. 2080-2086;

Aleshin, A.N., Lee, J.Y., Chu, S.W., Kim, J.S., Park, Y.W., (2004) Appl. Phys. Lett., 84, pp.

5383-5385;

Podzorov, V., Menard, E., Borissov, A., Kiryukhin, V., Rogers, J.A., Gershenson, M.E., (2004)

Phys. Rev. Lett., 93 (1-4), p. 086602;

Menard, E., Podzorov, V., Hur, S.-H., Gaur, A., Gershenson, M.E., Rogers, J.A., (2004) Adv.

Mater., 16, pp. 2097-2101;

Ahmad, S., (1998) Microwave and Millimeter Wave Semiconductor Materials Technology, ,

Tata-McGraw Hill Publishing Co., Ltd.: New Delhi;

Jiang, H., Kloc, C., (2012) MRS Bull., p. 38;

Ishiguro, T., Yamaji, K., Saito, G., (1998) Organic Superconductors, , 2nd ed., Springer-Verlag:

Berlin;

Klauk, H., (2010) Chem. Soc. Rev., 39, pp. 2643-2666;

Page 62: Abstract 10

Kulkarni, A.P., Tonzola, C.J., Babel, A., Jenekhe, S.A., (2004) Chem. Mater., 16, pp. 4556-

4573;

Hoppe, H., Sariciftci, N.S., (2004) J. Mater. Res., 19, pp. 1924-1945;

Gershenson, M.E., Podzorov, V., Morpurgo, A.F., (2006) Rev. Mod. Phys., 78, p. 973;

Li, Y., Singh, S.P., Sonar, P., (2010) Adv. Mater., 22, pp. 4862-4866;

Yang, X., Wang, L., Wang, C., Long, W., Shuai, Z., (2008) Chem. Mater., 20, pp. 3205-3211;

Najafov, H., Lee, B., Zhou, Q., Feldman, L.C., Podzorov, V., (2010) Nat. Mater., 9, pp. 938-943;

Jiang, H., Yang, X., Cui, Z., (2009) Appl. Phys. Lett., 94 (1-3), p. 123308;

Ortmann, F., Bechstedt, F., Hannewald, K., (2011) Phys. Stat. Solid. B, 248, pp. 511-525;

Mas-Torrent, M., Durkut, M., Hadley, P., Ribas, X., Rovira, C., (2004) J. Am. Chem. Soc., 126,

pp. 984-985;

Briseno, A.L., Tseng, R.J., Ling, M.-M., Falcao, E.H.L., Yang, Y., Wudl, F., Bao, Z., (2006)

Adv. Mater., 18, pp. 2320-2324;

Jiang, H., Yang, X., Cui, Z., Liu, Y., Li, H., Hu, W., Liu, Y., Zhu, D., (2007) Appl. Phys. Lett.,

91, p. 123505;

Yamao, T., Miki, T., Akagami, H., Nishimoto, Y., Ota, S., Hotta, S., (2007) Chem. Mater., 19,

pp. 3748-3753;

Jiang, L., Fu, Y., Li, H., Hu, W., (2008) J. Am. Chem. Soc., 130, pp. 3937-3941;

Pfattner, R., Mas-Torrent, M., Bilotti, I., Brillante, A., Milita, S., Liscio, F., Biscarini, F., Rovira,

C., (2010) Adv. Mater., 22, pp. 4198-4203;

Jiang, H., Tan, K.J., Zhang, K.K., Chen, X., Klo, C., (2011) J. Mater. Chem., 21, pp. 4771-4773;

Jiang, L., Sun, Y., Chen, X., (2012) Small, 8, pp. 333-335;

Selvakumar, S., Sivajia, K., Arulchakkaravarthi, A., Balamurugan, N., Sankar, S., Ramasamy,

P., (2005) J. Cryst. Growth, 282, pp. 370-375;

Probst, K.H., Karl, N., (1975) Phys. Stat. Solid. A, 27, pp. 499-508;

McArdle, B.J., Sherwood, J.N., Damask, A.C., (1974) J. Cryst. Growth, 22, pp. 193-200;

Inokuchi, H., (1956) Bull. Chem. Soc. Jpn., 29, pp. 131-133;

Niemax, J., Pflaum, (2005) J. Appl. Phys. Lett., 87, p. 241921;

Arulchakkaravarthi, A., Santhanaraghavan, P., Ramasamy, P., (2001) J. Cryst. Growth, 224, pp.

89-94;

Bleay, J., Hooper, R.M., Narang, R.S., Sherwood, J.N., (1978) J. Cryst. Growth, 43, pp. 589-596;

Page 63: Abstract 10

Arivanandhan, M., Natarajan, V., Sankaranarayanan, K., Hayakawa, Y., Direction Controlled

Growth of Organic Single Crystals by Novel Growth Methods, Material Science, Advanced

Topicson Crystal Growth, , Olavo Ferreira, S, Ed., ISBN 978-953-51- 1010-1;

Bridgman, P.W., (1925) Proc. Am. Acad. Arts Sci., 60, pp. 305-383;

Brissaud, M., Dolin, C., Le Duigou, J., (1977) J. Cryst. Growth, 38, pp. 134-138;

Tripathi, A.K., Heinrich, M., Siegrist, T., Pflaum, J., (2007) Adv. Mater., 19, pp. 2097-2101;

Karl, N., Crystals Growth, Properties, and Applications, , 1st ed., Springer-Verlag:

Berlin/Heidelberg;

Hong, I.H., Tan, K.J., Toh, M., Jiang, H., Zhang, K., Kloc, C., (2013) J. Cryst. Growth, 363, pp.

61-68;

Kim, Y., Cook, S., Tuladhar, S.M., Choulis, S.A., Nelson, J., Durrant, J.R., Bradley, D.D.C.,

Ree, M., (2006) Nat. Mater., 5, pp. 197-203;

Matsukawa, T., Yoshimura, M., Sasai, K., Uchiyama, M., Yamagishi, M., Tominari, Y., (2010)

J. Cryst. Growth, 312, pp. 310-313;

Johannsen, I., Groth-Andersen, L., Nielsen, K.F., (1981) J. Cryst. Growth, 51, pp. 627-628;

Piper, W.W., Polich, S.J., (1961) J. Appl. Phys., 32, pp. 1278-1279;

Käfer, D., Witte, G., (2005) Phys. Chem. Chem. Phys., 7, pp. 2850-2853;

Park, S.-W., Jeong, S.H., Choi, J.-M., Hwang, J.M., Kim, J.H., Im, S., (2007) Appl. Phys. Lett.,

91 (1-3), p. 033506;

Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M., (2010) Springer Handbook of Crystal

Growth, , 1st ed., Springer-Verlag: Berlin, Germany;

Feigelson, R.S., Route, R.K., Kao, T.-M., (1985) J. Cryst. Growth, 72, pp. 585-594;

Tickle, I.J., Prout, C.K., (1973) J. Chem. Soc., Perkin Trans., 2, pp. 727-731;

Truong, B., (1976) Chem. Phys. Lett., 44, pp. 232-235;

Tang, Q., Li, H., He, M., Hu, W., Liu, C., Chen, K., Wang, C., Zhu, D., (2006) Adv. Mater., 18,

pp. 65-68;

Moon, H., Zeis, R., Borkent, E.-J., Besnard, C., Lovinger, A.J., Siegrist, T., Kloc, C., Bao, Z.,

(2004) J. Am. Chem. Soc., 126, pp. 15322-15323;

Reese, C., Chung, W.-J., Ling, M.-M., Roberts, M., Bao, Z., (2006) Appl. Phys. Lett., 89, p.

202108;

Page 64: Abstract 10

Mannsfeld, S.C.B., Locklin, J., Reese, C., Roberts, M.E., Lovinger, A.J., Bao, Z., (2007) Adv.

Funct. Mater., 17 (1617), pp. 3545-3553;

Briseno, A.L., Mannsfeld, S.C.B., Formo, E., Xiong, Y., Lu, X., Bao, Z., Jenekhe, S.A., Xia, Y.,

(2008) J. Mater. Chem., 18, pp. 5395-5398;

Choi, H.Y., Kim, S.H., Jang, J., (2004) Adv. Mater., 16, pp. 732-736;

Steudel, S., Janssen, D., Verlaak, S., Genoe, J., Heremans, P., (2004) Appl. Phys. Lett., 85, pp.

5550-5552;

Kelley, T.W., Baude, P.F., Gerlach, C., Ender, D.E., Muyres, D., Haase, M.A., Vogel, D.E.,

Theiss, S.D., (2004) Chem. Mater., 16, pp. 4413-4422;

Klauk, H., Gundlach, D.J., Nichols, J.A., Jackson, T.N., (1999) IEEE Trans., ED-46, pp. 1258-

1263;

Liu, S., Mannsfeld, S.C.B., Briseno, A.L., You, W., Locklin, J., Lee, H.W., Xia, Y., Bao, Z.,

(2007) Adv. Funct. Mater., 17, pp. 2891-2896;

Xiao, K., Tao, J., Puretzky, A.A., Ivanov, I.N., Liu, Z., Geohegan, D.B., (2006) Adv. Mater., 18,

pp. 2184-2188;

Xiao, K., Tao, J., Pan, Z., Puretzky, A.A., Ivanov, I.N., Pennycook, S.J., Geohegan, D.B., (2007)

Angew. Chem. Int. Ed., 46, pp. 2650-2654;

Mbenkum, B.N., Barrena, E., Zhang, X.N., Kelsch, M., Dosch, H., (2006) Nano. Lett., 6, pp.

2852-2855;

Aizenberg, J., Black, A.J., Whitesides, G.M., (1999) J. Am. Chem. Soc., 121, pp. 4500-4509;

Chabinyc, M.L., Wong, W.S., Salleo, A., Paul, K.E., Street, R.A., (2002) Appl. Phys. Lett., 81,

pp. 4260-4262;

Lee, K.S., Blanchet, G.B., Gao, F., Loo, Y.-L., (2005) Appl. Phys. Lett., 86, p. 074102;

Chandekar, A., Whitten, J.E., (2007) Appl. Phys. Lett., 91, p. 113103;

Briseno, A.L., Aizenberg, J., Han, Y.-J., Penkala, R.A., Moon, H., Lovinger, A.J., Kloc, C., Bao,

Z., (2005) J. Am. Chem. Soc., 127, pp. 12164-12165;

Mannsfeld, S.C.B., Sharei, A., Liu, S., Roberts, M.E., McCulloch, I., Heeney, M., Bao, Z.,

(2008) Adv. Mater., 20, pp. 4044-4048;

Herman, M.A., Sitter, H., (1988) Molecular Beam Epitaxy Fundamentals and Current Status, ,

1st ed., Springer-Verlag: Berlin;

Page 65: Abstract 10

Wada, O., (1994) Optoelectronic Integration-Physics, Technology and Applications, , Kluwer

Academic Publishers, Boston;

Fetterman, H.R., Ni, D.C., (1988) Microwave Opt. Technol. Lett., 1, pp. 34-39;

Chao, C.P., Shiau, G.-J., Forrest, S.R., (1994) IEEE Photon Tech. Lett., 6, pp. 1406-1408;

Sasaki, T., Yamaguchi, M., Kitamura, M., (1994) J. Cryst. Growth, 145, pp. 846-851;

Shiau, G.-J., Chao, C.-P., Burrows, P.E., Forrest, S.R., (1994) Appl. Phys. Lett., 65, pp. 892-894;

Coldren, L.A., Corzine, S.W., (1995) Diode Lasers and Photonic Integrated Circuits, , John

Wiley: New York;

Chemla, D.S., Zyss, J., (1987) Nonlinear Optical Properties of Organic Molecules and Crystals,

1-2. , Academic Press: Orlando/New York;

Hann, R.A., Bloor, D., (1991) Organic Materials for Non-linear Optics II, , Royal Society of

Chemistry: Cambridge;

Mukamel, S., (1995) Principles of Nonlinear Optical Spectroscopy, , Oxford University Press:

New York;

Maruyama, Y., Hoshi, H., Fang, S.L., Kohama, K., (1995) Synth. Metals, 71, pp. 1653-1656;

Seto, J., Asai, N., Fujiwara, I., Ishibashi, T., Kamei, T., Tamura, S., (1996) Thin Solid Films,

273, pp. 97-104;

Simon, J., André, J.-J., (1985) Molecular Semiconductors: Photoelectrical Properties and

Solar Cells, , Springer-Verlag: Berlin;

Leznoff, C.C., Lever, A.B.P., (1989) Phthalocyanines: Properties and Applications, , VCH

Publishers, Inc.: New York;

Wohrle, D., Meissne, D., (1991) Adv. Mater., 3, pp. 129-138;

Taylor, R.B., Burrows, P.E., Forrest, S.R., (1997) IEEE Photon. Tech. Lett., 9, pp. 365-367;

So, F.F., Forrest, S.R., Shi, Y.Q., Steier, W.H., (1990) Appl. Phys. Lett., 56, pp. 674-676;

So, F.F., Forrest, S.R., (1991) Phys. Rev. Lett., 66, pp. 2649-2652;

Agranovich, V.M., (1993) Phys. Scr., 149, p. 699;

Agranovich, V.M., La Rocca, G.C., Bassani, F., (1995) Chem. Phys. Lett., 247, pp. 355-358;

Lam, J.F., Forrest, S.R., Tangonan, G.L., (1991) Phys. Rev. Lett., 66, pp. 1614-1617;

Wang, N., Jenkins, J.K., Chernyak, V.V., Mukamel, S., (1994) Phys. Rev. B, 49, pp. 17079-

17091;

Zakhidov, A.A., Akashi, T., Yoshino, K., (1994) Synth. Metals, 64, pp. 155-165;

Page 66: Abstract 10

Nakada, H., Tohma, T., (1996) Proc. 8th International Workshop on Electroluminescence, p.

385. , Berlin;

Burrows, P.E., Forrest, S.R., (1994) Appl. Phys. Lett., 64, pp. 2285-2287;

Fang, S., Kohama, K., Hoshi, H., Maruyama, Y., (1994) Synth. Metals, 64, pp. 167-170;

Arbour, C., Armstrong, N.R., Brina, R., Collins, G., Danziger, J.-P., Lee, P., Nebesney, K.W.,

Waite, S., (1990) Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 183,

pp. 307-320;

Forrest, S.R., Kaplan, M.L., Schmidt, P.H., Feldmann, W.L., Yanowski, E., (1982) Appl. Phys.

Lett., 41, pp. 90-92;

Lovinger, A.J., Forrest, S.R., Kaplan, M.L., Schmidt, P.H., Venkatesan, T., (1984) J. Appl.

Phys., 55, pp. 476-482;

Forrest, S.R., Kaplan, M.L., Schmidt, P.H., (1984) J. Appl. Phys., 55, pp. 1492-1507;

Akers, K., Aroca, R., Hor, A.M., Loutfy, R.O., (1987) J. Phys. Chem., 91, pp. 2954-2959;

Zimmermann, U., Schnitzler, G., Kar, N., Umbach, E., (1989) Thin Solid Films, 175, pp. 85-88;

Danziger, J., Dodeiet, J.-P., Lee, P., Nebesny, K.W., Armstrong, N.R., (1991) Chem. Mater., 3,

pp. 821-829;

Ludwig, C., Gompf, B., Glatz, W., Petersen, J., Eisenmenger, W., Möbus, M., Zimmermann,

U., Karl, N., (1992) Z. Phys. B, 86, pp. 397-404;

Hoshino, A., Isoda, S., Kurata, H., Kobayashi, T., (1994) J. Appl. Phys., 76, pp. 4113-4120;

Vincett, P.S., Popovic, Z.D., McIntyre, L., (1981) Thin Solid Films, 82, pp. 357-376;

Debe, M.K., Kam, K.K., Liu, J.C., Poirier, R.J., (1988) J. Vac. Sci. Technol. A Vac. Surf. Films,

6, pp. 1907-1911;

Mobus, M., Karl, N., Kobayashi, T., (1992) J. Cryst. Growth, 116, pp. 495-504;

Tanigaki, K., Kuroshima, S., Ebbesen, T.W., Ichihashi, T., (1991) J. Cryst. Growth, 114, pp. 3-6;

Yoshimura, T., Tatsuura, S., Sotoyama, W., (1991) Appl. Phys. Lett., 59, pp. 482-484;

Haskal, E.I., So, F.F., Burrows, P.E., Forrest, S.R., (1992) Appl. Phys. Lett., 60, pp. 3223-3225;

Tada, H., Kawaguchi, T., Koma, A., (1992) Appl. Phys. Lett., 61, pp. 2021-2023;

Ludwig, C., Gompf, B., Petersen, J., Strohmaier, R., Eisenmenger, W., (1994) Z Phys. B, 93, pp.

365-373;

Kendrick, C., Kahn, A., Forrest, S.R., (1996) Appl. Surf. Sci., 104-105, pp. 586-594;

Page 67: Abstract 10

Yanagi, H., Araki, Y., Ohara, T., Hotta, S., Ichikawa, M., Taniguchi, Y., (2003) Adv. Funct.

Mater., 13, pp. 767-773;

Andreev, A., Resel, R., Smilgies, D.-M., Hoppe, H., Matt, G., Sitter, H., Sariciftci, N.S.,

Zrzavecka, O., (2003) Synth. Metals, 138, pp. 59-63;

Kambayashi, T., Ohta, H., Hoshi, H., Hirano, M., Hosono, H., Takezoe, H., Ishikawa, K., (2005)

Cryst. Growth Des., 5, pp. 143-146;

Koller, G., Berkebile, S., Krenn, J., Tzvetkov, G., Hlawacek, G., Lengye, O., Netzer, F.P.,

Ramsey, M.G., (2004) Adv. Mater., 16, pp. 2159-2162;

Ivanco, J., Haber, T., Krenn, J.R., Netzer, F.P., Resel, R., Ramsey, M.G., (2007) Surf. Sci., 601,

pp. 178-187;

Cicoira, F., Miwa, J.A., Melucci, M., Barbarella, G., Rosei, F., (2006) Small, 2, pp. 1366-1371;

Sellam, F., Schmitz-Hubsch, T., Toerker, M., Mannsfeld, S., Proehl, H., Fritz, T., Leo, K.,

Müllen, K., (2001) Surf. Sci., 478, pp. 113-121;

Haber, T., Oehzelt, M., Resel, R., Andreev, A., Thierry, A., Sitter, H., Smilgies, D.-M., Grogger,

W., (2006) J. Nanosci. Nanotech., 6, pp. 698-703;

Dienel, T., Loppacher, C., Mannsfeld, S.C.B., Forker, R., Fritz, T., (2008) Adv. Mater., 20, pp.

959-963;

Toda, Y., (1996) Appl. Phys. Lett., 69, pp. 2315-2317;

Yanagi, H., Ohara, T., Morikawa, T., (2001) Adv. Mater., 13, pp. 1452-1455;

Ichikawa, M., Yanagi, H., Shimizu, Y., Hotta, S., Suganuma, N., Koyama, T., Taniguchi, Y.,

(2002) Adv. Mater., 14, pp. 1272-1275;

Noh, Y.Y., Kim, J.J., Yoshida, Y., Yase, K., (2003) Adv. Mater., 15, pp. 699-702;

Noh, Y.Y., Kim, J.-J., Nagamatsu, S., (2003) Appl. Phys. Lett., 83, pp. 1243-1245;

Wang, H., Zhu, F., Yang, J., Geng, Y., Yan, D., (2007) Adv. Mater., 19, pp. 2168-2171;

Schreiber, F., (2004) Phys. Status Solid. A, 201, pp. 1037-1054;

Möbus, M., Karl, N., Kobayashi, T., (1992) J. Cryst. Growth, 116, pp. 495-504;

Umbach, E., Fink, R., Sokolowski, M., (1996) Appl. Phys. A, 63, pp. 565-576;

Schmitz-Hübsch, T., Fritz, T., Sellam, F., Staub, R., Leo, K., (1997) Phys Rev B, 55, pp.

7972-7976;

Forrest, S.R., (1997) Chem. Rev., 97, pp. 1793-1796;

Page 68: Abstract 10

Fenter, P., Schreiber, F., Zhou, P., Eisenberger, Forrest, S.R., (1997) Phys. Rev. B, 56, pp. 3046-

3053;

Seidel, C., Awater, C., Liu, X.D., Ellerbrake, R., Fuchs, H., (1997) Surf. Sci., 371, pp. 123-130;

Glöckler, K., Seidel, C., Soukopp, A., Sokolowski, M., Umbach, E., Böhringer, M., Berndt,

R., Schneider, W.D., (1998) Surf. Sci., 405, pp. 1-20;

Krause, B., Dürr, A.C., Ritely, K.A., Schreiber, F., Dosch, H., Smilgies, D., (2001) Appl. Surf.

Sci., 175, pp. 332-336;

Krause, B., Dürr, A.C., Ritley, R., Schreiber, F., Dosch, H., Smilgies, D., (2002) Phys. Rev. B,

66, p. 235404;

Krause, B., Dürr, A.C., Schreiber, F., Dosch, H., (2003) Chem. Phys., 119, pp. 3429-3435;

Möbus, M., Karl, N., (1992) Thin Solid Films, 215, pp. 213-217;

Chizhov, I., Kahn, A., Scoles, G., (2000) J. Cryst. Growth, 208, pp. 449-458;

Dürr, A.C., Schreiber, F., Ritley, K.A., Kruppa, V., Krug, J., Dosch, H., Struth, B., (2003)

Phys. Rev. Lett., 90 (1-4), p. 016104;

Dürr, A.C., Schreiber, F., Monch, M., Karl, N., Krause, B., Kruppa, V., Dosch, H., (2002)

Appl. Phys. Lett., 81, pp. 2276-2278;

Strohmaier R. Ph.D. thesis, Stuttgart, 1997Lippel, P.H., Wilson, R.J., Miller, M.D., Wöll, C.,

Chiang, S., (1989) Phys. Rev. Lett., 62, pp. 171-174;

Rogers, J.A., Bao, Z., Dodabalapur, A., Makhija, A., (2000) IEEE EDL-21, pp. 100-103;

Schlettwein, D., (2001) Supramolecular Photosensitive and Electroactive Materials, , Nalwa HS,

Ed., Academic Press: San Diego;

Yim, S., Jones, T.S., (2002) Surf. Sci., 521, pp. 151-159;

Alonso, M.I., Garriga, M., Ossó, J.O., Schreiber, F., Barrena, E., Dosch, H., (2003) J. Chem.

Phys., 119, pp. 6335-6340;

Bao, Z., Lovinger, A., Brown, J., (1998) J. Am. Chem. Soc., 120, pp. 207-208;

Meyerzu Heringdorf, F.J., Reuter, M.C., Tromp, R.M., (2001) Nature, 412, pp. 517-520;

Shtein, M., Mapel, J., Benziger, J.B., Forrest, S.R., (2002) Appl. Phys. Lett., 81, pp. 268-270;

Lukas, S., Witte, G., Wöll, C., (2002) Phys. Rev. Lett., 88 (1-4), p. 028301;

Liu, C., Minari, T., Li, Y., Kumatani, A., Lee, M.V., Pan, S.H.A., Takimiya, K., Tsukagoshi, K.,

(2012) J. Mater. Chem., 22, pp. 8462-8469;

Page 69: Abstract 10

Ebata, H., Izawa, T., Miyazaki, E., Takimiya, K., Ikeda, M., Kuwabara, H., Yui, T., (2007) J.

Am. Chem. Soc., 129, pp. 15732-15733;

Kumatani, A., Liu, C., Li, Y., Darmawan, P., Takimiya, K., Minari, T., Tsukagoshi, K., (2012)

Sci Rep., 2, p. 393;

Minari, T., Kano, M., Miyadera, T., Wang, S.-D., Aoyagi, Y., Tsukagoshi, K., (2009) Appl.

Phys. Lett., 94 (1-3), p. 093307;

Kano, M., Minari, T., Tsukagoshi, K., (2009) Appl. Phys. Lett., 94, p. 143304;

Li, X., Smaal, W.T.T., Kjellander, C., Van Der-Putten, B., Gualandris, K., Smits, E.C.P.,

Anthony, J., Gelinck, G., (2011) Org. Electron., 12, pp. 1319-1327;

Liu, B., Zeng, H.C., (2004) Langmuir, 20, pp. 4196-4204;

Liu, B., Zeng, H.C., (2003) J. Am. Chem. Soc., 125, pp. 4430-4431;

Wang, X., Li, Y., (2002) Angew. Chem. Int. Ed., 41, pp. 4790-4793;

Kearns, D.R., Tollin, G., Calvin, M., (1960) J. Chem. Phys., 32, pp. 1020-1025;

Marks, T.J., (1985) Science, 227, pp. 881-889;

Lous, E.J., Blom, P.W.M., Molenkamp, L.W., (1985) Phys. Rev. B, 51, pp. 17251-17254;

Maitrot, M., Guillaud, G., Boudjema, B., André, J.J., Simon, J., (1986) J. Appl. Phys., 60, pp.

2396-2400;

Andre, J.J., Simon, J., Even, R., Boudjema, B., Guillaud, G., Maitrot, M., (1987) Synth. Metals,

18, pp. 683-688;

Blochwitz, J., Pfeiffer, M., Fritz, T., Leo, K., (1998) Appl. Phys. Lett., 73, pp. 729-731;

Huang, J., Pfeiffer, M., Werner, A., Blochwitz, J., Leo, K., Shiyong, L., (2002) Appl. Phys. Lett.,

80, pp. 139-141;

Zhou, X., Pfeiffer, M., Huang, J.S., Blochwitz-Nimoth, J., Qin, D.S., Werner, A., Drechsel, J.,

Leo, K., (2002) Appl. Phys. Lett., 81, pp. 922-924;

Blochwitz, J., Pfeiffer, M., Hofmann, M., Leo, K., (2002) Synth. Metals, 127, pp. 169-173;

He, G., Pfeiffer, M., Leo, K., Hofmann, M., Birnstock, J., Pudzich, R., Salbeck, J., (2004) Appl.

Phys. Lett., 85, pp. 3911-3913;

Huang, Q., Walzer, K., Pfeiffer, M., Lyssenko, V., He, G.F., Leo, K., (2006) Appl. Phys. Lett.,

88, p. 113515;

Meerheim, R., Walzer, K., Pfeiffer, M., Leo, K., (2006) Appl. Phys. Lett., 89, p. 061111;

Page 70: Abstract 10

Reineke, S., Lindner, F., Schwartz, G., Seidler, N., Walzer, K., Lüssem, B., Leo, K., (2009)

Nature, 459, pp. 234-238;

Pfeiffer, M., Beyer, A., Plönnigs, B., Nollau, A., Fritz, T., Leo, K., Schlettwein, D., Wöhrle,

D., (2000) Sol. Energy Mater. Sol. Cells, 63, pp. 83-99;

Gebeyehu, D., Maennig, B., Drechsel, J., Leo, K., Pfeiffer, M., (2003) Sol. Energy Mater. Sol.

Cells, 79, pp. 81-92;

Drechsel, J., Männig, B., Kozlowski, F., Pfeiffer, M., Leo, K., Hoppe, H., (2005) Appl. Phys.

Lett., 86, p. 244102;

Schulze, K., Uhrich, C., Schüppel, R., Leo, K., Pfeiffer, M., Brier, E., Reinold, E., Bäuerle,

P., (2006) Adv. Mater., 18, pp. 2872-2875;

Uhrich, C., Wynands, D., Olthof, S., Riede, M.K., Leo, K., Sonntag, S., Maennig, B., Pfeiffer,

M., (2008) J. Appl. Phys., 104, p. 043107;

Wynands, D., Levichkova, M., Leo, K., Uhrich, C., Schwartz, G., Hildebrandt, D., Pfeiffer, M.,

Riede, M., (2010) Appl. Phys. Lett., 97, p. 073503;

Lüssem, B., Riede, M., Leo, K., (2013) Phys. Stat. Solid. A, 210, pp. 9-43;

Kido, J., Matsumoto, T., (1998) Appl. Phys. Lett., 73, pp. 2866-2868;

Brabec, C.J., Dyakonov, V., (2003) Photo Induced Charge Transfer in Bulk Heterojunctions

Composites, pp. 1-51. , Springer-Verlag: Berlin/Heidelberg;

Nollau, A., Pfeiffer, M., Fritz, T., Leo, K., (2000) J. Appl. Phys., 87, pp. 4340-4343;

Tanaka, S., Kanai, K., Kawabe, E., Iwahashi, T., Nishi, T., Ouchi, Y., Seki, K., (2005) Jpn. J.

Appl. Phys., 44, pp. 3760-3763;

Chan, C.K., Amy, F., Zhang, Q., Barlow, S., Marder, S., Kahn, A., (2006) Chem. Phys. Lett.,

431, pp. 67-71;

Bloom, C.J., Elliott, C.M., Schroeder, P.G., France, C.B., Parkinson, B.A., (2003) J. Phys.

Chem., 107, pp. 2933-2938;

Werner, A.G., Li, F., Harada, K., Pfeiffer, M., Fritz, T., Leo, K., (2003) Appl. Phys. Lett., 82, pp.

4495-4497;

Werner, A., Li, F., Harada, K., Pfeiffer, M., Fritz, T., Leo, K., MacHill, S., (2004) Adv. Funct.

Mater., 14, pp. 255-260;

Olthof, S., Tress, W., Meerheim, R., Lüssem, B., Leo, K., (2009) J. Appl. Phys., 106, p.

103711;

Page 71: Abstract 10

Harada, K., Werner, A.G., Pfeiffer, M., Bloom, C.J., Elliott, C.M., Leo, K., (2005) Phys. Rev.

Lett., 94, p. 036601;

Sze, S.M., (1999) Physics of Semiconductor Devices, , 2nd ed., Wiley Interscience: New York;

Koch, N., Vollmer, A., (2006) Appl. Phys. Lett., 89, p. 162107;

Li, T., Ruden, P.P., Campbell, I.H., Smith, D.L., (2003) J. Appl. Phys., 93, p. 4017;

Tessler, N., Roichman, Y., (2001) App Phys Lett, 79, pp. 2987-2989;

Watkins, N.J., Yan, L., Gao, Y., (2002) Appl. Phys. Lett., 80, pp. 4384-4386;

Brown, T.M., Kim, J.S., Friend, R.H., Cacialli, F., Daik, R., Feast, W.J., (1999) Appl. Phys.

Lett., 75, p. 1679;

Peisert, H., Knupfer, M., Fink, (2002) J. Appl. Phys. Lett., 81, p. 2400;

Qiu, C.F., Xie, Z., Chen, H., Wong, M., Kwok, H.S., (2003) J. Appl. Phys., 93, pp. 3253-3258;

Puntambekar, K.P., Pesavento, P.V., Frisbie, C.D., (2003) Appl. Phys. Lett., 83, p. 5539;

Bürgi, L., Richards, T.J., Friend, R.H., Sirringhaus, H., (2003) J. Appl. Phys., 94, p. 6129;

Pesevanto, P.V., Chesterfield, R.J., Newman, C.R., Frisbie, C.D., (2004) J. Appl. Phys., 96, p.

7312;

Chen, T.H., Liou, Y., Wu, T.J., Chen, J.Y., (2004) Appl. Phys. Lett., 85, p. 2092;

Hill, I.G., (2005) Appl. Phys. Lett., 87, p. 163505;

Park, J., Choi, J.S., (2005) Synth. Metals, 155, pp. 657-661;

Kalakodimi, R.P., Nowak, A.M., McCreery, R.L., (2005) Chem. Mater., 17, pp. 4939-4948;

Lim, J.A., Cho, J.H., Park, Y.D., Kim, D.H., Hwang, M., Cho, K., (2006) Appl. Phys. Lett., 88,

p. 082102;

Pesavento, P.V., Puntambekar, K.P., Frisbie, C.D., McKeen, J.C., Ruden, P.P., (2006) J. Appl.

Phys., 99, p. 094504;

Vanoni, C., Tsujino, S., Jung, T.A., (2007) Appl. Phys. Lett., 90, p. 193119;

Ihm, K., Heo, H.-E., Chunga, S., Ahn, J.-R., Kim, J.H., Kang, T.-H., (2007) Appl. Phys. Lett.,

90, p. 242111;

Sun, Y., Liu, Z., Pianetta, P., (2007) J. Vac. Sci. Technol., A25, p. 1351;

Wang, G., Moses, D., Heeger, A.J., Zhang, H.-M., Narasimhan, M., Demaray, R.E., (2004) J.

Appl. Phys., 95, pp. 316-322;

Pyo, K.S., Song, C.K., (2005) Thin Solid Films, 485, p. 230;

Yang, S.Y., Shin, K., Park, C.E., (2005) Adv. Func. Mater., 15, pp. 1806-1814;

Page 72: Abstract 10

Jang, Y., Kim, D.H., Park, Y.D., Cho, J.H., Hwang, M., Cho, K., (2005) Appl. Phys. Lett., 87, p.

152105;

Shin, K., Yang, C., Yang, S.Y., Jeon, H., Park, C.E., (2006) Appl. Phys. Lett., 88, p. 072109;

Lee, S., Koo, B., Shin, J., Lee, J.E., Park, H., Kim, H., (2006) Appl. Phys. Lett., 88, p. 162109;

Manaka, T., Lim, E., Tamura, R., Iwamoto, M., (2006) Thin Solid Films, 499, pp. 386-391;

Ng, T.S., Chabinyc, M.L., Marohn, J.A., (2006) J. Appl. Phys., 100, p. 084505;

Gu, G., Kane, M.G., (2008) Appl. Phys. Lett., 92, p. 053305;

Schön, J.H., (2001) Synth. Metals, 122, pp. 157-160;

Karl, N., (2002) Synth. Metals, 649, pp. 133-134;

Tsukagoshi, K., Yagi, I., Aoyagi, Y., (2006) Sci. Technol. Adv. Mater., 7, p. 231;

Cui, J., Wang, A., Edleman, N.L., Ni, J., Lee, P., Armstrong, N.R., Marks, T.J., (2001) Adv.

Mater., 13, pp. 1476-1480;

Morgado, J., Charas, A., Barbagallo, N., (2002) Appl. Phys. Lett., 81, p. 933;

Klauk, H., Schmid, G., Radlik, W., Weber, W., Zhou, L., Sheraw, C.D., Nichols, J.A., Jackson,

T.N., (2003) Solid-State Electron., 47, pp. 297-301;

Yoneya, N., Noda, M., Hirai, N., Nomoto, K., Wada, M., Kasahara, J., (2004) J. Appl. Phys.

Lett., 85, p. 4663;

Kim, S.Y., Lee, J.-L., (2005) Metal. Mater. Int., 11, pp. 411-414;

Cho, J.H., Lee, W.H., Park, Y.D., Kim, W.-K., Kim, S.Y., Lee, J.-L., Cho, K., (2006)

Electrochem. Solid-State Lett., 9, pp. G147-G149;

Jin, S.H., Jung, K.D., Shin, H., Park, B.-G., Lee, J.D., (2006) Synth. Metals, 156, pp. 196-201;

Lee, H.S., Cho, J.H., Kim, W.-K., Lee, J.-L., Cho, K., (2007) Electrochem. Solid-State Lett., 10,

pp. H239-H242;

Bock, C., Pham, D.V., Kunze, U., Käfer, D., Witte, G., Terfort, A., (2007) Appl. Phys. Lett.,

91, p. 052110;

Diaom, L., Frisbie, C.D., Schroepfer, D.D., Ruden, P.P., (2007) J. Appl. Phys., 101, p. 014510;

Watanabe, Y., Iechi, H., Kudo, K., (2007) Jpn. J. Appl. Phys., 46, pp. 2717-2721;

Wang, S.D., Minari, T., Miyadera, T., Aoyagi, Y., Tsukagoshi, K., (2008) Appl. Phys. Lett., 92,

p. 063305;

Hong, K., Lee, J.W., Yang, S.Y., Shin, K., Jeon, H., Kim, S.H., Yang, C., Park, C.E., (2008)

Org. Electron., 9, pp. 21-29;

Page 73: Abstract 10

Michaelson, H.B., (1997) J. Appl. Phys., 48, p. 4729;

Shen, C., Kahn, A., (2001) Org. Electron., 2, pp. 89-95;

Song, W., So, S.K., Kao, L., (2001) Appl. Phys. A, 72, pp. 361-365;

Cahen, D., Kahn, A., (2003) Adv. Mater., 15, pp. 271-277;

Pantisano, L., Afanas'ev, V., Pourtois, G., Chen, P.J., (2005) J. Appl. Phys., 98, p. 053712;

Tapajna, M., Hušeková, K., Espinos, J.P., Harmatha, L., Fröhlich, K., (2006) Mater. Sci.

Semicond. Proc., 9, pp. 969-974;

Hamadani, B.H., Natelson, D., (2004) Appl. Phys. Lett., 84, p. 443;

Von Hauff, E., Dyakonov, V., Parisi, J., (2005) Sol. Energy Mater. Sol. Cells, 87, pp. 149-156;

Narioka, S., Ishii, H., Yoshimura, D., Sei, M., Ouchi, Y., Seki, K., Hasegawa, S., Yamashita, K.,

(1995) Appl. Phys. Lett., 67, p. 1899;

Shimada, T., Hamaguchi, K., Koma, A., Ohuchi, F.S., (1998) Appl. Phys. Lett., 72, p. 1869;

Bharathan, J.M., Yang, Y., (1998) J. Appl. Phys., 84, p. 3207;

Katuka, G., Roe, K.J., Kolodzey, J., Swann, C.P., Desalvo, G., Clarke, R.C., Eldridge, G.,

Messham, R., (2002) J. Electron. Mater., 31, pp. 346-350;

Obata, M., Sakuda, T., Abe, K., Hayashibe, R., Kamimura, K., (2004) Surf. Coat. Technol., 180,

pp. 136-139;

Moselund, K.E., Freiermuth, J.E., Dainesi, P., Ionescu, A.M., (2006) IEEE Trans., ED-53, pp.

712-718;

Kim, W.-K., Lee, J.-L., (2006) Appl. Phys. Lett., 88, p. 262102;

Yun, D.J., Lee, D.-K., Jeon, H.-K., Rhee, S.W., (2007) Org. Electron., 8, pp. 690-694;

Von Hauff, E., Spethmann, N., Parisi, J., (2008) Z. Naturforsch., 63, pp. 591-595;

Folkers, J.P., Gorman, C.B., Laibinis, P.E., Buchholz, S., Whitesides, G.M., Nuzzo, R.G., (1995)

Langmuir, 11, pp. 813-824;

Ulman, A., (1996) Chem. Rev., 96, pp. 1533-1554;

Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M., (2005) Chem. Rev., 105,

pp. 1103-1169;

Bürgi, L., Sirringhaus, H., Friend, R.H., (2002) Appl. Phys. Lett., 80, p. 2913;

Bürgi, L., Richards, T., Chiesa, M., Friend, R.H., Sirringhaus, H., (2004) Synth. Metals, 146,

pp. 297-309;

Nichols, J.A., Gundlach, D.J., Jackson, T.N., (2003) Appl. Phys. Lett., 83, p. 2366;

Page 74: Abstract 10

Miyazaki, T., Kobayashi, K., Ishida, K., Hotta, S., Horiuchi, T., Yamada, H., Matsushige, K.,

(2003) Jpn. J. Appl. Phys., 42, pp. 4852-4855;

Laibinis, P.E., Hickman, J.J., Wrighton, M.S., Whitesides, G.M., (1989) Science, 245, pp. 845-

847;

Angst, D., Simmons, G.W., (1991) Langmuir, 7, pp. 2236-2242;

Xia, Y., Mrksich, M., Kim, E., Whitesides, G.M., (1995) J. Am. Chem. Soc., 117, pp. 9576-

9577;

Vallant, T., Kattner, J., Brunner, H., Mayer, U., Hoffmann, H., (1999) Langmuir, 15, pp. 5339-

5346;

Zuppiroli, L., Si-Ahmed, L., Kamaras, K., Nüesch, F., Bussac, M.N., Ades, D., Siove, A.,

Grätzel, M., (1999) Eur. Phys. J. B, 11, pp. 505-512;

Masuda, Y., Seo, W.S., Koumoto, K., (2001) Langmuir, 17, pp. 4876-4880;

Ren, S.L., Yang, S.R., Zhao, Y.P., Zhou, J., Xu, T., Liu, W., (2002) Tribol. Lett., 13, pp. 233-

239;

Wang, Y., Lieberman, M., (2003) Langmuir, 19, pp. 1159-1167;

Yan, D., Jordan, J.L., Burapatana, V., Jennings, G.K., (2003) Langmuir, 19, pp. 3357-3364;

Tremont, R.J., Blasini, D.R., Cabrera, C.R., (2003) J. Electroanal. Chem., 556, pp. 147-158;

Engelkes, V.B., Beebe, J.M., Frisbie, C.D., (2004) J. Am. Chem. Soc., 126, pp. 14287-14296;

De Boer, B., Hadipore, A., Mandoc, M.M., Van Woudenbergh, T., Blom, P.W.M., (2005) Adv.

Mater., 17, pp. 621-625;

Di, C.A., Yu, G., Liu, Y.Q., Xu, X., Wei, D., Song, Y., Sun, Y., Wu, D., (2006) J. Am. Chem.

Soc., 128, pp. 16418-16419;

Khodabakhsh, S., Poplavskyy, D., Heutz, S., Nelson, J., Bradley, D.D.C., Murata, H., Jones,

T.S., (2004) Adv. Funct. Mater., 14, pp. 1205-1210;

Khodabakhsh, S., Sanderson, B.M., Nelson, J., Jones, T.S., (2006) Adv. Funct. Mater., 16, pp.

95-100;

Kymissis, I., Dimitrakopoulos, C.D., Purushothaman, S., (2001) IEEE Trans., ED-48, pp. 1060-

1064;

Pernstich, K.P., Haas, S., Oberhoff, D., Goldmann, C., Gundlach, D.J., Batlogg, B., Rashid,

A.N., Schitter, G., (2004) J. Appl. Phys., 96, p. 6431;

Hu, W.S., Tao, Y.T., Hsu, Y.J., Wei, D.H., Wu, Y.S., (2005) Langmuir, 21, pp. 2260-2266;

Page 75: Abstract 10

Abthagir, P.S., Ha, Y.-G., You, E.-A., Jeong, S.-H., Seo, H.-S., Choi, J.-H., (2005) J. Phys.

Chem. B, 109, pp. 23918-23924;

Lin, R., Qiang, L., Ranade, P., King, T.-J., Hu, C., (2002) IEEE EDL, pp. 49-51;

Yun, D.-J., Rhee, S.-W., (2008) J. Electrochem. Soc., 155, pp. H357-H362;

Rusu, P.C., Brocks, G., (2006) Phys. Rev. B, 74, p. 073414;

Jee, S.H., Kim, S.H., Park, H., Kim, D.-J., Yoon, Y.-S., (2006) J. Korean Phys. Soc., 49, p. 2034;

Campbell, I.H., Kress, J.D., Martin, R.L., Smith, D.L., Barashkov, N.N., Ferraris, J.P., (1997)

Appl. Phys. Lett., 71, p. 3528;

Akkerman, H.B., Blom, P.W.M., De Leeuw, D.M., De Boer, B., (2006) Nature, 441, pp. 69-72;

Heimel, G., Romaner, L., Brédas, J.-L., Zojer, E., (2006) Phys. Rev. Lett., 96, p. 196806;

Kobayashi, S., Nishikawa, T., Takenobu, T., Mori, S., Shimoda, T., Mitani, T., Shimotani, H.,

Iwasa, Y., (2004) Nat. Mater., 3, pp. 317-322;

Facchetti, A., Yoon, M.-H., Marks, T.J., (2005) Adv. Mater., 17, pp. 1705-1725;

Hulea, I.N., Fratini, S., Xie, H., Mulder, C.L., Iossad, N.N., Rastelli, G., Ciuchi, S., Morpurgo,

A.F., (2006) Nat. Mater., 5, pp. 982-986;

Kelley, T.W., Frisbie, C.D., (2001) J. Phys. Chem. B, 105, pp. 4538-4540;

Ling, M.M., Bao, Z., (2004) Chem. Mater., 16, pp. 4824-4840;

Addadi, L., Weiner, S., (1985) Proc. Natl. Acad. Sci. USA, 82, pp. 4110-4114;

Mann, S., (1993) Nature, 365, pp. 499-505;

Berman, A., Ahn, D.J., Lio, A., Salmeron, M., Reichert, A., Charych, D., (1995) Science, 269,

pp. 515-518;

Lee, S.-W., Lee, S.K., Belcher, A.M., (2003) Adv. Mater., 15, pp. 689-692;

Han, Y.-J., Aizenberg, J., (2003) Angew. Chem. Int. Ed., 42, pp. 3668-3670;

Travaille, A.M., Kaptijn, L., Verwer, P., Hulsken, B., Elemans, J.A.A.W., Nolte, R.J.M., Van

Kempen, H., (2003) J. Am. Chem. Soc., 125, pp. 11571-11577;

Aizenberg, J., (2004) Adv. Mater., 16, pp. 1295-1302;

Noh, D.-Y., Willing, G.A., Han, C.Y., Shin, K.-S., Geiser, U., Wang, H.H., (2004) Chem.

Mater., 16, pp. 4777-4782;

Kasai, H., Nalwa, H.S., Oikawa, H., Okada, S., Matsuda, H., Minami, N., Kakuta, A., Nakanishi,

H., (1992) Jpn. J. Appl. Phys., 31, pp. L1132-L1134;

Page 76: Abstract 10

Landfester, K., Montenegro, R., Scherf, U., Güntner, R., Asawapirom, U., Patil, S., Neher, D.,

Kietzke, T., (2002) Adv. Mater., 14, pp. 651-655;

Köstler, S., Rudorfer, A., Haase, A., (2009) Adv. Mater., 21, pp. 2505-2510;

Asahi, T., Sugiyama, T., Masuhara, H., (2008) Acc. Chem. Res., 41, pp. 1790-1798;

Yasukuni, R., Asahi, T., Sugiyama, T., Masuhara, H., Sliwa, M., Hofkens, J., De Schryver, F.C.,

Müllen, K., (2008) Appl. Phys. A, 93, pp. 5-9;

Baier, M.C., Huber, J., Mecking, S., (2009) J. Am. Chem. Soc., 131, pp. 14267-14273;

Hittinger, E., Kokil, A., Weder, C., (2004) Angew. Chem. Int. Ed. Eng., 43, pp. 1808-1811;

Henderson, A.M.J., Saunders, J.M., Mrkic, J., Kent, P., Gore, J., Saunders, B.R., (2001) J. Mater.

Chem., 11, pp. 3037-3042;

Wosnick, J.H., Liao, J.H., Swager, T.M., (2005) Macromolecules, 38, pp. 9287-9290;

York, P., (1999) Pharm. Sci. Technol. Today, 2, pp. 430-440;

Reverchon, E., (1999) J. Supercrit. Fluids, 15, pp. 1-21;

Jung, J., Perrut, M., (2001) J. Supercrit. Fluids, 20, pp. 179-219;

Kawashima, Y., (2001) Adv. Drug Deliv. Rev., 47, pp. 1-2;

Shariati, A., Peters, C.J., (2003) Curr. Opin. Solid State Mater. Sci., 7, pp. 371-383;

Vemavarapu, C., Mollan, M.J., Lodaya, M., Needham, T.E., (2005) Int. J. Pharm., 292, pp. 1-16;

Weber, T., Understanding the RESS process (2002) Supercritical Fluid Technology in Materials

Science and Engineering: Synthesis, Properties, and Applications, pp. 387-437. , Sun Y-P, Ed.,

CRC Press: New York;

Blasig, A., Shi, C., Enick, R.M., Thies, M.C., (2002) Ind. Eng. Chem. Res., 41, pp. 4976-4983;

Sane, A., Thies, M.C., (2007) J. Supercrit. Fluids, 40, pp. 134-143;

Sun, Y.P., Rolling, H.W., Bandara, J., Meziani, J.M., Bunker, C.E., Preparation and processing

of nanoscale materials by supercritical fluid technology (2002) Supercritical Fluid Technology in

Materials Science and Engineering:Synthesis, Properties, and Applications, pp. 491-576. , Sun

YP, Ed., New York: Marcel Dekker;

Meziani, M.J., Pathak, P., Hurezeanu, R., Thies, M.C., Enick, R.M., Sun, Y.-P., (2004) Angew.

Chem. Int. Ed., 43, pp. 704-707;

Meziani, M.J., Pathak, P., Wang, W., Desai, T., Patil, A., Sun, Y.-P., (2005) Ind. Eng. Chem.

Res., 44, pp. 4594-4598;

Vehring, R., (2008) Pharm. Res., 25, pp. 999-1022;

Page 77: Abstract 10

Schuck, P., Dolivet, A., Méjean, S., Zhu, P., Blanchard, E., Jeantet, R., (2009) J. Food Eng.,

94, pp. 199-204;

Arpagaus, C., Schafroth, N., (2009) Respir. Drug Deliv. Eur., 2, pp. 269-274;

Lee, S.H., Heng, D., Ng, W.K., Chan, H.-K., Tan, R.B.H., (2011) Int. J. Pharm., 403, pp. 192-

200;

Chu, C.T., Dunn, B., (1993) Appl. Phys. Lett., 55, pp. 492-494;

Gao, B., Yue, G.Z., Qiu, Q., Cheng, Y., Shimoda, H., Fleming, L., Zhou, O., (2001) Adv. Mater.,

13, pp. 1770-1773;

Tada, O., (2002) Adv. Funct. Mater., 12, pp. 420-424;

Irvin, G., Blanton, T., Jagannathan, S., (2006) Adv. Funct. Mater., 16, pp. 747-753;

Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A., (1997) Nature,

389, pp. 827-829;

An, B.K., Kwon, S.K., Park, S.Y., (2007) Angew. Chem. Int. Ed., 46, pp. 1978-1982;

Fisslthaler, E., Blümel, A., Landfester, K., Scherf, U., List, E.J.W., (2008) Soft Matter, 4, pp.

2448-2453;

Kietzke, T., Neher, D., Kumke, M., Montenegro, R., Landfester, K., Scherf, U., (2004)

Macromolecules, 37, pp. 4882-4890;

Heo, J.-S., Park, N.-H., Ryu, J.-H., Suh, K.-D., (2005) Adv. Mater., 17, pp. 822-826;

Huebner, C.F., Carroll, J.B., Evanoff, D.D., Ying, Y., Stevenson, B.J., Lawrence, J.R., Houchins,

J.M., Foulger, S.H., (2008) J. Mater. Chem., 18, pp. 4942-4948;

Huebner, C.F., Roeder, R.D., Foulger, S.H., Adv. Funct. Mater., 19, pp. 3604-3609;

Huebner, C.F., Foulger, S.H., (2010) Langmuir, 26, pp. 2945-2950;

Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., Smalley, R.E., (1985) Nature, 318, pp. 162-

163;

Mirkin, C.A., Caldwell, W.B., (1996) Tetrahedron, 52, pp. 5113-5130;

Konisi, T., Ikeda, A., Shinkai, S., (2005) Tetrahedron, 61, pp. 4881-4899;

Guldi, D.M., Illescas, B.M., Atienza, C.M., Wielopolski, M., MartÃn, N., (2009) Chem Soc Rev,

38, pp. 1587-1597;

Sariciftci, N.S., Smilowitz, L., Heeger, A.J., Wudl, F., (1992) Science, 258, pp. 1474-1476;

Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J., (1995) Science, 270, pp. 1789-1791;

Page 78: Abstract 10

Morris, R.C., Palstra, T.T.M., Hebard, A.F., Fleming, R.M., (1995) Appl. Phys. Lett., 67, pp.

121-123;

Priebe, G., Pietzak, B., Konenkamp, R., (1997) Appl. Phys. Lett., 71, p. 2160;

Anthopoulos, T.N., Singh, B., Marjanovic, N., Sariciftci, N.S., Ramil, A.M., Sitter, H., Cölle,

M., De Leeuw, D.M., (2006) Appl. Phys. Lett., 89, pp. 213504/1-3;

Ma, H., Yip, H.-L., Huang, F., Jen, A.K.-Y., (2010) Adv. Funct. Mater., 20, pp. 1371-1388;

Shi, X., Caldwell, W.B., Chen, K., Mirkin, C.A., (1994) J. Am. Chem. Soc., 116, pp. 11598-

11599;

Imahori, H., Norieda, H., Yamada, H., Nishimura, Y., Yamazaki, I., Sakata, Y., Fukuzumi, S.,

(2001) J. Am. Chem. Soc., 123, pp. 100-110;

Yamada, H., Imahori, H., Nishimura, Y., Yamazaki, I., Ahn, T.K., Kim, S.K., Kim, D.,

Fukuzumi, S., (2003) J. Am. Chem. Soc., 125, pp. 9129-9139;

Cho, Y.-J., Ahn, T.K., Song, H., Kim, K.S., Lee, C.Y., Seo, W.S., Lee, K., Park, J.T., (2005) J.

Am. Chem. Soc., 127, pp. 2380-2381;

Shirai, Y., Cheng, L., Chen, B., Tour, J.M., (2006) J. Am. Chem. Soc., 128, pp. 13479-13489;

Bonifazi, D., Enger, O., Diederich, F., (2007) J. Chem. Soc. Rev., 36, pp. 390-414;

Matsuo, Y., Kanaizuka, K., Matsuo, K., Zhong, Y.-W., Nakae, T., Nakamura, E., (2008) J. Am.

Chem. Soc., 130, pp. 5016-5017;

Matsuo, Y., Ichiki, T., Radhakrishnan, S.G., Guldi, D.M., Nakamura, E., (2010) J. Am. Chem.

Soc., 132, pp. 6342-6348;

Chupa, J.A., Xu, S., Fischetti, R.F., Strongin, R.M., McCauley Jr., J.P., Smith III, A.B., Blasie,

J.K., Bean, J.C., (1993) J. Am. Chem. Soc., 115, pp. 4383-4384;

Tsukruk, (1994) Langmuir, 10, pp. 996-999;

Tsukruk, (1996) Langmuir, 12, pp. 3905-3911;

Lee, H., Jeon, I.C., (1997) Synth. Metals, 86, pp. 2297-2298;

Wei, T.-X., Zhai, J., Ge, J.-H., Gan, L.-B., Huang, C.-H., Luo, G.-B., Ying, L.-M., Zhao, X.-S.,

(1999) Appl. Surf. Sci., 151, pp. 153-158;

Wei, T.-X., Zhai, J., Ge, J., Gan, L.-B., Huang, C.-H., Luo, G.-B., Ying, L.-M., Zhao, X.-S.,

(2000) J. Colloid Interf. Sci., 222, pp. 262-264;

Gulino, A., Bazzano, S., Condorelli, G.G., Giuffrida, S., Mineo, P., Satriano, C., Scamporrino,

E., Fragalà, I., (2005) Chem. Mater., 17, pp. 1079-1084;

Page 79: Abstract 10

Guérin, D., Lenfant, S., Godey, S., Vuillaume, D., (2010) J. Mater. Chem., 20, pp. 2680-2690;

Zhong, Y.-W., Matsuo, Y., Nakamura, E., (2006) Org. Lett., 8, pp. 1463-1466;

Takeya, J., Nishikawa, T., Takenobu, T., Kobayashi, S., Iwasa, Y., Mitani, T., Goldmann, C.,

Batlogg, B., (2004) Appl. Phys. Lett., 85, pp. 5078-5080;

Tremblay, N.J., Gorodetsky, A.A., Cox, M.P., Schiros, T., Kim, B., Steiner, R., Bullard, Z.,

Nuckolls, C., (2010) Chem. Phys. Chem., 11, pp. 799-803;

Kim, B., (2011) Single Crystal Growth of Organic Semiconductors and Organic Electronic

Applications, , Ph.D. thesis, Columbia University;

Yamamoto, Y., Zhang, G., Jin, W., Fukushima, T., Ishii, N., Saeki, A., Seki, S., Aida, T., (2009)

Proc. Natl. Acad. Sci. USA, 106, pp. 21051-21056;

Gao, Y., Tang, Z., Watkins, E., Majewski, J., Wang, H.-L., (2005) Langmuir, 21, pp. 1416-1423;

Scida, A., (2013) Ion Implantation of Organic Thin Films and Electronic Devices, , Ph.D. thesis,

University of Bologna: Italy;

Baglin, J.E.E., (1989) Nucl. Instrum. Methods Phys. Res. B, 39, pp. 764-768;

Fraboni, B., Scidà, A., Cavallini, A., Milita, S., Cosseddu, P., Bonfiglio, A., Wang, Y., Nastasi,

M., (2012) Synth. Metals, 161, pp. 2585-2588;

Basiricò, L., (2012) Inkjet Printing of Organic Transistor Devices, , Ph.D. thesis, Electronic and

Computer Engineering Department of Electrical and Electronic Engineering, University of

Cagliari;

Karwa, A., (2006) Printing Studies with Conductive Inks and Exploration of New Conducting

Polymer Compositions, , Master's thesis, Center for Materials Science and Engineering,

Rochester Institute of Technology: New York;

Coatanéa, E., Kantola, V., Kulovesi, J., Lahti, L., Lin, R., Zavodchikova, M., (2009) Printed

Electronics, Now and Future, Bit Bang - Rays to the Future, , Neuvo Y, Ylönen S, Eds.,

Helsinki University of Technology;

Caglar, U., (2009) Studies of Inkjet Printing Technologies with Focus on Electronic Materials, ,

Ph.D. thesis, Tampere University of Technology;

Yu, J.S., Jo, J., Kim, D.S., Kim, D.J., (2008) J. Nanosci. Nanotechnol., 8, pp. 4940-4944;

Jo, J., Yu, J.-S., Lee, T.-M., Kim, D.-S., Kim, K.-Y., (2010) J. Nanosci. Nanotechnol., 10, pp.

3595-3599;

Hon, K.K.B., Li, L., Hutchings, I.M., (2008) CIRP Ann. Manuf. Technol., 57, pp. 601-620;

Page 80: Abstract 10

http://www.optomec.com, WebRef-1Singh, M., Haverinen, H.M., Dhagat, P., Jabbour, G.E.,

(2010) Adv. Mater., 22, pp. 673-685;

(1999) Micro Fab Technote, pp. 99-101. , Tech Note;

De Gans, B.-J., Duineveld, P.C., Schubert, U.S., (2004) Adv. Mater., 16, pp. 203-213;

Ballarin, B., Fraleoni-Morgera, A., Frascaro, D., Marazzita, S., Piana, C., Setti, L., (2004) Synth.

Metals, 146, pp. 201-205;

Kawase, T., Shimoda, T., Newsome, C., Sirringhaus, H., Friend, R.H., (2003) Thin Solid Films,

438-439, pp. 279-287;

Al-Chami, H., (2010) Inkjet Printing of Transducers, , Master's thesis, University of British

Columbia;

Griffith, O.L., Anthony, J.E., Jones, A.G., Lichtenberger, D.L., (2010) J. Am. Chem. Soc., 132,

pp. 580-586;

Madec, M.-B., Smith, P.J., Malandraki, A., Wang, N., Korvink, J.G., Yeates, S.G., (2010) J.

Mater. Chem., 20, pp. 9155-9160;

Lee, S.H., Choi, M.H., Han, S.H., Choo, D.J., Jang, J., Kwon, S.K., (2008) Org. Electron., 9, pp.

721-726;

Lim, J.A., Kim, J.-H., Qiu, L., Lee, W.H., Lee, H.S., Kwak, D., Cho, K., (2010) Adv. Funct.

Mater., 20, pp. 3292-3297;

Lee, M.W., Ryu, G.S., Lee, Y.U., Pearson, C., Petty, M.C., Song, C.K., (2012) Microel. Eng.,

95, pp. 1-4;

Xia, Y., Whitesides, G.M., (1998) Angew. Chem. Int. Ed., 37, pp. 550-575;

Gamota, D., Paul, B., Kalyanasundaram, K., Zhang, J., (2004) Printed Organics and Molecular

Electronics, , Kluwer Academic Publishers, ISBN 1402077076/1-4020-7707-6;

Michel, B., Bernard, A., Bietsch, A., Delamarche, E., Geissler, M., Juncker, D., Kind, H., Wolf,

H., (2001) IBM J. Res. Dev., 45, pp. 697-719;

Shinamura, S., Osaka, I., Miyazaki, E., Takimiya, K., (2011) Heterocycles, 83, pp. 1187-1204;

Doi, I., Kang, M.J., Takimiya, K., (2012) Curr. Appl. Phys., 12, pp. e2-e5;

Cho, Y.J., Lee, J.Y., Chin, B.D., Forrest, S.R., (2013) Org. Electron., 14, pp. 1081-1085;

McCall, K.L., Ogier, S.D., Brown, B.A., Rutter, S.R., Palumbo, M., Lee, Y.U., Evans, L.A.,

Pease, T.J., Low Voltage High Mobility Organic Semiconductors for Flexible Display

Page 81: Abstract 10

Applications, , Centre for Process Innovation Limited, Thomas Wright Way, NET Park:

Sedgefield, TS21 3FG, UK;

Li, J., Zhao, Y., Tan, H.S., Guo, Y., Di, C.-A., Yu, G., Liu, Y., Ong, B.S., (2012) Science

Reports, p. 2. , Art No: 754. DOI: 10.1038/srep00754;

Li, F.M., Hsieh, G.-W., Dalal, S., Newton, M.C., Stott, J.E., Hiralal, P., Nathan, A., Milne, W.I.,

(2008) IEEE Trans., ED-55, pp. 3001-3011;

Shin, H.-J., Kim, K.K., Benayad, A., Yoon, S.-M., Park, H.K., Jung, I.-S., Jin, M.H., Lee, Y.H.,

(2009) Adv. Func. Mater., 19, pp. 1987-1992;

(2011) Transistors and Methods of Making Them, , Patent, PCT/GB2012/051170;

Kim, N., (2009) Fabrication and Characterization of Thin-film Encapsulation for Organic

Electronics, , Ph.D. thesis, Georgia Institute of Technology: USA;

McElvain, J., Antoniadis, H., Hueschen, M.R., Miller, J.N., Roitman, D.M., Sheats, J.R., Moon,

R.L., (1996) J. Appl. Phys., 80, pp. 6002-6007;

Cumpston, B.H., Parker, I.D., Jensen, K.F., (1997) J. Appl. Phys., 81, pp. 3716-3720;

Bliznyuk, V.N., Carter, S.A., (1999) Macromolecules, 32, pp. 361-369;

Burrows, P.E., Bulovic, V., Forrest, S.R., Sapochak, L.S., McCarty, D.M., Thompson, M.E.,

(1994) Appl. Phys. Lett., 65, pp. 2922-2924;

Mandlik, P., Gartside, J., Han, L., Cheng, I.-C., Wagner, S., Silvernail, J.A., Ma, R.-Q., Brown,

J.J., (2008) Appl. Phys. Lett., 92, p. 103309;

Kwon, S.H., Paik, S.Y., Kwon, O.J., Yoo, J.S., (2001) Appl. Phys. Lett., 79, p. 4450;

Ghosh, A.P., Gerenser, L.J., Jarman, C.M., Fornalik, J.E., (2005) Appl. Phys. Lett., 86 (223), p.

503;

Yamashita, K., Mori, T., Mizutani, T., (2001) J. Phys. DAppl. Phys., 34, pp. 740-743;

Chwang, A.B., Rothman, M.A., Mao, S.Y., Hewitt, R.H., Weaver, M.S., Silvernail, J.A., Rajan,

K., Rutherford, N., (2003) Appl. Phys. Lett., 83, p. 413;

Kim, G.H., Oh, J., Yang, Y.S., Do, L.-M., Suh, K.S., (2004) Thin Solid Films, 467, pp. 1-3;

Da Silva-Sobrinho, A.S., Latrèche, M., Czeremuszkin, G., Klemberg-Sapieha, J.E.,

Wertheimer, M.R., (1998) J. Vac. Sci. Technol., A16, p. 3190;

Leterrier, Y., (2003) Prog. Mater. Sci., 48, pp. 1-55;

Huang, W., Wang, X., Sheng, M., Xu, L., Stubhan, F., Luo, L., Feng, T., Zou, S., (2003) Mater.

Sci. Eng. B, 98, pp. 248-254;

Page 82: Abstract 10

Park, S.H.K., Oh, J., Hwang, C.-S., Lee, J.-I., Yang, Y.S., Chu, H.Y., (2005) Electrochem. Solid-

State Lett., 8, pp. H21-H23;

Potscavage, W.J., Yoo, S., Domercq, B., Kippelen, B., (2007) Appl. Phys. Lett., 90, p. 253511;

Dameron, A.A., Davidson, S.D., Burton, B.B., Carcia, P.F., McLean, R.S., George, S.M., (2008)

J. Phys. Chem. C, 112, pp. 4573-4580;

Meyer, J., Görrn, P., Bertram, F., Hamwi, S., Winkler, T., Johannes, H.-H., Weimann, T.,

Kowalsky, W., (2009) Adv. Mater., 21, pp. 1845-1849;

Phatak, R., (2011) Dependence of Dark Spot Growth on Cathode/Organic Interfacial Adhesion

in Organic Light Emitting Devices, , Thesis, University of Waterloo: Canada;

Aziz, H., Popovic, Z.D., (2004) Chem. Mater., 16, pp. 4522-4532;

Subbarao, S.P., Bahlke, M.E., Kymissis, I., (2010) IEEE Trans. ED, 57, pp. 153-156;

Lim, S.F., Ke, L., Wang, W., Chua, S.J., (2001) Appl. Phys. Lett., 78, p. 2116;

Savvateev, V.N., Yakimov, A.V., Davidov, D., Pogreb, R.M., Neumann, R., Avny, Y., (1997)

Appl. Phys. Lett., 71, p. 3344;

Do, L.-M., Kim, K., Zyung, T., Shim, H.-K., Kim, J.-J., (1997) Appl. Phys. Lett., 70, pp. 3470-

3472;

Kawaharada, M., Ooishi, M., Saito, T., Hasegawa, E., (1997) Synth. Metals, 91, pp. 113-116;

Aziz, H., Popovic, Z., Tripp, C.P., Hu, N.-X., Hor, A.-M., Xu, G., (1998) Appl. Phys. Lett., 72,

pp. 2642-2644. , 756-758;

Schaer, M., Nüesch, F., Berner, D., Leo, W., Zuppiroli, L., (2001) Adv. Funct. Mater., 11, pp.

116-121;

Gao, Z.Q., Lai, W.Y., Wong, T.C., Lee, C.S., Bello, I., Lee, S.T., (1999) Appl. Phys. Lett., 74, p.

3269;

Gao, Z.Q., Lai, W.Y., Wong, T.C., (2000) Appl. Phys. Lett., 77, p. 3113;

Xu, M.S., Xu, J.B., (2005) Thin Solid Films, 491, pp. 317-322;

Kwong, C.Y., Djurišic, A.B., Roy, V.A.L., Lai, P.T., Chan, W.K., (2004) Thin Solid Films,

458, pp. 281-286;

Barix Thin Film Encapsulation, , http://www.vitexsys.com/index.html, Vitex Systems;

Aziz, H.M., Liew, Y.-F., Popovic, Z., (2004) Proc. SPIE, 5214, p. 277;

Chan, M.Y., Lai, S.L., Wong, F.L., Lengyel, O., Lee, C.S., Lee, S.T., (2003) Chem. Phys. Lett.,

371, pp. 700-706;

Page 83: Abstract 10

Le Comber, P.G., Spear, W.E., (1970) Phys. Rev. Lett., 25, pp. 509-511;

Good, D.A., (2007) Tech Report No. UCB/EECS-2007-62, , University of California: Berkeley;

Tiedje, T., Abele, B., Morel, D.L., Moustakas, T.D., Wronski, C.R., (1980) Appl. Phys. Lett., 36,

pp. 695-697;

Sobbia, R., Sansonnens, L., Bondkowski, J., (2005) J. Vac. Sci. Technol., A23, p. 927;

Kaneko, T., Hosokawa, Y., Tadauchi, M., Kita, Y., Andoh, H., (1991) Electron Devices, IEEE

Transactions, ED-38, pp. 1086-1093;

Smith, P.M., Carey, P.G., Sigmon, T.W., (1997) Appl. Phys. Lett., 70, pp. 342-344;

Subramanian, V., Dankoski, P., Degertekin, L., Khuri-Yakub, B.T., Saraswat, K.C., (1997)

IEEE, EDL-18, pp. 378-381;

Sameshima, T., Usui, S., Sekiya, M., (1986) IEEE, EDL-7, pp. 276-278;

Crowder, M.A., Carey, P.G., Smith, P.M., Sposili, R.S., Cho, H.S., Im, J.S., (1998) IEEE, EDL-

19, pp. 306-308;

Giust, G.K., Sigmon, T.W., Boyce, J.B., Ho, J., (1999) IEEE, EDL-20, pp. 77-79;

Brédas, J.L., Beljonne, D., Coropceanu, V., Cornil, J., (2004) Chem. Rev., 104, pp. 4971-

5003;

Kunugi, Y., Takimiya, K., Yamane, K., Yamashita, K., Aso, Y., Otsubo, T., (2003) Chem.

Mater., 15, pp. 6-7;

Yoshida, H., Sato, N., (2008) Phys. Rev. B, 77, p. 235205;

Takimiya, K., Kunugi, Y., Ebata, H., Otsubo, T., (2006) Chem. Lett., 35, pp. 1200-1201;

Izawa, T., Miyazaki, E., Takimiya, K., (2009) Chem. Mater., 21, pp. 903-912;

Yamamoto, T., Takimiya, K., (2007) J. Photopolym. Sci. Tech., 20, pp. 47-51;

Yamamoto, T., Shinamura, S., Miyazaki, E., Takimiya, K., (2010) Bull. Chem. Soc. Jpn., 83, pp.

120-130;

Haas, S., Takahashi, Y., Takimiya, K., Hasegawa, T., (2009) Appl. Phys. Lett., 95, p. 022111;

Sekitani, T., Noguchi, Y., Hata, K., Fukushima, T., Aida, T., Someya, T., (2008) Science, 321,

pp. 1468-1472;

Ishida, K., Huang, T.-C., (2011), http://icdesign.iis.u-tokyo.ac.jp/2011_38.pdfShino, S., (2008)

Conducting Patterns Making Technology with Metal Nano-Particle Inks, ,

http://www.jpcashow.com/show2012/English/event_features/ electronics-convention.html;

Altoe, V., Martin, F., Katan, A., Salmeron, M., Aloni, S., (2012) Nano. Lett., 12, pp. 1295-1299;

Page 84: Abstract 10

Capelli, R., Toffanin, S., Generali, G., Usta, H., Facchetti, A., Muccini, M., (2010) Nat. Mater.,

9, pp. 496-503;

Jakob, K.-H., Joseph, E.N., Da Silva-Filho, D.A., Brédas, J.L., Rubahn, H.-G., (2009) Org.

Electron., 10, pp. 1228-1234;

Liu, X., Wallmann, I., Boudinov, H., Kjelstrup-Hansen, J., Schiek, M., Lützen, A., Rubahn,

H.-G., (2010) Org. Electron., 11, pp. 1096-1102;

Tavares, L., Kjelstrup-Hansen, J., Rubahn, H.-G., (2012) Nanotechnology, 23, p. 425203;

Bisri, S.Z., Sawabe, K., Imakawa, M., Maruyama, K., Yamao, T., Hotta, S., Iwasa, Y.,

Takenobu, T., (2012) Sci. Rep., 2, p. 985;

Seo, H.-S., Kim, D.-K., Oh, J.-D., Shin, E.-S., Choi, J.-H., (2013) J. Phys. Chem. C, 117, pp.

4764-4770;

Seo, J., Park, S., Nam, S., Kim, H., Kim, Y., (2013) Sci. Rep., 3, p. 2452

UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-

84904020757&partnerID=40&md5=5cbf4839a2125b09e5c7440d0a67407c

ER -