Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi...

86
Lehigh University Lehigh Preserve eses and Dissertations 1973 Absorption in Jet-Venturi scrubbers Mark Richman Lehigh University Follow this and additional works at: hps://preserve.lehigh.edu/etd Part of the Chemical Engineering Commons is esis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in eses and Dissertations by an authorized administrator of Lehigh Preserve. For more information, please contact [email protected]. Recommended Citation Richman, Mark, "Absorption in Jet-Venturi scrubbers" (1973). eses and Dissertations. 5105. hps://preserve.lehigh.edu/etd/5105

Transcript of Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi...

Page 1: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

Lehigh UniversityLehigh Preserve

Theses and Dissertations

1973

Absorption in Jet-Venturi scrubbersMark RichmanLehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Chemical Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by anauthorized administrator of Lehigh Preserve. For more information, please contact [email protected].

Recommended CitationRichman, Mark, "Absorption in Jet-Venturi scrubbers" (1973). Theses and Dissertations. 5105.https://preserve.lehigh.edu/etd/5105

Page 2: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

. .

ABSORPTION IN JET-VENTURI SCRUBBERS

BY

MARK RICHMAN

A RESEARCH REPORT

PRESENTED TO THE GRADUATE FACULTY

OF LEHIGH UNIVERSITY

. '

IN CANDIDACY FOR THE DEGREE OF

MASTER OF SCIENCE

IN

CHEMICAL ENGINEERING

LEHIGH UNIVERSITY

BETHLEHEM, PA,

OCTOBER 1973

i

I. {q

. I, I\'.!

· I

I ,. I,

Page 3: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

..

'

I I ' I, '

... CERTIFICATE OF APPROVAL

This research report is accepted and upproved in

partial fulfillment of the requirements for the

degree of Master of Science in Chemical Engineering.

_J}_L,0/13 (Date)

D~~~ Professor in Charge

Dr. Leonard A. Wenzel Chairman, Dept. of Chemical

Engineering

,I

'I

(

,I

I, I

' ,, i( :,

I ,1 ,· '

Page 4: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

:, f

. f I l

I I

l ; i; ,i

,)

ACKNOWLEDGEMENT

The author wishes to express his appreciation

for significant contributions made to this study to

Dr. Gary W. Poehlein, for his guidance and leadership;

to Drs. Clump and Foust for their assistance in finding

reference material; and to Brent Jones and David Fleming

for their assistance in setting up and operating the experimental apparatus.

,: :,

Page 5: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

i . I

-- ::·:::-:---:-=-...:--~ ---·· . ~- -------- - ·- .

TABLE OF CONTENTS

Title Page

Certificate of Approval

Acknowledgements

Table of Contents

List of Tables·

List of Figures

Abstract

PAGE

i

ii

iii

iv

V

vi

: ) The Jet-Venturi Scrubber

l

3 ··, ·/t

Mass Transfer Theory 8

The Oxygen-Sulfite Phase of the Experiments 19

The HCl Phase of the Experiments 31

Results and Conclusions 41

Recommendations 51

Bibliography 53

Appendix I - Sulfite Phase Data 54

Appendix II - HCl Phase Data 59

Appendix III - Operating Parameters 67

Vita 79

iv

'1'

;\ r ( 'i:,

·ii .. ,,

,,I

i'

l I, 11 11,

I r I ,, ' I ,,

I

I'

Page 6: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

/: ,,

I,; ,)

LIST OF TABLES

~) Residence Times ii· ..:~·

!', ) Interfacial Areas

·~) HCl Run Operating Conditions I' ,,

'.) HCl Concentrations in the Gas & the Liquid

,; ·, ,•

,;

HCl Mass Balance

Gas Cleaning Efficiencies

Gas Driving Force

Liquid Driving Force

Mass Transfer Coefficients

Experimental Contact Times & Contact Times Ratios

V

PAGE

16

29

36

37

38

39

42

44

45

46

. ,:,·

;/ i

( I I 'I L, I.

t I

Page 7: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

i ! I: I ;

LIST OF FIGURES

Mass Transfer Driving Forces

~ The Fi lrn Theory Model

~· The Penetration Theory Model '·'

• Scrubber Apparatus

5 Mixing Duct ;

6, Graphical Determination of Interfacial Areas -Run 1 & Run 2

n Graphical Determination of Interfacial Areas -Run 3 & Run 4

Bl Graphical Determination of Interfacial Areas -Run 5 & Run 6

Graphical Determination of Interfacial Areas -Run 7 & Run 8

~j Water Flow vs. Interfacial Area

Lj Gas Sampling Apparatus

ii Gas Cleaning Efficiencies vs Liquid Flow ')

~ Gas Phase Based Contact Time Ratio vs Liquid Rate ~-

~ Gas Phase Based Contact Time Ratio vs Gas Cleaning Efficiency

ij Liquid Phase Based Contact Time Ratio vs Liquid Rate

I Liquid Phase Based Contact Time Ratio vs Gas Cleaning

PAGE

9

12

13

20

21

25

26

27

28

30

33

40

47

48

49

Efficiency 50

,,

,I

'

! •I

;;

\i

i

I I :'I i_i I

·-:,

!1 ; ~

~ ·; ; .'.

J ·1

'I; ::;;

·,:

Page 8: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

i I,

I: ~ I

ABSTRACT

Increasing public demand for pollution control, coupled with the strict standards set by the government, has made the use of emission control devices such as the venturi scrubber and the jet-venturi scrubber commonplace in industry. Venturi scrubbers are being used for a wide variety of jobs. The steel industry uses venturi scrubbers to remove hydrogen chlo­ride (HCl) gas from stack emissions. Electrical utility com­panies use venturi scrubbers to remove sulfur dioxide and par­ticulate emissions from flue gases.

In industrial use, efficiencies of operation for these venturi and jet-venturi scrubbers are determined either from past experience with identical or nearly identical situations

1 or with experimental data from pilot plant studies. This is

C

i/

, I

due to the fact that there are, at present, no satisfactory correlations for mass transfer or particulate removal in venturi scrubbers. Pilot plant projects are expensive, so the develop-ment of correlations would certainly be a money saver, as well as a time saver.

This study involves an examination of mass transfer to see if a suitable theory can be found for venturi and jet-venturi scrubbers. Experimental data from an 8 inch jet-venturi scrubber system, in which HCl was scrubbed from air with water, is used to confirm or reject the theories examined.

Several mass transfer theories were examined, and the l, penetration theory was selected as the theory to be studied.

The relationship between the liquid-gas contact time and the residence time in the scrubber throat was selected as the para­meter to be examined. The results indicate.that there is a

'I " l

J'

'.1

Page 9: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

i,'

ii: : n \ii . I

definite relationship between the contact time to residence time ratio and both the liquid flow rate through the scrubber and the gas cleaning efficiency. The results also indicate, however, that the penetration theory, applied in this manner, does not adequately describe mass transfer for the system studied. Further examination of the problem is clearly indi­cated.

-2-

' I

!. I

,, i ' .

! .

/'! ' I

Page 10: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

-------~---- ----~------·· --- -------·-- - ------ ---· - '

\, I

I \ .

THE JET-VENTURI SCRUBBER

The engineer, when dealing with objectional fumes dis­harged from industrial processes, has four major types of mission control equipment to choose from: filters, inertial ystems such as cyclones, electrostatic precipitators, and wet crubbers. Of these four types, wet scrubbers are the most ver­atile, and probably the closest to a universal answer to emis­,; ion control problems.

Wet scrubbers, including venturi and jet-venturi scrubbers, ! swell as wet cyclones, spray towers and packed towers, all aper-., .I

! te according to the same principles. Their scrubbing action is )

: roduced by passing the gas stream past the liquid stream; or vice ; ersa, and spreading the liquid out so that it has sufficient sur­e ace area to contact all parts of the gas and insure rapid mass ' ·, rans fer. ;\

I•

I: 1, i f

Venturi scrubbers utilize a high velocity section (at the contracta or venturi) for bringing the gas and liquid into

timate contact with each other. They fall into two groups: ) The standard venturi scrubber uses a mechanical blower to eate a high velocity gas stream that passes by a slower moving 'quid surface. The faster moving gas hits and disperses the ower moving liquid. (2) The ejector or jet-venturi scrubber udied in this work uses a mechanical pump to impart a high vel­ity to the liquid stream. The high velocity energy of the liquid ream acts to break up and distribute the liquid into a multitude small drops, giving a large surface area for the liquid. The gh velocity liquid stream also acts 'to pump the gas stream through e scrubbing system and the connecting duct work.

Venturi scrubbers have many advantages over the other types wet scrubbers, as well as the other types of emission control vices. Versatility is a prime attribute of venturi scrubbers, that they can handle solid particulates, liquid particulates

-3-

I'

\. ·./;

ii i

I

I I l'\ ' ' '

Page 11: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

I,

r aerosols, and soluble gases, all with high efficiencies. The

ent~ri scrubber is also convenient in terms of size. It occu­

ies the smallest area for comparable jobs of any of the wet scrub-

ers, and is smaller than most other emission control systems.

~ espite the small area it occupies, the venturi scrubber can

andle great volumes of effluent gases with top efficiencies.

final advantage of the venturi scrubber is that it can be used

o collect many highly corrosive materials that other systems annot handle; it has no moving parts. :,

Along with these advantages, there are several disadvantages

hat must be considered before a venturi scrubber can be selected

o handle a particular problem. Only one of these, however, is

nherent to the venturi scrubber, while the other disadvantages

; re common to all wet scrubbers. The problems common to all wet

crubbers stem from the use of a liquid stream, usually water, to

o the scrubbing. The first and most important problem with the

se of water as a scrubbing medium is that the water must then be

leaned, and clarification costs can run very high. Climatic con­

traints must also be considered, and freezing water lines can be ' : problem. Vapor plumes, caused when small amounts of the scrub­t

:· ing liquid exit the stack with the effluent gas stream, arouse

ublic concern, and therefore are also a disadvantage of wet

rubber use. Power costs are a problem for the venturi scrubber,

t not for the other wet scrubbers. Because of the pumping re­

irements for both the standard and jet-venturi scrubbers, power

sts can run three or four times the costs for other wet scrubbers.

Should an engineer select the venturi scrubber, he must then

cide which type of venturi scrubber to use, the standard or the

t. Each has its own particular advantages. In the standard

nturi scrubber, a much smaller quantity of liquid (scrubbing

dium) is required, because of the greater gas stream velocities

educed by the gas pump or fan. The smaller quantity of liquid,

-4-

Page 12: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

I,,.

!: ·'

. ' i

)

ften from five to eight times less than with the jet-venturi unit,

equires less expenditure for clarification and treatment. With

he lo~er liquid stream flow rates, a smaller pump is needed to

liquid through the unit. Also, due to the use of the

the standard venturi can handle greater gas flow rates jet-venturi scrubber can .

The jet-venturi scrubber, however, has many advantages as

The high velocity liquid stream eliminates the need for a

p to move the gas stream. With no gas pump, there are no moving

contact with the gas. This makes the jet-venturi unit

for dealing with highly corrosive materials. The high

energy of the liquid stream is also advantageous in that

is a much more efficient atomizer of the liquid stream than

· e lower velocity energy in the standard venturi scrubber. The

the atomization of the liquid stream, the greater the num­

liquid droplets passing through the scrubber throat, and

greater the surface area with which to contact and scrub the

There are other advantages in using the jet-venturi rubber that are related to the high velocity action of the

: quid and the lack of a gas pump. First, there is a much lower

erall pressure drop in the jet-venturi scrubber, making it more

eful for systems requiring scrubbing between other process steps,

ad, hence, the smallest pressure drop possible. Also, the over-!

~ l power expended in operation of the jet-venturi scrubber is

ually less than in operation of the standard venturi scrubber.

Modifications can be made on venturi scrubbers to improve

eir efficiencies. A simple modification on the scrubber system

to change the scrubbing medium being used from water to some

~ her medium. Caustic is a very popular alternative. Examples [.'

the efficiencies attainable using caustic in jet-venturi scrub-

rs as reported by L. S. Harris 1 are: 98% for so2

removal, 99%

r c1 2 , and 99.9% for r2 removal (maximum efficiencies).

-- L. s. Harris - "Fume Scrubbing with the Ejector. Venturi System" Chemical Engineering Progress, April 1966, page 55.

I '·

ii

i •I

ii i !

i

I

Page 13: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

··--·---·-----------. ---·-------~-------~- -

j

I A second modification of the venturi scrubber system in­ I'

I t valves the use·of scrubbers in series. The electrical operating \'.; costs at the higher scrubbing efficiencies can be reduced con-,. i :, siderably at the expense of higher equipment costs. ffarris re-ports that for a given HCl fume, similar to the gas stream studied . ! in this report, at a rate of 1000 cubic feet per minute, and with a collection efficiency of 98%, the switch from a one stage jet­venturi unit to a two stage unit would result in the decrease of theoretical horsepower from 9 hp to 2 hp. This may be sufficient to justify the increased equipment costs required by the second stage.

Another modification of the venturi scrubber system is J the flooded-disc wet scrubber 2. The disc is positioned in a tapering duct section. The shearing action of the gas at the edge of this disc acts to atomize the liquid scrubbing medium very effectively. Optimum pressure drop at different gas flow rates can be maintained easily with the flooded-disc. This is done by raising or lowering the disc as required. This acts to increase or decrease the annular area through which the gas must pass, and increases the range of gas flow rates over which the scrubber can operate at peak efficiencies.

The jet-venturi scrubber is generally used in series with some type of separation device. The job of the separator is to remove the scrubbing medium from the exhaust gas stream. An ef­t \ ficient separator can remove the contacting liquid from the gas

-7 -8 { to within a value in the range of 5 x 10 to 5 x 10 gallons } of liquid per cubic foot of gas. Various types ·of separators ' are used, including gravity separating chambers, inertia impact separators and cyclonic mist eliminators.

2 -- Bulletin R-C 1000, Research-Cottrell, Inc.

-6-

I. I'

i'

,,i ':

Page 14: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

I

I

-• ...,.w _ __, __ =~ -­• ••• ---- .... •••~•--- - ·-

r

.. , .i ,.

' ·,

From the discussion of venturi scrubbers, and the jet­

venturi scrubber in particular, it is clear that these scrubbers

combine efficiency, versatility, capacity and cost fa~tors in a

unique combination that makes them very useful for many differ­

ent emission control problems. At the present time, however,

there is no way available to predict the performance of these

scrubbers without actual experimentation with the effluent to

be scrubbed. In the following sections of this report, we will

examine several theories attempting to predict the performance

of a jet-venturi scrubber, and compare these theories with ex­

perimentally collected data for the removal of HCl from air in an 8 inch jet-venturi scrubber .

!

i,i i:.

i I ,,

I

'i

Page 15: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

.. _ 'I

MASS TRANSFER THEORY

Many of the basic equations describing mass transfer

can be derived from similar equations involving heat transfer.

One of the most important equations for which this is true is of the following form:

Flux= Coefficient X Driving Force

'. where the driving force is generally some concentration differ-

l ence. For the heat transfer case, this equation takes this form:

; where "h" is the heat transfer coefficient. For the case of

mass transfer, the equation is as follows:

where NA= the rate of mass transfer, as a mass flux, in

units of the mass of the transferred component

"A" that is transferred per unit time per unit

area over which the mass is being transferred

~Cd . . f = the mass transfer driving force r1v1ng orce · defined as the difference of concentrations of

the transferred component between the phases

which provide the mass transfer; this can be

expressed as ~C, ~p, ~x, etc.

The following diagrams show the system used and point 1 out the driving forces for mass transfer.

-8-

I 'I

:I

Page 16: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

MASS TRANSFER DRIVING FORCES -·------·-- ··-~---·---······~· ... IQUID IN

Driving force at the top of the ejector, as visualized by the two-film theory.

r-----"T"---~------· . --·-·--LIQUID

,in

PHASE cG,in

I

~Gi,in I

~Li,in I I

~i,in"f~CLi,i ) c;i,in"f(CGi,in)

INLET DRIVING FORCE DIAGRAM : here 'f' is an equilibrium relationship. ,,

r ve~ll driving force at the inlet

In terms of the gas phase;

In terms of the liquid phase:

is:

-1 c~,in - f (CL,in)

f ( CG . ) - CL i ) ,in , n

' n a similar manner, the picture at the outlet position can also

1 e shown with the two film theory: r--· I

/ LIQUID RHASE I I

a.AA PHASE cG,out

I '---11 / ,, i:,

-.

·c : ~out , __ ; __ --r.

F1i,outxf(~Gi,ou

I :/ ~Gi,out /J

cs!' Li,out 'I ) I I. , r 1

1

I Ii f; verall t

i , ~u t • ( CLi , out ) j I OUTLET DRIVING FORCE DIAGRAM

f f' I

driVing force at the outlet is;

In terms of the gas phase:

In terms of the ~i.9..~~d phase:

FIGURE 1

-9-

--.. ~----~·--4------·

j

I

, ,

I' !

Page 17: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

The driving force for mass transfer calculation should be an average, (specifically the log-mean average), between the "inlet" and "outlet" driving forces. Therefore, the driving forces for mass transfer are:

GAS PHASE: . -1 -1 (CG, in-f (CL, in)) - (CG, out-f (CL, out)) = tied . . riving

LIQUID PHASE:

log e

CG,in-f (C1 ,in)

-1 CG,out-f (CL 1 out) force, G

(f(CG,in)-CL,in) - (f(CG 1 out)-CL,out) f(CG,in)-CL 1 in

log = !::.Cd .. riving

e f(CG,out)-CL,out force, L

The equation for mass flux, "NA", can also be written as:

NA= (dm/dt)/A

where dm/dt = the rate of transfer of mass, as mass transferred ~ per unit time; and A= the interfacial area over which the mass ·?

is transferred.

The two equations for NA are combined to produce a single equation for the mass transfer coefficient:

ke = (dm/dt)/A(!::.Cdriving force)

The equation refers to the mass transfer coefficient as k since the equation provides a means for calculating the mass e transfer coefficient from experimental measurements.

The uses of experimentally determined mass transfer co­efficients are somewhat limited with respect to circumstances and situations, as well as to the range of fluid properties.

-10-

I ',,

,'!

Page 18: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

I I 'I

I' 'I

. - -··-··---............ ·--·----- - .

. •

Therefore it is important that we be able.to extend their ap­plicability to the situations not covered experimentally.

To accomplish this, there are several theories which try to relate the behavior of mass transfer coefficients to funda­mental system parameters. These include the film theory, the penetration theory, the surface-renewal theory and others. All of these are speculations, attempting to simulate and deal with , situations that are not completely understood, and are continu--;,

~ ously being revised. Each has its own merits, and each approxi-mates certain cases of mass transfer better than others. There­fore, we should examine each of the mass transfer theories, and select the one that best fits the mass transfer mechanism that occurs inside the jet-venturi scrubber.

After choosing a mass transfer theory to apply to the jet-venturi scrubber, the theory will be used to calculate a 1 kt (theoretical mass transfer coefficient) to compare with the k (experimental mass transfer coefficient). A good correlation e

between the experimental and theoretical values would indicate , that the theory is a good approximation for the mass transfer ! mechanism in the jet-venturi scrubber. A poor correlation would 1 suggest that we either modify the theory used further, or try another theory altogether.

The three major theories to be considered are the film , theory, the penetration theory, and the surface-renewal theory. The first theory we will consider is the film theory. This is the oldest and simplest picture of mass transfer coefficients. The theory states that when a fluid moving in turbulent flow passes a solid surface, the fluid velocity at the surface it­self being zero, a viscous layer or "film" must be formed. The film theory assumes that the entire concentration differ­ence, c2-c

1, is described by molecular diffusion, and that an effective film thickness, 'z', can be defined such that the

-11-

'I

r

Page 19: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

. I : i

I

\ I . \ ;.(EFFECTIVE FILM THICKNES __ , - ... ---·------- -----

2b DISTANCE. ( z) I ·-----

FIGURE 2 THE FILM THEORY MODEL

resistance to molecular diffusion in the film of thickness 'z' is equal to the actual resistance to mass transfer in the true system, comprised of the true viscous or laminar layer, the buf­fer region and the turbulent core. Using this theory the follow­ing equation for the mass transfer coefficient can be derived:

; where Dab is the diffusivity of the transferred component in the medium in which the transfer takes place

and zf is the effective film thickness as specified by the film theory.

The second theory to be considered is the penetration theory. This theory was proposed by Higbie as an alternative to the film theory because there are many situations in mass transfer where the time of exposure of a fluid to mass transfer is short, so that nhe concentration gradient of the film theory,

~ Which is characteristic of steady state 6peration, would not have.sufficient time to develop. Higbie, therefore, developed a theory to describe short contact systems, and, in particular, the case where a gas bubble rises through a liquid which absorbs the gas .

.:..12-

' ,I I r

Page 20: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

. I ; I

i ' ' ;

i : , I : ! .

··-·--·----

CA. ( in liquid) l

-·-·- -·-··---- ... -- r----·-- -- -PENETRATION THEORY MODEL

FIGURE 3

GAS

LIQUID

A particle of the liquid, initially at the top of the

bubble, is in contact with the bubble for a time, '8', which is

equal to the time for the bubble to rise a distance equal to

its diameter while the liquid particle slips along its surface.

In this theory, the time of exposure or contact is taken to

be constant for all such particles, or eddies for the case of turbulent flow.

Initially the concentration of the dissolved gas in

the liquid is C . At the surface between the liquid and the 0

gas, the concentration of the dissolved gas is C .. During 1

the unsteady state diffusion process, the following equation can be applied:

ac a2 c aG = Dab a z 2

The following boundary equations are then applied:

1) C = C 0

at 8 = 0 for all z 2) C = C

0 at z = 0 for all 8

3) C = C. at z = 0 for e greater than O 1

Using these boundary conditions, the following equation can be [ derived for the mass transfer coefficient: f! II

-13-

I

'I I,

Page 21: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

Ii ! I

,. I

I

'.

I •;, ·,

,. "

ii '. The final theory that we shall look at is the surface-­

renewal theory, which is a modification of the penetration theory.

Dankwertz, who developed the theory, pointed out that the assump­

tion that all of the eddies were exposed for the same ·1ength of

time at the surface is, at best, a special case of what may be

a much more realistic picture, where the eddies are exposed for

varying lengths of time. His equation for the mass transfer co­efficient was:

k =i./D s ab

wheres is defined as the rate of production of fresh surface and is assumed to be constant

1 Dankwertz then attempted to solve for this term mathematically, 1 and found:

~ = -se se

/where~ is defined in terms of ~dt being the area of surface

elements having residence times between t and t + dt

and e is the average residence time of an eddy at the surface.

The penetration and surface renewal theories are probably

: the best approximations to the mechanism of mass transfer occur­

ring in the jet-venturi unit. First, they are most applicable

to cases in which there is turbulent flow, as in the scrubber.

lso, they were designed for short contact time systems, and the

jet-venturi scrubber can certainly be classified as a short con­

tact time unit since the residence times in the scrubber of both

) the liquid and gas phases are always very small (less than one

second for our experimental range). The penetration theory is

the simplest of all of the theories based on the short contact

time approach, and therefore, the easiest to apply to experimental ysterns.

Page 22: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

i'

i !

: I

I ,I

I I

; '

!

! I I I .. I ii

i:· [;

Having selected the penetration theory, two maj.or factors

must be known for the determination of the theoretical mass trans­

fer coefficients, the contact time '0', and the diffusivity 'Dab'. ·

1

The diffusivity can be found in many data sources as a function

of temperature. The contact time cannot be found in any refer­

ence, nor can it be calculated directly to use.in the prediction

of mass transfer rates. We can, however, calculate the residence

time inside the scrubber throat, and use this as an initial ap-

, proximation for the contact time. Residence times for all runs

; and all phases are shown on Page 16. (Residence times are calcu-

'. lated by dividing the length of the scrubber thr-oat by the velocity

~through the throat.) Studies on mass transfer in venturi scrub-; 3

: ers reveal that virtually all of the mass transfer takes place · in the first foot of throat length or less.

Because of this, the ability of the theory to predict 1 ass transfer rates using residence times instead of contact

is suspect. Clearly, the relationship between these resi­

ence times and contact times is an important one. An equation elating them would be as follows:

e = t/ n

where e is the contact time (seconds)

tis the residence time (seconds)

n is the contact time ratio, or number of contacts during a single pass

The value for 'n' can be calculated for each set of ex-

etimental conditions. The wai that 'n' varies with liquid flow

ate and gas flow rate through the scrubber, therefore, can be

etermined from experimental data. This term, therefore, will

e the focus of otir experiments and calculations. If 'n' can

e shown to be a function of either gas flow rate, liquid flow

ate, or scrubber throat size, it can then be used to predict mass

ransfer rates for other systems in the jet-venturi scrubber.

Atomization and Cloud Behavior in Venturi Scrubbing Howard E. Hesketh, Journal of APCA, July, 1973

-15·-

Page 23: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

i

f. / I : ;

, I lj I· , .. .,. ;i;

f'; ti'; f, I

'J UN IN TERMS OF

' LINE PRESSURE

;. P in ps.ig

14

16

18

20

23

25

:•

28

30

RESIDENCE TIMES

LIQUID RESIDENCE TIME IN SCRUBBER

t 1 1n seconds

0.217

0.211

0.206

0.202

0.195

0.190

0.183

0.179

-16-

GAS RESIDENCE TIME IN SCRUBBER

tG 1n seconds

0.220

0.196'

0.183

0.161

0.161

0.155

0.148

0.144

.\ 'I I

'/ . :

Page 24: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

I

l I

i

,, 'I ,, ' '

:1

'' ' .. 1

I

( 1·

: i : i

i

I'

alculation of flow conditions, interfacial areas, and contact (calculated from the first two parameters) for a

iven system in a given scrubber, should then be sufficient to redict mass transfer rates.

The particular system chosen to study is important ecause the system chosen may have its primary resistance to

'ass transfer in either the gas phase or the liquid phase. tudies of the HCl system being used in this report are unclear bout mass transfer resistances. The location of the mass trans­

. er resistance must be known to properly apply the penetration heory to venturi scrub~r systems. Diffusivities, residence

~ imes, and concentratiJns used in the calculations are different ·'. or liquid phase and gas phase based systems. Because of the , ncertainty about the HCl system, both cases (gas and liquid . hase resistances to mass transfer) will be examined in the cal­• ulations and ·a determination will be made.

For the gas phase case: k eG

= dm/dt A (tied . . f ,G) riving orce

d the theoretically determined mass transfer coefficient:

DHCl-AIR rreG

en the diffusivity used is the diffusivity of the transferred mponent in the gas phase, and 1 8 1

, the contact time,= eG, e gas phase contact time, where 8G = tG/nG, and tG is the resi­nce time of the gas stream in the scrubber throat.

For the liquid phase case: k " eL

= dm/dt A (lied . . f L) riving orce,

d the theoretically determined mass transfer coefficient:

-17-

I 'J.'

ii /i

'j

,,I 'I \,

I /' I

, .

Page 25: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

I ,. '

,j, I

I. !

,, I ,, i

. )

I

I

!:! : :1· 1

1/' 111. • i':.i1 •j_' l

!,;::

111·' ~· ! i , ,.1 I : iii

·l' I 'I ' I

-·---··-----·· .. ·-······· - ·-----·----~-·---~

'.I

1. 78 X

· -4 2 * Using DHCl-Air = 1.63 x 10 ft /sec and DHCl-HOH =

-8 2 ** 10 ft /sec, the values at 70°F, the following equa-

tions are found for liquid and gas phase based contact time ratios:

n1 = I: dm/dt ]2

54 4xAx (fled . . ) tL r1v1ng force,L

2 dm/dt

5li9xAx (6Cd . . f G) tG riving orce,

;where dm/dt is the mass transferred, measured experimentally, --in units of lbs HCl/hour,

2 A is interfacial area in units of ft, also experi-mentally determined,

t 1 and tG are residence times in units of seconds,

Concentrations are in units of lbs HCl/ft: (where the

driving forces have been defined earliet) and n1 and nG are dimensionless

The. methods for obtaining the data to use in the above

: equations are outlined in the following sections. The results

of the experiments, including contact time ratios, are presented following the experimental sections .

!, * :, 4

t * I 5 i.

Progress in International Research in Thermodynamics and Transport Properties - ASME, Academic Press, 1962

Gas--Liquid Reactions - P. V. Dankwertz McGraw-Hill, 1970

-18-

.\ I

,,

I,

Page 26: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

j.

i. (, I

1 I , ·

THE OXYGEN-SULFITE PHASE OF THE EXPERIMENTS

Before we can try to predict the outlet concentration

of an effluent in air for a given inlet concentration, using

the jet-venturi scrubber as the emission controller, certain

things must be known about the system being studied. These

include: the effluent being studied; the scrubbing medium

being used; the particular scrubber (dimensions and flow rate

ranges) being used to clean the air stream; the operational

i flow rates of the liquid and gas streams; the interfacial areas

for mass transfer as a function of flow conditions; and the mass

transfer theory being used to calculate outlet effluent concen­trations.

Hydrogen chloride (HCl) has been chosen as the effluent

: to be studied. Water will be the scrubbing medium. The scrubber

being used for the experimentation is an 8" jet venturi fume

scrubber provided by Croll-Reynolds Co., Inc of Westfield, New

Jersey. A diagram of the experimental apparatus is shown on

) the next page. Liquid flow data has been collected up to 45

psig liquid line pressure, defining the range under which we

Ii·

may operate. The penetration theory has been selected as the

mass transfer theory to be used, and the reasons for this choice

have been discussed in the previous section.

The only parameter, therefore, that has not been speci­

fied is the interfacial area for mass transfer. Therefore,

before we can apply the penetration theory to the HCl system,

we must determine interfacial areas, which are a function of

liquid flow rate through the scrubber. To do this, we must make

a separate set of experimental runs, using a system other than

HCl in air, and measure the interfacial areas, or calculate them, since they cannot be measured directly.

The system that has been chosen is one that uses sodium

sulfite in water as the scrubbing medium to absorb oxygen out

-19-

Page 27: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

I N 0 I BALL VALVE

LIQUID SAMPLING TAP

~ MOTOR

- '. - ···-,,. ,. •:· .,.

FIGURE 4

. - ----- -- ---- ·-

SCRUBBER

AIR EXIT

-- . .

SEPARATOR

TANK

J

SCRUBBER APPARATUS

.·---·----_···-- -_. --- -------·~-..=..-7-.--:~:...-:·~-·--··;._

INCLINED

I I

.. I

~ AIR INLET

REGULATOR

HCl CYLINDER

Page 28: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

I

"' ,_. I

~-.- .

ATTACH TO

SCRUBBER

rr ~ ! ' I•

'I

; : I• . I : t

.. , - .. ; ... ·.'...-~ •. · >. -~ •• -, ~ •• , -..., .•

PITOT SAMPLING TUBE

.:.,, :-·~-·.::,

MIXING SCREENS \...

. ·;.... ·. ~~- - ,;.·. ---

HCl Feed BUTTERFLY VALVE ; j4- 3 II

I ,r-------------------~----------t....----------..... -+-----~-1

r ~*-!-< ,I

I! ! :

6 II ----')

T 2 II

4 H 2 o Draft

Manometer

l2 II

FIGURE 5

Lucite Duct

Ii j'

I

:) /

l"' 6 II

MIXING DUCT

/ I I )

i _-(

I ----G" ---4

-~ l I I ' ~------- l 2 II. --- . __ -------/'

4 II

_j_

Page 29: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

I I

i

r'.

, I i'j r., !

1,;. t·'

C [ r

of air. Oxygen reacts with solutions of sodium sulfite in the

presence of catalysts such as cobalt ions, to produce sulfate:

so -2 + 3 so -2

4

This system has been chosen to determine interfacial areas for

two reasons. First, it is a system in which the resistance to

mass transfer is well defined. Liquid phase resistance domi­

nates with gas phase resistance being negligible. Second, much

study has been done on the system, and a reliable method has

been developed to calculate interfacial areas for mass transfer.

The reaction was studied by Reith, 7 who ran his,experi­

ments using a .8 molar solution of sodium sulfite. A cobalt

chloride catalyst was used because the reaction is normally very

~ slow. Cobalt chloride concentrations used ranged from 3 x 10- 5

to 5 x 10-J gm-moles/liter. Using the data collected, rate con­

stants for the reaction were calculated as a function of solu­

tion pH, cobalt chloride concentration and temperature. The

rate expression obtained from these calculations was as follows:

R = (A*) 1 ' 5 ((2/3)k D )0. 5 2 a

' where D is•the diffusivity of oxygen in the reacting solution, a and k2 is a reaction rate constant. A* is the saturated con-centration of oxygen

wertz6

as a function in the solution, and is given by Dank-of temperature. Combining this equation

and the data collected by Reith, the reaction rate 'R' can be

calculated in units: gm-moles/ft 2sec. After calculating 'R',

' we experimentally determined (RA) avg., the product of 'R' and

'A', the interfacial area. We, then, divide (RA)avg by 'R' to

get the value for the interfacial area at the particular oper­ating conditions.

6

7

Gas-Liquid Reactions - P. V. Dankwertz, McGraw-Hill, 1970

T. Reith - Physical Aspects of Bubble Dispersions in Liquids, Thesis, Delft Technical University; Delstsche Uitgevers Maatschappij, N.V., 1968

-22-

,,

!

., ;!

Page 30: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

I,

I

i i

:I

. I

I I

1 '1 ' ! I

[; I

I:

: J

(RA)avg is determined in the following manner. The

scrubber is run with a recycling sulfite solution and liquid

samples are taken at specific time intervals (a detailed descrip­

tion of the experimental procedure foll9ws). The initial rate

/J

\ I

1

of decrease in the concentration of sulfite ions in the solution

is determined graphically by plotting sulfite concentration ver­

sus time, and the resulting slope, having units of gm-moles/

liter sec, or gm-moles/sec, is (RA)avg. In other words, although

we cannot measure 'A' directly, we can measure it indirectly.

Eight runs were made, each one at a different liquid

flow rate. The range of line pressures for liquid flow that were

used varied from 14 psig to 30 psig. The lower limit was chosen

because we cannot expect the scrubber to be effective to any degree

much below this flow rate. The upper limit was chosen because

great difficulty was experienced in attempting to run the sul-

' fite solution through the scrubber at rates higher than at 30

psig. For each run, liquid samples were taken every 5 minutes

over a 1 hour period. The sulfite concentration used for each ~

' run was .8 molar, and the cobalt chloride concentration used was

10-3

molar. The procedure for operation was as follows:

1) Prepare the necessary analytical solutions: ( a) 0.21 M KI0

3 ( b) 0.60 M HCl

( C) saturated starch indicator solution 2) Dissolve 45 lbs. of sodium sulfite (Na 2so

3) into

buckets of water and pour into the separator tank; 3) Add water to the separator tank until the level is at

the mark. This will give 196 liters of solution, and a sulfite concentration of 0.8 M;

4) Fill the draft manometer to the zero level 5) Turn on the pump and open the ball valve until the

line pressure gauge is at the desired setting 6) Adjust the butterfly valve to the desired draft

-23-

I

,\ '

Page 31: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

1· I II

I !

: .1 I ',,

.1 I.

'I

I. ; ' . ' '

f

I

7) After several minutes to allow the solution to

mix itself thoroughly, add 25 grams of cobalt

~ chloride to the solution in the tank. This is

the amount for a concentration of 10-JM

8) Take liquid samples every 5 minutes, starting at

1 minute after the addition of the catalyst

9) Titrate the samples with the KI03

solution, after

adding 15 ml of the HCl solution and 7.5 ml of

! the starch solution to 15 ml samples i.

10) After 1 hour of samples have been taken, turn off the pump

11) Empty the separator tank immediately and flush the

system to prevent the build-up of sodium sulfite crystals inside the unit

12) Wash the equipment thoroughly

The data obtained from the eight runs is presented in

,;- Appendix I. The graphs used in th9 determination of (RA) avg

~and interfacial areas are on the following pages, followed by

·a chart showing the determined values of (RA)avg and 'A' using ~the Dankwertz 8 data of

-9 2 R = 5.42 x 10 gm-moles/cm sec

-- Gas-Liquid Reactions - P. V. Dankwertz, McGraw-Hill, 1970

-24-

Page 32: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

- ,I

i

'·'

.......---~r-:-:-;,~1,-~-:--:[. --- ,-·-·-·:--:T--:·---1---~~ ............... T~"7"1:::1··T .. l .... ,.

LI :y i : ! : I : /~17~'; 1 ; ! />!~; ' ii:'P}j)fi:,+ 1~•'1!~[ :.~~:L:1' ~:.: :::LL:oliA .HICAJ, J):E'l'tRMIN.a_ 'l'ION'r~ Ii/TERF4Clli ~ ~ ' J '' L,) i: .. :··I j;:, ·.· '1-1 ~--····

,.·• -1 / ' i . • RUH 1 & ! Rinf 2 ; ' · · i ·'· / • ! · -• ! ; . 1> . -· ;940 · · / ·1· •· r ·· f · /· : ·:'/··,-1-f~

, .... I .. ·: : : . t· . , . , . . . I . ·, . : :· , . :,:: 1 I

1 •.• I ...... .J.,! _: _ • I --- -- •. ·, -·· • •

I

i ...... · ~930 · I

. ----.i.-- - ..

·-·• ••• I ... ··i.920-I

I I

1

i

... _[_

---·-·· ·-· ·-· .,91-g !

onc~ntra~ion ' ' ---··-l.·-~2 -1··· ... -·

f so3 _ ! : I

~ -.L .. · ----~ 900 I ' . I

g?n-iloiest1:Lt)

, .. lg ·o --···1··-·--,- 9 ..

_ _: ___ ; ..... -· 1. -· ....

I ' I

. / ..... I I

I

I I ..• 880. I ;

I .. -.. / . . . . I

... ___ -i - -- . ·-!

i870 ' I

'

i

I

' .,

RUN l

.. ! ..

i ! .

• ' I '. I ••• I • ......... , ...... - ··1·--··· .. ,. ··-······ 1-· '. ·, ··•· ..

' I ; .. : ' I • • '

RUN~

. 1· .....

...... ___ __! .. __ ( :I •• ! !~

I t··

INITIAL SLOPE 2 =

i I

! . . : . :.1 : . : : : I ~--· ~-.:L . ...; ____ , ' : '.'"' i

-5 gram moles 2.67xl0 liter sec

INITIAL SLOPE 1 =

2 .lJxl0-5 g:am moles liter sec

•• ··-· ,_ '

• I ....•

• • • •

-- ' I I

I

.... j

I I

I ·-·-- .. ~ - - -

. • •-- I

·I· !

. '

I ... '

I . /

I

I • I -............ i ........ ,-...;_ _________________________ _

' I 5 10 15 : I . I

.. i . ... -- - . ! I I

... ·· 1 ....

, I : ' 1

i .... -.. . . . ...

. - .. ···-'-·-···· ..

. •t .

' I

20 25 30 35 4; . ! I I

: ..... I. . -: ... / : I

... -!

Time (minut&s) ' I . i

I • •. I

.l. ..

'\

,,

.''

' ii 'i !,

ji I l: 11

.ii 'JI I' :I !i ,, ;1

I

I

r

/

Page 33: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

I' I I'. I

! . I

!:

l ,·

',' . I I

!. I

I· I I!

I· I. i '. ii I lji ' i1,, :

I

: .820 ·

· · .800

: .-780

' ' i ; -moles/lit)

... 11740 I

·! .. I ' -- I -- . • . - ~ • •

,::\ ,., I:,; .

I

. \

·r ,,·

..... ; ____ ;_ ... j ___ •.•. • , . I

;

:' ')

. f . i

:.-./ .• 7.00 ..... :;

I .... ' .. ,. -·- t ·--·: ... ( I

f __ L _:_ _J_.6aa I . : . ··-·-·t·····

i

.. ----!

i I ~ I• ,.

/ ;

' t' ·- --~- .•

f I ' .

. I_·-··-' ... -· -..:

I . - - ~.. . -- ·--1 ·--. . !.

I '

I ' ' , .• I , '

i I

. -··---+---. -

RUN 3 .. ~-- .. . .

'

RUN 4

10 20 25

i ....

I,

.... ,-· ....

INITIAL SLOPE 3 =

3 27 10-5 1ram moles • I

· x iter sec

• ••

. •·. .. . .. ' . -j

.. - - .,_. - - . J

I I ' : I

... !· -·-:--;-·~+--:~:.:.. I ' ' ' : :

·I· ! I I . .. -· ...... ·-· .. :- .... --j

• I I ' • I

I

-· •· ·- ---· r-------, ' i

-1

i ' ' . - ·------ -- '

INITIAL SLOPE 4 =

3 42 10-5 g:am moles · x liter sec

• • •

30 35 40

··--/

J.

• ............ , .. . ' ' I I I

45

I I

-- .... I

I

i

Time (minutes)

-26-

I , I .

. '

i ,,

1: ,; i

1/' 1,

1,, (,

\

I'

'

;f

Page 34: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

i

i !·

,; I

1· I ,.

i I i

!

I:

. I f/ , I

'I

( I

i' I

I

.. i" · ..... 900

I ...

I

.. I I

I . ,. i I

' I I

·. ' '"··t· ...... I

j . . I

····-·/· ·- ····;·.-860 - I I

oric~n tra tion I

RUN 6

-, I

INITIAL SLOPE 5 =

~ 42 10-5 1~arn moles · x iter sec

INITIAL SLOPE 6 =

4 61 10-5 g~am moles · x liter sec

'"'J I

:j :.: .. 1

! .. ,

. ·~:j ·-~I

,. I : .:·/ .. . . .L ... ·----!· ·-· . j

.i r--so-~~ T. -13 I

0

:, - - : -1· i __ J ! ; ; '. .. ·.j

' j"

i

I . . .... l ... - !.840

I

---- ' .. - . -- . . -·· .... ·-·. I

r

I

... :. ---/-. 82-0 -- ··- ... ; .... ! I

. I .,

I ' • I ....... 1" "•·-··;··-·:--·· ····· ......

i I . ' I I : OJ'v'\ .

··/··· , ..... f·•QIAI ·····:•• I

.. I

! -.__ __ t ••• ·····-

: I I I

·i· ;. i ... : .. , I

.:... __ ..... -~ .. ; ·• 780 -I '

JI

I , -- ... • •

. : l . l '. ... l ' I I ' I

• I

...• ! ..... .

I . . . -~-- - ....... j

' . i !

j ··: ·- -· !

I I

i ' I

: - .... ·······-···, • ' •••

I

, I ---~ •• !

I

I I

. , .....

I ' I . , ' I

i : ......... j

: J ! I . I

:··--t· ·:··· -r· ~--·Q'--......... ,--10'!---1 ..... ~-. -20--2-,--30--3+-5_4 __ 0 ___ -+----i

I . I

1 ..... I· , 4p · · 1 .. : J . i :..... ·+- ·--- ... r-· - · ... _._; -- . -. · I . . ' .. I ... J ..... I . ,

Time (minutes}

. , • • I

::·· :·i- ... _;: ... +··--;·-) .. ·:· ... j

: -.. I · i · : 1 '. ,

I· I • ···--1-.:...:.. ...... !.. j

I ' ........ - ,- ... -· ··1 i i

I I

J ... I I I

. t• ···- ·1··· ... +· ! I

i : I . . I . ... !

! i; ;i ·:; ii

:)

,, '

Page 35: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

i I.

I

i,

,; ,·

i

I

I ;/

., I ii

•i

i ,I

1:

\

' " ., •\

i • i

I

i I

. -- ~ ... ' i. I

I ·-· ......... -- ..

;; -···-·+· ·---· I..·-. I I ,

i '

· j- ·• 860 · · RUN. 8 ' . . I ... ,

-~~c1e~~r_a~1on

f Sb -2 : .. ; 3. : -·-·1·· ... -1·-.84

.~.-

.'·

f gm-rnois/11 t)

... , ,: ,'! ' ! d

···I·· · --i.·..-020

:-· I ! ., ···-. t ••..

'·t - - ·-t ---

1

;1 I

.Boo.

I .

··•

··-1 - ·-- . • • , ____ _,. ____ -··· ···---1----····

' ! ..

~ .. ?80. -- ...... I

I ; ••• I • • -. • .•• t .

·o 5 10

... •----~---!- .. :_ ·I: .... -.. , ... I

, t· 1 I

. . . . I _: I .

i

. I . I .. -- .. -..... . .. i ....

I

' - _j_ ··--. ·-· -- -I

i

1.5 · 20

INITIAL SLOPE 7 =

5.SOxl0-5 i~~m moles 1. er sec

INITIAL SLOPE 8 =

-5 1ram moles 5.92xl0iter sec

··t·.

.. •• :/ '1

. . :: ·,

·---1 I !

.. .. ~ . . . . : I I

I I . . .., I

.. I .. I ... , , • I

I .. ·----· r--- .. ---1

• I

25 30

-, I

35

·+-

I •··

• 40

' i I

.1

' I

' . ·----- ·-----. ·- --· ---·

I

• . ·+:-· ...

. - . -·1

- ..• .. ' , .. ... J

I :;

45 , .... Time .{minutes) I • ... --········.

-28-

' .

' I

. I I !

•••• T - ·- .... ··--·· •••• • ••

I ·-'--- .J

l

,\ I

Page 36: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

., i-;

1.' INTERFACIAL AREAS I;

'I N LINE p (RA)avg INTERFACIAL AREA

psig gm-moles feet squared 1, second

!

(,

t

-3 14 4.17xl0 828 !•

16 -3 1040 5.23xl0

18 -3 1270 6.4lxl0

,i i.

20 -3 1340 6.70xl0

23 -3 1720 8.65xl0

25 -3 1800 9.04xl0 ,.

1

-2 28 l.08xl0 2140 /'

-2 2300

30 l.16xl0 r \, ,,

;;. :1

-29-

Page 37: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

:,

'I

,. i '. --- . ;f .,

. -i:, .,

;, !t ., .

·• I

,. I I I I -- ' --+-- -- ! .. _ .. (.

I

·- ·- -·· -· --·. -· -- t·· ....... . I

' ....-...--...--- ... ·---~---····· ... ···-·· .. ··•- .. I

I

.. : __ L ___ : ·---~--- ..... .i. ~-•I

I I

:-- ·· l -·. : I i . :

, I

: !.

. . . . . 1 · ... I . . ··+---· .... ' I I

. , I

I ··-······· -..-•

I

. : -- . ··-· .• j .. I .

... I

i

·-·t ....

. ' ··-···----~·-·-··•·- ·t -····

f I

. i ··! • I

I

' ,. • I

i. ... ::.-i ..... ' I

I

; ••• j ••••

I ' I

.. ; ·······-- l

I !. -.. ··- ~- .... _: -~ ·-1 I

i I ,.

I ...... _____ .j ··-·-··-·· ••••••••

:· I

' I I ·····I· . ' .... , .. ·-. . !". I :

,. ,. I

.. : . . . . . . : . 1 . 1 ~ ... 18. : 20 2~ ; : . · : : · l" :: · : : : : : ·: · ! · I : · i .. : · / ; :Line Ptessute . - -- ·--4--•:•-·-t-·--~--~--l-········'. .. -- ··I·· ··1- ·•· ·: · , :!:::: 1·· : . :· . i : : p$1g :

26

I ' I

I .. ' . I··

;

I ..

·' . :! I , ~ .. -+··-:1

i .i !···-· .....• t··-

I ··- ·-1

I • : ..••• I

I

28 30 I •

., . ~ ....... . . ............ __ ,_,,,--1 !

I !'IIJ_.~ _i ~:J ' L ~J(t-. ' - ..... l ....

.!

I ij

Page 38: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

I, I

! /·

f '

: ' :,1

,,1 ,, /'.

, I

/' : '

I

: \'

THE HCl PHASE OF THE EXPERIMENTS

: J

After having calculated the interfacial areas for mass

ansfer over the appropriate range of flow rates, we should be

le to calculate the theoretical mass transfer coefficient for

e HCl system, and then run experiments with the jet-venturi

rubber and the HCl system to determine an experimental mass

·. ansfer coefficient with which to compare the theoretical value,

ad thus, examine the validity of the theory. However, because

q the difficulties in measuring the contact time, '8', we will

~ e the experimental data to calculate contact times, and relate

e em to the residence times inside the scrubber throat as described '

i the section on mass transfer theory.

~. r. Eight runs were made using water to scrub HCl gas out of

The runs took 45 minutes each, and were limited to this time

t minimize the use of HCl. Inlet and outlet gas samples were \ ·.;

~ ken, and liquid samples were taken every 15 minutes. The gas

S1

ples were taken to determine inlet and outlet concentrations,

~ d to determine the gas cleaning efficiency of the scrubber at

e ch set of operating conditions. The liquid samples were taken

~ make a mass balance to compare HCl into the scrubber with the ~. l leaving the scrubber.

~ take, and more accurate

~ od check on the accuracy . )

Because the liquid samples are easier

than the gas samples, this should be a

of the gas.samples .

The following is the experimental procedure used in making HCl runs:

1) Prepare the following solutions: .02 M NaOH, .OS M NaOH, .10 M NaOH, .01 M NaOH,

h .10 M HCl, .01 M HCl, and .05 M HCl j), ,· Ii f.' !.

2) Fill the separator tank to the mark, at which point there will be 196 liters of water in the tank

3) Fill (2) 500 milliliter erlenmeyer flasks with 400

milliliters each of the .01 M NaOH; Fill (1) 500

-31-

i ,,

r J: ,, ii J1 !1 '] i,

,I

Page 39: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

:,

I

I . '

:i ! .

I i

!' ' .

. I

! .

( .

I'>·''•"' •' .:.••

I i

~

I

\

l ' .

milliliter erlenmeyer flask with 250 milliliters of

the .01 M NaOH; these will be the vessels used to

take the gas samples with, the first two for the

inlet gas sample, and the third for the outlet sam­

ple (a diagram of the gas sampling apparatu$ is shown on the next page)

4) Fill the draft manometer to the zero level, and check

5)

6)

7)

the level on the carbon tetrachloride manometer used

to measure the flow rate of the HCl gas

Turn on the pump and adjust the ball valve until the

desired liquid line pressure is achieved

Adjust the butterfly valve until the desired draft is achieved

Open the HCl cylinder and adjust the regulator until

the carbon tetrachloride manometer gives the desired reading

8) Check the time - this is the start of the run

9) Turn on the vacuum pump to evacuate the pressure ves­

sel used to take the gas samples

10) Set up the outlet gas sample apparatus

11) Fifteen minutes after the start of the run, take the

first liquid sample (three samples will be taken to

protect against any errors in liquid sampling)

12) Collect the gas sample from the outlet:

This is done by drawing l ft 3 of gas through a

250 ml solution of .01 M NaOH

13) Evacuate the pressure vessel to prepare for the inlet

gas sampling

14) Thirty minutes after the start of the run, take the

second liquid sample

15) When the pressure vessel is evacuated, collect the

inlet gas sample from the pitot tube: 3 This is done by drawing 1 ft of gas through

(2) 400 milliliter solutions of .01 M NaOH

16) Take the final liquid sample 45 minutes after the

start of the run

-32-

i;

. I

. I lj

Page 40: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

. j'

'I:'.

ll , ,i: i \ -~ ; '

,,

GAS SAMPLING APPARATUS

...... __________ _ .. ------ ·- - .. \.

i ' '

fine control --4

valve ---.......... __ _

-33-

,----/ ------I

vacuum vessel

\

I· I I I

~Ii i/111

r1r1 ' I '11 I ' , : I \ -------- - ----- ______ ../, ·

\'

!i manometer _.;',

', i

1:

j

'

Page 41: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

,I

I' )

17) Turn off the HCl cylinder and close the Hoffman clamp .: that is between the regulator and the carbon tetra-

chloride manometer to prevent damaging the regulator 18) After allowing the system to clear (wait about 5 min­

utes) turn off the pump and empty the separator tank 19) Carry out the titrations on the various samples

(a) titrate the liquid samples with either .02 M NaOH, .OS M NaOH or .10 M NaOH depending on the expected outlet concentration of HCl; .02 M NaOH was used for runs land 2, .05 M NaOH was used for runs 3 through 6, and .10 M NaOH was used for runs 7 and 8; phenolphthalein was used as an indicator, with a sharp endpoint shown as the pH of the titrated solution crossed 7.0

(b) For the inlet gas sample bottles: titrate the first bottle from each sample (the erlenmeyer through which the gas being sampled passed first, where the majority of the HCl entering reacts) with .01 M HCl; titrate the second flask using .10 M HCl; phenolphthalein is again used as an indicator

(c) titrate the outlet gas samples with either .01 M HCl or .05 M HCl; the first two runs (1 and 2) were titrated with .01 M HCl, and the remaining runs were titrated with the .05 M HCl

An explanation of the titrations should help explain the obtained. The liquid samples contained HCl and ~ater, and

e titrated with NaOH. When the number of moles of NaOH in the rated solution was equal to the number of moles of HCl in the ple, the endpoint was achieved. Hence, the milliliters of NaOH

defined the moles of NaOH titrated, which equaled the HCl in the sample (all liquid samples were 15 milliliter

ples), which defined the number of pounds of HCl in the 196 er separator tank.

-34-

; 1: ,.'

:1

Ji I' '!

Page 42: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

I ii r

!, I I

I

I· I

I I: I'

I· ',

I.

I·, • I

: ,' I 1·1' .. ·''

The HCl in the gas samples was absorbed in flasks contain­NaOH. As the HCl passed through these flasks it reacted with NaOH to neutralize it. The titrations were carried on using to determine how much HCl was needed to complete the neutraliza­

tion of the NaOH in these flasks. Hence, the following equation be written to express the results of these titrations:

" ,•.

I , I '-j

moles of HCl titrated+ moles of HCl from gas=

moles of NaOH 1n sampling flask ''.Therefore, from these ti tra tions, we can determine the number of ·1

~oles, or the number of pounds of HCl in 1 ft 3 of inlet or outlet '.gas.

The data accumulated from these titrations and samples pppears in Appendix II. The data, including graphical material, i

bsed in the selection and determination of operating parameters 1

including inlet concentration for the HCl runs is presented in l ~ppendix III.

The following pages are the results obtained from the data ,~ollected during the HCl runs. Such data will include: inlet and •/

butlet concentrations of HCl in the air streams, concentrations of 'l

~Cl accumulated in the scrubbing medium, the gas cleaning efficien-lies of the jet-venturi scrubber under each set of operating con-

titions, and the mass balance of HCl for each run which strongly '.erify the accuracy of these experiments.

.1 .;'"/t

1,;

·::

-35-

\'

l i ., (

11 !I .I ij

111

'' ·, I

1; [:

I· ., 1:

(

Page 43: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

I I I Ii

I ii

'I

i ,i

IQUID LINE PRESSURE

j psig

'I i

l j , , 14

16

18

20

23

25

28

30

HCl RUN OPERATING CONDITIONS

INLET AIR DRAFT

0.363

0.437

0.500

0.575

0.667

0.735

0.825

0.903

-36-

INLET AIR RATE

lb/hr

1340

1510

1610

1700

1840

1900

1990

2050

INLET HCl RATE

lb HCl/hr

4.68

5.14

5.53

5.93

6.28

6.61

6.94

6.94

! I !

I

il ;j \:.

:j

I

II

I'

I.

!'. I' \;

Page 44: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

HCl CONCENTRATIONS IN THE GAS AND THE LIQUID

I '.:} INLET GAS OUTLET GAS FINAL LIQUID I \,\

I p CONCENTRATION CONCENTRATION CONCENTRATION I

'I ,1

I

IL ,.

T '' jd

lb HCl lb HCl g:m-moles HCl s'.g I

ft 3 ft 3 liter

i'

gas gas j I I j i: J -4 -4

0.095 !·

14 2.60xl0 l.53xl0 " i

I

16 -4 -4 0.146 2.54xl0 l. 07xl0 l

II

I

! I·

'i -4 -5

I .

8 2.56xl0 7.62xl0 0.194 I _I I

I

-4 -5 I' d 0.234 '

2.60xl0 S.lOxlO i i i / L i

j -4 -5 j1

2.55xl0 3.14xl0 0.269 I i I i

.I I

i -4 -5

I

0.291 ~ 2.59xl0 1. 85xl0

I ,, al -4 -6

0.316 'I 2.60xl0 9.00xlO I I

j

i I i i

-6 i ' -4 0.316 ;1

OJ 2.52xl0 7.20xl0 r j I ' I•

ii i!

-.:

!i ~ '

I ;j i

, I I

: I , ·1 •

, I

i ',!

/' ,j •

. !'

i, I' '1:

-37-

~-- -,-------

Page 45: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

i /1

j,

' i I. I I

i

! ,, ' i i'

I :,

·I

;i,1 ', ':i: i I i

I'

HCl MASS BALANCE

HCl OUT HCl OUT HCl OUT HCL IN in GAS in LIQUID TOTAL TOTAL

s1 g lb HCl lb HCl lb HCl lb HCl

1 1

J

lf '

2.07 l. so 3.57 3.51 l l < I l

1. 62 2.30 3.92 3.85 16 i i '

18 L26 \\ 3.06 4.32 4 . 2 5 ] ', 1 l ( J

j '

2~ 0.87 3.70 4.57 4.44 ; i ' l l

24 0.58 4.24 4.82 4.71 i ' j

.1

! '

25 I 0.35 4. 59 4.94 4.96 I l

21 5.00 5.19 5.21 0.19

1

0.15 5.00 5.15 5.21

. . , The accuracy of the mass balance, which combines liquid sample data.with gas sample data, indicates that

, the titrations were not a significant source of error.

-38-

% DIFFERENCE HCl OUT

RELATIVE TO HCl IN

I

! '

% I

+l.68%

+l. 79% ,:

+l.62%

+2.95%

' / ,, +2.28% I

'

! !

-0.45% l I

I I

-0.39% i, I· I

t '

-1.17% ',I

,'

I

Page 46: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

i' '

,. i ,, I ,.

I· I

I I

,, i

i r )!

I, •• I

' ' ; I I

'I.''

:· I

!

' i I

: ·]

. i' : !

,' i I

• I i

' ! .I 1 ;j ·1

J l

J

LIQUID LINE PRESSURE

psig

14

16

18

20

23

25

28

30

OTE: Gas cleaning

GAS CLEANING EFFICIENCIES

GAS FLOW

SCFM

300

337

360

380

410

425

445

480

efficiency is defined as

GAS CLEANING EFFICIENCY

% EFFICIENCY

41. 0%

58.0%

70.3%

80.4%

87.7%

92.9%

96.5%

97.1%

follows:

Jcas Cleaning Efficiency= lb HCl in Gas IN - lb HCl in Gas OUT lOO% lb HCl in Gas IN x

-39-

,I I

,,

I i

l. j !

l I I I

I ' L j

I

., '

Page 47: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

I I

I ! ,: I I I '

i I,

I.

' (/

'· •. I

·''.

:{'

·9 ,. I

::i 8 .. , .. , ' .. ,

·:1 ' · 1 .. - -·- --l·- ·-·. -:I. •'( . ' ::1 ··' .:!

::1 "I ::j .. •'j ., '?; _____ • --- • : ____ t-- --

I

" .; •7 : AS I: ;

·····:t··· ··--··+-··. -·. ;· LEMING : : .· _:_~P.!~~, . " ., .. I I f

\f) ·!·· ' .. j I • I .... 1 ___ -~--- -.: • ••.. i __ -·· .. -:::i I

::J. ,6 ·•:1 t ::!( l :: :j ·-·~-r-·-~ ·-· j .... ····: H· ;• : i : · .,;! I I

j 1 . ;

~--·-···-

· j' ' : .. ·----·---· ' '

.5

I , . ' . ·!

.: -·--t'·-··---- L . ..5 '. • j . . ' t';. I • :~ ' . . . . /

! ' i --.L..:.:.l...:...;_

:·· ·!': . : :. . ' . ; '

, .... -i--·· .' ... . i ... _ '··-· .. I • ..

r· -

I ' i

.! ' ' I

1 i,.

I ,-· l

..... l.

' ! ;.

. - . ~ .... '

.!

I !

i .

I ' ' ' - t ..

•· i

• 1

16 18 20 22 24 ~6 : LIQUjD LINE PRESSURE (~IG)

-40-

I ··1·· I

' ' . r - - . -t- -·

1········-· .. :·-· I I

28 30

. . . . ·, . . :· ...... .

i . JI I • ••

!. . . :,-- .....

i • : ...... r···-·· ·-1 ' I ' • :: .

: .. . I .... : ..... -... ~J

I

'"T•' --- ----~

: i J

..... J

I

. -~

1'

I /

1

\ I I' I, l

t

Page 48: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

i

,. Ii

I ' ;,1

• I

• I ' 1·.1 !· ;· I

! r; / i

.: 1' ,,, i

RESULTS AND CONCLUSIONS

From the inlet and outlet gas samples taken during the Cl phase of the experiments, liquid and gas phase driving

; orces can be determined using the equations previously presented. ~ ver the experimental range used, certain simplifications in the ·tquations can be made:

l

I ' ' I

i

-1 CG,out-f (C1 ,outr~cG, out

f(CG,in)-C1 ,in~f(CG,in)

f(CG,out)-c1 ,out~f(CG,out)

Using the above simplifications, the following equations iesult for the driving forces:

j

l:iCd . . f riving orce,G

1:icd · · f riving orce,L

=

=

CG,in-CG,out

log CG,in e--­

CG,out

Living force values are presented on the following pages.

Using these values for the driving forces, experimental )iquid and gas phase mass transfers coefficients were calculated.

hesi values have been presented on page 44. All of the xperimental mass transfer coefficients appear to be valid with he exception of two determinations: the liquid phase calcula­ions for the 20 psig and 30 psig runs. The driving force calcu­ations were a major cause of this inaccuracy, since the equilib­ium data used, although the best available, may be lacking n accuracy. In addition, the gas sampling procedures were a robable source of error.

-41-

j

I' I

I I

, ,

i

i !

(

I I

! i I

'

!.

.,· 1

,J

lf

Page 49: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

/,'

,. I I " ;

I r:

I

. I

!'' I 11. i

i

I

!(

,..,

:·, I

. ' 'I• I

; .·' ; I I ('.I ; 'I•

I· I .. , ,:. / I

/( i' j'. .

i j' ,; • ·. I 11,·,; ,, ,,. ;l'.\ l .' r .1,. 1it111 i: 1ff,/ I I 1!1'.l j': l, 11

I\ .1.

, psig :j

l I i i \

' '14

)6

:18

\20

23

'· 1 ps i

Ls l 1 1 I

j30

1 j j l I

J :1

.l :j :!i

p

GAS DRIVING FORCE

CG' in CG,out

lb HC1/ft3 lb HC1/ft3

2.60 1. 53

2.54 1. 07

2.56 .762

2.60 .510

2.55 .314

2.59 .185

2.60 .0900

2.52 .0720

-42-

~Cd .. riving ·torce,G

lb HC1/ft3

2.02

1. 66

1. 49

1. 28

1. 07

0.910

0.746

0.690

I i' I i. ,, I I

1· I

,, I

,1

I I l· I (

I I /. !,

I ,I

I

,, ,. I' ·;•.

',

Page 50: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

' i' !

I I

I ! ,, , .. ' i ' '

i ; .

I.

l I

!' 1 \f

. ,1

j: ' I '

', ' 'I I

i J :1,

; I· j

: I I

,· I ·::1 i'

ii LINE P j ,j

! j

' I .1

·; psig

14

16

18

i 20

23

25

28

.i 30

l j

1 '!

lb HCl

ft 3

1. 37

1. 36

1. 36

1. 37

1. 3 6

1. 37

1. 37

1. 3 6

xl0- 2

LIQUID DRIVING FORCE

-43-

lb HCl

ft 3

1.'28

1. 23

1.18

1.14

1. 06

0.995

0.900

0.864

xl0- 2

!::.Cd . . f L r1v1ng orce,

lb HCl

ft 3

1. 30

1. 28

1. 27

1. 24

1. 20

1.17

1.12

1. 09

xl0- 2

I r I

1,

.1 ,, I

,1 t

,,

j (

i I 1·

I I

I

I.

Page 51: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

'' : ' •I\ '

!

I 1: I

I I

I

I . I i I

I .,

i,

!•,

! I '

ii' !

,,,l

. ,i

' I,

:, I

, I i l.'J 1i,

i: LINE p

,' ,,,

psig

14

16

18

20

23

25

28

30

MASS TRANSFER COEFFICIENTS

kG kL

ft/hr ft/hr

8. 96 .139

13.3 .17 3

16.2 .190

19.4 .200*

22.4 . 200

26.2 .204

31. 4 .209

31. 6 .200*

-44-

r t !, ,, I

.(

I I

[:

i l \ /; I,

I

(

I

',

"

Page 52: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

I ,, i

i ,.

I : ' ! I

I I .,

I

I I:

I II

I

. '·I

... ,l. __ . -·.. ~ . ' ·-

Using the calculated driving forces, contact times and contact time ratios were also determined. The results, shown on page 46, again indicate that the calculations for the liquid phase for the 20 psig and 30 psig runs were inaccurate. The

;,· gas phase contact time ratios range from 0.00619 to 0.0534, and ·•

~ the liquid phase contact time ratios range from 0.0142 to 0.0274. In all cases, the contact time ratios are less than 1.0. Theo­retically, mass transfer coefficients are meaningless where the contact time ratios are less than one. Therefore, either the

·]experimental data is not accurate, or there is a flaw in the 'jmass transfer theory being used. The graph of line pressure

I

:j versus gas cleaning efficiency closely approximated predicted ·1 • • •

1 results, indicating that the flaw lies in the theory, rather I

\ than in the experimental data. Despite this, several important Jrelationships develop when the theory is combined with the ex-,

Jperimental data. The following pages show contact time ratios i jplotted versus liquid line pressure and gas cleaning efficiency. !The results, particularly for the gas phase case, indicate def-! inite relationships between the parameters in question. Gas I

:\phase contact time ratios, for example, vary linearly with '•\

I liquid rate and parabolically with gas cleaning efficiency. If 1 jrelationships such as these could be developed accurately, this

'{would be an important step towards the prediction of mass trans­.1

,

1

;fer rates. One would merely have to select the gas cleaning ·· efficiency desired, this would specify the contact time ratio j ito be used, which would in turn specify to liquid line pres­I

· jsure at which the scrubber would be operated to give the desired ., efficiency.

-45-

'· r !, ,, ,i ' 1·

,, I

I l

j 'i,

I'

i J: I. /: ·, .,

Page 53: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

I I

'!; I

I I

i.

I. I

I, I I: · ..

I ,

I /I

; I

p

l j20

. i I i2, .I -1

I j 1 i

i

• j2 5 I

ba i I

! ro

,j l

l l j

EXPERIMENTAL CONTACT TIMES AND CONTACT TIME RATIOS

6G 61 nG nL

sec. sec.

33.4 15.3 .00619 .0142

15.1 9.90 .0130 .0213

10.3 8. 2 6 .0177 .0250

7.20 7.40* .0242 .0274*

5.35 7. 40 .0301 .0266

3. 91 7 .10 .0397 .0267

2.73 6.80 .0542 .0270

2.70 7.40* .0534 .0243*

-46-

I'

I '

I

(! ,: ,, I ,, I

;· I

,, I

I !

I I,,

{.:

( ,i ,I

1· ·I

I'

Page 54: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

i I

:d ''

: I

i : i . ,I I

l'j I; I

I:/ I ii: i!> •;.' , : I

;; 1·/ ,': ·, :i.

/i i .! .

.. ,

.--.. ~··:-· --~~ ...... _ , ........ -----1

' \ · ... ·: .. -·- - :··-28-1

'./

:f ·; j

:1 . : . ,-· -· - -1 · I

,-. . , -1

26··

:·-·°I .. 25

l __ ,\ .. ) ,, ,1

1

I

[_ .... : ·24· .. 1

':t ' :i l :J .. : ... ; ... _____ ; --23- -­'j I . . : ! :

... !

!.

r····

'

l : ; :, .... _l. ___ :.: __ ; _. 22 - ..... i

,. I I I ······•· -···-·· .. , ... ·---· ..... ··--/--- ...

I I

I I.

I

· 1

. f •. --- .• ··- ' ••.•.•. -~ -- ...... ~. -· -' ' ' ! . .

·I

-+---~-- . I ,. ' I

J1qu~d- :Ra~e · , j : . : I I .,---~as,----:--+--2l-·- .. · -.. ·· ... , ·1

fine: P11es~u1;e 1

1

•••

1 ··I 1 ·,' . I : .. i . 1 '.~--- i-g-r+--20 =-------! ·· · ··: · .... ·· - - - :- ... ···-:- ·---- .. : .. "··--1---.-·-·; ';j : I . I ; . . . I .. I ' .. r ...... ' . .. . , . . 1 i : .. : i .. : ... ·1 .•••.• :

::1 I i , . . ,, ; 1 . / : ', · · i · ' · '1 : .• ;:i- --t·--··--t---19-- ......... ;--··- ... 1 . -- : ---!--·---·i ___ ._. .. '. ........ f···-·--·~--~--··:-·F--1

lj:. ! . : . i l O : i ; . . ! . ; ! : i l {T . +· " . ........ 1

• /' 1 .~ +·· ! . f -- T ··,1 ·····-. -~ -·-· 1 .. r.· ,. .. I ,. I i .. :. .. .. , . · ...... j :1 . . \ : ! : . ' I ! I i 1 :;-·--t---·;---/---17-- ........... ,. --· ···:· .. ; .. ---·· .. ···- , ........ !. _____ ,- ~::~·-·(·"· .. ; --i-:71

~~; '1--~···1··:·· .. : /1 ,' ! :.: i. . 1; : .. ,:. ;.:;11· ,, ...... i: ___ :~-~-r1 __ 15._ - .. : ... J .... : .... ~. - .L:: ......... ---·--1.-..... : - ···---~--- ... : ...... -:- .·,- ----~1---·--.· .. · ... ·1 !~\ l ' ' • . ! ' ' ! • '~ I . . ' . . . I . I

· · --1: . ..:. · ! : · .; ; I"· 1 · · , · .... I I I ' l ! . . ; ' I '

. I I. j 1' ' J.. ..• •• : - •• ·---·.: ..•••. _.!--·--·-··--,' ···- ....... --i-- 1,-. ·:··:·1---· .. ···- ......... ,...... I • 1 ! . T . i

... / ..•.. ! • I i . I . : i . : . :: ··--i,:·~·:· ... ,.::-·:Hf: .. ·:,:... /··--'.-,-!··a·· ... J .... : ... ; ..... L .. i +··-:····j ·:·:-····/-:·:·: :._i

I I : : ' . I ... : ; . 'J .. I . .. . . : . . .... ., .. ,,· ·:: . ! .... ,: , ! . . ; : I I ' , I . I • ;·:-·-1~ ·.,· ··i··.·''···~ ' . I I

' ' I ' I • I I ' I

>- I· ... ·.:. : p •p .. : 1 1 t5 .. ~ . 2t5 3 . 3~5- i .:.4./5::: _5. ·: .. 1 l .: ./ . I . ; !: . ! . ; I . . I i I • • . :: -·: .. --~ -··; ... -'T''. '.. ·aAs· iaisED. ·conieT" T.IME .. RA1IO:-( ~G- ). :·x·· 1-:--1.-0· ;;z-r:-: :- :: I

• I I ., ~ . . . .. . I·' . .. j· · .. ·• · .. ·,. · , : : i" I ! ! ' . · 'j" ·; .. 'i .. l . ; . : .. I . I . . . I • : • ! . . : . ; , . . : .. ·J .:..... ~ .. --· !_: _L. .. _ · .. - ·- . I.. .. ..... J •. ·-· ... 4-7-.. I • ·- ! . . . . • ... .. 1.._ ... -~·-'-···· ..• :.l _. :_·

,1

Page 55: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

ii I_! I i'·' '} I

·: ·-ao· . ·-·---l--··· ••• ··1 I

I I

..... , ....•. ----· . I

•·I ...

! .. 75 _._ ____ , ____ ....

I

; .. ·--. : .. ·- . . . : .. 70 t AB PLEAN!NG

./

i

; FFIClENCY--··-· o I . . ,;· ·( %:·) ·: ·65 · -' I . ·_., I • I ·-··--•····-····1·-···--·· ........ ,. : I . I •. ' l

I . '

. I i I

'i I

J,

'I

I

;' I

' .1

I I

! :, I

i . I

Page 56: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

,,

;. •:

I I, :

I;

i>' ! : '

'! I

:i '

1· I

I I'

.i I I

I.

...... , ---~~··

.--:-~1:-:-:-:-r:-1~r:--:-:-:-:·r-:--:-:r··--r--:-··r: .. -:-;-r·-:-- " .... , .. ,, .... "'' .•. :,1··· 1·1·T~r-.. I ...... •·11• ,,. .. , .• ir' : .. j::.: :::1· ·:. :··: .. · .. : :: ... I .. :·.· :., :·; :·;:':;:: :,::,: ·: .. :;1:1:; !:::,: :: .:::,:··: ::: ::, ;:: .. :t : 1:.: :. : ;;::,· .:: n · vs 1·t1 u1f:Rate::as t~iie' J>~es. "'''.''. :;:T ,; __ :!.:;;;; :·:.~:: :;l ..• : :f-i:-.+30 ·; · ·· i :-r-;"- T · '-- ·_ :,-+:r, \J. \:: '.'.?

i :··:. I. l · ·:··--/- ·: . ·:·:,-·:I· ;. l ·: . l ··:·:·· :c:+ ·::re: .:._.'~ "ti ..... 2'e. ii __ I •• ··r·---;-11· : :; -~~r ..... :--:~: .... 1-.~1-~--- ~:~:_:~r·. _ _;-: :ii:,: !i;: r 7 i , , t • I i.. • , , • • ·•l' L'' I ' ' I . I . .. . : : ! . . . . I' . 'i:. 'I ' ! . I I . : : ; : . : . : : :: !

I ....... f-: :: __ : -·28 .. :·_,.i_ __ :~~--1'-~-~:i~~l~r~--;~ . .L .. ~::: .... ,1~--~:_. ·~~-~~t~·- i. ~rtn .1 . • • . • . I . .. .. , .. . , ! . I . . . . . . , . , ... , .• :! . I . . : I .. I • I• . • 1· :· .. ·1 ' : ! ' I • I·: ::·· . . ~ . : ·:· JI I . :· 1 ·::·;::·~ 'I i : , ·t :.:.. . . i · I···. 1 '· . ..... --1 2? ............ ---··-··---- ------r-- ... -"--··---r-- --·-···- - .. . • i ' .. .. . • • . ". I , ' , . • • • •

.! I ' Ii.:.... I .. ;: . : : : . : .. : .. ,.·.: ·· I·. : .. .! .. ::~::(:: .,. I . I • I .. • .. ·,i, • ' I I .. ""I . ' I ' l I I I ' ' ! l ' I • i ••• "f : •

·1 - ·· ·26· ---- ·· .... -------r--- -·---r---~---T·---~ -r-.. --· --~·-··t---:---·1-· ·--. ij ·• ..... : 25 I _. ' ·- i:. -... _;I_ ...... _j ....... _;! ____ ; __ 'i -:- ~::J?l :·1 j j ; I . i : i I

· .; --~--- :.·--24: ·•-···- ..... /~ ..... l · (_· · .. · ~ 1

.. r --- : : I : : i . . ·/ I . ::!-: : : I I · ! . ··::y· I

'.j 2} _, .... ·•··· ... •·-·•·· ....... !...... I , t . . . l~~ .r··· -;··----- .... ' . ' 1-· ---·l-- -~-- ! -~---__ j :. J

;t·i 1qt R.it/2 · · ·· ·, ·· · I ·- ·f --· r-J: ., I . , ' ' . '. .... :~a--· i· 2-1 · '..... ----·· ...... -: ...... ___ 1' ....... 1- --------~-----~

I ' ) • I • I• ! +in~ Pr"[sure ! , ' ! · ·· ! •· ,j ·'i --{-~sig)<---20- ... ·1-- .... : ·· ·--:... ; ! ··-- ... ;. __ : __ ®-~ :~ . : . i : ; : 'L -Ji -- ) . .J ; : .• i I

"- l / 19 j · : C- · , · · i · :._ I / l:)j : I ., . : .. ! ... i .. ::f i i ' I ::: .. ____ ;: .... - : ... 1a~ -- t. -· .. :. --1-· ........ , ...... - i~~---~ - ··· ·--'--·· --~ :.:. I ! ;~: :1

' .. '1 ! 1 • :J ; I I ' I •: · +- .. ; 17 .. · • . i , · ,. i ....... ; 1 • • , • . .. -, -~ :i' I ' i i I I I : ·1 · · ·1 · · ! · · 1 , - • I·· .. : J .• :· ., ·

>.· --- .. f ........ i1

... 1~ . . ---i,'.-~.: __ _J ___ :·:·-~,- .L .... :. -1 ___ ! _____ ··-i-----1

•, . ! I I i I I

I I I . ! . I : . : . I ' : ' i . ' : ' . j "···r·)·:-r·-l, · ... -····· · .... ----- :· i--... .. :- ... T. ;·:·-

1 . : ·1 ,, . : . ! ... : l / I . ./... : .. -- ,

, I • , i , I , • , : , "I : ... ···1: .... ; ..... 1, ... -:-pr ............... , .... -- .. j----·--1 ·1· : ·--r-- ··:--··1··-- ··-i-- :-"·i "t .· ' ' I, I ' I I '·' , " ' i 1' ' l : :I .. I ' "

: +- :. -j :1 j 4 ; 1 : 6 j . 2. 0 2 : 2 i " 1• ; ; · 2 J 6 I 1

·_ J .. I ' ' .. .. • • : • • I ' 1 l 8. ' . ~ I '411' ' I . ' : i : : : "[' •. ~ : I . i : · j . : ' ; ' i I ; • i ' . . : ! . : . . . J >-r'.. ·:····1· -··:·-- .. 1· .: ... -tiiju:ip .. PHA$E .. B~Ei> c6iiTAct i±M¢.ii4.Tto -<n)Yx.-~o·.;z:·:/.

I .. I . . I . ' I I ' . .Ill · 1 ' ... I . . I • : I. I . I I : ' . . . ....... ------~-- L_ .. : ...... i ...... ~ .... ..1 ..... -l-4-9 .. .. ! ., .... : __ : ... : ... ·'·--··- L.. ... : ... __ : ___ :J

Page 57: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

i' I. I

Page 58: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

, I

1,

I. I

'' j '.' i' '. f I

: .. : . I r,

. "~··· ... 1,.' ) . ,, . : •. ' ...

RECOMMENDATIONS

The following are recommendations for future study, as 11 as for optimization of the experimental procedures used this study.

1) More data should be taken using the HCl system to study relationships between n

1 or nG and liquid rate, gas. rate and

s cleaning efficiency.

b) Less dilute inlet HCl concentrations should be tested.

2) The experimental procedures should be optimized.

a) The gas sampling procedure is difficult to accom­ish and is a certain cause of some experimental error.

b) Considerable liquid escapes out of the gas outlet c using the liquid sample calculations to be of uncertain r liability.

c) An HCl rotometer should be used to measure flow r tes as the manometer employed was inconsistent.

3) Other systems should be studied, some with known mass }ansfer resistances primarily 1n the gas phase, and some with

own liquid phase resistances, to fully evaluate the applica­on of the penetration theory to mass transfer in jet-venturi rubbers.

4) Pressure drop across 'the scrubber throat should be ecked in future experiments, and should be considered as a jor mass transfer parameter.

-51-

Page 59: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

~ .. ;· ,:_.":

5) The effective length of scrubber throat for mass transfer should be examined as a mass transfer parameter.

6) Theories based on the high degree of atomization ; attained in jet-venturi scrubbers should be tested. One way !of doing this would be to study the transfer of mass from a igas between two liquid drops to the drops, and to calculate ithe distance between the drops that gives a mass transfer rate ~iequal to the rate found in experimental study. This distance ;

·lcould then be examined as a mass transfer parameter. The I

equations used would be the following:

'i l

I

i . I

! ' i

·there 1

boundary conditions:

2) dpA ~ = 0@ Z=O for all t

o for all t

A is the transferred component, Bis the gas from which r is transferred

~etween drops.

(usually air), and o is 1/2 the distance

' ~

1, ~1

-52-

I i

i

Page 60: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

' ,,

,, i j.,' ,. I' " ;; I I

Ii I I

I'' :1 ii

11 : .. , i . Ii· "

lri' i)·' ' ' i \ J: I II,·• !'l 1:

I\\ ·1!_:;·

)

I I

···-----~--------- ---­---·-· ·--·-

BIBLIOGRAPHY

1) L. S. Harris -- "Fume Scrubbing with the Ejector Venturi System"; Chemical Engg. Progress; April, 1966

2) A. B. Walker -- "Operating Principles of Air Pollution Control Equipment"; Air Conditioning, Heating & Ventil­ating; Feb. 1969

L. S. Harris -- "Energy & Efficiency Characteristics of the Venturi Scrubber"; APCA Symposium; June, 1964

! 4)

I L. S. Harris & R. Hartenbaum -- "Performance Test Techniques

for Ejector Venturi Scrubber"; APCA Journal; May, 1962 j 5) R. L. Webb - "The Draft Producing-Venturi Scrubber"; Pro­

ceedings of APCA Semi-Annual Meeting; Dec.,1966 6) Edward B. Hanf "A Guide to Scrubber Selection"; Environ-

mental Science and Technology; February, 1970 1 7) Croll-Reynolds Jet-Venturi Fume Scrubbers Bulletin ,8) Mendelsohn & Morgan -- "Study of a Venturi Type Fume Scrubber"; !

Lehigh University Senior Lab Project; May, 1969 9) Thomas Hersh & Gary Munn -- "Absorption in a Jet-Venturi

Scrubber"; Project Report, Lehigh University; June, 1972 I

10) R. D. Ross -- "Air Pollution & Industry"; Van Nostrand Reinhold J

Company; New York, 1972

hl G. Astarita -- "Mass Transfer with Chemical Reaction"; I i Elsevier Publishing Company; Amsterdam, 1967

J2) Robert E. Treybal -- "Mass-Transfer Operations"; Mc-Graw-Hill J Book Company; New York, 1968

f 3) Lynn, Straatemeier, & Kramers -- "Absorption Studies in the ~ Light of the Penetration Theory"; Chemical Engg. Progres~ ;1

1955 (Parts II & III)

· 4) Sharma & Dankwertz -- "Chemical Methods of Measuring Inter­facial Area & Mass Transfer Coefficients in Two Fluid Systems"; British Chem. Engg.; April, 1970

5) Calvert & Kapa -- "Penetration Theory Enables Estimation of Transfer Coefficients"j Chemical Engg; February 1963

6) Howard E. Hesketh -- "Atomization and Cloud Behavior in Venturi Scrubbing"~ Journal of the APCA; July, 1973

-53-

,,, ,,.: .. :

Page 61: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

1; 11: •. I' ;1 '/t ,• •t .,,

i

I

·' ii

i): " ., I!. 11 :1 I·,· ii' ,I I . ,1.1

.. ...,.....

APPENDIX I

OXYGEN-SULFITE SYSTEM DATA

'i

J Liquid samples were taken for each of the eight experi-1 i mental runs. With each succeeding sample, the concentration J I

9f sulfite ions in the solution decreases, as more and more 1t the sulfite reacts with the oxygen absorbed from the air I

fassing through the scrubber to form sulfate. The concentra-tion of sulfite ions in the solution for a given sample is ~irectly proportional to the milliliters of KI0

3 used in the

titration described in the experimental section, where

I ';

! i I

1 KIO 0158 = Concentration of SO - 2 in qm-moles m 3 x · 3 liter

Graphing the concentration change versus time determines the interfacial areas for mass transfer, as· shown in the ex-1

~erimental section.

'· i I

i

i 1

- I

'

-54-

-,

Page 62: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

.... ~·~·-·

APPENDIX I -- OXYGEN-SULFITE SYSTEM DATA

RUN 1

:] Time (min) ml KI0

3 Cone. so3 I ·t j l

14 psig ! p = 0 58.0 0.914 1

in. '1 Draft = .363 H20 5 57.4 0.904 I

: I Air Rate = 5.000 efs 10 56.9 0.896

15 56.5 O'. 8 90

'.) I 20 56.1 0.884 25 55.8 0.879

I

j; I

30 55.5 0.874

;·, :, 'I I•.

35 55.4 0.873 { i

40 55.4 0.871 li ii: .

45 55.3 0.871 11 :I 1 · r I .

I

if I !L1

:l i 11 '.'' ii; i . . . .. •,

ij i I I,!.•

:; 1:·

iih

'Ir::'.

i(:i ! RUN 2

Time (min) ml KI0 3 Cone. so3

! :[:.:

'i ! .. ;j it,.

p 16 psig 0 59.5 0.937 :j: ! = ,, ; ,,

1. Draft .437 in. H20 5 58.8 0.926

Ii/ 111 = n i! Air Rate = 5.610 efs 10 58.2 0.917

;,\ I: f l

,I

11 I I

15 57.7 0.909 ;,(:;1:

I

;; ;·1

20 57.2 0.901 25 '-' 56.8 0.895 :~, 30 56.5 0.890 35 56.3 0.887 40 56.2 0.885 45 56.2 0.885

-55--

Page 63: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

APPENDIX I -- OXYGEN-SULFITE SYSTEM DATA

3

Time (min) ml KI0 3 Cone. so3 f = 18 psig

J .475 H20 0 52.5 0.827 raft = 1n.

5 51.6 0.813 Air Rate = 6.00 cfs I

10 51.0 0.803 15 50.3 0.792 I '

20 49.7 0.783 25 49.1 0.773

30 48.6 0.765

35 48.3 0.761 40 48.1 0.758 45 48.1 0.758

'

-,~

i !

,,i 'RUN 4 -~

. ' Time (min) ml KI0

3 Cone. so3 •i

I

~ = ,j 20 psig' 0 48.7 0.767 .·;i

'°iraf t = . 5 7 5 in. H20 5 47.5 0.748 ~ir Rate= 6.33 e:Es 10 46.8 0.737 .. '1 15 46.2 0.727

20 45.5 0.717 ,., 25 ,, 44.5 0.701

30 44.0 0.693 35 43.8 0.690

40 43.6 0.687 45 43.5 0.686

-56-

Page 64: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

i·' I

\ ' ' 1,

11, I, I' 'j

i

:j ' I: ii q ii

JU i '

I I I I

:· :, :ii., i

11 '·, . q •

I ~ i ' !I 1: :; 1:

!I' 1:1 ! f\ ' ,1,1',

Iii !:ii; i'J.: :1·· ;::, '. :,I

' " ' \'

"!'I ::1,

:il Ii /1, ','' ,'1 '.,1'

ii. "I

APPENDIX I -- OXYGEN-SULFITE SYSTEM DATA

UN 5

Time (min) ml KI03 = 23 ps1g

0 57.8 ,. raft = . 670 in . H20 5 56.7 ii ' ]Ur Rate= 6.83 efs

i 10 56.0 15 55.0 20 54.0 25 53.4 30 53.0 35 52.2 40 51.8 45 51. 8

6

Time (min) ml KI03

j = 25 psig 0 57.8 'j

taft = .725 in. H20 5 56.5 l u.r Rate = 7.08 efs

10 55.5 i

I 1 15 54.5 'J

20 53.9 I '·'

25 53.0 I

J 30 52.2 35 51. 4 40 51.2 45 51.2

-57-

Cone. S03

0.913

0.893

0.882

0.886

0.851

0.841

0.835

0.822

0.817 .! ,,

0.817

I'

Cone. S0 3

0.910

0.890

0.874

0.858

0.849

0.835

0.822

0.810

0.806

0.806

Page 65: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

., r..., ..

: ·i i ,, I

1\ I

',! .. ' !i

I' I 11; ,f

'I 'I I

·1 · .i • . I ., ;1 ', .l '.'

• • I

' ' ., . '• I "q

APPENDIX I -- OXYGEN-SULFITE SYSTEM DATA

7

Time (min) ml KI03

28 psig 0 58.0

ft = .825 in. H20 5 56.6

Rate =7.4lcfs 10 55.4

15 5 4. 3

20 53.4

25 52.6

30 51.8

35 51. 2

40 51. 0

45 51. 0

' 8 .i

(min) ml KI03 Time

:, 30 psig 0 57.0 i

ft= .878 in. l-!20 5 55.5 .1 jRate = 7.64 cfs

10 54.2 ·'

15 53.1

20 52.1 ,1

25 51. 3 !

30 50.4

35 49.7

40 49.6

45 49.5

-58-

Cone. so 3

0.914

0.891

0.873

0. 8 55

0.841

0.828

0.816

0.806

0.803

0.803

Cone. so3

0.898

0.874

0.854

0.836

0.821

0.808 I ,I

0.794

0.783

0.781

0.780

I'

Page 66: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

I

I•

" :•1

: '

I I ' ! :

APPENDIX II -- HCl PHASE OF THE EXPERIMENTS

RUN lH

Line Pressure - 14 psig

Draft= 0.363 in. H2

0

LIQUID SAMPLES (all 15 ml)

titrant used was 0.02 M NaOH

Time (min)

15

30

45

ML Titrant

22.4

47.7

71. 3

I GAS SAMPLES

INLET:

I I

:1

First Flask - 400 ml of .01 M NaOH

titrant used - 96.5 ml of .01 M HCl

Second Flask - 400 ml of .01 M NaOH

titrant used - 38.0 ml of .10 M HCl

NaOH neutralized by HCl in titrant 476 ml NaOH neutralized by HCl in sample 324 ml

-3 3 Concentration of HCl in sample - 3.24xl0 gm-moles/ft

OUTLET:

Collection Flask - 250 ml of .01 M NaOH

titrant used - 59.0 ml of .. 01 M HCl

NaOH neutralized by titrant - 59.0 ml

NaOH neutralized by HCl in sample - 191.0 ml -3 3 Concentration of HCl in sample - l.9lxl0 gm-moles/ft

-59-

I\

I ,i

Page 67: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

'I

I ,i I

I

I I : j '

{ ~ ~ ,, I ·'11

APPENDIX II -- HCl PHASE OF THE EXPERIMENTS

RUN 2H

Line Pressure - 16 psig

Draft - 0.437 in. H2o

LIQUID SAMPLES (all 15 ml)

titrant used was 0.02 M NaOH

'l'ime (min)

15

30

45

ML Titrant

3 4. 5

71. 5

109.5

·, GAS SAMPLES

INLET:

I ')

First Flask - 400 ml of .01 M NaOH

titrant used - 91.0 ml of .01 M HCl Second Flask - 400 ml of .01 M NaOH

titrant used - 39.3 ml of .10 M HCl NaOH neutralized by HCl 1n titrant 484 ml NaOH neutralized by HCl in sample - 316 ml

-3 3 Concentration of HCl in sample - 3.16xl0 gm-moles/ft

OUTLET:

Collection Flask - 250 ml of .01 M NaOH

titrant used - 117.0 ml of .01 M HCl NaOH neutralized by HCl in titrant 117.0 ml NaOH neutralized by HCl in sample - 133.0 ml Concentration of HCl in sample - l.33xlo- 3 gm-moles/ft 3

-60-

I ,I

Page 68: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

1,. !

: . I

:1,r I':',

I ' ;i ji I, ' ii ',I'

·:, :· 'i i

,.i r i':1 H

:: i ',It' ::1,' ·'~ I· ,., 'I• iii .

. t~1· 'J_ I,, . ! ~ ! , I

'I

[,1,1 •, I' I,' .' . '/ '

'11 ,1,'

fl'' :

APPENDIX II -- HCl PHASE OF THE EXPERIMENTS

RUN 3H

Line Pressure - 18 psig

Draft - 0.500 in. H2

0

,LIQUID SAMPLES (all 15 ml)

· --- titrant used was 0.05 M NaOH

Time (min)

15

30

45

iGAS SAMPLES

:--- INLET:

ML Titrant

19.0

39.5

58.0

First Flask - 400 ml of .01 M NaOH

titrant used - 91.0 ml of .01 M HCl

Second Flask - 400 ml of .01 M NaOH

titrant used - 39.0 ml of .10 M HCl

NaOH neutralized by HCl in titrant - 481 ml

NaOH neutralized by HCl in sample - 319 ml -3 3 Concentration of HCl in sample - 3.19xl0 gm-moles/ft

OUTLET:

Collection Flask - 250 ml of .01 M NaOH

titrant used - 31.0 ml of .05 M HCl

NaOH neutralized by HCl in titrant - 155.0 ml

NaOH neutralized by HCl in sample 95.0 ml

Concentration of HCl in sample - 9.SOxl0- 4 gm-moles/ft 3

-61-

,I

Page 69: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

I I I

\ .j

: I JI !j· ' ;: ' I ,j I 'I I

ii' ;i 1,1' ',. f ' :

'I ; I I !1 I!! i ! l 1

' '

i i: I l,,1

i,if n·! :1 I ·,_, '

''! :, , ... '.{

,:~ I· 11~'

i{J_, .. ~· i:l ',

/!''I I' ". i\ '. ; / r

ti ' . 11!.

C

APPENDIX II -- HCl PHASE OF THE EXPERIMENTS

RUN 4H

Line Pressure - 20 psig

Draft - 0.575 in. H2o

LIQUID SAMPLES (all 15 ml)

titrant used was 0.05 M NaOH

Time (min)

15

30

45

ML Titrant

22.5

46.8

70.3

GAS SAMPLES

•--- INLET: !

:l J

First Flask - 400 ml of .01 M NaOH

titrant used - 91.0 ml of .01 M HCl

Second Flask - 400 ml of .01 M NaOH

titrant used - 38.5 ml of .10 M HCl

NaOH neutralized by HCl 1n titrant 476 ml

NaOH neutralized by HCl in sample - 324 ml -3 3 Concentration of HCl in sample - 3.24xl0 gm-moles/ft

~--- OUTLET:

Collection Flask - 250 ml of .01 M NaOH

titrant used - 37.3 ml of .OS M HCl 'l

NaOH neutralized by HCl 1n titrant 186.5 ml

NaOH neutralized by HCl in sample 63.5 ml -4 3 Concentration of HCl in sample - 6.3Sxl0 gm-moles/ft

i I 'I

i

! I

,I

',

'·) \ i:1

Page 70: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

' I I I I

'i :j I I l ;, 11, 1· ,; .

ii

II !,_

.i · I Ii ,•' I , i:

I ii I,, ! l ', I ,

APPENDIX II -- HCl PHASE OF THE EXPERIMENTS

RUN SH

Line Pressure - 23 psig

Draft - 0.667 in. H20

LIQUID SAMPLES (all 15 ml)

titrant used was 0.05 M NaOH

Time (min)

15

30

45

ML Titrant

26.5

53.5

80.5

j GAS SAMPLES

INLET:

·.1--­i

'J

.~

First Flask - 400 ml of .01 M NaOH

titrant used - 9}.0 ml of .01 M HCl

Second Flask - 400 ml of .01 M NaOH

titrant used - 39.0 ml of .10 M HCl

NaOH neutralized by HCl in titrant - 483 ml

NaOH neutralized by HCl in sample - 317 ml -3 3 Concentration of HCl in sample - 3.17xl0 gm-moles/ft

OUTLET:

Collection Flask - 250 ml of .01 M NaOH

titrant used - 42.3 ml of .OS M HCl

NaOH neutralized by titrant - 211 ml

NaOH neutralized by HCl in sample 39.0 ml -4 3 Concentration of HCl in sample - 3.9xl0 gm-moles/ft

-63-

,: 'I

Page 71: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

Ii

! . . .

:: (

I I I

:1 I I

i ' 1

1. I

II, ' ,: · I :; I i!' (, ll ii ;I· I I; , .

11 i1;

I ' ! . :

·1 j

1'J I

:1

APPENDIX II -- HCl PHASE OF THE EXPERIMENTS

RUN 6H

Line Pressure - 25 psig

Draft - 0.735 in. H20

LIQUID SAMPLES (all 15 ml)

titrant used was 0.05 M NaOH

Time (min)

15

30

45

ML Titrant

28.5

59.8

87.3

iGAS SAMPLES I

j--- INLET: j

·l First Flask - 400 ml of . 01 M NaOH I

) 1

1J

,.j .l 'I

I !

·;!---

titrant used - 95.0 ml of .01 M HCl

Second Flask - 400 ml of .01 M NaOH

titrant used - 38.3 ml of .10 M HCl NaOH neutralized by HCl in titrant - 478 ml

NaOH neutralized by HCl in sample - 322 ml -3 3 Concentration of HCl in sample - 3.22xl0 gm-moles/ft

OUTLET:

Collection Flask - 250 ml of .01 M NaOH

titrant used - 45.5 ml of .05 M HCl

NaOH neutralized by HCl in titrant - 227.0 ml NaOH neutralized by HCl in sample - 23.0 ml

. -4 3 Concentration of HCl in sample - 2.30xl0 gm-moles/ft

-64-

! \(

,i

Page 72: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

' i J, ....

1,--·

•' .. __ , -· ••. -....'.!....,-·

APPENDIX II-~ HCl PHASE OF THE EXPERIMENTS

RUN 7H

Line Pressure - 28 psig

Draft - 0.825 in. H20

LIQUID SAMPLES (all 15 ml)

titrant used was 0.10 M NaOH

,, '! ., I

jGAS

j---j

·J ., I

j i

j

' ,;

Time (min)

15

30

45

SAMPLES

INLET:

ML Titrant

15.5

31. 5

47.5

First Flask - 400 ml of .01 M NaOH

titrant used - 91.0 ml of .01 M HCl

Second Flask - 400 ml of .01 M NaOH

titrant used - 38.5 ml of .10 M HCl

NaOH neutralized by HCl in titrant - 476 ml

NaOH neutralized by HCl in sample 324 ml

Concentration of HCl in sample - 3.24xl0- 3 gm-moles/ft 3

OUTLET:

Collection Flask·- 250 ml of .01 M NaOH

titrant used - 47.8 ml of .05 M HCl

NaOH neutralized by HCl in titrant - 238.8 ml

NaOH neutralized by HCl in sample - 11.2 ml -4 3 ·Concentration of HCl in sample - l.12xl0 gm-moles/ft

· -65-

.I

,I

Page 73: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

' 1(

' 1· : ' '

I I/ I

: '

!

APPENDIX II -- HCl PHASE OF THE EXPERIMENTS

RUN 8H

Line Pressure - 30 psig

Draft - 0.903 in. H2o

LIQUID SAMPLES (all 15 ml)

titrant used was 0.10 M NaOH

Time (min)

15

30

45

ML Titrant

16.0

31.8

47.5

;GAS SAMPLES ;

'·! INLET:

First Flask - 400 ml of .01 M NaOH

titrant used - 97.0 ml of .01 M HCl

Second Flask - 400 ml of .01 M NaOH

titrant used - 39.0 ml of .10 M HCl

NaOH neutralized by HCl in titrant 487 ml

NaOH neutralized by HCl in sample 313 ml -3 3 Concentration of HCl in sample - 3.13xl0 gm-moles/ft

~--- OUTLET:

Collection Flask - 250 ml of .01 M NaOH

titrant used - 48.3 ml of .05 M HCl NaOH neutralized by HCl in titrant 241. 0 ml NaOH neutralized by HCl in sample 9.0 ml Concentration of HCl in sample - 9.00 -5 3 x 10 gm/moles/ft

-66-

Page 74: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

! I

'. ii I

I•, , I

; .. I !

:1 ,, ., ·1

:l j ;j •;!

APPENDIX III

DETERMINATION AND SELECTION OF OPERATING PARAMETERS

11ine Pressure

psig

14

16

18

20

23

25

28

30

AIR FLOW RATES

Volumetric Flow Rate

SCF/hr Air

18,000

20,200

21,600

22,800

24,600

25,500

26,700

27,500

-67-

Mass Flow Rate

lb/hr Air

1340

1510

1610

1700

1840

1900

1990

2050

11

1: ,I 11 •I !1

!

Page 75: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

,, I'·

,I'

'I I It

:1,.1 r i' . . . 1

I

• I

)i. I

:1 l .1 ·,

',i'.' ..

:i: ·) ;1; .. '.i '. , , . J lj I j: I

I; , , ,! i ·I

I :l ' ' 4 , , , I • , i ,

• t ! I : : I .. : : ' ' • I < I

--lJ -------- '- --- -. • I

I I I

. I ,

-·· ..... i --4·-•- ..

I

::, .. ;. :'.'.$; ::;~_ t • t I ,

I ' •. : ; : - - __ ,...__ __ NOZZLE . . . . . - - .

· I ; i ! - -I t ' • I j I • It • i 11 ,-H 1 I t f : '. ! -1--~

• j ; i I :., .j

' ' I • I , , I PRESSURE : :·:Js: ·:;; ; ; : :

1 ' • 1 ' ' ' - ! ' ! I I • - t t I ~ 1 • vs ---t" ' - __ _;. i.. SCFH AIR . ' . I ' . ; : ' . I ' . I ' • ' I • : ; '-I -

' '-• ' : I : I • • ! • t ' 1 , I , , I ·th .. ----. '.: :~:: 1:: -+:. '. ::: ",' ·::; ~·!,:

-------,-----~-- - - ·-·-- --- -~ --i-- . . I .. l : : : I;~. ':: : '. : .. .. : I:::: .. : ; ; - -- I_ •• • l ' .. ; ·-·1 l T . ' ' : '. 1-: -: : I; . ----~-. -:·-:~I ----~ . : : .

: ; !""I ' '"' .. "'+·· '1

• ·I· ! . . .. I - -- l- . : -~ .:_ __ ~_:_~-· · ' - 1

_f ' ' : ' 1 · ·--' +.-~~. , ~-~ ·!-' :~~~~ . I I I I_

• I ' I ' . • . I •• I I : . '. I I . ' ' ... I. ' I ; "! I. I: --- .. - - ,J________ :-·- ___ '. ____ : -t·· ... :_~ __ : ____ · __ · -~~~+--~-' .. '.'.

l ' l I ' I .... ! ' ' ' . : ' . ' : !

i . !

-- ... - ..... -1- --

.. ,s

I I ! . I".. . . I .. 1 ·' · / 1:.. I.

~--t~ __ ., _ _JI __ .:__------'.--·---~- ., . :1:·: I:: ... ·.1:. ··i·•:J:::; '•·•I . , ! . ! I . --.. -:-~-----:- r- --1-:-~·--:··1-----,- .. ~ :~~ '. . ~:-~. I I I I : ! ' . : I . . . I ' I : : : i : : : ' : : .

--.... .L ....... f ..... . ~-------+- .. · 1----J-' ' __ J_· __ .:...i ~-- ·f--+-~--- I ' ' • ' ·~; ;

: 1' , I : · - · I : - l · ,

1

. : . • · • 1 • • · : : : : : : -· : : ' I • • I . . ' . . . . . . . ... . I I .. I .. I . I • . . .. • : ..••• B -- ··- - ~- .: --~ - -· .l. -----

j l .

1

. I · '. - : : - : . : . : : : , .. ·: : : ·, I · 1 · · · • · , . . • .I •..

I ' I I . · I .. .. . I . I ..

o' - " T r-- ---r T --1-- r-.. -~ I ·----,- - - ; _~ · ~~-- _ J__.:_ · : 1-- ---~ I ~:-~~L-~-~----l .. :~~--i~ --~-J

.:· -'ti

!; ;!

I • I I .

- I -

--+ ---- -- i · -

I '1 ! I • I I • • i I I . ' I . :

- 1 1 - t' . · 1 . : . 1 · j · 1 _ , .. 1 I . I • • • : • . • . i : . ! I I • I I I -----r :··----~ . i - - i '. - _... 1 1 - . ;·---;

I . I I i i . ! I I , - I - , 1

. I i ' I I

, -. • i --r · · · · 1 - ·. i---1 · 1 . • ·• r- r ~ 1 -- --- ~--- -~-! ------- _J -- ___ __J ___ ~ -r'-· -----! . __ J.. : ~ ~. --~ ~- . ··--L ------1

• I I I . I I . b I I I . I .. I I. . . I I • 1 ·: I '1

I I ... L , I" 'Ir. , I' ; ! ' . ',.. · 1 I ______ J_ · _____ [------ _: ______ ~ ___ · r·---~4------·---/--- .. _.!- ___ · ___ i · __ : ____ . ----~ ~ .. --··r_:....,._:_· I . I . .. I. . I ... I ... , "i,' i . '" : : : . : .. I' , i , I ",, I , '. '

.. f • I . I . l . . : : I : ' . I . . I ,,· .. ·-- --------+----- .. ·,·. ------ - r--- ---.···· ----- ------- -·- -+-··---- .... i .. ---!------ -- i ...... .. . •. +-·-·-··· ~

I . I . 1 · . 1 . : l : · . : : I . ! 1' 1 · ; . I · . · 1

I I I ' ' . . . - \q. -~~ -~-· _/ __ · _·_: 1-~ __ :_ -) ... .:.. _:~j ·--~--~~-~-.. : ~-- _:-_____ / ____ : .... .J ... ---- i: ·• --·-1: _____ : -~ ·1

1

: . : . .l-~--~-1 ... \ . : . i . : I .. : l . . . . . I . : ! . i ... ' I . ; I ... I

1~ ··--·.

.. \,

I I . . . I . : I • I I I . I . Ii . ' ' .. ' . . I . I ••

•• •ff• •

I

! . -. _ _J:

I

I I. -

i I . I I

NOZZLE PRESSURE

(PSIG)

-68-

i I . I

' ' ' i .

I : . I · · : · ·: · -r ·- -·:· -: ~- ---- i - ..... _ i I ' I . . :

-_ .. L .. _____ :..: ______ L_ __ :_J .. · : __ :.: _I

Page 76: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

,. ' ,I

h ' : !

APPENDIX III

NOZZLE (LINE) PRESSURE VS. DRAFT

LINE PRESSURE OPERATING DRAFT

psig inches of water

14 .363

16 .437

18 .500

20 .575

23 .667

25 .735

28 .825

30 .903

-69•-

Page 77: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

I'

• I

'I

11 :' :, t I , I' '

I I

l ,; i: .·

; ! •/:, I

,I j i i :I I

'.j;

iJ/: 'i, 1. ;. ,

i: : I : I 'f: . I

.. ,. I ,'1 ,; '

\ /!

'f 11 J,

'1' /,;

i! ! 1: 1'

•!

:· .i '·

~1.0

.7

I .I LI .. i.T 1 I 'i

···---... _1_::.' :

. -i T I

I. I

'J

i l __ ... , __ ,. .. _.

I I'

\ '6 2.0 21. 16

NOZZLE PRESSURE (PSIG)

-70-

u 10

• ~L--

' II

i2.

··---1 ...... -

I .. I

, I

... r ...... --

I

I .., .

S4-

'' I

36

Page 78: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

1/ j

:, ' '

'

:' I :ii 1·• I, ' Ii,,· ''f :_i"

1 ,i i

:! ·1 I

I ·l j

.:) I

OTE:

APPENDIX III

CALIBRATION OF CARBON TETRACHLORIDE MANOMETER

Manometer Reading

inches cc14

0.04

0.16

0.35

0.63

0.99

1.19

1. 33

1. 42

1. 51

1. 67

1. 83

1. 93

2.22

HCl Gas Flow Rate

ft 3HC1/hr

10

20

30

40

50

55

58

60

62

65

68

70

75

Calibration calculated from following equation:

inches cc1 4 = 12 (q) 2 (1 - B4) (density of HCl)

2 (C) 2

(Y) 2

(Athroat) 2

(g) (density of tel 4)

q = HCl rate in ft 3/sec

B = orifice to line diameter ratio

C = coefficient of discharge (dimensionless) = 0.61

Y = expansion factor (dimensionless) = 1.00

Athroat = orifice throat area in ft 2

g = gravity constant

-71-

Page 79: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

1.! i

!·: '

' i• :ti I' :,· ii

I!' 1, , . I 'l· .!··· ' ii i :,: I'·: I! • I ' l; : . •.

··1-; -~·~-·r····· : : ~-: ;.· ' .... : ' . • • • • . I

~f --·-, ·----+

, l;:; 1·•;-'. .... -1-:-J-1·-t-+-+-, L. '.- -1-1 .·,· 1, : .. t +-t·· ·i·i --~-+

1---····'"·i+··,--1 .. 1 -r· h·H

I.' '1 ] ··r 1 ·· .. '. l. . 7. /· ~- . ' ·• +· '··r /-. - . .J.--j- t I _j ' I I ' ' I I I . '

MANOMETER

11 --: :....;_: .i.-+: Tr~ : .: . . > . ~ -'. : : ; :· , : 0

j : '. . : · , ••• I

1 .. : I .... 1

.. I I

I

. . I . . --IS -- -·~; -·- -

• . I

-t:1----·' -·--· I

READ ING ' I l •• i. . : . .. . . ~-- . I ; ., i ·1· Lt. l .. 1 , ..• 1 • , f . : . : , · : i +·

Vs . !.) .....•. I' I '. t' I . ., ..•. I , , -.-t--- ·t--...:. . ...;.·-1-.........6-.-0>--...-,__

•· , • -I • .• I· J • • , ' .. ' ·r I • · 1 . . ... ,, . -l : ·• _ ! + r '. ..... , . . . . . .. __ . . , . . . . . . ';--l i- ~ ' . ' ., : I . . ' . I . • I . . . . . ' . ' ·: f ,_ .• I .I .... ,. • . . . I ' . I . . . . . ' : - : ' .: I·. : .•

...,___,___,---7+' -~-- ~-l I _;__._j I • ... ... _' : I •.•• I . ' .. i . ; I I

• ' I I . ; I ·•- i . ·1 .• :, ._, I · .. •. '... . . . I . . . • • ; _ j • j .! t ' ' ' ' ' ' t -~ . ·-~·-· . I ~ . . ' I • : • ,. • • ·-

• ---~---··- . , •. f-•-•; , .. ~- I.,--,~-,-. ,1 j .... I . . . ' ' . - . t- • • j . . ' I ' . . ' I • • I . . . ' . I • • ' •.

I ! :,1 ... ,. ,,,, .!,,,~••·•·•• I ' . . . : ... · I ; : .. i. . ; , .....

I • I

. I HCl RATE • I

I .• I • . . I , .

: · ; ···--:1-~---:1

_ • l '.J ;---- .- ~-: r--~-1~-: · ,~-. · :· I/,! •.. ,.,! ... ' I '4·••••

·\{ . ·-. ··-- -~ ··- ----~ - --~~ ___ : __ _[_:_ ' . . -+----· ~)-~ ··-t' _· ~-~-- . -~~ ~ I . ' I . . .. I I . I ' . ' . I . : ; ·l

.. I : I . I I . ! I j I . I . . I .. ' • I .. '.! I i • : ; I . I . . l . . . ! i . I . I ... I .... ! .. : I : ... I .. ! ..... ' . . . . , - . 'I ~s- ------- ··---· -----r--- -----··-------1---------.. ·--·--- J....-----1------ - ---- ---i-----··---.J...--------,.--- i . I

I i . I . I . . . I . I . . . ' . I . . . . . .. . I I·.. i I ' . . . i . · 1 ... : ....... . I , ... ,. ·! I··:· ·····1•·j

.1. I-~·'··· I .. ··I···· .. ·I······ i- ; ---i-··-----, ----t--- ·--!--··--<-· ' j . . I I

\ : I •• : I ·: : :: '1 : : : : '·: : : -~-i I.~ ·-· ___ ; ______ J _____ --'.----:----~-- __ :_ __ ~,: ~-i: :.+.:.--+~:1

·i . I . I ' • . I • • ; • I . .! I . ! j... . . , . I ·1 ' j f . • . ' ' I . . I I I * • :, i- -fl . ·-- _, ----· -·-- ·---·+···-- -+-----··'-·--· .. ··-+. ··--- ~---··--+- ---· - . ___ ) : . • ' . I ' i. ; . .. I I I . I '.· : ... I .. 1·· l ... +d ..... / .. i I I ••• , -·~1 J . : . · 1: : · 1 ·:. -l: ... I .. ::!:: : .: : . , ... : . I ... i . : :t: : :\: .. , i-1.1 ----i----; _ __j______ -~~---1---+- r---- - -i

: I ...::.L I :L [ __ lllt .... ft1 i ...JS : ' .. I . i . . .. . j.. .., . ; . ,.. ... . ... '..' . ! . '.' I ........ . i I . . . .. . . . . . . . . . . . . . . . . . . i .... l ...... I ... ! . ' .. I .. I ~ I : • • • :. • . .. . • • ' . . I . .. j : .. • .. i . ··· ····j· ·'I~···,. ···I•,,., .. , ... ···'····!·· ~ · . ·:~ -:--··-:--:-~---.. - . . . ,-. -_ .. -: . ---~--·---i·~--------i-·--·:-·,-·-~--i ----', : : · : : I:·• . : I · : . · 1 · · .. ·

1 • : : • : • : : - • : • I · . · . ( . ! -.. : · : · : 1 . .

. . : I . ' I . ! . . . I .... i . . . . . . i . . . i . . .. : ... I .. I . . I : ·--~ · · J"--"i- -~-1-~-:~-:--~ ---·---r · · I ---. · ;·-- .. : --· ~-r-- ----~--- ·- t· - ---1-:-:- ·: . • : : I : : : . I : . . I . . ~ : . : : : I :. : . : I : : . : I ~ . . . i . : . ! . ' : i . . . . I : : ; ~-~±-'. ~--~-;~ ___ :_)_· .. ~-+-~~1-· ·-r::· I. . . +:_: ___ : _:___· _;_~---~..:.~---~-J-~.--:..t _ _:_· I ... l .. ·j .. 1·· .... ,;, ..... ! .. : . :· . : ,'. .. : .,. 1 . . ' . . . .. .. : . . . . I . . . . .. . . . ·• . ' . ! . . . . I ' t I I .. ·-·. : ·.· .. . I ... i ...... I.'. i.. I. I . . 'I . : ... ,

~~-.. -~-~ __ j __ ~i-~+---:_:_ -~-~..:.f· .J· i...:___:__~11 ____ .. - L ·-·---/---~ -~---t..:.--~· '--·-+·-~-'.-~ . • ,' ' I ~ . . . . I . . I j • • • • ••• ' I . . . I . . .. ' . I . . . . . . ' . I ' .. ' .... : ' : . I . ! . . . . I . . . ' : . . . I . : . " . I • • . I • I •••.. , •.•.•.. : '. ' • . . . I ... , ... ! .... ,· . ' . . . .. I .. ' • . . . . . . . t . . . . . . I I : . . I . .. ' . . I _-Cl.______ --·-·t··--·-- ·-t·--- -·-----+-----· +--------. -------t-1---··r·---1 ••• ' I • . • • . . ... I . . .. . .. '· .... I ' . . I . I . . . I . •· l . . . . . . . - ; ... I

... , . . · 1 · ... I .... , . . . , .. I·· . . . . I .... : . ,' •· _,_ 0 '"j

1 ,. l I i .. •.• . ·• . . . .. ·•· . • . ' • ' . . • . . . . . . · 1 . ' . ; . . ' I . • • • . .. ... . . . .... : .; .• : :··· . . . ... i .. · · · · · .. i · · · - · · f. ···I

I

--!·--·--··-·- ~- .. ~-- -!-

. . . . 't- ! . . ... :

· · . • 11

··• · I ..... ,- ...... . ---1------r...._·t ·-·

• ' ·::.: . : I : : : : I : · ,., .. ;~.'. :· i::; :1.:..

SO .. .S . . . . . 60 . 6.S. . i . ,., .... L n , . ··I .. · .. · · t I· .. ' · · . . · ... l HCl FLOW MTE 1-~-b: 1-..:..~..:_~ ·3· ·

ft 3/hr : :·::: j :£:::.: :-: :·! :_-: :.~-' • : • I • .. i · • • ·•· : i · · · ·•

~ .. --'--- --- ...i .. - __t__.

-72-

Page 80: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

....... __ , ·- -~ - ···-·

APPENDIX III

SELECTED OPERATING VALUES FOR HCl FLOW

ne Pressure

psig

14

16

18

20

23

i 2 5 .J

j I 28 l :j 1

30

Manometer Reading

inches CC1 4

l. 0

l. 2

l. 4

l. 6

l. 8

2. 0

2.2

2.2

-73-

Volumetric HCl Rate

SCF/hr HCl

50.3

55.3

59.5

63.8

67.5

71.1

74.6

74.6

Mass HCl Rate

lb/hr HCl

4.68

5.14

5.53

5.93

6.28

6.61

6.94

6.94

Page 81: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

' I 'I

'i 1; .. I ii, ! ; ~ ·1 r ,i' 1

if. !' ,. ,; I ·: :j. I. I ;1· l !' ; I :

APPENDIX III

OPERATING INLET CONCENTRATIONS OF HCl

Line Pressure % HCl in INLET GAS

psig % by volume

14 0.280

16 0.274

18 0.276

20 0.280

23 0.274

25 0.279

·28 0.280

30 0.271

' -74-

Page 82: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

APPENDIX III

WATER FLOW RATES THROUGH SCRUBBER

Line Pressure Water Rate Water Rate

Ii I psig gallons/minute 3 ft /second

I

1, 14 35.7 0.0800 I; I

16 36.7 0.0820

18 37.7 0.0840

20 38.7 0.0861

22 39.7 0.0883

24 40.7 0.0905

26 41.6 0.0925

28 42.6 0.0947

30 43.6 0.0969

32 44.6 0.0991

34 45.5 0.1013

-75-

Page 83: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

' I

,.

i I

I

! I

I I·

I I

I

;I ·,

: I I

' !J;'

,;,_:

'j' :i '1

i 1.l! i~.,

-~-i-·---r ····· ·- ·trNE -F3t!TTD1:l·--·..; .. -w·K"rm:,,:r."'li11r:~mt:l':--T-~--·p-~-, I,' , '.' • 1 · , ' Llr.l\.C, v~. •' .ii..+-J;W. '. _.,. I j' J.Jllj':,' '": ! , ',: I : ; : : ': ; : :, ; ';:: : : : : '; .. I ' I I I I ' I . I • ,.. • ' • • • ' .. • •• ·I· .. I, · · I · · ' · . · : · · · i · · , · : 1 • ' • · • • i · · · : · · '. .. I · · .. · : I · · · ! : · . : · : : r: I : ~ ! : ::

I I I , ' · · ' · I I I · ' ' . . .. . . ... . --·-·(·· :. ..,.... ., : .. :---+-··'.·-·:r··"····; ... ··:-·- ··-:-(···-~--[~~-:~\ ! I· . :. I ! I . · l:. :I

·j·· ·% :·· I. T ··!-· ... .;:- ···"; ... _ .J ... I .J · 1· ••

, .. I

' ··-+------ .t.

' I

GPM) .. _:~

I ·-!·

-+--. .• ...; .• ___ ... __

I

I .. ,. '

.. ! ... '

' : I

: __ . ----L-----· ...... ·-I· .... . ! I I I

I. 1· ; I I ' " ' ; -~---r--·:ji ····· .. ·-1·· i I . ;

I ·: l ···--+--. ··-· i l 1 ' .···· .. \ .. ·Jf}

I . I ..... -... - ... ;

' . ., ' . . I.. . ,'}/ ·:-r:·::~tj

. , - •.... •!-•·-. ···-.

I .

..... ,J ____ . ; ___ _

I····•··

I ·t·

I

l-

·1

·I

.. I.

' - ~ .. I I

I

. ..... ,

• . ·: ·:. I I .. ; : I

! { " J. ·- ·- ~:.... . I . L...:. ; _ __:J i . . ! .. ' .

; · I ' · I

.. "1'

1-

i

' .. -f. I i I ··t··-.

! I I·

i' '

I

! . i I . I

. :_ ... ( __ .: ... --~- ...

I I I . '-· ·- .. -- . !"

f ! .

...... _! __ _ ... · 1

I I ... - r . -I

,.

' --;-·•

.. ' '

·i·

. :~i--1 :::. I

, . . I

-· _: .... i. - .. __ .J I . i

.:I 1· :

·-·· ---~ ___ )

I • 1 · .j T ··1

.. --. ; . -· ... --! ' .:!

i i ., -·---1 i

,j

I ~J

I I

.1 . ········-···-i

I i I

... J

. ····· .J '

' I .J

\:.: . .3S'--_.... _ _._, ---~:o__;,..~---1.-.....-. ---... -,;..: -3~ ,-·"1 __ _..=>lL.-· .-_;_ __ :.i ____ ; ____ ... ...: ... ti ·---'~ I~ ... ·u , , l(> ~(, '-) 31 v.l I . I :

I i, t··

t • • I

--.... .l. __ .... LINE PRESSURE (PSIG)

-76-

Page 84: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

Ii i

APPENDIX III

SELECTION OF LIQUID SAMPLE TITRANT CONCENTRATIONS

Separator Tank has 196 liters liquid= 433 lb H2o

HCl has a molecular weight of 36.45 gm/gm-mole

Possible HCl concentrations in separator tank:

LB HCl Gm-Moles HCl Cone. of HCl in Tank , in Tank in Tank

1. 0 12.4 0.0633

2.0 24. 8 0.127

3.0 37.2 0.190

4.0 49. 6 0.253

5.0 62.0 0.317

6.0 74.4 0.380

7. 0 86.8 0.443

8.0 99.2 0.507

Sample size will be 15 ml

Want titrant used to be in range of 30 to 120 ml, preferrably

in range of 50 to 90 ml

Therefore use:

a) .10 M NaOH for 5 to 8 lbs HCl expected

b) .OS M NaOII for 3 to 5 lbs HCl expected

c) .02 M NaOH for 0 to 3 lbs HCl expected

-77-

Page 85: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

I

/1 I

,I l' :11

i ' l : ,i· 1 If I :i Li 1 ; t' f:

'·'

:ft:------·----·

··-r·-----r-·-r-·r--- ,--·. -· - ........ ··-··- .. -1··-··--·· 1~·--r-·-T·--..--n7r: ... .----r-JG1 , , '1 ••I t , , • , , I ,I • • ••, , I !•••• ••• ,, , • • 1• • ,,1, ••• I

I . ' ' ' I I ' I ' I ' ' I,., '. ''' ' ·1 ., "' '"' ... ,

: '.,' ·1 ' I ' : • I ... '. " ".. ' ' '. '•'"I'., , . : ' , , : . • , , I : , 1 ! : : ' ! ' , • I ' t ! • : '. ) • • ; • • I • • : I ; ~ ;_~ . I ., I· ' ' I I I I " l ·1 .. . · I , : ' , · .. ·1. · .. :. : .. . ..... ...... . , . . . .. ---·-··. l. .. ____ ..... - .~-E • • , • r •••••••

~ .C, ·--· ,-··-·:.

~ '7 '

·1 ·

I . i·

i .... I.

I

i I

-ri ___ ; ___ :_ ' . - . . •• t ··- -- •..

I

i. ' ~+a .. ·--~- -~~--- '. .... :- .. I , I

'' ' . -:-- ... -· -r- .. ··-· ;_ .. i I ' I

-- , - •• I • . •-· -~ • -

. I I

. . I I

I I

'

. I .,

~h1 ·--~---:j .. _:_. I

EQUILIBRIUM CURVE

FOR HCl

·•·-' l

I l

. r- -- ... -

I

.... •----~I -·-··· .. '. ' . '. .1

' ' '

!··

.. j ..

I : I I I I

-!---·- .... l. I

I . : !

;

I ,.

,,

L_ .. __ _!

i ' t• -·- ••• ·-+·. -·.

i I

I .i ..

' . ' ·1 -1.% - ··--:+.

I. I j

.L. ······· ·1 I l

. i i . I

l · .1 . I .

. ~q ___ ;~-- I_: .. :.'.··+·-·· . ' I '

. "I i : , .. . I --r··--.· .... : ....... . i I" . l

I. I

I ' I - -· ·"T'""······· .•. t····--·· ····-•······ ....

I • · I I ' ' ' !

-··; -'l ... .. i ' I .. : . . I . . .,. . . : 1 i . . I 1· _:

-... _ ••.•..• L .•....... l

I "I

. ,..j····:·· T I

i t· ...

i : ·-···~·-·-·; .. , . .. . . . . ....... I

·'t .. 3

logy= log_ p

··--j· I

'Range of

I •.. !-

I

I I

, I

I ,.

; : 1 ·: '.: :: : : l . . . ; : : . : ~ ; ·+:- ·(L.:_: . I • ~:. : . :· JI: T ·l,

: I • . ~ .... I . ... 0 I••. ·~-:--·1

l . : . ' ''

' .1--~--~ I • •

I .. :

.?i .... -:--11 ' I

· 1 · .. ,. . . . I . . . I

inlet gas concentrations

0 • • I

~-ii- - . to .... - Ii

: ' i·

I

. •••• !

.. , I

! •

-1

I

• f ---·

·-' I

... -,

' t - •.. -··

I

I

•·

-I

1· I i

, I f-.-0-· .. : ·-:~~

.! . , : I f' , .. ::.i ._ log

. •+1-. X

I L 1.j :~

. : I ..

i

1-+···:· .. :: ·: I i ~ ' .. 1 ... •'LJ --~- -I

I

t9:·

.. ·1

., I I

2.0 .. --- J

'!

.., ... ti

0 .

Page 86: Absorption in Jet-Venturi scrubbers · 2020. 7. 29. · jet-venturi scrubber can . The jet-venturi scrubber, however, has many advantages as The high velocity liquid stream eliminates

i:.i I . ~ I

·1' I

,1 i i;! 'I ,:) j·

:i; ti' !,, ' I., I'

'·/

i I' il i ,: : '

.! 1 ': I

NAME:

DATE OF BIRTH:

PLACE OF BIRTH:

PARENTS NAMES:

MARITAL STATUS:

EDUCATION:

Elementary:

High School:

University:

DEGREE:

PROFESSIONAL EXPERIENCE:

VITA

Mark Richman

February 7, 1952

Queens, New York

Donald and Beatrice Richman

Single

Rufus King Public School, Queens, New York

George J. Ryan Junior High School Queens, New York

Francis Lewis High School, Queens, New York

Polytechnic Institute of Brooklyn

Bachelor of Science in Chemical Engineering June, 1972

Presently employed as a Development Engineer with

Cottrell Environmental Sciences, a division of Research-Cottrell, Inc.

-79-