A Study on Formation of High Resistivity Phases of …...Resistivity [mW・cm] C54:13~20, C49:80~100...

64
1 A Study on Formation of High Resistivity Phases of Nickel Silicide at Small Area and its Solution for Scaled CMOS Devices Doctor Thesis Ryuji Tomita Supervisor : Prof. Iwai

Transcript of A Study on Formation of High Resistivity Phases of …...Resistivity [mW・cm] C54:13~20, C49:80~100...

  • 1

    A Study on Formation of High Resistivity Phases of Nickel Silicide at Small Area and its

    Solution for Scaled CMOS Devices

    Doctor Thesis

    Ryuji Tomita

    Supervisor : Prof. Iwai

  • 2

    Outline

    Back ground

    Purpose of this work

    Configuration of this thesis

    Chapter 3~6

    Conclusion

  • 3

    MOS Scaling and SALICIDE

    Si Substrate

    Well

    STI

    Si Substrate

    Well

    STI

    Scaling :k (

  • 4

    Titanium SALICIDE

    Ti

    Si

    a-TiSix

    Si

    C49-TiSi2 80-100 mW cm

    C54-TiSi2 13-20 mW cm

    Si Si

    >700℃ 500 – 600℃

    400 -

    500℃

    *J.A. Kittl , W.T. Shiau, Q.Z. Hong, D. Miles

    Microelectronic Engineering 50 (2000) 87–101

    Limitation of TiSi2 as scaling

    1. Difficulty in transforming C49 to C54 TiSi2. 2. Low thermal stability as thinning.

    3. Si is dominant diffusion specie.

    The first SALICIDE material used in fabrication.

  • 5

    Cobalt SALICIDE

    Limitation of CoSi2 as scaling

    1. Large Si consumption. 2. Rough interface by nucleation control.

    3. High formation temperature of CoSi2.

    4. Si is dominant diffusion specie in CoSi.

    Co

    Si

    Co2Si 110 mW cm

    Si

    CoSi 147 mW cm

    CoSi2 15-20 mW cm

    Si

    Si

    700℃ 375℃ 350℃

    *H. Iwai, T. Ohguro, and S.-i. Ohmi, NiSi salicide technology for

    scaled CMOS, Microelectronic Engineering 60, 157 (2002).

    Cobalt SALICIDE has better scalability than Titanium SALICIDE.

  • 6

    Nickel SALICIDE: Superiority

    Ni

    Si

    Ni2Si 110 mW cm

    Si

    NISi 147 mW cm

    NiSi2 15-20 mW cm

    Si

    Si

    700 -

    800℃ 300

    -400℃ 250

    -300℃

    Superiority of Nickel SALICIDE

    1. low Si consumption

    2. low formation temperature

    3. Ni diffusion kinetics

    TiSi2 CoSi2 NiSi

    Resistivity [mW・cm] C54:13~20, C49:80~100 14~20 10.5~18

    Formation Temperature 600~700℃ 600~700℃ 300~400℃

    Dominant moving species Si Co(Si) Ni

    Si consumption ratio 2.27 3.64 1.83 *参考 Silicide Technology for Integrated Circuits L.J. Chen

  • 7

    Nickel SALICIDE: Issues for practical use Critical Issues of Nickel SALICIDE

    1. Controlling phase formation

    2. Controlling and limiting diffusion of Ni in Si

    3. Poor thermal stability of NiSi

    4. Oxidation of NiSi

    5. Reducing the specific contact resistivity

    Phase Resistivity

    (mW・cm)

    Ni 7-10

    Ni3Si 80-90

    Ni31Si12 90-150

    Ni2Si 24-30

    Ni3Si2 60-70

    NiSi 10.5-18

    NiSi2 34-50

    Silicide Phase and Resistivity

    *参考 Silicide Technology for Integrated Circuits, L.J. Chen

    Series Resistance v.s. Gate Length

    *J-G Yun et al. Japan Journal App. Phy.Vo43, pp.6998 2004

    *M Tsuchiaki et. al.

    Japan Journal App. Phy.

    Vo44, pp.1673 2005

    *S-D Kim et al. TED2002

  • 8

    Purpose of this work

    Following issues of Nickel silicide

    are investigated.

    1. Phase control of nickel silicide at

    small areas.

    2. Thermal stability of NiSi.

    3. Schottky barrier height lowering at

    NiSi and silicon interface.

  • 9

    Configuration of this thesis

    Chapter 1 Introduction

    Chapter 4

    Improvement on

    Uniformity

    of Sheet Resistance

    Chapter 7 Summary and

    Conclusions

    Chapter 6

    Schottky Barrier Height

    between NiSi and Si

    Interface

    Chapter 5

    Thermal Stability

    of NiSi

    Chapter 2 Fabrication and Characterization Method

    Chapter 3

    High Resistivity of

    Nickel Silicide

    at Small Area

  • Chapter 2 CMOS Silicide Process Flow

    and Sheet Measurement Pattern

    Sectional view of test structure Top View of test structure

    L=0.5~100mm W=0.10 ~ 1.0mm

    STI or Side Wall

    silicide

    V I

    silicide

    contact

    Substrate or Poly-Si

    STI or

    Side

    Wall

    STI, Gate, Junction, Wet Clean

    Ni/TiN sputter:Ni→TiN in-situ

    1st Anneal:270℃ 150sec heating up by hot plate

    Selective Wet Etch:SPM(H2SO4+H2O2)

    2nd Anneal:395℃ 30sec hold

    Contact, Cu Interconnects

  • 11

    Chapter 3 High Resistivity Phase of

    Nickel Silicide at Small Area

    Purpose of this chapter

    Understanding the formation of high resistivity

    phase of Nickel silicide at small area.

    Identified nickel silicide phase

    Compared to CoSi2

    Reaction Mechanism and Thermodynamics of nucleation

  • 12

    Width dependence of Sheet Resistance

    Sheet resistance increase in only narrow line.

    n+ active area (L=100mm) p+ active area (L=100mm)

    0

    5

    10

    15

    20

    0.1 1 10

    Sh

    eet

    Res

    ista

    nce

    [ W

    /sq

    ]

    Width [ mm ]

    Mid

    Max

    Min 0

    5

    10

    15

    20

    0.1 1 10 S

    hee

    t R

    esis

    tan

    ce [

    W/s

    q ]

    Width [ mm ]

    Mid

    Max

    Min

  • 13

    Sheet Resistance on n+ Active Areas

    0 5 10 15 20 25 30 35.01

    .1

    1

    5102030

    50

    70809095

    99

    99.9

    99.99

    L=0.5um

    L=5.0um

    L=10um

    L=100um

    Sheet Resistance[ohm/sq.]

    Cu

    mu

    lati

    ve p

    rob

    abil

    ity

    [%]

    W=1.0mm

    0 5 10 15 20 25 30 35.01

    .1

    1

    5102030

    50

    70809095

    99

    99.9

    99.99

    L=0.5mm

    L=5.0mm

    L=10mm

    L=100mm

    Sheet Resistance[ohm/sq.]

    Cu

    mu

    lati

    ve p

    rob

    abil

    ity

    [%]

    W=0.10mm

    TEM

    &NBD

    (a)

    (b) (a) L/W=0.5/0.10mm. 6.4W/sq.

    (b) L/W=0.5/0.10mm. 19.5W/sq.

    Si 200

    Si 111

    NiSi

    102

    NiSi

    010

    NiSi

    112

    (a) NBD

    Thickness:21.8nm, Resistivity:14.0mm・cm

    Thickness:19.8nm, Resistivity:38.7mm・cm

    Ni3Si2

    311

    Ni3Si2

    311

    Ni3Si2

    020

    (b) NBD

    *NBD: Nano Beam Diffraction *Ni3Si2: JCPDS 17-0881

    High resistance sample has NiSi and Ni3Si2. Long line has NiSi only. No increase in resistance.

  • 14

    W=1.0mm

    0 5 10 15 20 25 30 35.01

    .1

    1

    5102030

    50

    70809095

    99

    99.9

    99.99

    L=0.5um

    L=5.0um

    L=10um

    L=100um

    Sheet Resistance[ohm/sq.]

    Cum

    ula

    tive p

    rob

    abil

    ity[%

    ]

    W=0.10mm

    0 5 10 15 20 25 30 35.01

    .1

    1

    5102030

    50

    70809095

    99

    99.9

    99.99

    L=0.5mm

    L=5.0mm

    L=10mm

    L=100mm

    Sheet Resistance[ohm/sq.]

    Cum

    ula

    tive p

    rob

    abil

    ity[%

    ]

    TEM

    &NBD

    (a)

    (b) (a) L/W=0.5/0.10mm. 7.2W/sq.

    Thickness:19.8nm, Resistivity:14.3mm・cm

    (b) L/W=0.5/0.10mm. 27.0W/sq.

    Thickness:19.4~59.9nm

    NiSi

    211

    NiSi

    102

    NiSi

    113

    (a) NBD Si 200

    Si 111

    NiSi2

    111

    NiSi2

    200

    NiSi2

    111

    (b) NBD

    Sheet Resistance on p+ Active Areas

    High resistance sample has NiSi and NiSi2. Long line has NiSi only. No increase in resistance.

  • 15

    NiSi on poly also has degradation in uniformity.

    ⇒Not crystal states of Si but size of area is dominant.

    Sheet Resistance on Poly-Si n+ poly (W=0.11mm) and

    n+ active area (W=0.10mm)

    p+ poly (W=0.11mm) and

    p+ active area (W=0.10mm)

    0 5 10 15 20 25 30 35.01

    .1

    1

    5102030

    50

    70809095

    99

    99.9

    99.99

    Npoly 1.0mm

    Npoly 10mm

    Npoly 100mm

    Ndiff 1.0mm

    Ndiff 10mm

    Ndiff 100mm

    Sheet Resistance[ohm/sq.]

    Cum

    ula

    tive

    pro

    bab

    ilit

    y[%

    ]

    0 5 10 15 20 25 30 35.01

    .1

    1

    5102030

    50

    70809095

    99

    99.9

    99.99

    Ppoly 1.0mm

    Ppoly 10mm

    Ppoly 100mm

    Pdiff 1.0mm

    Pdiff 10mm

    Pdiff 100mm

    Sheet Resistance[ohm/sq.]

    Cum

    ula

    tive

    pro

    bab

    ilit

    y[%

    ]

  • 16

    Comparison to CoSi2

    n+ active area (W=0.10mm) p+ active area (W=0.10mm)

    CoSi2 has no degradation in uniformity.

    ⇒Complex phase diagram of Ni-Si system is main cause in the formation of high resistivity phase.

    0 5 10 15 20 25 30 35.01

    .1

    1

    5102030

    50

    70809095

    99

    99.9

    99.99

    L=0.5mm

    L=5.0mm

    L=10mm

    L=100mm

    Sheet Resistance [ W/sq ]

    Cum

    ula

    tive

    pro

    bab

    ilit

    y[%

    ]

    0 5 10 15 20 25 30 35.01

    .1

    1

    5102030

    50

    70809095

    99

    99.9

    99.99

    L=0.5mm

    L=5.0mm

    L=10mm

    L=100mm

    Sheet Resistance [ W/sq ]

    Cum

    ula

    tive

    pro

    bab

    ilit

    y[%

    ]

  • Presumed Ni-Si Reaction Path on n+ Area

    17

    Step Chemical

    equation

    ΔH

    (kJ/mol of

    Ni atoms)

    Total Volume

    Change

    [(post-pre)/pre]

    Volume Change

    of Silicide

    [(post-pre)/pre]

    Volume

    Expansion

    [(Silicide-Si)/Si]

    1 2Ni+Si→Ni2Si -66 -23.3% - 0.0%→60.5%

    2 3Ni2Si+Si→2Ni3Si2 -9 -1.3% +19% 60.5%→43.5%

    3 Ni3Si2→Ni2Si+NiSi +2.7 -2.1% -2.1% 43.5%→40.5%

    4 Ni2Si+Si→2NiSi -19 -7.5% +50% 60.5%→20.5%

    Reaction Step Model

    1. Formation of Ni2Si. Increasing

    compressive stress.

    2. Formation of Ni3Si2. Relaxing stress.

    Reaction is noticeable at fine patterns.

    3. ΔH is small. Nucleation reaction like.

    4. Formation of NiSi.

    • Step3 is limiting step. Ni3Si2 tends to remain. • 2 reaction paths complicate phase sequence.

    1:Ni2Si→NiSi, 2:Ni2Si→Ni3Si2→NiSi.

    *Rivero et. al. Appl. Phys. Lett. 87, 041904 (2005)

  • 18

    Effect of Compressive Stress on silicidation *C. Rivero et. al, App. Phy. Lett. (2005)

    147Å

    92Å

    175Å

    122Å

    220Å

    183Å

    Ni2Si Ni3Si2 NiSi

    Silicon

    ΔH=

    -26.0(KJ/mol)

    ΔH=

    -10.3(KJ/mol)

    Silicide /

    Consumed

    Si

    1.61

    (=147/92)

    1.44

    (=175/122)

    1.20

    (=220/183)

    Large impurities; As, P, and Silicide stress.

    ⇒Compressive stress retards the reaction. *L.W. Cheng et al. / Materials Science and Engineering A 409 (2005) 217–222

    ⇒Difficulty in transition from Ni3Si2 to NiSi.

  • Presumed Ni-Si Reaction Path on p+ Area

    19

    Step Chemical

    equation

    ΔH

    (kJ/mol of

    Ni atoms)

    Total Volume

    Change

    [(post-pre)/pre]

    Volume Change

    of Silicide

    [(post-pre)/pre]

    Volume

    Expansion

    [(Silicide-Si)/Si]

    1 Ni+2Si→NiSi2 -87 -22.5% - 0.0%→-1.4%

    2 3Ni+NiSi2→2Ni2Si -10.5 -11.1% +62.8% -1.4%→60.5%

    3 NiSi2+Ni2Si→3NiSi -12 +1.0% +1.0% 19.3%→20.5%

    4 NiSi2→NiSi+Si +2 -11.8% -38.9% -1.4%→20.5%

    Reaction Step Model

    1. Formation of NiSi2. Small stress. Thickness of

    NiSi2 depends on implanted dose spices and

    amounts. 2. Unreacted Ni and NiSi2 form Ni2Si. Large

    stress is formed.

    3. NiSi2 and Ni2Si form NiSi.

    4. Without Ni, NiSi2 hardly transforms to NiSi.

    Large amount B makes thicker NiSi2 layer. Thicker

    NiSi2 tends to remain because of lack of Ni. *T. Isshiki et. Al. RTP 2006 14th IEEE International Conf. on RTP

  • 20

    Effect of Tensile Stress on silicidation

    Implanted Boron and STI makes tensile stress.

    ⇒Tensile stress promotes the reaction. *L.W. Cheng et al. / Materials Science and Engineering A 409 (2005) 217–222

    ⇒NiSi2 is formed in early stage of silicidation.

    Interfacial Energy increase by implanted B (?)

    *W. J. Chen and L. J. Chen, J. App. Phys. (1991)

    Si Substrate

    Well

    -Si-B-Si-B-Si STI

    Small atom, B and STI

    makes tensile stress.

  • 21

    Thermodynamics of Nucleation

    Fre

    e E

    ne

    rgy C

    han

    ge

    Surface Energy S1+S2

    Volume

    Energy DG* t

    DG*

    t tco=

    (S1+S2) / DG

    (a) The free energy of a nucleus

    as a function of its radius

    Surface Energy

    S1+S2+SB

    tc1= (S1+S2+SB) / DG

    (b) The free energy of a nucleus

    When uniform planer film

    Boundary surface increases free energy change

    → nucleation reaction is promoted at small areas.

    *S1:Surface Energy

    S2:Interface Energy

    SB:Interface Energy of boundary

    *F.M. d’Heurele J. Mater. Res. 3(1), 1988, pp.167-195

    Fre

    e-E

    nerg

    y C

    hange [

    DG

    ]

    r

    Surface

    bsr2

    Volume

    aDGr3

    r*

    DG*

    r

    S2

    SB

    S1

    t

  • 22

    Comparison between TiSi2 and NiSi cases

    Ni2Si Ni3Si2

    Reaction C49-TiSi2→C54TiSi2 Ni2Si→Ni3Si2→NiSi

    Figure

    Reaction

    Mechanism

    TiSi→C49-TiSi2→C54TiSi2 Sequential reaction.

    1. Ni2Si→NiSi

    2. Ni2Si→Ni3Si2→NiSi

    2paths to form NiSi.

    Volume Change

    by reaction

    -2%

    C49-TiSi2→C54TiSi2

    +50%

    Ni2Si→Ni3Si2→NiSi

    Effect of Scaling on

    Phase Transition

    Transition from C49 to C54-

    TiSi2 is difficult for decreasing

    nucleation sites.

    Ni2Si→Ni3Si2 reaction is

    promoted at small area for

    stress reduction.

    *T. Isshiki et. Al. RTP 2006 14th

    IEEE International Conf. on RTP

    *J. A. Kittl et. Al. Microelectronics Eng.

    Vol.50. pp.87-101(2000)

    Formation of NiSi is much complex than TiSi2 case in terms of stress formation and reaction mechanism.

  • 23

    Conclusions of Chapter 3 Firstly, formation of Ni3Si2 on small n

    + or NiSi2 on small p

    + active and poly-Si areas is confirmed.

    The formation of high resistivity phases at small areas is characteristic features of nickel silicide which has complex phase diagram and reaction mechanism.

    Tensile or compressive stress affects the formation of NiSi2 and Ni3Si2 respectively.

  • 24

    Chapter 4 Improvement on

    Uniformity of Sheet Resistance

    Purpose of this chapter

    Modify silicidation conditions in order to

    improve the uniformity of sheet resistance

    at small area.

  • 25

    Effect of First Anneal

    0 5 10 15 20 25 30 35.01

    .1

    1

    5102030

    50

    70809095

    99

    99.9

    99.99

    270oC

    280oC

    290oC

    320oC

    350oC

    Sheet Resistance[ohm/sq.]

    Cum

    ula

    tive p

    rob

    abil

    ity[%

    ]

    n+ active area W/L=0.10/0.5mm

    0 5 10 15 20 25 30 35.01

    .1

    1

    5102030

    50

    70809095

    99

    99.9

    99.99

    270oC

    280oC

    290oC

    320oC

    350oC

    Sheet Resistance[ohm/sq.]

    Cum

    ula

    tive p

    rob

    abil

    ity[%

    ]

    p+ active area W/L=0.10/0.5mm

    Only p+ active area is improved.

    *Process condition 2nd Anneal 395oC

  • 26

    200

    200

    111

    111 111

    111

    NiSi2 1 304

    304

    600

    304

    600

    304

    NiSi 2

    Si 220

    Si 220 Si 220

    Si 220

    Si 4 204

    212 412

    412

    212

    204

    NiSi 3

    1 2

    4

    3 L/W=0.5/0.10mm. 11.7W/sq at 575℃

    Effect of second anneal on n+ active area

    0 5 10 15 20 25 30 35.01

    .1

    1

    5102030

    50

    70809095

    99

    99.9

    99.99

    395oC

    500oC

    550oC

    575oC

    Sheet Resistance[ohm/sq.]

    Cu

    mu

    lati

    ve p

    rob

    abil

    ity

    [%]

    N+diff. W/L=0.10/0.5mm

    TEM

    &NBD

    Not Ni3Si2 but NiSi2 is formed.

    *Process condition 1st Anneal 270oC

  • 27

    NiSi2

    220

    220

    220

    220

    020

    200 020

    200

    1

    220

    220

    220

    220

    020

    200 020

    200

    NiSi2 2

    Si 220

    Si 220 Si 220

    Si 220

    Si 4 NiSi2

    220

    220

    220

    020

    200 020

    200

    220

    3

    Effect of second anneal on p+ active area

    0 5 10 15 20 25 30 35.01

    .1

    1

    5102030

    50

    70809095

    99

    99.9

    99.99

    395oC

    500oC

    550oC

    575oC

    Sheet Resistance[ohm/sq.]

    Cu

    mu

    lati

    ve p

    rob

    abil

    ity

    [%]

    P+diff. W/L=0.10/0.5mm

    TEM

    &NBD

    1 2

    4

    3

    L/W=0.5/0.10mm. 14.8W/sq. at 575℃

    Epi-NiSi2 is formed.

    *Process condition 1st Anneal 270oC

  • 28

    Effect of Nickel Thickness n+ active area W/L=0.10/0.5mm p+ active area W/L=0.10/0.5mm

    thicker Ni increases volume energy.

    *Process condition 1st Anneal 270oC /2nd Anneal 395oC

    0 5 10 15 20 25 30 35.01

    .1

    1

    5102030

    50

    70809095

    99

    99.9

    99.99

    80A60A100A

    Sheet Resistance [ W/sq ]

    Cu

    mu

    lati

    ve

    pro

    bab

    ilit

    y [

    %]

    0 5 10 15 20 25 30 35.01

    .1

    1

    5102030

    50

    70809095

    99

    99.9

    99.99

    80A60A100A

    Sheet Resistance [ W/sq ]

    Cu

    mu

    lati

    ve

    pro

    bab

    ilit

    y [

    %]

  • 29

    n+ Active Area after 1st Anneal Sample1 L/W=0.5/0.10mm

    002

    320

    322

    Ni2Si

    301 320

    021

    Ni2Si

    242 551

    313

    Ni3Si2

    Both Ni3Si2 and Ni2Si are identified.

    ⇒Process before 1st Anneal should be improved.

    *Process condition 1st Anneal 270oC

  • 30

    High Temp. Ni PVD on n+ active area N+diff. W/L=0.10/0.5mm

    0 5 10 15 20 25 30 35.01

    .1

    1

    5102030

    50

    70809095

    99

    99.9

    99.99

    200oC SPT

    300oC SPT

    RT SPT

    Sheet Resistance[ohm/sq.]

    Cu

    mu

    lati

    ve

    pro

    bab

    ilit

    y[%

    ]

    TEM

    &NBD

    414 123

    511

    NiSi2

    111

    113 224

    NiSi2

    422

    531 113

    NiSi2

    220 400

    Si

    High resistance sample, 18.2W/sq. of Ni PVD at 200℃

    Not Ni3Si2 but NiSi2 is formed.

    A B C

    D

    A B

    D C

    *Process condition 1st Anneal 270oC /2nd Anneal 500oC

  • 31

    High Temp. Ni PVD on p+ active area P+diff. W/L=0.10/0.5mm

    0 5 10 15 20 25 30 35.01

    .1

    1

    5102030

    50

    70809095

    99

    99.9

    99.99

    200oC SPT

    300oC SPTRT SPT

    Sheet Resistance[ohm/sq.]

    Cu

    mu

    lati

    ve

    pro

    bab

    ilit

    y[%

    ]

    TEM

    &NBD

    High resistance sample, 22.6W/sq. of Ni PVD at 200℃

    200

    020 200

    020

    NiSi2

    200

    020 200

    020

    NiSi2

    200

    020 200

    020

    NiSi2 220 400 Si

    Epi-NiSi2 is formed.

    A B C

    D

    A B

    D C

    *Process condition 1st Anneal 270oC /2nd Anneal 500oC

  • 32

    Effects of Anneal Time

    0 5 10 15 20 25 30 35.01

    .1

    1

    5102030

    50

    70809095

    99

    99.9

    99.99

    270C REF.270C 2 times long

    Sheet Resistance [ W/sq ]

    Cu

    mula

    tiv

    e p

    rob

    abil

    ity

    [%

    ]

    N+ Active Area

    L/W=0.5/0.10mm

    P+ Active Area

    L/W=0.5/0.10mm

    0 5 10 15 20 25 30 35.01

    .1

    1

    5102030

    50

    70809095

    99

    99.9

    99.99

    270C REF

    270C 2 times long

    Sheet Resistance [ W/sq ]

    Cum

    ula

    tive

    pro

    bab

    ilit

    y [

    %]

    Longer anneal improves the uniformity.

    *Process condition 1st Anneal 270oC /2nd Anneal 500oC

  • 33

    Effect of Furnace Anneal n+ active area (L/W=0.5/0.10mm) p+ active area (L/W=0.5/0.10mm)

    *Process condition 1st Anneal 270oC /2nd Anneal 500oC

    Furnace anneal improves the uniformity dramatically.

    0 5 10 15 20 25 30 35.01

    .1

    1

    5102030

    50

    70809095

    99

    99.9

    99.99

    Hot Plate 270oC

    Hot Plate 290oC

    Hot Plate 350oC

    Furnace 300oC

    Furnace 350oC

    Sheet Resistance [ W/sq ]

    Cum

    ula

    tive

    pro

    bab

    ilit

    y[%

    ]0 5 10 15 20 25 30 35

    .01

    .1

    1

    5102030

    50

    70809095

    99

    99.9

    99.99

    Hot Plate 270oC

    Hot Plate 290oC

    Hot Plate 350oC

    Furnace 300oC

    Furnace 350oC

    Sheet Resistance [ W/sq ]

    Cum

    ula

    tive

    pro

    bab

    ilit

    y[%

    ]

  • 34

    Width dependence of Sheet Resistance

    on n+ active area by Furnace Anneal

    No increase in sheet resistance at narrow line by furnace anneal.

    Hot plate(Reference) (L=100mm) Furnace Anneal (L=100mm)

    0

    5

    10

    15

    20

    0.1 1 10

    Sh

    eet

    Res

    ista

    nce

    [ W

    /sq

    ]

    Width [ mm ]

    Mid

    Max

    Min 0

    5

    10

    15

    20

    0.1 1 10 S

    hee

    t R

    esis

    tan

    ce [

    W/s

    q ]

    Width [ mm ]

    Med.

    Max.

    Min.

    *Process condition

    1st Anneal single 270oC

    2nd Anneal 395oC

    *Process condition

    1st Anneal furnace 350oC

    2nd Anneal 500oC

  • 35

    Width dependence of Sheet Resistance

    on p+ active area by Furnace Anneal

    No increase in Sheet resistance at narrow line by furnace anneal.

    0

    5

    10

    15

    20

    0.1 1 10

    Sh

    eet

    Res

    ista

    nce

    [ W

    /sq

    ]

    Width [ mm ]

    Mid

    Max

    Min 0

    5

    10

    15

    20

    0.1 1 10 S

    hee

    t R

    esis

    tan

    ce [

    W/s

    q ]

    Width [ mm ]

    Me

    d.

    Hot plate(Reference) (L=100mm) Furnace Anneal (L=100mm)

    *Process condition

    1st Anneal single 270oC

    2nd Anneal 395oC

    *Process condition

    1st Anneal furnace 350oC

    2nd Anneal 500oC

  • 36

    Comparison among Annealing tools Anneal

    Tool RTA Hot Plate Furnace

    Structure

    Atmosphere N2 Vacuum or N2 N2

    Advantage Excellent temperature

    control.

    •Easy for process below 300 oC.

    •Available for in-situ

    treatment after PVD.

    ・Suitable for long-term treatment.

    ・Suitable for low temperature treatment.

    Drawback

    •Unsuitable for temperature

    below 300 oC.

    •Unsuitable for long-term

    treatment.

    •Hard to control the

    temperature profile.

    •Unsuitable for long-term

    treatment.

    ・Impossible for short- term treatment.

    Silicide

    application

    Commonly used in

    silicidation. ・Hardly used in silicidation.

    ・Hardly used in silicidation.

    Furnace suitable for long and low temperature Annealing.

  • 37

    Effect of Furnace Anneal on The

    Formation of High Resistivity Phases High resistivity

    Phase Ni3Si2 on n type NiSi2 on p type

    Example

    Reaction path

    2 way paths

    Path1:Ni2Si→NiSi

    Path2:Ni2Si→Ni3Si2→NiSi

    2 way paths

    Path1:Ni2Si→NiSi

    Path2:NiSi2→Ni2Si→NiSi

    Effect of

    furnace anneal

    1. Promote Ni3Si2→NiSi

    reaction by large heat

    quantity by long anneal.

    2. Grain growth Ni2Si phase.

    1. Promote NiSi2→Ni2Si reaction by

    large heat quantity by long anneal.

    2. Initial NiSi2 layer is not thicken (?).

    *T. Isshiki et. al. 14th IEEE

    International Conf. on RTP, 2006 [4.4]

    *T. Isshiki et. al.

    14th IEEE International

    Conf. on RTP, 2006

    [4.4] Ni2Si Ni3Si2

    Long anneal by furnace promotes the reaction to NiSi.

  • 38

    Conclusions of Chapter 4

    Furnace anneal successfully

    improves the uniformity of sheet

    resistance at small areas.

    Increasing temperature of 1st anneal or

    thickness of Ni improves the uniformity of Rs

    on p+ active area only.

    Increasing temperature of Ni PVD stage or

    2nd anneal promotes the formation of NiSi2

    phase.

  • 39

    Chapter 5 Thermal Stability of NiSi

    Purpose of this chapter

    To Investigate thermal stability of NiSi.

    Clarify thermal stability difference between n+ and

    p+ active areas.

    Clarify thermal stability difference between NiSi on

    Si(100) and Si(110).

  • 40

    Crystal Orientation and Thermal stability of NiSi

    Crystal Orientation of NiSi depends on Si.

    ⇒Orientation of NiSi or Si changes thermal stability ?

    *C. Lavoie et. al, Microelectronics Engineering 70, 144-153 (2003)

    *Process condition

    P type poly-Si,

    Ni=15nm, 3 oC/s N2 ambient

    Crystal structure of Nickel Silicide on Si(100)

    *C.Detavernier et al. Nature 2003

    NiSi(112) NiSi(202)/(211)

  • 41

    Thermal Stability of Sheet Resistance

    0 10 20 30 40 50 60.01

    .1

    1

    5102030

    50

    70809095

    99

    99.9

    99.99

    500 oC

    600 oC

    650 oC

    700 oC

    Sheet Resistance [ W/sq ]

    Cu

    mu

    lati

    ve

    pro

    bab

    ilit

    y [

    %]

    0 10 20 30 40 50 60.01

    .1

    1

    5102030

    50

    70809095

    99

    99.9

    99.99

    500 oC

    600 oC

    650 oC

    700 oC

    Sheet Resistance [ W/sq ]

    Cu

    mu

    lati

    ve

    pro

    bab

    ilit

    y [

    %]

    n+ active area (L/W=100/10mm) p+ active area (L/W=100/10mm)

    p+ active area has better thermal stability than n+ active area.

    *Process condition

    1st Anneal 270oC /2nd Anneal 500oC

  • 42

    Cross-sectional TEM Images of NiSi at 700oC

    101 213

    312

    n+ active area

    p+ active area

    NiSi

    Agglomeration of NiSi on n+ active area is confirmed.

  • 43

    20 30 40 50 60 700

    100

    200

    300

    400

    2theta angle [degree]

    In

    ten

    sit

    y [

    CP

    S]

    NiSi 200 Si 400

    w/o impla.

    n+-impla.

    p+-impla.

    20 30 40 50 60 700

    100

    200

    300

    400

    2theta angle [degree]In

    ten

    sit

    y [

    CP

    S]

    w/o impla.

    n+-impla.

    p+-impla.

    NiSi 020

    NiSi 101

    Si 220

    (a) Parallel to Si (b) Parallel to Si

    In-plane XRD patterns of NiSi films

    NiSi (020) // Si (110) is observed on p+ implanted Si.

    *Process condition

    1st Anneal 270oC

    2nd Anneal 500oC

  • 44

    Calculated From D. F. Wilson et al., Scripta Metal., 26, 85 (1992)

    Thermal Expansion of NiSi films

    R.T.

    700˚C

    3.00

    3.50

    4.00

    4.50

    5.00

    5.50

    6.00

    0 100 200 300 400 500 600 700

    Unit

    cel

    l dim

    ensi

    on [

    nm

    ]

    Temperature [ oC ]

    a

    b

    c

    NiSi(211)

    Si(220)

    NiSi(211)

    Si(220) (a) Epitaxial grain

    Si(220)

    NiSi(020)

    NiSi(202)

    (b) Transrotational grain

    The space of b axis decreases as temperature increases.

    ⇒ NiSi grains relax by arranging each grains.

    *NiSi: Orthorombic axbxc=5.233x3.258x5.659

  • 45

    n+ active area (all)

    n+ Ext-SD only

    Deep-SD As only

    Deep-SD P only

    p+ active area (all)

    p+ Ext-SD only

    Deep-SD B only

    None Dope

    Annealed NiSi Images by optical microscope

    NiSi on deep-SD B shows no agglomeration.

    ⇒Highly implanted B is the cause in high thermal stability.

    *Process condition

    1st Anneal 270oC

    2nd Anneal 500oC

    Add. Anneal 650oC

  • 46

    Effect of B dose on NiSi orientation

    Si direction Si direction

    NiSi (020) // Si (110) is formed at 5x1015 atoms/cm2 and above of B dose.

    *H. Kimura and R. Tomita, Micro. Eng. (2010) *Process condition

    1st Anneal 270oC

    2nd Anneal 500oC

    atoms/cm2

  • 47

    Thermal Stability Comparison

    between NiSi/Si(100) and Si(110)

    Process Flow

    SPM 9:1

    BOE 20:1

    Ni-PVD 10nm

    RTA 225 to 700℃ 30sec

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    200 300 400 500 600 700Anneal Temp.[℃]

    She

    et R

    esis

    tanc

    e[Ω

    /sq.

    ]

    Si(100)

    Si(110)

    Thermal stability: NiSi on Si(100) > Si(110).

  • 48

    In-plane XRD, f-rotation Analysis

    0

    500

    1000

    1500

    2000

    2500

    3000

    0 20 40 60 80 100 120 140 160 180

    φ [℃] fromSi(110)

    Inte

    nsity[

    coun

    t]

    NiSi (101)NiSi (011)NiSi (200)NiSi (111)NiSi (112)NiSi (202)/(211)NiSi (103)NiSi (301)NiSi (020)

    NiSi/Si(110)

    0

    500

    1000

    1500

    2000

    2500

    3000

    0 20 40 60 80 100 120 140 160 180

    φ [°] fromSi(110)

    Inte

    nsity[

    coun

    t]

    NiSi (101)NiSi (011)NiSi (200)NiSi (111)NiSi (112)NiSi (202)/(211)NiSi (103)NiSi (301)NiSi (020)

    NiSi/Si(100)

    NiSi on both Si(100) and Si (110) align to Si substrates.

    ・NiSi on Si(100) is 4 fold symmetry. ・NiSi on Si(110) is 2 fold symmetry.

    Strong NiSi(020)//Si(110) relation is observed from both

    samples.

    Si(2-20)

    Si(-113) Si(1-13)

    Process

    Ni-PVD 10nm

    RTA 500℃30sec

  • 49

    Thermal Stability of NiSi on Si (110)

    NiSi on Si(110) cannot relax by contracting b-axis of NiSi because of 2 fold symmetry.

    Si(220)

    NiSi(020)

    NiSi(202)

    (a) NiSi on Si(100) Si(220)

    Si(200)

    NiSi(202)

    NiSi(020)

    (b) NiSi on Si(110) Si(220)

  • 50

    Conclusions of Chapter 5

    ・Thermal stability of NiSi depend on crystal orientation of NiSi to Si.

    ・Thermal stability: NiSi on p+ > n+ active area. Highly implanted B (> 5E15atms/cm2)

    ⇒NiSi(020) aligns to Si(110). ⇒b-axis of NiSi contacts by increasing Temp. .

    ・ Thermal stability: NiSi on Si(100) > Si(110) NiSi on Si(110) cannot relax by b-axis of NiSi

    because of two fold symmetry of Si(110).

  • 51

    Chapter 6 Schottky Barrier Height of

    NiSi and Si Interface

    Purpose of this chapter

    Lowering Schottky barrier height of

    NiSi on Si by Al.

    Comparing Schottky barrier height of

    NiSi on Si (100) and (110).

  • 52

    Logic CMOS Series Resistance

    Series Resistance

    Specific Contact Resistivity

    To decrease Specific Cotact Resistivity

    ・Doping Density N ↑ ・Barrier Height φB ↓

    *S-D Kim et al. TED2002

    Schottky Barrier Height need to be reduced in order to reduce rc.

  • 53

    Schottky Barrier Height Interface State

    ・Dangling Bond ・Metal Induced Gap State (MIGS)

    Fermi Level of Metal/Si interface

    ・φbp=1/3Eg

    Modulation of Barrier Height

    ・PtSi for PFET, ErSi For NFET ・Introducing impurities at the interface.

    Interface state and Fermi Level Pining

    *Y-C Yeo et al. JAP2002

    Semiconductor

    *M.Saitoh et al. IEDM2008

    CMOS on Si(110) and NiSi

    *C.Detavernier et al. Nature 2003

    NiSi(112) NiSi(202)/(211) CMOS Performance

    Si(110) > Si(100)

    NiSi is affected by

    Surface Orientation of Si.

    Is Schottky Barrier Height on Si(110) different from Si(100) ?

  • 54

    Schottky Diode I-V Characteristic w or w/o Al

    Reverse Current increases by Al.

    Process Flow

    1. SPM 9:1

    2. SPM 4:1,HF50:1,HPM

    3. Thermal SiO2 1000Å 4. Photolithography

    5. SiO2 Etch, BOE 20:1

    6. Resist Strip

    7. Al-Implantation

    1e14atm/cm2 5keV

    8. HF Treatment

    9. Ni-PVD 10nm

    10.RTA 500℃ 30sec 11. Metal strip SPM4:1

    12. Al-PVD 1000Å for back side contact

    1.0E-02

    1.0E-01

    1.0E+00

    1.0E+01

    1.0E+02

    -2 -1 0 1 2

    I [A

    /cm

    2]

    Voltage [V]

    Si(100)

    Si(100) with Al

    Si(110)

    Si(110) With Al

    *Si(100):p-type, 10-20Ω・cm, 475-575mm *Si(110): p-type, 1-10Ω・cm, 500-550mm

  • 55

    Activation-Energy Measurements

    For SBH Determination, without Al

    NiSi/Si(110) NiSi/Si(100)

    fBp=0.38 eV fBp=0.34 eV

    fBp of Si(100) > fBp of Si(110)

    ⇒Charge neutral level : Si(100) > Si(110)

    1.00E-14

    1.00E-13

    1.00E-12

    1.00E-11

    1.00E-10

    1.00E-09

    1.00E-08

    3.00 3.50 4.00 4.50 5.00 5.50 6.00

    I/T

    2 (A

    /K

    2 )

    Measurement Temperature 1000/T(K-1)

    -0.02 V

    -0.04 V

    -0.06 V

    -0.08 V

    -0.10 V

    fBp=0.38 eV

  • 56

    SIMS Profile after NiSi Formation

    Al conc. of Si(110) ≈ Si(100) at NiSi/Si interface.

    1E+00

    1E+01

    1E+02

    1E+03

    1E+04

    1E+05

    1E+06

    1E+07

    1E+14

    1E+15

    1E+16

    1E+17

    1E+18

    1E+19

    1E+20

    1E+21

    0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

    Se

    co

    nd

    ary

    ion

    inte

    ns

    ity (c

    ou

    nts

    /se

    c)

    Co

    nc

    en

    tra

    tio

    n (

    Ato

    ms/c

    m3

    )

    Depth (nm)

    Al in Si(100)

    Al in Si(110)

    Si in Si100(raw ion counts)

    Ni in Si100(raw ion counts)

    Si in Si(110)(raw ion counts)

    Ni in Si(110)(raw ion counts)

    Al in Si(110)

    Si(raw ion counts)->

    Ni(raw ion counts)->

    Al in Si(100)

  • 57

    Activation-Energy Measurements

    For SBH Determination, with Al NiSi/Si(110) with Al NiSi/Si(100) with Al

    fBp=0.17 eV fBp=0.23 eV

    fBpof Si(100) < fBpof Si(110)

    NiSi/Si(100): DfBp=0.21eV, NiSi/Si(110): DfBp=0.11eV

    ⇒interface states: Si(100) < Si(110)

  • 58

    In-plane XRD

    No orientation change observes by Al implantation.

    20 30 40 50 60 70 800

    200

    400

    600

    800

    1000

    2theta angle [degree]

    In

    ten

    sit

    y [

    CP

    S]

    NiSi with Al-impla. on Si(100)

    Si

    22.5o from

    Si

    Si

    20 30 40 50 60 70 800

    200

    400

    600

    800

    1000

    2theta angle[degree]

    NiSi w/o Al impla. on Si(100)

    Inte

    nsity [C

    PS

    ]

    Si

    22.5o from

    Si Si

    NiSi/Si(100) NiSi/Si(100) with Al

    20 30 40 50 60 70 800

    200

    400

    600

    800

    1000

    2theta angle [degree]

    In

    ten

    sit

    y [

    CP

    S]

    NiSi with Al-impla. on Si(110)

    Si

    Si

    Si

    NiSi/Si(110)

    20 30 40 50 60 70 800

    200

    400

    600

    800

    1000

    2theta angle [degree]

    NiSi w/o Al-impla. on Si(110)

    Inte

    nsity [C

    PS

    ]

    Si

    Si

    Si

    NiSi(020)

    NiSi/Si(110) with Al

  • 59

    Analysis on Schottky barrier lowering by Al

    implant.

    1E+00

    1E+01

    1E+02

    1E+03

    1E+04

    1E+05

    1E+06

    1E+07

    1E+14

    1E+15

    1E+16

    1E+17

    1E+18

    1E+19

    1E+20

    1E+21

    0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

    Se

    co

    nd

    ary

    ion

    inte

    ns

    ity (c

    ou

    nts

    /se

    c)

    Co

    nc

    en

    tra

    tio

    n (

    Ato

    ms/c

    m3

    )Depth (nm)

    Al in Si(100)

    Al in Si(110)

    Si in Si100(raw ion counts)

    Ni in Si100(raw ion counts)

    Si in Si(110)(raw ion counts)

    Ni in Si(110)(raw ion counts)

    Al in Si(110)

    Si(raw ion counts)->

    Ni(raw ion counts)->

    Al in Si(100)

    Band structure of NiSi2/Si interface

    by Y addition. *Li Geng et. Al. EDL Vol.29 pp.446(2008)

    Solid solubility of Al in Si is below 7x1018atms/cm3

    (600℃) ⇒Accepter like Al in Si is few.

    Addition of Se, S, Y, Al to NiSi/Si interface has following effects.

    ①Charge Neutral Level is changed by interface state change. ②Work function is changed by dipole formation.

  • 60

    Conclusions of Chapter 6

    Schottky Barrier Height is successfully

    reduced by Al implantation for both

    Si(100) and Si(110)

    Barrier lowering by Al implantation is

    significant for Si(100) than Si(110).

    No crystal structure change of NiSi was

    observed by Al implantation.

  • 61

    Conclusions of Chapter 7-1

    Firstly the formation of high resistivity

    phase at small area has been observed,

    the issue has successfully been solved

    by furnace anneal for 1st anneal.

    This process has successfully been used

    for a CMOS fabrication condition.

  • 62

    Conclusions of Chapter 7-2 Chapter 3

    The formation of Ni3Si2 or NiSi2 at small areas is

    confirmed.

    ⇒The formation of Ni3Si2 or NiSi2 is related to complex Ni-Si phase diagram and reaction mechanisms.

    Chapter 4

    Modifying silicide condition for improve the uniformity of

    sheet resistance at small area.

    ⇒Furnace anneal for 1st anneal dramatically improves the uniformity.

  • 63

    Conclusions of Chapter 7-3 Chapter 5 Thermal stability: NiSi on p+ > n+ active area.

    ⇒NiSi(020) aligns to Si(110) on p+ active area. ⇒b-axis of NiSi contacts by increasing Temp. .

    Thermal stability: NiSi on Si(100) > Si(110)

    ⇒ NiSi on Si(110) cannot relax by b-axis of NiSi. Because of Two folds symmetry of Si(110).

    Chapter 6 Schottky Barrier Height is successfully reduced by Al

    implantation for both Si(100) and Si(110)

    Barrier lowering by Al is significant for Si(100) than Si(110).

  • Academic Paper & Presentation

    タイトル 年月日 雑誌・学会名 著者

    Formation of High Resistivity Phases

    of Nickel Silicide at small Diffusion Region 2007年6月

    International Workshop

    on Junction Technology

    R.Tomita, H. Kimura,

    M. Yasuda, T. Nakayama,

    K. Maeda, Y. Sugiyama,

    Y. Kikuchi, M. Moritoki

    Analysis and Improvement

    on the Uniformity of

    Sheet Resistance of Nickel Silicide

    2008年5月 International Workshop

    on Junction Technology

    R.Tomita, M. Yasuda,

    H. Kimura, K. Maeda,

    S. Ueno, M. Moritoki

    微小領域におけるニッケルシリサイド の層抵抗均一性とその改善方法

    2008年6月

    応用物理学会

    シリコンテクノロジー分科会

    第102回研究集会

    R.Tomita, H. Kimura,

    M. Yasuda, K. Maeda,

    S. Ueno, M. Moritoki

    Formation of High Resistivity Phases

    of Nickel Silicide at Small Area accepted

    Microelectronics

    Reliability

    R. Tomita, H. Kimura,

    M. Yasuda, K. Maeda,

    S. Ueno, T. Tomizawa,

    Y. Kunimune, H. Nakamura,

    M. Moritoki, H. Iwai

    Improvement on Sheet Resistance

    Uniformity of Nickel Silicide

    by Optimization of Silicidation Conditions

    accepted Microelectronics

    Reliability

    R. Tomita, H. Kimura,

    M. Yasuda, K. Maeda,

    S. Ueno, T. Tonegawa,

    T. Fujimoto, M. Moritoki,

    H. Iwai