Absolute Electron and Positron Fluxes from … Electron and Positron Fluxes from PAMELA/Fermi as...

43
Absolute Electron and Positron Fluxes from PAMELA/Fermi as Indirect Detection of Dark Matter ? NARENDRA SAHU e-mail: [email protected] Service de Physique Theorique, University Libre de Bruxelles, 1050 Brussels, Belgium

Transcript of Absolute Electron and Positron Fluxes from … Electron and Positron Fluxes from PAMELA/Fermi as...

Absolute Electron and Positron Fluxes

from PAMELA/Fermi as

Indirect Detection of Dark Matter ?

NARENDRA SAHU

e-mail: [email protected]

Service de Physique Theorique, UniversityLibre de Bruxelles,

1050 Brussels, Belgium

Interpretationof

Electron and Positron Data

AMS, HEAT, PAMELA Positron Excess ?

1 10 100 1000E(GeV)

0.01

0.1

1

AMSMoskalenko and Strong: Apj, 1998 & Baltz and Edsjo, PRD,1999

HEATPAMELA

Background ?

Φ /

Φ +

Φe+

e+e-

HESS, ATIC, PPB-BETS and FermiLATe− + e+ excess ?

1 10 100 1000E(GeV)

0.001

0.01

0.1Moskalenko and Strong, Apj, 1998

HESS:08ATIC:08PPB-BETS:08HESS:09Fermi:09

Φ

E3

(GeV

2 cm

-2 s

-1Sr

-1)

(e- +

e+)

Background ?

Absolute e+ and e− fluxes

Φe+ =

(

Φe+

Φe− + Φe+

)

PAMELA

×(

Φe− + Φe+

)

Fermi

Φe− =(

Φe− + Φe+

)

Fermi− Φe+

Ref. Balazs, Sahu, Mazumdar, [arXiv:0905.4302], JCAP2009

Uncertainty in absolute e− and e+ fluxes

(δΦe+)2 = (Φe+)2×

(

δ(Φe+/(Φe− + Φe+))

Φe+/(Φe− + Φe+)

)2

+

(

δ(Φe− + Φe+)

Φe− + Φe+

)2

(δΦe−)2 =(

δΦe−+e+

)2+(

δΦe+

)2

Ref. Balazs, Sahu, Mazumdar, [arXiv:0905.4302], JCAP2009

10 100E(GeV)

1e-05

0.0001

0.001

0.01

0.1

Φ(G

eV2 c

m-2

s-1 S

r-1)

(e+)ext(e

+)sec

(e-)tot

(e-)tot

(e-)ext

E3

bkg

bkg

rbkg

Ref. Balazs, Sahu and Mazumdar, JCAP 2009Background Uncertainty : T.Delahaye et.al arXiv:0809.5268

10 100E(GeV)

1e-08

1e-06

0.0001

(G

eV-1

cm

-2 s

-1 S

r-1)

Φ = A Eα

α=−2.65e

+

Φ e+

Does PAMELA Positron Fractionis an excess ?

101

102

10−2

10−1

Kinetic Energy [GeV]

e+/(

e++

e−)

e+upper bound

/(e++e−) FERMI Φ=450 MeV

e+upper bound

/(e++e−) ATIC Φ=450 MeV

e+upper bound

/(e++e−) HEAT Φ=712 MeV

e+upper bound

/(e++e−) AMS01 Φ=400 MeV

PAMELA e+/(e++e−)

Katz, Blum and Waxman, arXiv: 0907.1686

10 100E(GeV)

1e-05

0.0001

0.001

0.01

0.1

Φ(G

eV2 c

m-2

s-1 S

r-1)

(e+)ext

(e+)sec

E3

MS-bkg

(e+

) KBW-bkg sec

Dark Matterand

Indirect Detection

Absolute e± fluxes and Dark Matter

• If DM couples to visible sector then it can explain theobserved positron excess through annihilation or decay.

e +

e −DM

DM

〈σ|v|〉ann = B × 〈σ|v|〉canonical

〈σ|v|〉canonical ≈ 3 × 10−26cm3/sec

Absolute e± fluxes and Dark Matter

DM ν

e−e+

τDM ≈ 108−9τ0 where τ0= Age of the universe.

Note: Annihilation/Decay of DM produces equal positronsand electrons. Since the background of electrons is signifi-cantly larger than positrons, it is worth looking for signatureof DM, if any, in the cosmic ray positrons.

Propagation Equation for e± in the Galaxy

∂tfe+(E,~r, t) = Ke+(E)∇2fe+(E,~r, t)

+∂

∂t[b(E)fe+(E,~r, t)] + Q(E,~r)

Moskalenko and Strong, APJ, 1998

Baltz and Edsjo, PRD, 59, 1999

• fe+ = Number density of positrons per unit energy E

• Ke+ = diffusion constant, obtained by comparing the

measurement of B/C in the cosmic rays and the cosmic rayssimulation result in which the diffusion model is used.

• b(E) = Energy Loss Rate, mostly due to the inversecompton scattering with CMBR and star light, and the syn-chroton radiation with the Galactic magnetic field.

• The positron source term for DM:

(1) In case of annihilation:

Q(E,~r) =1

2n2DM〈σDM|vrel|〉

dNe+

dE

(2) In case of Decay:

Q(E,~r) = nDMΓDMdNe+

dE

Solution of Propagation Equation of e±

• It is plausible that the positrons from DM annihilation/decayare in equilibrium in the present universe. Which implies:

∂tfe+(E,~r, t) = 0

• Then by using cylindrical co-ordinates and using the factthat fe+ vanishes at the boundary, one can solve the diffu-sion equation:

Ke+(E)∇2fe+(E,~r) +∂

∂t[b(E)fe+(E,~r)]

+Q(E,~r) = 0

In case of stable DM, one gets the total positron flux:

Φe+(E,~r⊙) =ve+

4πb(E)(nDM)2⊙〈σDM|vrel|〉×

∫ MDM

EdE′dNe+

dE′I(λD(E, E′))

where

(1) λD(E, E′)= Diffusion length from energy E′ to E

(2) I(λD(E, E′)) = Halo function, which is independentof particle physics.

Delahaye et. al., PRD, 77, 2008

Cirelli, Franceschini, Strumia, NPB, 800, 2008.

Hisano et.al. PRD, 76, 2006

In case of unstable DM, one gets the total positron flux:

Φe+(E,~r⊙) =ve+

4πMDMτDM×

∫ MDM

EdE′Ge+(E, E′)

dNe+

dE′

where Ge+(E, E′) = Diffusion function, which is indepen-dent of particle physics.

Ibarra and Tran, JCAP, 2008

Note: Depending on the height of Galactic plane [≤ 1 kpc(MIN), ≤ 4 kpc (MED), ≤ 15 kpc (MAX)] and the na-ture of halo function [NFW, Einasto, Isothermal] the finalflux may vary.

Positron Excessthrough

annihilation/decay of DM

e± fluxes from DM → µ+µ−

10 100 1000E(GeV)

0.001

0.01

0.1E

3

(

GeV

2 cm

-2 s

-1 S

r-1) FERMI:09

HESS:08PPB-BETS:08ATIC:08

Background

Φ e+ + e

-

B= 5.3 × 103 [MED-model, NFW profile]

10 100 1000E(GeV)

1e-05

0.0001

0.001

0.01

E3

(

GeV

2 cm

-2 s

-1 S

r-1)

PAMELA-FERMI

Φ e+ Background

B= 5.3 × 103 [MED model, NFW profile]

e± fluxes from DM → τ+τ−

10 100 1000E(GeV)

0.001

0.01

0.1E

3

(

GeV

2 cm

-2 s

-1 S

r-1) FERMI:09

HESS:08PPB-BETS:08ATIC:08

Background

Φ e+ + e

-

B=6.7 × 103 [MED model, NFW profile]

10 100 1000E(GeV)

1e-05

0.0001

0.001

0.01

E3

(G

eV2 c

m-2

s-1

Sr-1

) FERMI-PAMELA

Φ e+ Background

B=5.3 × 103 [MED model, NFW profile]

e± fluxes from DM → τ+τ−ν

1 10 100 1000E(GeV)

0.001

0.01

0.1

E3

(G

eV2 c

m-2

s-1

Sr-1

)

FermiHESS:08HESS:09ATIC:08PPP-BETS:08

Background

Φe+

+ e

-

τDM = 4.0 × 1025s [MED model, NFW profile]

e± fluxes from DM → τ+τ−ν

1 10 100 1000E(GeV)

0.001

0.01

0.1

1PAMELAHEATAMS

Background

Φ

/(Φ +

Φ

)e+

e-e+

τDM = 4.0 × 1025s [MED model, NFW profile]

Fermi/PAMELA excesses and Lesson

from DM annihilation/decay

• In case of stable DM, to explain PAMELA and Fermiexcesses one needs

〈σDM|vrel|〉 = O(103)〈σDM|vrel|〉canonical

• In case of unstable DM, to explain PAMELA and Fermiexcesses one needs

τDM = O(109) × τ0where τ0 = Age of the Universe.

• DM should annihilate/decay to leptons and not to hadronsupto 100 GeV (current limit).

Sommerfeld Enhancement

DM

DM φ

φ

Sommerfeld Enhancement

x

Ref. Arkani-Hamed et.al, [0810.0713]Ref. Hisano et.al., PRL, 2005

Sommerfeld Enhancement

The attractive potential can be given as:

V = −λ2

4πre−mφr

At least one bound state requires:

Comptonwavelength >

(

λ2

4πMDM

)−1

0.2 0.4 0.6 0.8 1.0λ

10-5

10-4

10-3

10-2

mφ/

σ = 150 km/s

10

100

1000

101

102

103

S

Ref. Arkani-Hamed et.al, [0810.0713]

Boosted DM Annihilation withHiggs Portal Coupling to Hidden Sector

Visible Sector Hidden Sector

SM

fportal

H

S

χφ

DM

Ref. Kohri, McDonald and Sahu, [0905.1312]

Higgs Portal Model

• Upgrade SM to SU(2)L×U(1)Y ×U(1)hidden under

which S(1,0,3/2), χ(1,0,1) and φ(1,0,1) nontriv-ially transforms.

L ⊇ fportalH†H

(

S†S + φ†φ + χ†χ + φ†χ)

+fSφS†Sφ†φ + fSχS†Sχ†χ + fSχφS†Sχ†φ + h.c.

• Below 100 GeV χ acquires a vev and breaks U(1)hiddendown to a surviving Z2 symmetry under which S is odd,while rest of the fields are even.

Higgs Portal Model

• MeV scale mass of φ requires fportal ≈ 10−6.

• At least one bound state of S and φ requires

fSχφ>∼ 0.5

(

200MeV

)1/2 (MS

1TeV

)1/2(

100GeV

〈χ〉

)

• The coupling fportal ≪ fSχφ ensures that antiproton

fluxes from S†S annihilation is suppressed.

Non-thermal DM and Boost Factor

Ref. Kohri, Mazumdar, Sahu and Stephens, PRD (Rapid),2009

Non-thermal DM and Boost Factor

Boost factor can be given as:

B ≈〈σ|v|〉

〈σ|v|〉canonical

Relic abundance can be obtained as:

YDM = Yth + Ynth ≈ Ynth

BBN Constraints on DM cross-section

In case of DMDM → µ+µ−

〈σ|v|〉 ≤ 1.0 × 10−21cm3/s ×

(

MDM

1TeV

)−1

In case of DMDM → τ+τ−

〈σ|v|〉 ≤ 1.2 × 10−21cm3/s ×

(

MDM

1TeV

)−1

Ref. Hisano et.al 0901.3582[hep-ph]

CMB Constraints on DM cross-section

Ruled out by WMAP5

Planckforecast CVL

12

34

5

6 7

8

910

1112

13 1 XDM µ+µ- 2500 GeV, BF = 2300 2 µ+µ- 1500 GeV, BF = 1100 3 XDM µ+µ- 2500 GeV, BF = 1000 4 XDM e+e- 1000 GeV, BF = 300 5 XDM 4:4:1 1000 GeV, BF = 420 6 e+e- 700 GeV, BF = 220 7 µ+µ- 1500 GeV, BF = 560 8 XDM 1:1:2 1500 GeV, BF = 400 9 XDM µ+µ- 400 GeV, BF = 11010 µ+µ- 250 GeV, BF = 8111 W+W- 200 GeV, BF = 6612 XDM e+e- 150 GeV, BF = 1613 e+e- 100 GeV, BF = 10

Slatyer, Padmanabhan and Finkbeiner, arXiv: 0906.1197Galli, Iocco,Bertone,Melchiorri, arXiv: 0905.0003

Dark Matterversus

Astrophysical Sources

Ref. P. Mertsch and S. Sarkar, PRL, 2009

Ref. P. Mertsch and S. Sarkar, PRL, 2009

Conclusions and Outlook

• Excess of absolute positron flux is still in question. Futuredata from PAMELA can confirm it.

• Annihilation and/or Decay of DM may be an interestingpossibility to explain the excess of absolute positron flux.Future data of secondary nuclei (B/C ratio) may provide aclue about it.

• A boost factor of O(1000) for stable DM and/or De-

caying DM with life time 109 × τ0 are required to explainthe observed positron excess.

• Higgs portal may be an interesting possibility and an alter-native to leptophilic model to explain positron flux withoutproducing excess of antiprotons.