ABAQUS Elements

26
25.1.3 Two-dimensional solid element library Products: Abaqus/Standard Abaqus/Explicit Abaqus/CAE References z Solid (continuum) elements, Section 25.1.1 z *SOLID SECTION Element types Plane strain elements Active degrees of freedom 1, 2 CPE3 3-node linear CPE3H (S) 3-node linear, hybrid with constant pressure CPE4 (S) 4-node bilinear CPE4H (S) 4-node bilinear, hybrid with constant pressure CPE4I (S) 4-node bilinear, incompatible modes CPE4IH (S) 4-node bilinear, incompatible modes, hybrid with linear pressure CPE4R 4-node bilinear, reduced integration with hourglass control CPE4RH (S) 4-node bilinear, reduced integration with hourglass control, hybrid with constant pressure CPE6 (S) 6-node quadratic CPE6H (S) 6-node quadratic, hybrid with linear pressure CPE6M 6-node modified, with hourglass control CPE6MH (S) 6-node modified, with hourglass control, hybrid with linear pressure CPE8 (S) 8-node biquadratic CPE8H (S) 8-node biquadratic, hybrid with linear pressure CPE8R (S) 8-node biquadratic, reduced integration CPE8RH (S) 8-node biquadratic, reduced integration, hybrid with linear pressure Page 1 of 26 25.1.3 Two-dimensional solid element library 3/15/2010 http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Transcript of ABAQUS Elements

Page 1: ABAQUS Elements

25.1.3 Two-dimensional solid element library

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CAE

References

“Solid (continuum) elements,” Section 25.1.1

*SOLID SECTION

Element types

Plane strain elements

Active degrees of freedom

1, 2

CPE3 3-node linear

CPE3H(S) 3-node linear, hybrid with constant pressure

CPE4(S) 4-node bilinear

CPE4H(S) 4-node bilinear, hybrid with constant pressure

CPE4I(S) 4-node bilinear, incompatible modes

CPE4IH(S) 4-node bilinear, incompatible modes, hybrid with linear pressure

CPE4R 4-node bilinear, reduced integration with hourglass control

CPE4RH(S) 4-node bilinear, reduced integration with hourglass control, hybrid with constant pressure

CPE6(S) 6-node quadratic

CPE6H(S) 6-node quadratic, hybrid with linear pressure

CPE6M 6-node modified, with hourglass control

CPE6MH(S) 6-node modified, with hourglass control, hybrid with linear pressure

CPE8(S) 8-node biquadratic

CPE8H(S) 8-node biquadratic, hybrid with linear pressure

CPE8R(S) 8-node biquadratic, reduced integration

CPE8RH(S) 8-node biquadratic, reduced integration, hybrid with linear pressure

Page 1 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 2: ABAQUS Elements

Additional solution variables

The constant pressure hybrid elements have one additional variable relating to pressure, and the linear pressure hybrid elements have three additional variables relating to pressure.

Element types CPE4I and CPE4IH have five additional variables relating to the incompatible modes.

Element types CPE6M and CPE6MH have two additional displacement variables.

Plane stress elements

Active degrees of freedom

1, 2

Additional solution variables

Element type CPS4I has four additional variables relating to the incompatible modes.

Element type CPS6M has two additional displacement variables.

Generalized plane strain elements

CPS3 3-node linear

CPS4(S) 4-node bilinear

CPS4I(S) 4-node bilinear, incompatible modes

CPS4R 4-node bilinear, reduced integration with hourglass control

CPS6(S) 6-node quadratic

CPS6M 6-node modified, with hourglass control

CPS8(S) 8-node biquadratic

CPS8R(S) 8-node biquadratic, reduced integration

CPEG3(S) 3-node linear triangle

CPEG3H(S) 3-node linear triangle, hybrid with constant pressure

CPEG4(S) 4-node bilinear quadrilateral

CPEG4H(S) 4-node bilinear quadrilateral, hybrid with constant pressure

CPEG4I(S) 4-node bilinear quadrilateral, incompatible modes

CPEG4IH(S) 4-node bilinear quadrilateral, incompatible modes, hybrid with linear pressure

CPEG4R(S) 4-node bilinear quadrilateral, reduced integration with

Page 2 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 3: ABAQUS Elements

Active degrees of freedom

1, 2 at all but the reference node

3, 4, 5 at the reference node

Additional solution variables

The constant pressure hybrid elements have one additional variable relating to pressure, and the linear pressure hybrid elements have three additional variables relating to pressure.

Element types CPEG4I and CPEG4IH have five additional variables relating to the incompatible modes.

Element types CPEG6M and CPEG6MH have two additional displacement variables.

Coupled temperature-displacement plane strain elements

hourglass control

CPEG4RH(S) 4-node bilinear quadrilateral, reduced integration with hourglass control, hybrid with constant pressure

CPEG6(S) 6-node quadratic triangle

CPEG6H(S) 6-node quadratic triangle, hybrid with linear pressure

CPEG6M(S) 6-node modified, with hourglass control

CPEG6MH(S) 6-node modified, with hourglass control, hybrid with linear pressure

CPEG8(S) 8-node biquadratic quadrilateral

CPEG8H(S) 8-node biquadratic quadrilateral, hybrid with linear pressure

CPEG8R(S) 8-node biquadratic quadrilateral, reduced integration

CPEG8RH(S) 8-node biquadratic quadrilateral, reduced integration, hybrid with linear pressure

CPE3T 3-node linear displacement and temperature

CPE4T(S) 4-node bilinear displacement and temperature

CPE4HT(S) 4-node bilinear displacement and temperature, hybrid with constant pressure

CPE4RT 4-node bilinear displacement and temperature, reduced integration with hourglass control

CPE4RHT(S) 4-node bilinear displacement and temperature, reduced integration with hourglass control, hybrid with constant pressure

Page 3 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 4: ABAQUS Elements

Active degrees of freedom

1, 2, 11 at corner nodes

1, 2 at midside nodes of second-order elements in Abaqus/Standard

1, 2, 11 at midside nodes of modified displacement and temperature elements in Abaqus/Standard

Additional solution variables

The constant pressure hybrid elements have one additional variable relating to pressure, and the linear pressure hybrid elements have three additional variables relating to pressure.

Element types CPE6MT and CPE6MHT have two additional displacement variables and one additional temperature variable.

Coupled temperature-displacement plane stress elements

Active degrees of freedom

1, 2, 11 at corner nodes

CPE6MT 6-node modified displacement and temperature, with hourglass control

CPE6MHT(S) 6-node modified displacement and temperature, with hourglass control, hybrid with constant pressure

CPE8T(S) 8-node biquadratic displacement, bilinear temperature

CPE8HT(S) 8-node biquadratic displacement, bilinear temperature, hybrid with linear pressure

CPE8RT(S) 8-node biquadratic displacement, bilinear temperature, reduced integration

CPE8RHT(S) 8-node biquadratic displacement, bilinear temperature, reduced integration, hybrid with linear pressure

CPS3T 3-node linear displacement and temperature

CPS4T(S) 4-node bilinear displacement and temperature

CPS4RT 4-node bilinear displacement and temperature, reduced integration with hourglass control

CPS6MT 6-node modified displacement and temperature, with hourglass control

CPS8T(S) 8-node biquadratic displacement, bilinear temperature

CPS8RT(S) 8-node biquadratic displacement, bilinear temperature, reduced integration

Page 4 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 5: ABAQUS Elements

1, 2 at midside nodes of second-order elements in Abaqus/Standard

1, 2, 11 at midside nodes of modified displacement and temperature elements in Abaqus/Standard

Additional solution variables

Element type CPS6MT has two additional displacement variables and one additional temperature variable.

Coupled temperature-displacement generalized plane strain elements

Active degrees of freedom

1, 2, 11 at corner nodes

1, 2 at midside nodes of second-order elements

1, 2, 11 at midside nodes of modified displacement and temperature elements

3, 4, 5 at the reference node

Additional solution variables

CPEG3T(S) 3-node linear displacement and temperature

CPEG3HT(S) 3-node linear displacement and temperature, hybrid with constant pressure

CPEG4T(S) 4-node bilinear displacement and temperature

CPEG4HT(S) 4-node bilinear displacement and temperature, hybrid with constant pressure

CPEG4RT(S) 4-node bilinear displacement and temperature, reduced integration with hourglass control

CPEG4RHT(S) 4-node bilinear displacement and temperature, reduced integration with hourglass control, hybrid with constant pressure

CPEG6MT(S) 6-node modified displacement and temperature, with hourglass control

CPEG6MHT(S) 6-node modified displacement and temperature, with hourglass control, hybrid with constant pressure

CPEG8T(S) 8-node biquadratic displacement, bilinear temperature

CPEG8HT(S) 8-node biquadratic displacement, bilinear temperature, hybrid with linear pressure

CPEG8RHT(S) 8-node biquadratic displacement, bilinear temperature, reduced integration, hybrid with linear pressure

Page 5 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 6: ABAQUS Elements

The constant pressure hybrid elements have one additional variable relating to pressure, and the linear pressure hybrid elements have three additional variables relating to pressure.

Element types CPEG6MT and CPEG6MHT have two additional displacement variables and one additional temperature variable.

Diffusive heat transfer or mass diffusion elements

Active degree of freedom

11

Additional solution variables

None.

Forced convection/diffusion elements

Active degree of freedom

11

Additional solution variables

None.

Coupled thermal-electrical elements

Active degrees of freedom

DC2D3(S) 3-node linear

DC2D4(S) 4-node linear

DC2D6(S) 6-node quadratic

DC2D8(S) 8-node biquadratic

DCC2D4(S) 4-node

DCC2D4D(S) 4-node with dispersion control

DC2D3E(S) 3-node linear

DC2D4E(S) 4-node linear

DC2D6E(S) 6-node quadratic

DC2D8E(S) 8-node biquadratic

Page 6 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 7: ABAQUS Elements

9, 11

Additional solution variables

None.

Pore pressure plane strain elements

Active degrees of freedom

1, 2, 8 at corner nodes

1, 2 at midside nodes for all elements except CPE6MP and CPE6MPH, which also have degree of freedom 8 active at midside nodes

Additional solution variables

The constant pressure hybrid elements have one additional variable relating to the effective pressure stress, and the linear pressure hybrid elements have three additional variables relating to the effective pressure stress to permit fully incompressible material modeling.

Element types CPE6MP and CPE6MPH have two additional displacement variables and one additional pore pressure variable.

Acoustic elements

CPE4P(S) 4-node bilinear displacement and pore pressure

CPE4PH(S) 4-node bilinear displacement and pore pressure, hybrid with constant pressure stress

CPE4RP(S) 4-node bilinear displacement and pore pressure, reduced integration with hourglass control

CPE4RPH(S) 4-node bilinear displacement and pore pressure, reduced integration with hourglass control, hybrid with constant pressure

CPE6MP(S) 6-node modified displacement and pore pressure, with hourglass control

CPE6MPH(S) 6-node modified displacement and pore pressure, with hourglass control, hybrid with linear pressure

CPE8P(S) 8-node biquadratic displacement, bilinear pore pressure

CPE8PH(S) 8-node biquadratic displacement, bilinear pore pressure, hybrid with linear pressure stress

CPE8RP(S) 8-node biquadratic displacement, bilinear pore pressure, reduced integration

CPE8RPH(S) 8-node biquadratic displacement, bilinear pore pressure, reduced integration, hybrid with linear pressure stress

Page 7 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 8: ABAQUS Elements

Active degree of freedom

8

Additional solution variables

None.

Piezoelectric plane strain elements

Active degrees of freedom

1, 2, 9

Additional solution variables

None.

Piezoelectric plane stress elements

Active degrees of freedom

AC2D3 3-node linear

AC2D4(S) 4-node bilinear

AC2D4R(E) 4-node bilinear, reduced integration with hourglass control

AC2D6(S) 6-node quadratic

AC2D8(S) 8-node biquadratic

CPE3E(S) 3-node linear

CPE4E(S) 4-node bilinear

CPE6E(S) 6-node quadratic

CPE8E(S) 8-node biquadratic

CPE8RE(S) 8-node biquadratic, reduced integration

CPS3E(S) 3-node linear

CPS4E(S) 4-node bilinear

CPS6E(S) 6-node quadratic

CPS8E(S) 8-node biquadratic

CPS8RE(S) 8-node biquadratic, reduced integration

Page 8 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 9: ABAQUS Elements

1, 2, 9

Additional solution variables

None.

Nodal coordinates required

X, Y

Element property definition

For all elements except generalized plane strain elements, you must provide the element thickness; by default, unit thickness is assumed.

For generalized plane strain elements, you must provide three values: the initial length of the axial material fiber through the reference node, the initial value of (in radians), and the initial value of

(in radians). If you do not provide these values, Abaqus assumes the default values of one unit as the initial length and zero for and . In addition, you must define the reference point for generalized plane strain elements.

Element-based loading

Distributed loads

Distributed loads are available for all elements with displacement degrees of freedom. They are specified as described in “Distributed loads,” Section 30.4.3.

Load ID (*DLOAD): BX Abaqus/CAE Load/Interaction: Body force

Input File Usage: Use the following option to define the element properties for all elements except generalized plane strain elements:*SOLID SECTION

Use the following option to define the element properties for generalized plane strain elements:

*SOLID SECTION, REF NODE=node number or node set name

Abaqus/CAE Usage: Property module: Create Section: select Solid as the section Category and Homogeneous or Generalized plane strain as the section Type Generalized plane strain sections must be assigned to regions of parts that have a reference point associated with them. To define the reference point:

Part module: Tools Reference Point: select reference point

Page 9 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 10: ABAQUS Elements

Units: FL–3 Description: Body force in global X-direction. Load ID (*DLOAD): BY Abaqus/CAE Load/Interaction: Body force Units: FL–3 Description: Body force in global Y-direction. Load ID (*DLOAD): BXNU Abaqus/CAE Load/Interaction: Body force Units: FL–3 Description: Nonuniform body force in global X-direction with magnitude supplied via user subroutine DLOAD in Abaqus/Standard and VDLOAD in Abaqus/Explicit. Load ID (*DLOAD): BYNU Abaqus/CAE Load/Interaction: Body force Units: FL–3 Description: Nonuniform body force in global Y-direction with magnitude supplied via user subroutine DLOAD in Abaqus/Standard and VDLOAD in Abaqus/Explicit. Load ID (*DLOAD): CENT(S) Abaqus/CAE Load/Interaction: Not supported Units: FL–4(ML–3T–2) Description: Centrifugal load (magnitude is input as , where is the mass density per unit volume, is the angular velocity). Not available for pore pressure elements. Load ID (*DLOAD): CENTRIF(S) Abaqus/CAE Load/Interaction: Rotational body force

Page 10 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 11: ABAQUS Elements

Units: T–2 Description: Centrifugal load (magnitude is input as , where is the angular velocity). Load ID (*DLOAD): CORIO(S) Abaqus/CAE Load/Interaction: Coriolis force Units: FL–4T (ML–3T–1) Description: Coriolis force (magnitude is input as , where is the mass density per unit volume, is the angular velocity). Not available for pore pressure elements. Load ID (*DLOAD): GRAV Abaqus/CAE Load/Interaction: Gravity Units: LT–2 Description: Gravity loading in a specified direction (magnitude is input as acceleration). Load ID (*DLOAD): HPn(S) Abaqus/CAE Load/Interaction: Not supported Units: FL–2 Description: Hydrostatic pressure on face n, linear in global Y. Load ID (*DLOAD): Pn Abaqus/CAE Load/Interaction: Pressure Units: FL–2 Description: Pressure on face n. Load ID (*DLOAD): PnNU Abaqus/CAE Load/Interaction: Not supported Units: FL–2 Description: Nonuniform pressure on face n with magnitude supplied via user subroutine DLOAD in

Page 11 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 12: ABAQUS Elements

Abaqus/Standard and VDLOAD in Abaqus/Explicit. Load ID (*DLOAD): ROTA(S) Abaqus/CAE Load/Interaction: Rotational body force Units: T–2 Description: Rotary acceleration load (magnitude is input as , where is the rotary acceleration). Load ID (*DLOAD): SBF(E) Abaqus/CAE Load/Interaction: Not supported Units: FL–5T2 Description: Stagnation body force in global X- and Y-directions. Load ID (*DLOAD): SPn(E) Abaqus/CAE Load/Interaction: Not supported Units: FL–4T2 Description: Stagnation pressure on face n. Load ID (*DLOAD): TRSHRn Abaqus/CAE Load/Interaction: Surface traction Units: FL–2 Description: Shear traction on face n. Load ID (*DLOAD): TRSHRnNU(S) Abaqus/CAE Load/Interaction: Not supported Units: FL–2 Description: Nonuniform shear traction on face n with magnitude and direction supplied via user subroutine UTRACLOAD.

Page 12 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 13: ABAQUS Elements

Load ID (*DLOAD): TRVECn Abaqus/CAE Load/Interaction: Surface traction Units: FL–2 Description: General traction on face n. Load ID (*DLOAD): TRVECnNU(S) Abaqus/CAE Load/Interaction: Not supported Units: FL–2 Description: Nonuniform general traction on face n with magnitude and direction supplied via user subroutine UTRACLOAD. Load ID (*DLOAD): VBF(E) Abaqus/CAE Load/Interaction: Not supported Units: FL–4T Description: Viscous body force in global X- and Y-directions. Load ID (*DLOAD): VPn(E) Abaqus/CAE Load/Interaction: Not supported Units: FL–3T Description: Viscous pressure on face n, applying a pressure proportional to the velocity normal to the face and opposing the motion. Foundations

Foundations are available for Abaqus/Standard elements with displacement degrees of freedom. They are specified as described in “Element foundations,” Section 2.2.2.

Load ID (*FOUNDATION): Fn(S) Abaqus/CAE Load/Interaction: Elastic foundation

Page 13 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 14: ABAQUS Elements

Units: FL–3 Description: Elastic foundation on face n. Distributed heat fluxes

Distributed heat fluxes are available for all elements with temperature degrees of freedom. They are specified as described in “Thermal loads,” Section 30.4.4.

Load ID (*DFLUX): BF Abaqus/CAE Load/Interaction: Body heat flux Units: JL–3T–1 Description: Heat body flux per unit volume. Load ID (*DFLUX): BFNU(S) Abaqus/CAE Load/Interaction: Body heat flux Units: JL–3T–1 Description: Nonuniform heat body flux per unit volume with magnitude supplied via user subroutine DFLUX. Load ID (*DFLUX): Sn Abaqus/CAE Load/Interaction: Surface heat flux Units: JL–2T–1 Description: Heat surface flux per unit area into face n. Load ID (*DFLUX): SnNU(S) Abaqus/CAE Load/Interaction: Not supported Units: JL–2T–1 Description: Nonuniform heat surface flux per unit area into face n with magnitude supplied via user subroutine DFLUX. Film conditions

Page 14 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 15: ABAQUS Elements

Film conditions are available for all elements with temperature degrees of freedom. They are specified as described in “Thermal loads,” Section 30.4.4.

Load ID (*FILM): Fn Abaqus/CAE Load/Interaction: Surface film condition Units: JL–2T–1 –1 Description: Film coefficient and sink temperature (units of ) provided on face n. Load ID (*FILM): FnNU(S) Abaqus/CAE Load/Interaction: Not supported Units: JL–2T–1 –1 Description: Nonuniform film coefficient and sink temperature (units of ) provided on face n with magnitude supplied via user subroutine FILM. Radiation types

Radiation conditions are available for all elements with temperature degrees of freedom. They are specified as described in “Thermal loads,” Section 30.4.4.

Load ID (*RADIATE): Rn Abaqus/CAE Load/Interaction: Surface radiation Units: Dimensionless Description: Emissivity and sink temperature (units of ) provided on face n. Distributed flows

Distributed flows are available for all elements with pore pressure degrees of freedom. They are specified as described in “Pore fluid flow,” Section 30.4.6.

Load ID (*FLOW/ *DFLOW): Qn(S) Abaqus/CAE Load/Interaction: Not supported Units: F–1L3T–1 Description: Seepage (outward normal flow) proportional to the difference between surface pore

Page 15 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 16: ABAQUS Elements

pressures and a reference sink pore pressure on face n (units of FL–2). Load ID (*FLOW/ *DFLOW): QnD(S) Abaqus/CAE Load/Interaction: Not supported Units: F–1L3T–1 Description: Drainage-only seepage (outward normal flow) proportional to the surface pore pressure on face n only when that pressure is positive. Load ID (*FLOW/ *DFLOW): QnNU(S) Abaqus/CAE Load/Interaction: Not supported Units: F–1L3T–1 Description: Nonuniform seepage (outward normal flow) proportional to the difference between surface pore pressures and a reference sink pore pressure on face n (units of FL–2) with magnitude supplied via user subroutine FLOW. Load ID (*FLOW/ *DFLOW): Sn(S) Abaqus/CAE Load/Interaction: Surface pore fluid Units: LT–1 Description: Prescribed pore fluid effective velocity (outward from the face) on face n. Load ID (*FLOW/ *DFLOW): SnNU(S) Abaqus/CAE Load/Interaction: Not supported Units: LT–1 Description: Nonuniform prescribed pore fluid effective velocity (outward from the face) on face n with magnitude supplied via user subroutine DFLOW. Distributed impedances

Distributed impedances are available for all elements with acoustic pressure degrees of freedom. They are specified as described in “Acoustic and shock loads,” Section 30.4.5.

Page 16 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 17: ABAQUS Elements

Load ID (*IMPEDANCE): In Abaqus/CAE Load/Interaction: Not supported Units: None Description: Name of the impedance property that defines the impedance on face n. Electric fluxes

Electric fluxes are available for piezoelectric elements. They are specified as described in “Piezoelectric analysis,” Section 6.6.3.

Load ID (*DECHARGE): EBF(S) Abaqus/CAE Load/Interaction: Body charge Units: CL–3 Description: Body flux per unit volume. Load ID (*DECHARGE): ESn(S) Abaqus/CAE Load/Interaction: Surface charge Units: CL–2 Description: Prescribed surface charge on face n. Distributed electric current densities

Distributed electric current densities are available for coupled thermal-electrical elements. They are specified as described in “Coupled thermal-electrical analysis,” Section 6.6.2.

Load ID (*DECURRENT): CBF(S) Abaqus/CAE Load/Interaction: Body current Units: CL–3T–1 Description: Volumetric current source density. Load ID (*DECURRENT): CSn(S) Abaqus/CAE Load/Interaction: Surface current

Page 17 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 18: ABAQUS Elements

Units: CL–2T–1 Description: Current density on face n. Distributed concentration fluxes

Distributed concentration fluxes are available for mass diffusion elements. They are specified as described in “Mass diffusion analysis,” Section 6.8.1.

Load ID (*DFLUX): BF(S) Abaqus/CAE Load/Interaction: Body concentration flux Units: PT–1 Description: Concentration body flux per unit volume. Load ID (*DFLUX): BFNU(S) Abaqus/CAE Load/Interaction: Body concentration flux Units: PT–1 Description: Nonuniform concentration body flux per unit volume with magnitude supplied via user subroutine DFLUX. Load ID (*DFLUX): Sn(S) Abaqus/CAE Load/Interaction: Surface concentration flux Units: PLT–1 Description: Concentration surface flux per unit area into face n. Load ID (*DFLUX): SnNU(S) Abaqus/CAE Load/Interaction: Surface concentration flux Units: PLT–1 Description: Nonuniform concentration surface flux per unit area into face n with magnitude supplied via user subroutine DFLUX.

Page 18 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 19: ABAQUS Elements

Surface-based loading

Distributed loads

Surface-based distributed loads are available for all elements with displacement degrees of freedom. They are specified as described in “Distributed loads,” Section 30.4.3.

Load ID (*DSLOAD): HP(S) Abaqus/CAE Load/Interaction: Pressure Units: FL–2 Description: Hydrostatic pressure on the element surface, linear in global Y. Load ID (*DSLOAD): P Abaqus/CAE Load/Interaction: Pressure Units: FL–2 Description: Pressure on the element surface. Load ID (*DSLOAD): PNU Abaqus/CAE Load/Interaction: Pressure Units: FL–2 Description: Nonuniform pressure on the element surface with magnitude supplied via user subroutine DLOAD in Abaqus/Standard and VDLOAD in Abaqus/Explicit. Load ID (*DSLOAD): SP(E) Abaqus/CAE Load/Interaction: Pressure Units: FL–4T2 Description: Stagnation pressure on the element surface. Load ID (*DSLOAD): TRSHR Abaqus/CAE Load/Interaction: Surface traction

Page 19 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 20: ABAQUS Elements

Units: FL–2 Description: Shear traction on the element surface. Load ID (*DSLOAD): TRSHRNU(S) Abaqus/CAE Load/Interaction: Surface traction Units: FL–2 Description: Nonuniform shear traction on the element surface with magnitude and direction supplied via user subroutine UTRACLOAD. Load ID (*DSLOAD): TRVEC Abaqus/CAE Load/Interaction: Surface traction Units: FL–2 Description: General traction on the element surface. Load ID (*DSLOAD): TRVECNU(S) Abaqus/CAE Load/Interaction: Surface traction Units: FL–2 Description: Nonuniform general traction on the element surface with magnitude and direction supplied via user subroutine UTRACLOAD. Load ID (*DSLOAD): VP(E) Abaqus/CAE Load/Interaction: Pressure Units: FL–3T Description: Viscous pressure on the element surface. The viscous pressure is proportional to the velocity normal to the element surface and opposing the motion. Distributed heat fluxes

Surface-based heat fluxes are available for all elements with temperature degrees of freedom. They are specified as described in “Thermal loads,” Section 30.4.4.

Page 20 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 21: ABAQUS Elements

Load ID (*DSFLUX): S Abaqus/CAE Load/Interaction: Surface heat flux Units: JL–2T–1 Description: Heat surface flux per unit area into the element surface. Load ID (*DSFLUX): SNU(S) Abaqus/CAE Load/Interaction: Surface heat flux Units: JL–2T–1 Description: Nonuniform heat surface flux per unit area applied on the element surface with magnitude supplied via user subroutine DFLUX. Film conditions

Surface-based film conditions are available for all elements with temperature degrees of freedom. They are specified as described in “Thermal loads,” Section 30.4.4.

Load ID (*SFILM): F Abaqus/CAE Load/Interaction: Surface film condition Units: JL–2T–1 –1 Description: Film coefficient and sink temperature (units of ) provided on the element surface. Load ID (*SFILM): FNU(S) Abaqus/CAE Load/Interaction: Surface film condition Units: JL–2T–1 –1 Description: Nonuniform film coefficient and sink temperature (units of ) provided on the element surface with magnitude supplied via user subroutine FILM. Radiation types

Surface-based radiation conditions are available for all elements with temperature degrees of freedom. They are specified as described in “Thermal loads,” Section 30.4.4.

Page 21 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 22: ABAQUS Elements

Load ID (*SRADIATE): R Abaqus/CAE Load/Interaction: Surface radiation Units: Dimensionless Description: Emissivity and sink temperature (units of ) provided on the element surface. Distributed flows

Surface-based flows are available for all elements with pore pressure degrees of freedom. They are specified as described in “Pore fluid flow,” Section 30.4.6.

Load ID (*SFLOW/ *DSFLOW): Q(S) Abaqus/CAE Load/Interaction: Not supported Units: F–1L3T–1 Description: Seepage (outward normal flow) proportional to the difference between surface pore pressures and a reference sink pore pressure on the element surface (units of FL–2). Load ID (*SFLOW/ *DSFLOW): QD(S) Abaqus/CAE Load/Interaction: Not supported Units: F–1L3T–1 Description: Drainage-only seepage (outward normal flow) proportional to the surface pore pressure on the element surface only when that pressure is positive. Load ID (*SFLOW/ *DSFLOW): QNU(S) Abaqus/CAE Load/Interaction: Not supported Units: F–1L3T–1 Description: Nonuniform seepage (outward normal flow) proportional to the difference between surface pore pressures and a reference sink pore pressure on the element surface (units of FL–2) with magnitude supplied via user subroutine FLOW. Load ID (*SFLOW/ *DSFLOW): S(S) Abaqus/CAE Load/Interaction: Surface pore fluid

Page 22 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 23: ABAQUS Elements

Units: LT–1 Description: Prescribed pore fluid effective velocity outward from the element surface. Load ID (*SFLOW/ *DSFLOW): SNU(S) Abaqus/CAE Load/Interaction: Surface pore fluid Units: LT–1 Description: Nonuniform prescribed pore fluid effective velocity (outward from the surface) on the element surface with magnitude supplied via user subroutine DFLOW. Distributed impedances

Surface-based impedances are available for all elements with acoustic pressure degrees of freedom. They are specified as described in “Acoustic and shock loads,” Section 30.4.5.

Incident wave loading

Surface-based incident wave loads are available for all elements with displacement degrees of freedom or acoustic pressure degrees of freedom. They are specified as described in “Acoustic and shock loads,” Section 30.4.5. If the incident wave field includes a reflection off a plane outside the boundaries of the mesh, this effect can be included.

Electric fluxes

Surface-based electric fluxes are available for piezoelectric elements. They are specified as described in “Piezoelectric analysis,” Section 6.6.3.

Load ID (*DSECHARGE): ES(S) Abaqus/CAE Load/Interaction: Surface charge Units: CL–2 Description: Prescribed surface charge on the element surface. Distributed electric current densities

Surface-based electric current densities are available for coupled thermal-electrical elements. They are specified as described in “Coupled thermal-electrical analysis,” Section 6.6.2.

Load ID (*DSECURRENT): CS(S)

Page 23 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 24: ABAQUS Elements

Abaqus/CAE Load/Interaction: Surface current Units: CL–2T–1 Description: Current density applied on the element surface. Element output

Output is in global directions unless a local coordinate system is assigned to the element through the section definition (“Orientations,” Section 2.2.5) in which case output is in the local coordinate system (which rotates with the motion in large-displacement analysis). See “State storage,” Section 1.5.4 of the Abaqus Theory Manual, for details.

Stress, strain, and other tensor components

Stress and other tensors (including strain tensors) are available for elements with displacement degrees of freedom. All tensors have the same components. For example, the stress components are as follows:

Heat flux components

Available for elements with temperature degrees of freedom.

Pore fluid velocity components

Available for elements with pore pressure degrees of freedom.

Mass concentration flux components

Available for elements with normalized concentration degrees of freedom.

Electrical potential gradient

Available for elements with electrical potential degrees of freedom.

S11 , direct stress. S22 , direct stress. S33 , direct stress (not available for plane stress elements). S12 , shear stress.

HFL1 Heat flux in the X-direction. HFL2 Heat flux in the Y-direction.

FLVEL1 Pore fluid effective velocity in the X-direction. FLVEL2 Pore fluid effective velocity in the Y-direction.

MFL1 Concentration flux in the X-direction. MFL2 Concentration flux in the Y-direction.

Page 24 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 25: ABAQUS Elements

Electrical flux components

Available for piezoelectric elements.

Electrical current density components

Available for coupled thermal-electrical elements.

Node ordering and face numbering on elements

For generalized plane strain elements, the reference node associated with each element (where the generalized plane strain degrees of freedom are stored) is not shown. The reference node should be the same for all elements in any given connected region so that the bounding planes are the same for that region. Different regions may have different reference nodes. The number of the reference node is not incremented when the elements are generated incrementally (see “Creating elements from existing elements by generating them incrementally” in “Element definition,” Section 2.2.1).

Triangular element faces

EPG1 Electrical potential gradient in the X-direction. EPG2 Electrical potential gradient in the Y-direction.

EFLX1 Electrical flux in the X-direction. EFLX2 Electrical flux in the Y-direction.

ECD1 Electrical current density in the X-direction. ECD2 Electrical current density in the Y-direction.

Face 1 1 – 2 faceFace 2 2 – 3 faceFace 3 3 – 1 face

Page 25 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html

Page 26: ABAQUS Elements

Quadrilateral element faces

Numbering of integration points for output

For heat transfer applications a different integration scheme is used for triangular elements, as described in “Triangular, tetrahedral, and wedge elements,” Section 3.2.6 of the Abaqus Theory Manual.

Face 1 1 – 2 faceFace 2 2 – 3 faceFace 3 3 – 4 faceFace 4 4 – 1 face

Page 26 of 2625.1.3 Two-dimensional solid element library

3/15/2010http://210kim:2080/v6.9ef/books/usb/pt06ch25s01ael02.html