A Teletrafic Theory for the Internet

157
8/14/2019 A Teletrafic Theory for the Internet http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 1/157 A Teletraffic Theory for the Internet Thomas Bonald, Alexandre Prouti ` ere France Telecom R&D also affiliated with ´ Ecole Normale Sup ´ erieure {thomas.bonald,alexandre.proutiere }@francetelecom.com Tutorial of Performance 2005 October 2005 T. Bonald, A. Prouti ` ere, A Teletraffic Theory for the Internet – 1

Transcript of A Teletrafic Theory for the Internet

Page 1: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 1/157

A Teletraffic Theory for the Internet

Thomas Bonald, Alexandre Proutiere

France Telecom R&D

also affiliated with Ecole Normale Superieure

thomas.bonald,[email protected]

Tutorial of Performance 2005

October 2005

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 1

Page 2: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 2/157

Teletraffic theory

• Born with the developing telephone network andexemplified by the Erlang formula (1917):

B =A

C

C !

1 + A + A2

2+ . . . + AC

C !

where B = blocking rateC = number of phone linesA = traffic intensity in Erlangs

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 2

Page 3: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 3/157

Teletraffic theory

• Born with the developing telephone network andexemplified by the Erlang formula (1917):

B =A

C

C !

1 + A + A2

2+ . . . + AC

C !

where B = blocking rateC = number of phone linesA = traffic intensity in Erlangs

• More generally, any capacity – demand – performancerelationship

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 2

Page 4: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 4/157

The insensitivity property

• The Erlang formula does not depend on the distributionof call durations (beyond the mean)

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 3

Page 5: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 5/157

The insensitivity property

• The Erlang formula does not depend on the distributionof call durations (beyond the mean)

• It only requires Poisson call arrivals

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 3

Page 6: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 6/157

The insensitivity property

• The Erlang formula does not depend on the distributionof call durations (beyond the mean)

• It only requires Poisson call arrivals

• The key to simple and robust engineering rules

→1917 2005

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 3

Page 7: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 7/157

Flow-level modeling of the Internet

• Proposed in 1998 by Massoulié & Roberts:

D =1

C −A

whereD = mean per-bit delay

C = link capacity in bit/sA = traffic intensity in bit/s

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 4

Page 8: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 8/157

Flow-level modeling of the Internet

• Proposed in 1998 by Massoulié & Roberts:

D =1

C −A

whereD = mean per-bit delay

C = link capacity in bit/sA = traffic intensity in bit/s

• Based on fair sharing assumption

(so-called processor-sharing model)

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 4

Page 9: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 9/157

Flow-level modeling of the Internet

• Proposed in 1998 by Massoulié & Roberts:

D =1

C −A

whereD = mean per-bit delay

C = link capacity in bit/sA = traffic intensity in bit/s

• Based on fair sharing assumption

(so-called processor-sharing model)• Insensitive to all traffic characteristics

(beyond the traffic intensity)

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 4

Page 10: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 10/157

Traffic characteristics

flows think−times

• Flows are generated within sessions

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 5

Page 11: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 11/157

Traffic characteristics

flows think−times

• Flows are generated within sessions

• Sessions typically arrive as a Poisson process

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 5

Page 12: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 12/157

Traffic characteristics

flows think−times

• Flows are generated within sessions

• Sessions typically arrive as a Poisson process• Definition of traffic intensity

− flow arrival rate × mean flow size (bit/s)

− like telephone traffic

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 5

Page 13: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 13/157

Some key results

Loss networks Bandwidth sharing(call blocking) (rate adaptation)Erlang, 1917 Telatar & Gallager, 1995

Engset, 1916 Heyman et al, 1997Roberts & Massoulié, 1998

Gimpelson, 1965 Stamatelos & Koukoulidis, 1997

Kaufman, 1981 B & Virtamo, 2005Roberts, 1981Brockmeyer et al, 1948 B & P, 2003Kelly, 1986 B, Massoulié, P & Virtamo, 2005

Ross, 1995

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 6

Page 14: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 14/157

Outline

• Part 1: A single link− Processor-sharing model− Flow rate limits

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 7

Page 15: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 15/157

Outline

• Part 1: A single link− Processor-sharing model− Flow rate limits

• Part 2: Networks− Bandwidth sharing− Application to wired, cellular, ad-hoc networks

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 7

Page 16: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 16/157

Outline

• A brief reminder− The multiclass PS queue− Kelly networks

− Whittle networks• Part 1: A single link

− Processor-sharing model− Flow rate limits

• Part 2: Networks− Bandwidth sharing− Application to wired, cellular, ad-hoc networks

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 8

Th l i l PS

Page 17: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 17/157

The multiclass PS queue

• 2 classes• Poisson arrivals of intensities λ1, λ2

• Exponential service requirements of parameters µ1, µ2

• PS service discipline

φ1(n1, n2) = n1n1 + n2, φ2(n1, n2) = n2n1 + n2

• A reversible Markov process

π(n1, n2) = π(0)(n1 + n2)!

n1!n2!

λn11 λn22

µn11 µ

n22

n 1

n 2

0

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 9

K ll t k

Page 18: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 18/157

Kelly networks

• Multi-server PS (or symmetric) queues

• Poisson arrivals, exponential service requirements

Deterministic routes• A product-form distribution

π(n1, n2, m) = π(0)(n1 + n2)!

n1!n2!

λn1λn2

µn11 µ

n22

ν m

m!

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 10

Whi l k

Page 19: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 19/157

Whittle networks

• PS queues with state-dependent service rates

• Poisson arrivals, exponential service requirements

• Balance property

φ1(n1, n2)φ2(n1 − 1, n2)

= φ1(n1, n2−

1)φ2(n1, n2)

Φ(n1, n2) =1

φ1(n1, n2)φ2(n1 − 1, n2) . . . φ1(1, 0)

n2

n10

π(n1, n2) = π(0)Φ(n1, n2)λn11 λn22µn11 µn22

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 11

O tli

Page 20: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 20/157

Outline

• Part 1: A single link− Processor-sharing model− Flow rate limits

• Part 2: Networks− Bandwidth sharing− Application to wired, cellular, ad-hoc networks

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 12

The Erlang model

Page 21: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 21/157

The Erlang model

• Poisson call arrivals of intensity λ

• Exponential call durations of mean τ

• An M/M/C/C queue

π(n) = π(0)

An

n! , n ≤ C

whereA = λ× τ = traffic intensity in ErlangsC = number of circuits

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 13

The Erlang model

Page 22: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 22/157

The Erlang model

• Poisson call arrivals of intensity λ

• Exponential call durations of mean τ

• An M/M/C/C queue

π(n) = π(0)

An

n! , n ≤ C

whereA = λ× τ = traffic intensity in ErlangsC = number of circuits

• The Erlang formula by PASTA

B = π(C )=AC

C !

1 + A + A2

2+ . . . + AC

C !T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 13

Insensitivity property

Page 23: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 23/157

Insensitivity property

• Example: Erlang distribution with τ 1 + τ 2 = τ

• A Kelly queueing network

π(n1, n2) = π(0)An11

n1!

An22

n2!n1 + n2 ≤ C A1 + A2 = A

n1+n2=n

π(n1, n2) = π(0)n!

n1+n2=n

n!n1!n2!

An11

An22

= π(0) An

n!

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 14

Processor sharing model

Page 24: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 24/157

Processor-sharing model

• Poisson flow arrivals of intensity λ

• Exponential flow sizes of mean σ

An M/M/1 queueπ(n) = π(0)ρn

ρ < 1

whereA = λ× σ = traffic intensity in bit/sC = capacity in bit/s

ρ = A/C = link load

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 15

Mean per bit delay

Page 25: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 25/157

Mean per-bit delay

• D, the ratio of the mean flow duration tothe mean flow size

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 16

Mean per-bit delay

Page 26: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 26/157

Mean per-bit delay

• D, the ratio of the mean flow duration tothe mean flow size

• By Little’s law,

n = λ× σD =⇒ D =n

A

n = ρ1− ρ

, ρ = AC

=⇒ D = 1C −A

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 16

Mean per-bit delay

Page 27: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 27/157

Mean per-bit delay

• D, the ratio of the mean flow duration tothe mean flow size

• By Little’s law,

n = λ× σD =⇒ D =n

A

n = ρ1− ρ

, ρ = AC

=⇒ D = 1C −A

• By insensitivity, the mean transfer delay of x bits is x×D

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 16

Insensitivity to the flow size distribution

Page 28: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 28/157

Insensitivity to the flow size distribution

• Example 1: Erlang distribution with σ1 + σ2 = σ

• A Kelly network

π(n1, n2) = π(0) (n1 + n2)!n1!n2!

ρn11 ρn22

ρ1 + ρ2 = ρ

n1+n2=n

π(n1, n2) = π(0)

n1+n2=n

n!n1!n2!

ρn11 ρn22 = π(0)ρn

n1 = ρ11− ρ

n2 = ρ21− ρ

D1 = D2 =1

C −A

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 17

Insensitivity to the flow arrival process

Page 29: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 29/157

Insensitivity to the flow arrival process

• Example 2: Two-flow sessions with σ1 + σ2 = σ

• A Kelly network

π(n1, n2, m) = π(0)(n1 + n2)!

n1!n2!ρn11 ρn22

ν m

m!ρ1 + ρ2 = ρ

n1+n2=n

π(n1, n2, m) = π(0)eν n1+n2=n

n!

n1!n2!ρn11

ρn22

= π(0)eν ρn

n1 =ρ1

1− ρn2 =

ρ21− ρ

, D1 = D2 =1

C −A

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 18

Flow throughput

Page 30: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 30/157

Flow throughput

• γ , the inverse of the mean per-bit delay

γ = C −A

CA

γ

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 19

Flow throughput

Page 31: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 31/157

Flow throughput

• γ , the inverse of the mean per-bit delay

• The mean transfer delay of x bits is x/γ

γ = C −A

CA

γ

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 19

Flow throughput

Page 32: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 32/157

Flow throughput

• γ , the inverse of the mean per-bit delay

• The mean transfer delay of x bits is x/γ

γ = C −A

(C = 1)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

F

l o w t h

r o u g h p u t

Link load

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 20

The Engset model

Page 33: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 33/157

The Engset model

• K permanent sessions, jump-over blocking

• Exponential call durations of mean τ

Exponential think-time durations of mean ν

−1

• A closed Jackson network

π(n) = π(0)K

nan, n ≤ C

wherea = ν × τ = per source virtual traffic intensity

C = number of circuitsT. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 21

Traffic intensity

Page 34: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 34/157

a c te s ty

interarrival time

calls, think times,τ ν−1

• Effective per source traffic intensityτ

τ + ν −1=

a

a + 1

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 22

Traffic intensity

Page 35: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 35/157

y

interarrival time

calls, think times,τ ν−1

• Effective per source traffic intensityτ

τ + ν −1=

a

a + 1

• Overall traffic intensity in Erlangs

A = K ×a

a + 1T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 22

Insensitivity property

Page 36: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 36/157

y p p y

• Example: Erlang distribution with τ 1 + τ 2 = τ

• A closed Kelly network

π(n1, n2) = π(0) K !(K − n)!

a

n1

1n1!

a

n2

2n2!

n = n1 + n2 ≤ C a1 + a2 = a

n1+n2=n

π(n1, n2) = π(0)

K

n

n1+n2=n

n!

n1!n2!an11 an22 = π(0)

K

n

an

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 23

The Engset formula

Page 37: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 37/157

g

• Number of ongoing calls seen by a new call

π0(n) ∝ π(n)× (K − n)ν

K − 1n

an, n ≤ C

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 24

The Engset formula

Page 38: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 38/157

g

• Number of ongoing calls seen by a new call

π0(n) ∝ π(n)× (K − n)ν

K − 1n

an, n ≤ C

• Call blocking

B = π0(C ) =(K − 1) . . . (K − C )a

C

C !

1 + (K − 1)a + . . . + (K − 1) . . . (K − C )aC

C !

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 24

Engset vs. Erlang

Page 39: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 39/157

• C = 20• K = 25, 50, 250, ∞

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

B l o c k i n g p r o b a b i l i t y

Link load

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 25

The PS model with finite source

Page 40: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 40/157

• K permanent sessions• Exponential flow sizes of mean σ

• Exponential think-time durations of mean ν −1

• A closed Jackson network

π(n) = π(0)K !

(K − n)!n

wherea = ν × σ = per source virtual traffic intensityC = capacity in bit/s

= a/C = per source virtual link loadT. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 26

Traffic intensity

Page 41: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 41/157

interarrival time

think times, ν−1

σflows,

• Effective per source traffic intensityσ

σ

C + ν −1

=a

a

C + 1

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 27

Traffic intensity

Page 42: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 42/157

interarrival time

think times, ν−1

σflows,

• Effective per source traffic intensityσ

σ

C + ν −1

=a

a

C + 1

• Overall traffic intensity in bit/s

A = K ×a

a

C + 1T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 27

Mean per-bit delay

Page 43: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 43/157

• D, the ratio of the mean flow duration to themean flow size

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 28

Mean per-bit delay

Page 44: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 44/157

• D, the ratio of the mean flow duration to themean flow size

• By Little’s law,

n = λ× σD

λ =K

n=0

π(n)ν (K − n) = ν (K − n) =⇒ D =n

K − n

1

a

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 28

Mean per-bit delay

Page 45: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 45/157

• D, the ratio of the mean flow duration to themean flow size

• By Little’s law,

n = λ× σD

λ =K

n=0

π(n)ν (K − n) = ν (K − n) =⇒ D =n

K − n

1

a

• By insensitivity, the mean transfer delay of x bits is x×D

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 28

Insensitivity property

Page 46: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 46/157

• Example: Erlang distribution with σ1 + σ2 = σ• A closed Kelly network

π(n1, n2) = π(0) K !(K − n)! n!n1!n2!n11 n22

n1 + n2 = n1 + 2 =

n1+n2=n

π(n1, n2) = π(0)K !

(K − n)!n, n1 =

1

n n2 =2

n

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 29

Finite vs. infinite source

Page 47: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 47/157

• C = 1• K = 10, 100, 1000, ∞

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

F l o w t h r o

u g h p u t

Link load

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 30

Outline

Page 48: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 48/157

• Part 1: A single link− Processor-sharing model− Flow rate limits

• Part 2: Networks− Bandwidth sharing− Application to wired, cellular, ad-hoc networks

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 31

A common flow rate limit

Page 49: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 49/157

• Maximum flow bit rate c• Poisson flow arrivals of intensity λ

• Exponential flow sizes of mean σ

• If C/c is an integer m, an M/M/m queue

π(n) = π(0)

(ρm)n

n!if n ≤ m

π(m)ρn−m if n > mρ < 1

whereA = λ× σ = traffic intensity in bit/sC = capacity in bit/s

ρ = A/C = link loadT. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 32

Mean per-bit delay

Page 50: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 50/157

• Exact expression:

D =1

c+

B

C − (1−B)A×

A

C −A

where B is the blocking probability in thecorresponding Erlang model:

B =Am

m!

1 + A + A2

2+ . . . + Am

m!

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 33

Mean per-bit delay

Page 51: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 51/157

• Exact expression:

D =1

c+

B

C − (1−B)A×

A

C −A

where B is the blocking probability in thecorresponding Erlang model:

B =Am

m!

1 + A + A2

2+ . . . + Am

m!

• Bound:

D ≤1

c+

1

C ×

A

C −A

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 33

Flow throughput

Page 52: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 52/157

• C = 1• c = 0.2, 0.4, 0.6, 0.8, 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

F l o w t h r o

u g h p u t

Link load

Bound

Exact

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 34

PS models with a common rate limit

Page 53: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 53/157

• Infinite source (cf. Erlang model)− Poisson flow/session arrivals− a multi-server PS queue

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 35

PS models with a common rate limit

Page 54: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 54/157

• Infinite source (cf. Erlang model)− Poisson flow/session arrivals− a multi-server PS queue

• Finite source (cf. Engset model)− non-Poisson flow arrivals− a closed network with one multi-server PS queue andone infinite-server queue

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 35

Multirate loss systems

Page 55: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 55/157

• K classes, bit rates c1, . . . , cK • Poisson call arrivals of intensities λ1, . . . , λK

• Exponential call durations of means τ 1, . . . , τ K • A reversible Markov process

π(n1, n2) = π(0)An11

n1!

An22

n2!n1c1 + n2c2 ≤ C

where

A1 = λ1 × τ 1 = class-1 traffic intensity in ErlangsA2 = λ2 × τ 2 = class-2 traffic intensity in ErlangsC = capacity in bit/s

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 36

Blocking probability

Page 56: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 56/157

• Class-1 blocking probability

B1 =

C −c1<n1c1+n2c2≤C

An11

n1!

An22

n2!

n1c1+n2c2≤C

An11

n1!

An22

n2!

• Class-2 blocking probability

B2 =

C −c2<n1c1+n2c2≤C

An11

n1!

An22

n2!

n1c1+n2c2≤C

An11

n1!

An22

n2!

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 37

The Kaufman-Roberts formula

Page 57: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 57/157

• Assume C and c1, c2 are integers

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 38

The Kaufman-Roberts formula

Page 58: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 58/157

• Assume C and c1, c2 are integers• Define:

P (n) = n1c1+n2c2=n

An11

n1!

An22

n2!

2

1

c1=1, c2=2

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 38

The Kaufman-Roberts formula

Page 59: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 59/157

• Assume C and c1, c2 are integers• Define:

P (n) = n1c1+n2c2=n

An11

n1!

An22

n2!

2

1

c1=1, c2=2

• Then:

P (n) =1

n(A1c1P (n− c1) + A2c2P (n− c2))

with P (n) = 0 if n < 0

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 38

Example

Page 60: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 60/157

• C = 100• ck = 1, 5, 10, 30

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

B l o c k i n g p r o b a b i l i t y

Link load

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 39

Example (cont’d)

Page 61: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 61/157

• C = 100• ck = 1, 30

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

B l o c k i n g p r o b a b i l i t y

Link load

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 40

Multirate PS systems

Page 62: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 62/157

• K classes, bit rates c1, . . . , cK • Poisson flow arrivals of intensities λ1, . . . , λK

• Exponential flow sizes of means σ1, . . . , σK • A Whittle network

π(n1, n2) = π(0)Φ(n1, n2)An11 An2

2

A = A1 + A2 < C

whereA1 = λ1 × σ1 = class-1 traffic intensity in bit/s

A2 = λ2 × σ2 = class-2 traffic intensity in bit/sC = capacity in bit/s

provided

the allocation is balanced(so-called balanced fairness)T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 41

Balance property

Page 63: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 63/157

• The product of service rates φ1, φ2 (allocated bit rates)does not depend on the considered path

Φ(n1, n2) =

1

φ1(n1, n2)φ2(n1 − 1, n2) . . . φ1(1, 0)

n2

n10

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 42

Balance property

Page 64: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 64/157

• The product of service rates φ1, φ2 (allocated bit rates)does not depend on the considered path

Φ(n1, n2) =

1

φ1(n1, n2)φ2(n1 − 1, n2) . . . φ1(1, 0)

n2

n10

• A necessary and sufficient condition for insensitivity!

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 42

Max-min fairness

Page 65: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 65/157

• Allocation by water-filling

φ1(n1, n2) = n1c1

φ2(n1, n2) = n2c2

φ1(n1, n2) = C − n1c1

φ2(n1, n2) = n2c2

φ1(n1, n2) = n1n1+n2

C

φ2(n1, n2) = n2n1+n2 C

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 43

Max-min fairness

Page 66: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 66/157

• Allocation by water-filling

φ1(n1, n2) = n1c1

φ2(n1, n2) = n2c2

φ1(n1, n2) = C − n1c1

φ2(n1, n2) = n2c2

φ1(n1, n2) = n1n1+n2

C

φ2(n1, n2) = n2n1+n2 C • The balance property is violated!

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 43

Balanced fairness

Page 67: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 67/157

• Allocation by balancing the service rates

φ1(n1, n2) =Φ(n1−1, n2)

Φ(n1, n2), φ2(n1, n2) =

Φ(n1, n2−1)

Φ(n1, n2)

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 44

Balanced fairness

Page 68: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 68/157

• Allocation by balancing the service rates

φ1(n1, n2) =Φ(n1−1, n2)

Φ(n1, n2), φ2(n1, n2) =

Φ(n1, n2−1)

Φ(n1, n2)

• A unique balance function

Φ(n1, n2) =1

n1!cn11×

1

n2!cn22 if n1c1 + n2c2 < C

Φ(n1, n2) =1

C (Φ(n1−1, n2) + Φ(n1, n2−1)) otherwise

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 44

Page 69: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 69/157

A recursive formula

Page 70: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 70/157

• Assume C and c1, c2 are integers• Define:

P (n) =

n1c1+n2c2=nΦ(n1, n2)A

n11 A

n22

2

1

c1=1, c2=2

• Then: P (n) = 1n

(A1c1P (n− c1) + A2c2P (n− c2))

P ≡n>C

P (n) =A1

C −A

C −c1<n≤C

P (n)+A2

C −A

C −c2<n≤C

P (n)

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 45

Example

Page 71: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 71/157

• C = 100• ck = 1, 5, 10, 30

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

F l o w t h

r o u g h p u t

Link load

BoundExact

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 46

Page 72: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 72/157

Outline

Page 73: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 73/157

• Part 1: A single link− The processor-sharing model− Flow rate limits

Part 2: Networks− Bandwidth sharing− Application to wired, cellular, ad-hoc networks

We consider:− data networks only− no flow rate limit

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 48

The linear network

Page 74: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 74/157

C C

1

2 3

• Network state: n = (n1, n2, n3) numbers of active flows on eachroute

• Bandwidth allocation: φ(n) = (φ1(n), φ2(n), φ3(n)) ∈ C

φ1(n) + φ2(n) ≤ C

φ1(n) + φ3(n) ≤ C

φ1

φ2

φ3

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 49

The linear network

Page 75: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 75/157

• A network of PS queues with state-dependent service rates- Each class-i flow served at rate φi(n)/ni

(TCP fairly shares the bandwidth among connections with the

same characteristics)

- A PS node per flow class

1

2 3

C C

ρ2

ρ1

ρ3

φ1(n)

φ2(n)

φ3(n)

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 50

Page 76: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 76/157

Outline

Page 77: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 77/157

• Part 1: A single link− The processor-sharing model− Flow rate limits

Part 2:Networks− Bandwidth sharing− Application to wired, cellular, ad-hoc networks

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 52

The model

Page 78: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 78/157

• N flow classes: flows of the same class require the samenetwork resources (e.g., a set of links in wired network)

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 53

The model

Page 79: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 79/157

• N flow classes: flows of the same class require the samenetwork resources (e.g., a set of links in wired network)

• Network state: n = (n1, . . . , nN ), ni number of class-i flows

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 53

The model

Page 80: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 80/157

• N flow classes: flows of the same class require the samenetwork resources (e.g., a set of links in wired network)

• Network state: n = (n1, . . . , nN ), ni number of class-i flows

• Bandwidth allocation: φ(n) = (φ1(n), . . . , φN (n)), class-i flows

served at rate φi(n). C, a convex, compact, and monotone

capacity set

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 53

The model

Page 81: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 81/157

• N flow classes: flows of the same class require the samenetwork resources (e.g., a set of links in wired network)

• Network state: n = (n1, . . . , nN ), ni number of class-i flows

• Bandwidth allocation: φ(n) = (φ1(n), . . . , φN (n)), class-i flows

served at rate φi(n). C, a convex, compact, and monotone

capacity set

• Class-i flows generated in sessions according to a Poisson

process, traffic intensity ρi = λi/µi. ρ = (ρ1, . . . , ρN )

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 53

The model

Page 82: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 82/157

• N flow classes: flows of the same class require the samenetwork resources (e.g., a set of links in wired network)

• Network state: n = (n1, . . . , nN ), ni number of class-i flows

• Bandwidth allocation: φ(n) = (φ1(n), . . . , φN (n)), class-i flows

served at rate φi(n). C, a convex, compact, and monotone

capacity set

• Class-i flows generated in sessions according to a Poisson

process, traffic intensity ρi = λi/µi. ρ = (ρ1, . . . , ρN )

•Issues:- Is the network stable?

- What is the mean time to transfer a class-i flow?

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 53

Page 83: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 83/157

Utility-based allocations

Page 84: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 84/157

• Usual allocation are based on the notion of utility

max

i niU (φi(n)/ni)

φ(n) ∈ C- Max throughput: U (r) = r

- Proportional fairness (Kelly’97): U (r) = ln r

- Minimal potential delay (Massoulie-Roberts’99): U (r) = 1/r

- α-bandwidth sharing (Mo-Walrand’00): U (r) = r1−α/1 − α

α = 0 max throughput

α → 1 proportional fairness

α = 2 minimal potential delay

α → +∞ max-min fairness (Rawls’71, Bertsekas-Gallager’87)

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 55

Utility-based allocations in practice

Page 85: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 85/157

• Decentralized algorithms- e.g., A model of TCP: proportional fairness in wired networks can

be arbitrarily closely approximated by the following decentralized

algorithm, Kelly-Maullo-Tan’98: λi = φi/ni,

∂λi

∂t= wi − λi(t)

l∈i

pl(j:l∈j

λj)

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 56

Utility-based allocations in practice

Page 86: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 86/157

• Decentralized algorithms- e.g., A model of TCP: proportional fairness in wired networks can

be arbitrarily closely approximated by the following decentralized

algorithm, Kelly-Maullo-Tan’98: λi = φi/ni,

∂λi

∂t= wi − λi(t)

l∈i

pl(j:l∈j

λj)

• Centralized algorithms- e.g. the gradient-based algorithm (for any capacity set, any utility

function), Stolyar’05: at time t choose φ∗ ∈ C such that

φ∗ = argmaxi

U (λi(t))φ∗i , λi(t + 1) = (1 − β )λi(t) + βφ∗i (t)

The proportional fair algo (Tse) in CDMA/HDR system is built that

wayT. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 56

Utility-based allocations: flow-level stability

If ll i b d ili f i f h f

Page 87: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 87/157

• If ρ ∈ C, allocations based on utility functions of the formλ1−α/(1 − α), with α > 0, stabilize the network

Proof. Using classical fluid limit and the following Lyapounov function

f (λ) =i

ρ−αiλα+1i

α + 11/µi

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 57

Utility-based allocations: flow-level stability

If C ll ti b d tilit f ti f th f

Page 88: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 88/157

• If ρ ∈ C, allocations based on utility functions of the formλ1−α/(1 − α), with α > 0, stabilize the network

Proof. Using classical fluid limit and the following Lyapounov function

f (λ) =i

ρ−αiλα+1i

α + 11/µi

• The linear network paradox with the max throughput allocation,B.-Massoulie’01

- Stability condition: ρ ∈ K = ρ : ρ1 < (1− ρ2)(1 − ρ3) C -

Maximizing the throughput in all static scenarios can minimize thethroughput in a dynamic scenario

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 57

Utility-based allocations: performance

P ti l f i h li id t k

Page 89: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 89/157

• Proportional fairness on homogeneous linear, grid networks(B.-Massoulie’01)

- On these networks, PF is

insensitive- The stationary distribution is

explicit

• For a general non trivial capacity set C, almost all utility-based

allocations are sensitive, e.g., maxmin is always sensitive

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 58

Utility-based allocations: performance

Proportional fairness on homogeneo s linear grid net orks

Page 90: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 90/157

• Proportional fairness on homogeneous linear, grid networks(B.-Massoulie’01)

- On these networks, PF is

insensitive- The stationary distribution is

explicit

• For a general non trivial capacity set C, almost all utility-based

allocations are sensitive, e.g., maxmin is always sensitive• How can we predict the performance of these usual

allocations?

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 58

Balanced fairness

Introduced by B P ’03 as the most efficient insensitive

Page 91: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 91/157

• Introduced by B.-P. 03 as the most efficient insensitivebandwidth allocation

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 59

Balanced fairness

•Introduced by B P ’03 as the most efficient insensitive

Page 92: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 92/157

Introduced by B.-P. 03 as the most efficient insensitivebandwidth allocation

• Insensitivity implies the existence of a balance function Φ such

that∀i, φi(n) =

Φ(n − ei)

Φ(n)

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 59

Balanced fairness

•Introduced by B P ’03 as the most efficient insensitive

Page 93: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 93/157

Introduced by B.-P. 03 as the most efficient insensitivebandwidth allocation

• Insensitivity implies the existence of a balance function Φ such

that∀i, φi(n) =

Φ(n − ei)

Φ(n)

• Balanced fairness satisfies the capacity constraintsΦ(n − e1)

Φ(n), . . . ,

Φ(n − eN )

Φ(n)

∈ C

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 59

Balanced fairness

•Introduced by B P ’03 as the most efficient insensitive

Page 94: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 94/157

Introduced by B.-P. 03 as the most efficient insensitivebandwidth allocation

• Insensitivity implies the existence of a balance function Φ such

that∀i, φi(n) =

Φ(n − ei)

Φ(n)

• Balanced fairness satisfies the capacity constraintsΦ(n − e1)

Φ(n), . . . ,

Φ(n − eN )

Φ(n)

∈ C

• Efficiency means that φ(n) belongs to the border of C

Φ(0) = 1, Φ(n) = minα : (Φ(n − e1)

α, . . . ,

Φ(n − eN )

α) ∈ C

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 59

Balanced fairness (cont’d)

•Invariant measure with balanced fairness

Page 95: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 95/157

Invariant measure with balanced fairness

π(n) = π(0)Φ(n)ρn11 . . . ρnN N

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 60

Balanced fairness (cont’d)

•Invariant measure with balanced fairness

Page 96: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 96/157

Invariant measure with balanced fairness

π(n) = π(0)Φ(n)ρn11 . . . ρnN N

• Network stability under balanced fairness if and only ifn

Φ(n)ρn11 . . . ρnN N < +∞

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 60

Balanced fairness (cont’d)

•Invariant measure with balanced fairness

Page 97: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 97/157

Invariant measure with balanced fairness

π(n) = π(0)Φ(n)ρn11 . . . ρnN N

• Network stability under balanced fairness if and only ifn

Φ(n)ρn11 . . . ρnN N < +∞

• Balanced fairness maximizes the probability the system is

empty

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 60

Balanced fairness (cont’d)

•Invariant measure with balanced fairness

Page 98: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 98/157

Invariant measure with balanced fairness

π(n) = π(0)Φ(n)ρn11 . . . ρnN N

• Network stability under balanced fairness if and only ifn

Φ(n)ρn11 . . . ρnN N < +∞

• Balanced fairness maximizes the probability the system is

empty

•The only possible Pareto-efficient and insensitive allocation isbalanced fairness

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 60

Balanced fairness: stability

• If ρ ∈ C, balanced fairness stabilizes the network˜

Page 99: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 99/157

If ρ ∈ C, balanced fairness stabilizes the networkProof. Let Φ be a balance function satisfying the network capacity

constraints, i.e.,

(Φ(n − e1)

Φ(n), . . . ,

Φ(n − eN )

Φ(n)) ∈ C,

then Φ(n) ≤

˜Φ(n)

.

Since (1 + )ρ ∈ C, the balance function Φ corresponding to the static

allocation φ(n) = (1 + )ρ satisfy the network constraints and is stable.

Finally, n

Φ(n)ρn ≤n

Φ(n)ρn < +∞

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 61

Balanced fairness: performance

•Under the stability condition, the performance can be evaluated

li itl i Littl ’ f l

Page 100: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 100/157

U de t e stab ty co d t o , t e pe o a ce ca be e a uatedexplicitly using Little’s formula

γ i =ρi

E i[ni]and the network stationary distribution

π(n) = π(0)Φ(n)ρ

n1

1 . . . ρ

nN

N

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 62

Outline

•Part 1: A single linkThe processor sharing model

Page 101: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 101/157

Part 1: A single link− The processor-sharing model− Flow rate limits

• Part 2: Networks− Bandwidth sharing− Application to wired, cellular, ad-hoc networks

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 63

Static routing

•A wired network is a set of L links and K routes where eachroute k is a subset of links Capacity of link l C

Page 102: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 102/157

route k is a subset of links. Capacity of link l, C l

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 64

Static routing

•A wired network is a set of L links and K routes where eachroute k is a subset of links Capacity of link l C

Page 103: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 103/157

route k is a subset of links. Capacity of link l, C l

• Static routing (N = K - the class of a flow is defined by a

route): capacity set

C = φ : φA ≤ C = (C 1, . . . , C L)

A is a N × L matrix, Akl = 1 if l ∈ k, Akl = 0 otherwise

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 64

Static routing

•A wired network is a set of L links and K routes where eachroute k is a subset of links Capacity of link l Cl

Page 104: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 104/157

route k is a subset of links. Capacity of link l, C l

• Static routing (N = K - the class of a flow is defined by a

route): capacity set

C = φ : φA ≤ C = (C 1, . . . , C L)

A is a N × L matrix, Akl = 1 if l ∈ k, Akl = 0 otherwise

• Stability condition: ∀l,

k:l∈k ρk < C l

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 64

Static routing: balanced fairness

•An insensitive allocation is defined by a balance function Φ

Page 105: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 105/157

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 65

Static routing: balanced fairness

•An insensitive allocation is defined by a balance function ΦC it t i t

Page 106: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 106/157

• Capacity constraints

∀l,k:l∈k

Φ(n − ek)

Φ(n) ≤ C l

equivalent to

∀l, Φ(n) ≥ 1C l

k:l∈k

Φ(n − ek)

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 65

Static routing: balanced fairness

• An insensitive allocation is defined by a balance functionΦ

• C cit constr ints

Page 107: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 107/157

• Capacity constraints

∀l,k:l∈k

Φ(n − ek)

Φ(n) ≤ C l

equivalent to

∀l, Φ(n) ≥ 1C l

k:l∈k

Φ(n − ek)

• Balanced fairness recursively defined byΦ(0) = 1

and

Φ(n) = maxl

1

C l

k:l∈k

Φ(n − ek)

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 65

The linear network

• A homogeneous 2-link line2 3

Page 108: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 108/157

C C

1

n3

n1

n2

n+

+

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 66

The linear network

• A homogeneous 2-link line

• Both links are saturated:

2 3

Page 109: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 109/157

• Both links are saturated:

e.g. if n1 > 0 and n2 > 0,

Φ(n) = Φ(n − e1) + Φ(n − e2)

C C

1

n3

n1

n2

n+

+

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 66

The linear network

• A homogeneous 2-link line

• Both links are saturated: 1

2 3

Page 110: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 110/157

• Both links are saturated:

e.g. if n1 > 0 and n2 > 0,

Φ(n) = Φ(n − e1) + Φ(n − e2)

• Φ(n) is the number of direct

paths from n to 0

Φ(n) =

n1 + n2 + n3

n1 This is proportional fairness

C C

1

n3

n1

n2n

+

+

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 66

A symmetric tree network

• A trunk and several branches with identical capacities

φ3

Page 111: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 111/157

2

1

1

1

φ1 φ2

φ3

C

C = (2, 1, 1, 1) A =

1 1 0 0

1 0 1 0

1 0 0 1

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 67

A symmetric tree network (cont’d)

• Flow throughputs: γ 1 = γ 2 = γ 3 =(2−)(3−)(6+)

(4−)(9+) , where = ρ1 + ρ2 + ρ3

Page 112: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 112/157

ρ1 + ρ2 + ρ3

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

F l o w t h r o u g h p u t

Traffic intensity

Max-min fairProportional fair

Balanced fair

• For max-min and proportional fairness, simulations with

Poisson flow arrivals and exponentially distributed flow sizes.T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 68

Recursive algorithm

• State space decomposition

Ω N3 0 Ω Ω Ω Ω Ω Ω Ω

Page 113: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 113/157

Ω = N3 = 0 + Ω1 + Ω2 + Ω3 + Ω12 + Ω13 + Ω23 + Ω123

where Ω I = n : ni > 0 iff i ∈ I

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 69

Recursive algorithm (cont’d)

• Normalization constant G(ρ) = n

Φ(n)ρn

G( ) 1 G ( ) G ( ) G ( ) G ( ) G ( ) G ( ) G ( )

Page 114: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 114/157

G(ρ) = 1+G1(ρ)+G2(ρ)+G3(ρ)+G12(ρ)+G13(ρ)+G23(ρ)+G123(ρ)

where G I =

n∈ΩI π(n)

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 70

Recursive algorithm (cont’d)

• Normalization constant G(ρ) = n

Φ(n)ρn

G( ) 1+G ( )+G ( )+G ( )+G ( )+G ( )+G ( )+G ( )

Page 115: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 115/157

G(ρ) = 1+G1(ρ)+G2(ρ)+G3(ρ)+G12(ρ)+G13(ρ)+G23(ρ)+G123(ρ)

where G I =

n∈ΩI π(n)• We have Gi(ρ) = ρi

1−ρi, Gij(ρ) =

ρiρj(1−ρi)(1−ρj)

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 70

Page 116: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 116/157

Recursive algorithm (cont’d)

• Normalization constant G(ρ) = n

Φ(n)ρn

G(ρ) 1+G (ρ)+G (ρ)+G (ρ)+G (ρ)+G (ρ)+G (ρ)+G (ρ)

Page 117: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 117/157

G(ρ) = 1+G1(ρ)+G2(ρ)+G3(ρ)+G12(ρ)+G13(ρ)+G23(ρ)+G123(ρ)

where G I =

n∈ΩI π(n)• We have Gi(ρ) = ρi

1−ρi, Gij(ρ) =

ρiρj(1−ρi)(1−ρj)

• Recursion

G123(ρ) =ρ1G23(ρ) + ρ2G13(ρ) + ρ3G12(ρ)

2 −

•Flow throughtput

γ i =

∂ρiln G(ρ)

−1

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 70

The store-and-forward bound

• Store-and-forward policy: the flows on a given route are

transmitted sequentially on each link of this route

Page 118: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 118/157

Each link fairly shares its capacity among active flows.

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 71

The store-and-forward bound

• Store-and-forward policy: the flows on a given route are

transmitted sequentially on each link of this route

Page 119: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 119/157

Each link fairly shares its capacity among active flows.

1

2 3

C C

ρ1

ρ2 ρ3

C C

PS PS

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 71

Page 120: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 120/157

Fast routing

• Each flow class is assigned a set of routes

Page 121: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 121/157

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 72

Fast routing

• Each flow class is assigned a set of routes

• All flows of class i chooses one route in the subset si at any

Page 122: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 122/157

time.

A set R of N × K matrices such that if R ∈ R, Rik = 1 if class-iflows take route k and Rik = 0 otherwise

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 72

Fast routing

• Each flow class is assigned a set of routes

• All flows of class i chooses one route in the subset si at any

Page 123: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 123/157

time.

A set R of N × K matrices such that if R ∈ R, Rik = 1 if class-iflows take route k and Rik = 0 otherwise

• At any time a routing scheme R ∈ R is chosen

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 72

Fast routing

• Each flow class is assigned a set of routes

• All flows of class i chooses one route in the subset si at any

Page 124: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 124/157

time.

A set R of N × K matrices such that if R ∈ R, Rik = 1 if class-iflows take route k and Rik = 0 otherwise

• At any time a routing scheme R ∈ R is chosen

• Capacity set

C = convex hull of φ : ∃R ∈ R,φRA ≤ C

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 72

Fast routing (cont’d)

• Example

1 0

1 0

1 0

Page 125: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 125/157

C = (1, 1), A =

1 0

0 1

, R =

1 0

0 1

or R =

0 1

0 1

1

1

or

class 1

class 3

class 2

φ1 φ2

φ3

C

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 73

Traffic splitting

• Each class i can use all routes in the set si at the same time

Page 126: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 126/157

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 74

Traffic splitting

• Each class i can use all routes in the set si at the same time

• A set S of N × K stochastic matrices such that if S ∈ S ,

S f ll k if k

Page 127: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 127/157

S ik = 0 for all k except if k ∈ si

- S ik is the proportion of the total bandwidth φi (offered to class-itraffic) class-i flows get on route k

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 74

Traffic splitting

• Each class i can use all routes in the set si at the same time

• A set S of N × K stochastic matrices such that if S ∈ S ,

S 0 f ll k t if k

Page 128: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 128/157

S ik = 0 for all k except if k ∈ si

-S ik

is the proportion of the total bandwidthφi

(offered to class-i

traffic) class-i flows get on route k

• Capacity set

C = φ : ∃S ∈ S ,φSA ≤ C

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 74

Traffic splitting (cont’d)

• Example

C = (1, 1), A =

1 0

0 1

,

φ2

2

Page 129: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 129/157

0 1

S =

1 0

α 1− α

0 1

1

1

class 1

class 3

andclass 2

φ1 φ3

C

1

2

1 1

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 75

Traffic splitting (cont’d)

• Performance of balanced fairness

γ 1 = γ 3 =2(2 − )(3 − )

12 5, γ 2 = 2 −

Page 130: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 130/157

12 − 5

0

0.5

1

1.5

2

0 0.5 1 1.5 2

Traffic intensity

Classes 1,3

Max-min fairProportional fair

Balanced fair

0

0.5

1

1.5

2

0 0.5 1 1.5 2

F l o w t h

r o u g

h p u t

Traffic intensity

Class 2

Max-min fairProportional fair

Balanced fair

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 76

Outline

• Part 1: A single link− The processor-sharing model− Flow rate limits

Page 131: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 131/157

• Part 2: Networks

− Bandwidth sharing− Application to wired, cellular, ad-hoc networks

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 77

Downlink of cellular networks

• Formalism: a set of M transmission profiles, each

corresponding to a particular allocation of downlink radio

resources

Page 132: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 132/157

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 78

Downlink of cellular networks

• Formalism: a set of M transmission profiles, each

corresponding to a particular allocation of downlink radio

resources

Page 133: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 133/157

• At any time, a transmission profile is chosen

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 78

Downlink of cellular networks

• Formalism: a set of M transmission profiles, each

corresponding to a particular allocation of downlink radio

resources

Page 134: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 134/157

• At any time, a transmission profile is chosen

• C is the M × N capacity matrix such that C mi is the rate

allocated to class-i flows in transmission profile m

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 78

Downlink of cellular networks

• Formalism: a set of M transmission profiles, each

corresponding to a particular allocation of downlink radio

resources

Page 135: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 135/157

• At any time, a transmission profile is chosen

• C is the M × N capacity matrix such that C mi is the rate

allocated to class-i flows in transmission profile m

• T the set of M -dimensional non-negative row vector summingto 1. τ ∈ T corresponds to a particular schedule

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 78

A single cell

• We compare two access technologies

- The ideal broadcast channel

- TDMA access mode

Page 136: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 136/157

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 79

A single cell

• We compare two access technologies

- The ideal broadcast channel

- TDMA access mode

Page 137: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 137/157

• For the sake of clarity: mobility/fading are not modelled

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 79

A single cell

• We compare two access technologies

- The ideal broadcast channel

- TDMA access mode

Page 138: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 138/157

• For the sake of clarity: mobility/fading are not modelled

• User positions determine their feasible rate: when all resources

are allocated to class-i flows, they receive a rate C i

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 79

A single cell

• We compare two access technologies

- The ideal broadcast channel

- TDMA access mode

Page 139: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 139/157

• For the sake of clarity: mobility/fading are not modelled

• User positions determine their feasible rate: when all resources

are allocated to class-i flows, they receive a rate C i

C 2

class 1 class 2

C 1

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 79

TDMA

• One user scheduled at a time: N transmission profiles (one per

class), C = diag(C 1, . . . , C N )

orφ2

Page 140: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 140/157

class 1 class 2

3 1

3

φ1

1 C

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 80

TDMA

• One user scheduled at a time: N transmission profiles (one per

class), C = diag(C 1, . . . , C N )

orφ2

Page 141: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 141/157

class 1 class 2

3 1

3

φ1

1 C

• Scheduling

- Fair time sharing: realized by proportional or balanced fairness

φ1(n) = 3n1/(n1 + n2), φ2(n) = n2/(n1 + n2)

- Fair rate sharing: realized by max-min fairness

φ1(n) = n1/(n1 + 3n2), φ2(n) = 3n2/(n1 + 3n2)

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 80

Performance of TDMA

• Fair time sharing γ 1 = 3(1 − ), γ 2 = 1 − where = ρ1/3 + ρ2

• Fair rate sharing: A DPS queue, results by Fayolle et al’81

Page 142: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 142/157

0

0.5

1

1.5

2

2.5

3

0 0.25 0.5 0.75 1 1.25 1.5Traffic intensity

Class 1

Max-min fairProportional fair

Balanced fair

0

0.5

1

1.5

2

2.5

3

0 0.25 0.5 0.75 1 1.25 1.5

F l o w t h

r o u g h p u t

Traffic intensity

Class 2

Max-min fairProportional fair

Balanced fair

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 81

The broadcast channel

• A Gaussian broadcast channel

• Capacity set

C φ φ W l 1P 1

φ W l 1P 2

P P P

Page 143: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 143/157

C = φ : φ1 ≤ W log21 +P1

N 1 , φ2 ≤ W log2 1 +P2

N 2 + P 1 , P 1+P 2 ≤ P

class 1 class 2

3 1

andφ2

3

φ1

1 C

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 82

Performance of the broadcast channel

2

2.5

3

Class 1

Max-min fairProportional fair

Balanced fair

2

2.5

3

p u t

Class 2

Max-min fairProportional fair

Balanced fair

Page 144: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 144/157

0

0.5

1

1.5

2

0 0.25 0.5 0.75 1 1.25 1.5 1.75Traffic intensity

0

0.5

1

1.5

2

0 0.25 0.5 0.75 1 1.25 1.5 1.75

F l o w t h r o

u g h

Traffic intensity

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 83

Cell coordination

• 2 interfering base stations - 3 transmission profiles

33

φ2

Page 145: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 145/157

class 1 class 2

class 1 class 2

class 1 class 2

3

2 2

(1)

(2)

(3)

3

2

2

C

φ1

C = 3 00 3

2 2

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 84

Cell coordination: performance

2

2.5

3

h p u t

Max-min fairProportional fairBalanced fair

Page 146: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 146/157

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4

F l o w t h

r o

u g h

Traffic intensity

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 85

Outline

• Part 1: A single link− The processor-sharing model− Flow rate limits

• Part 2: Networks

Page 147: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 147/157

• Part 2: Networks

− Bandwidth sharing− Application to wired, cellular, ad-hoc networks

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 86

Ad-hoc networks

• A set of L node-to-node links and K routes

Page 148: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 148/157

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 87

Ad-hoc networks

• A set of L node-to-node links and K routes

• A incidence matrix (i.e., Akl = 1l∈k)

Page 149: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 149/157

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 87

Ad-hoc networks

• A set of L node-to-node links and K routes

• A incidence matrix (i.e., Akl = 1l∈k)

• M transmission profiles used one at a time: C is the M × L

Page 150: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 150/157

matrix, with M ml = capacity of link l in profile m

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 87

Ad-hoc networks

• A set of L node-to-node links and K routes

• A incidence matrix (i.e., Akl = 1l∈k)

• M transmission profiles used one at a time: C is the M × L

Page 151: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 151/157

matrix, with M ml = capacity of link l in profile m• N = K classes of flow

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 87

Example

3 links2 transmission profiles

2

class 3

2

(1)

class 1

class 2

Page 152: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 152/157

2(2)

φ3

φ1

C

φ2

1

2

2

A =

1 1 10 1 0

0 0 1

C =

2 0 2

0 2 0

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 88

Example (cont’d)

1.5

2

Class 1, 3

Max-min fairProportional fair

Balanced fair1.5

2

g h p u t

Class 2

Max-min fairProportional fair

Balanced fair

Page 153: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 153/157

0

0.5

1

0 0.5 1 1.5 2Traffic intensity

0

0.5

1

0 0.5 1 1.5 2

F l o w t h r

o u g

Traffic intensity

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 89

Summary

• Any data network can be represented by a network of

state-dependent PS queues

Page 154: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 154/157

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 90

Summary

• Any data network can be represented by a network of

state-dependent PS queues

• Usual utility-based allocations

- can be implemented in a centralized or distributed way

Page 155: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 155/157

can be implemented in a centralized or distributed way

- stabilize the network at flow level

- are sensitive (performance unknown)

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 90

Summary

• Any data network can be represented by a network of

state-dependent PS queues

• Usual utility-based allocations

- can be implemented in a centralized or distributed way

Page 156: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 156/157

can be implemented in a centralized or distributed way

- stabilize the network at flow level

- are sensitive (performance unknown)

• Balanced fairness (the most efficient insensitive allocation)

- stabilizes the network at flow level

- has an explicit performance that approximates that of usual

utility-based allocations

- A distributed algorithm to implement BF is not known yet

T. Bonald, A. Proutiere, A Teletraffic Theory for the Internet – 90

Page 157: A Teletrafic Theory for the Internet

8/14/2019 A Teletrafic Theory for the Internet

http://slidepdf.com/reader/full/a-teletrafic-theory-for-the-internet 157/157