A primer on selecting grain boundary sets for comparison ... · A primer on selecting grain...

19
Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE–NA0003525. A primer on selecting grain boundary sets for comparison of interfacial fracture properties in MD simulations 2017 LAMMPS Workshop & Symposium August 1 st - August 3 rd , Albuquerque NM Rémi Dingreville Sandia National Laboratories Doruk Aksoy, Douglas E. Spearot Department of Mechanical and Aerospace Engineering University of Florida SAND2017-7867 C

Transcript of A primer on selecting grain boundary sets for comparison ... · A primer on selecting grain...

  • SandiaNationalLaboratoriesisamulti-missionlaboratorymanagedandoperatedbyNationalTechnologyandEngineeringSolutions ofSandia,LLC.,awhollyownedsubsidiaryofHoneywellInternational,Inc.,fortheU.S.DepartmentofEnergy’sNationalNuclearSecurityAdministrationundercontractDE–NA0003525.

    A primer on selecting grain boundary sets for comparison of interfacial fracture properties in MD simulations

    2017 LAMMPS Workshop & SymposiumAugust 1st - August 3rd, Albuquerque NM

    Rémi DingrevilleSandia National Laboratories

    Doruk Aksoy, Douglas E. SpearotDepartment of Mechanical and Aerospace Engineering

    University of FloridaSAND2017-7867 C

  • 2

    LAMMPS random fact of the day:

    [Source: Google scholar as a 8/3/2017]

  • Fundamentals of fracture processes influenced by interfacial structure

    3

    § Interfacial attributes of importance:

    § Elastic mismatch§ Degree of symmetry§ Interfacial coherency (structure)

    (physical and the chemical nature between both phases)

    [Wuttiphan, 1996, JAmCeramSoc]

    Crack resistant glass/ceramic

    [Pan, 1996, ActaMater]

    GB effects on intergranular SCCSCC in alloy X-750

    Fracture stress in Mo bicrystals

    [Watanabe, 1999, ActaMater]

    ✏ =1

    2⇡ln

    ✓1� �1 + �

    ◆, � =

    µ1 (k2 � 1)� µ2 (k1 � 1)µ1 (k2 + 1) + µ2 (k1 + 1)

    � (r, ✓) =Re

    �Kri✏

    �p2⇡r

    �̂I (✓) +Im

    �Kri✏

    �p2⇡r

    �̂II (✓) +KIIIp2⇡r

    �̂III (✓)

  • 4

    ✏ =1

    2⇡ln

    ✓1� �1 + �

    ◆, � =

    µ1 (k2 � 1)� µ2 (k1 � 1)µ1 (k2 + 1) + µ2 (k1 + 1)

    � (r, ✓) =Re

    �Kri✏

    �p2⇡r

    �̂I (✓) +Im

    �Kri✏

    �p2⇡r

    �̂II (✓) +KIIIp2⇡r

    �̂III (✓)

    How do we isolate (decouple) the role of the interface structure on interfacial fracture?

    § Create grain boundaries with matching important fracture-related properties of adjoining lattices:§ Anisotropic elastic moduli§ Schmid factor§ Slip mode

    Misorientation space Fracture properties space

  • Criterion: Elastic Anisotropy

    5

    �����

    �����

    �����

    �����

    § Orientation dependent Young’s modulus:

    § Difference in elastic anisotropy lead to localization effects at GB but also a contributing factor for SIF (Dundur’s parameters)

    1

    E

    �!X

    =C11 + C12

    (C11 � C12) (C11 + 2C12)+

    ✓1

    C44� 2 1C11 � C12

    ◆x

    21x

    22 + x

    22x

    23 + x

    21x

    23

    ||�!X ||4

  • Criterion: Schmid factor for primary slip

    6

    Slip directionSlip plane

    Normal to slip planeTraction axis

    ⌧↵ = µ↵ · � ,with µ↵ = cos� cos ✓

    § Largest resolved shear stress on any slip system defines the primary slip system to be activated upon plasticity activity.

  • Criterion: Slide mode

    7

    Rµ =µ1µ2

    § Slip mode and potential for second slip system to be activated with respect to first activated slip system:

    § Single versus multi-slip

    µ↵ =

    2

    6666664

    µ1

    µ2

    µ3

    ··µn

    3

    7777775

  • Eliminating role of selected lattice attributesin comparative analysis of interfacial fracture:

    8

    § Matching of lattice attributes:§ Directional Young’s modulus and Schmid factor for primary slip

    § Importance of elastic/plastic transition§ Directional Young’s modulus and slip mode

    § Importance of partitioning of dislocation activities§ Schmid factor for primary slip and slip mode

    § Importance of elastic anisotropy/elastic impedance

  • 9

    E+ Schmid Factor + Slip Mode

    E = 220 GPaSF = 0.45R = 1.25% error from target values

    Grouping orientations

  • Case study

    10

  • Simulating steady-state fracture

    11

    Step 1Build grain boundary structure

    Step 2Equilibrate

    system under pre-tension

    Step 3Introduce atomically

    sharp crack

    Step 4Allow crack

    growth under pre-tension

    Step 5Averaging to

    extract decohesion form

    Primary GB

    Secondary GB

    Secondary GB

    {415} {213}

    [Yamakov et al., 2006, JMPS][Barrows et al., 2016, MSEA]

  • Simulating steady-state fracture

    11

    Step 1Build grain boundary structure

    Step 2Equilibrate

    system under pre-tension

    Step 3Introduce atomically

    sharp crack

    Step 4Allow crack

    growth under pre-tension

    Step 5Averaging to

    extract decohesion form

    § Avoids having to artificially impose a boundary velocity

  • Simulating steady-state fracture

    11

    Step 1Build grain boundary structure

    Step 2Equilibrate

    system under pre-tension

    Step 3Introduce atomically

    sharp crack

    Step 4Allow crack

    growth under pre-tension

    Step 5Averaging to

    extract decohesion form

    § Statistical mechanics rather than a deterministic approachC ra c k o p e n in g (Å )

    0 2 4 6 8 1 0 1 2 1 4

    Av

    era

    ge

    Str

    es

    s s

    yy (

    GP

    a)

    0

    2

    4

    6

    8

    1 0

    1 2

    1 4S c re e n e d d a ta D e c o h e s io n d a ta

  • Mechanistically similar fracture behavior

    12

    Plasticity similar for both {213} and {415} as generally expected from Schmid Factor

    Crack propagation:{213} STGB + 0 H/nm2

    Crack propagation:{415} STGB + 0 H/nm2

    15 nm

  • Mechanistically similar fracture behavior

    13

  • Using H segregation at GB as a surrogate for change in interfacial structure

    14

    � =1

    A

    "X

    NNi

    �ENNi � EbulkNNi

    �+

    X

    NH

    �ENH � EbulkNH

    �#

    −4

    −3

    −2

    −1

    0

    1

    2

    3

    4

    0 0.01 0.02 0.03 0.04 0.05

    Dis

    tanc

    e fr

    om g

    rain

    bou

    ndar

    y [Å

    ]

    H atom density, ρH [H/nm2]

    {213}{415}

    −4

    −3

    −2

    −1

    0

    1

    2

    3

    4

    0 0.05 0.1 0.15 0.2

    Dis

    tanc

    e fr

    om g

    rain

    bou

    ndar

    y [Å

    ]

    H atom density, ρH [H/nm2]

    {213}{415}

    GB plane

    1H/nm2 20H/nm2

    0.75

    0.8

    0.85

    0.9

    0.95

    1

    1.05

    1.1

    1.15

    0 5 10 15 20

    Inte

    rfac

    ial e

    xces

    s en

    ergy

    , γG

    B [

    J/m

    2 ]

    Average H coverage, 〈ρH〉 [H/nm2]

    {213}{415}

  • Isolating the role of the interface (1/2)

    15

    0

    1

    2

    3

    4

    5

    6

    7

    0 5 10 15 20 25 30 35

    Trac

    tion,

    σyy

    [GPa

    ]

    Crack opening displacement, λ [Å]

    0H/nm21H/nm25H/nm2

    10 H/nm220H/nm2

    0

    1

    2

    3

    4

    5

    6

    7

    0 5 10 15 20 25 30 35

    Trac

    tion,

    σyy

    [GPa

    ]

    Crack opening displacement, λ [Å]

    0H/nm21H/nm25H/nm2

    10 H/nm220H/nm2

    0

    2

    4

    6

    8

    10

    0 5 10 15 20 25 30 35 40

    Trac

    tion,

    σyy

    [GPa

    ]

    Crack opening displacement, λ [Å]

    Decohesion data 1H/nm2 (run #1)Decohesion data 1H/nm2 (run #2)Decohesion data 1H/nm2 (run #3)

    fit 1H/nm2

    {213}(left crack tip)

    {415}(left crack tip)

    Region 4Region 3Region 2

  • Isolating the role of the interface (2/2)

    16

    § In this example, structure of interface directly influence driving force for crack propagation!

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    0.75 0.8 0.85 0.9 0.95 1

    γ f/γ

    f 0

    γGB/γGB0

    {213} γf - Left tip{213} γf - Right tip

    {415} γf - Left tip{415} γf - Right tip

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    0.75 0.8 0.85 0.9 0.95 1σ

    max

    /σm

    ax0

    γGB/γGB0

    {213} σmax - Left tip{213} σmax - Right tip

    {415} σmax - Left tip{415} σmax - Right tip

    Fracture energy Peak stress

  • Methodology toisolate role of GB structure

    17

    § Pathway for identifying general GB predisposition to resist fracture

    § Create sets of GBs using isocurves associated with identical lattice properties (E, 𝜇𝛼, R𝜇)

    § Enable identification of structure-property relationships

    § High-throughput simulations underway

    [Dingreville, Aksoy and Spearot, in press Sci. Reports, 2017]@: [email protected]