AASHTO Rigid Design I

download AASHTO Rigid Design I

of 11

Transcript of AASHTO Rigid Design I

  • 8/3/2019 AASHTO Rigid Design I

    1/11

    AASHTO Rigid PavementDesign Procedure

    Reference:AASHTO Guide for the Designof Pavement Structures, 1993

    Rigid Pavement Types

    JPCP

    JRCP

    CRCP

    Design Methods withProvisions for Establishing

    PCC Slab Thickness Reinforcing Steel Requirements Joint Design

  • 8/3/2019 AASHTO Rigid Design I

    2/11

    AASHTO Pavement Design

    History 1959 (guidelines)

    1961, 1972, 1986, 1993, 20XX Basis

    AASHO Road Test (1958-60) Ottawa, IL Regression analysis, accelerated loading,flexible & rigid

    AASHO Road Test

    Experimental design 200 combinations of surfacethickness & subbase Surface: 2.5-12 in Granular subbase: 0-9 in

    AASHTO Design

    Design criteria smoothness, cracking, & patching

    Limitations Pavement materials & subgrade 2 yr testing Identical axle loads & configurations

    PSI=5.411.78log(1+SV)0.09(C+P)0.5

  • 8/3/2019 AASHTO Rigid Design I

    3/11

    AASHTO Design

    Determine Slab Thickness, D D = f(PSI,W18,R,S0,k,Ec,Sc,J,Cd)

    D

    Subgrade (SG)

    PCC surface

    SubbaseDsb

    Serviceability Concept Pavements ability to Serve the typeof Traffic Using the Facility

    PSI = Po - Pt

    Time

    PSI

    Po

    Pt

    Serviceability Loss (PSI)

    PSI = Po - Pt Po = Initial PSI

    4.5 for Rigid

    Pt = Terminal PSI f(facility classification)

    Facility Pt

    Interstate 3.0

    Urban 2.5

    Rural 2.0

  • 8/3/2019 AASHTO Rigid Design I

    4/11

    AASHTO Terminology

    Performance or design period Initial construction to terminalserviceability

    Analysis period Time of design strategy, includes atleast one rehab

    High volume 30-40 yr Low volume 15-20 yr

    AASHTO Terminology

    W18 = Design ESAL See Traffic Notes EALF =f(D and Pt) Recall Lane Distribution Differences

    AASHTO Terminology

    Reliability (R)

    Facility Urban Rural

    Interstate 85-99.9 80-99.9

    Principal

    arterial80-99 75-95

    Collectors 80-95 75-95

    Local 50-80 50-80

    AASHTO Table 2.2

  • 8/3/2019 AASHTO Rigid Design I

    5/11

    AASHTO Terminology

    Overall Standard Deviation (S0)

    Standard error of the estimate fortraffic & performance

    Rigid = 0.25 - 0.35

    Material Properties

    Effective Modulus of SubgradeReaction (k)

    Subgrade Resilient Modulus (MR) Subbase Resilient Modulus (Esb) Several Correction Factors

    PCC Elastic Modulus (Ec)

    PCC Modulus of Rupture (Sc)

    Effective Modulus of

    Subgrade Reaction f(4 Parameters):

    Seasonal effects on subgrade MR Type and thickness of subbase Effect of potential erosion of subbase Depth to bedrock

  • 8/3/2019 AASHTO Rigid Design I

    6/11

    Subbase Recommendations

    AASHTO Materials -Environmental Effects

    Effective modulus of subgradereaction Softer subgrade sustains more damage Recall Relative Damage Ur Similar approach employed

    Establishing keff Obtain Seasonal Subgrade and Subbase

    Moduli Data Determine Composite k (k)-Figure 3.3 Determine Modified k = f(depth to rigidfoundation)-Figure 3.4

    Determine Average Relative Damage(ur)-Figure 3.5

    Correct for Loss of Support-Table 2.7and Figure 3.6

  • 8/3/2019 AASHTO Rigid Design I

    7/11

    Subgrade and SubbaseModuli

    Seasonal Variations Affect Both Measure Over Seasons AASHTO T274 Use Correlations if Necessary

    Composite k (k)

    Dsb = 6

    Esb = 20,000psi

    MR = 7,000psi

    k = 400pci

  • 8/3/2019 AASHTO Rigid Design I

    8/11

    Modify Composite k

    Dsg = Distance from top of subgrade toa rigid layer (bedrock)

    D

    Subgrade (SG)

    PCC surface

    SubbaseDsb

    Dsg

    Bedrock

    Modify Composite k

    Dsg = 5

    k = 230pciMR = 4,000psi

    k = 300pci

    If No Subbase

    k =MR

    19.4

    MR = subgrade resilient modulus

  • 8/3/2019 AASHTO Rigid Design I

    9/11

    Relative Damage (ur)

    D = 9

    k mod = 540pci

    ur = 60%

    Average Relative Damage

    Ur =Urn

    Similar to Flexible Subgrade Modulus

    See Bottom Figure 3.5

    Use Average Relative Damage in Figure 3.5

    to Solve for Effective k

    Loss of Support Correction

    Attempt to Account for Pumping

    Potential Apply correction to Effective k

    Degree of LS by Material Type (Table2.7)

    LS factor (Figure 3.6)

  • 8/3/2019 AASHTO Rigid Design I

    10/11

    Loss of Support

    SubbaseQuality

    Loss of Support

    Loss of Support (LS)

    Loss of Support

    LS = 1.0

    keff = 540pci

    Corr keff=170pci

  • 8/3/2019 AASHTO Rigid Design I

    11/11

    Example keff Determination

    Granular Subbase 6 Thick

    5 Depth to Rigid Foundation Assumed D = 9