A. Perali, P. Pieri , F. Palestini, and G. C. Strinati

26
A. Perali, P. Pieri , F. Palestini, and G. C. Strinati Exploring the pseudogap phase of a strongly interacting Fermi gas http://bcsbec.df.unicam.it Dipartimento di Fisica, Università di Camerino, Italy collaboration with JILA experimental group: . Gaebler, J. Stewart, T. Drake, and D. Jin

description

Exploring the pseudogap phase of a strongly interacting Fermi gas. Dipartimento di Fisica, Università di Camerino, Italy. A. Perali, P. Pieri , F. Palestini, and G. C. Strinati. + collaboration with JILA experimental group: J. Gaebler, J. Stewart, T. Drake, and D. Jin. - PowerPoint PPT Presentation

Transcript of A. Perali, P. Pieri , F. Palestini, and G. C. Strinati

Page 1: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

A. Perali, P. Pieri, F. Palestini, and G. C. Strinati

Exploring the pseudogap phase of a strongly interacting Fermi gas

http://bcsbec.df.unicam.it

Dipartimento di Fisica, Università di Camerino, Italy

+ collaboration with JILA experimental group: J. Gaebler, J. Stewart, T. Drake, and D. Jin

Page 2: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

Outline

• The pseudogap in high-Tc superconductors.

• Pairing fluctuations and the pseudogap: results obtained by t-matrix theory for attractive fermions through the BCS-

BEC crossover.

• Momentum resolved RF spectroscopy.

• Comparison between theory and JILA experiments: evidence for pseudogap and remnant Fermi surface in the normal phase of a strongly interacting Fermi gas.

Page 3: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

High-Tc superconductors: phase diagram

La2-xSrxCuO4

Pseudogap: competing order parameter or precursor of superconducting gap?

Page 4: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

Pseudogap vs gap: density of states

Precursor effect?

Page 5: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

Gap and pseudogap in underdoped LaSrCuO

Page 6: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

ARPES spectra for underdoped

La1.895Sr0.105CuO4 at T=49K > Tc=30 K

The dispersions in the gapped region of the zone obtained from the Fermi-function-divided spectra. The full circlesare the two branches of the dispersion derived from (d) at 49K, open circles correspond to the same cut (cut 1 in (e)) but at 12K. The curves indicated by triangles and diamonds are the dispersions at 49K along cuts closer to the anti-nodalpoints (cuts 2 and 3 in Fig. 1(j), respectively).

Pseudogap in underpoded superconducting cuprates: pairing above Tc and/or other mechanisms ?

M. Shi, …Campuzano..

Mesot

EPL 88, 27008 (2009)

“Spectroscopic evidence for preformed Cooper pairs in the pseudogap phase of cuprates”

Page 7: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

T-matrix self-energy:

where

0(P) 1 1

v0

dp

(2 )3 1

G0(p P)G0( P)

l

m

4a dp

(2 )3 1

G0(p P)G0( P)

l

mp2

(k) dP

(2)3 1

0(P)G0(P k)

k (k,n ) ; P (P, )

p(p, l )

The BCS to BEC crossover problem at finite temperature:inclusion of pairing fluctuations above Tc

A. Perali, P. Pieri, G.C. Strinati, and C. Castellani, Phys. Rev. B 66, 024510 (2002).

P. Pieri, L. Pisani, and G. Strinati, Phys. Rev. B 70, 094508 (2004).

G(k) G0(k) 1 (k) 1

Page 8: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

Why T-matrix diagrams?

• kF|a| << 1 for weak coupling

• kFa << 1 for strong coupling

• 1/T at high temperature (better, fugacity )

z e << 1

• Galitskii theory for the dilute Fermi gas in weak coupling (till order (kF|a|)2)

• Dilute Bose gas in strong-coupling (zero order in kFa)

• Virial expansion up to second virial coefficient

In all these limits T-matrix recovers the corresponding asymptotic theory:

Small parameter:

Page 9: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

Phase diagram for the homogeneous and trapped Fermi gas as predicted by t-matrix

C. Sa de Melo, M. Randeria and J. Engelbrecht, PRL 71, 3202 (1993) (homogeneous)A. Perali, P. Pieri, L. Pisani, and G.C. Strinati, PRL 92, 220404 (2004) (trap)

Tc from QMC at unitarity:Burovski et al. (2006), Bulgac et al. (2008), …

Page 10: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

Single particle spectral function and density of states

A(k, )d

1

A(k, ) f ( )d nk

N()

dk

(2 )3 A(k, )

Spectral function determined by analytic continuation to the real axisof the temperature Green’s function:

The continuation to real axis can be perfomed analitically, without resorting to approximate methods (such as MaxEnt, Padé …)

G(k,in ) G(k, i0)GR (k,)

A(k,)1

ImGR (k,)

( 1/ )Im(k,)

( (k) Re(k,))2 Im(k,)2

(k)2k 2

2m

in i0

Page 11: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

Spectral function at T=Tc, unitary limit

Page 12: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

Spectral function at T=Tc, (kFa)-1=0.25

Page 13: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

Temperature evolution at (kFa)-1=0.25

Page 14: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

Density of states

Page 15: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

BCS-like equations for dispersions and weights

E k 2(k 2 kL2) /(2m) 2 2

vk2

1

2(1 k /Ek ) uk

2 1

2(1k /Ek )

BCS-like description approximately valid close to Tc

Page 16: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

“Remnant Fermi surface” in the pseudogap phase

kL

“Luttinger” wave-vector

Page 17: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

How does the spectral function enters in RF spectroscopy?

In the absence of final state interaction, linear response theory yields for the RF experimental signal:

)]()2/([));()2/(,()2(

)( 22

22

3

33 rmkfrrmkkA

kdrdRF

where is the detuning of the RF probe with respect to the frequency of the atomic transition .

32

Final state interaction was large in first experiments with 6Li (Innsbruck,MIT),complicating the theoretical analysis (which showed, however, a beatiful connection with the theory of paraconductivity in superconductors!)

[P. Pieri, A. Perali and G. Strinati, Nat. Phys. 5, 736 (2009)]

Page 18: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

Momentum-resolved RF spectroscopy

)]()2/([));()2/(,()2(

)( 22

22

3

33 rmkfrrmkkA

kdrdRF

Final state interaction strongly reduced in subsequent experiments with 6Liat MIT. In addition tomographic techinique introduced, eliminating trapaverage:

JILA experiment with 40K (final state interaction negligible) eliminated average over k (but not over r…)

)]([));(,();( 2232 rEfrrEkArdkEkRF sss

Momentum resolved RF spectrum proportional to:

E s k2 /(2m) where is the “single-particle energy”

Xbut average over k remains.

)]()2/([));()2/(,()2(

)( 22

22

3

33 rmkfrrmkkA

kdrdRF

X

Page 19: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

Comparison with momentum resolved RF spectra from JILA exp.

A. Perali, et al., Phys. Rev. Lett. 106, 060402 (2011)

Use sum rule (sum over ,k,r equals N) to normalize exp data and theoretical spectra in an unbiased way. Eliminates freedom to adjust the relative heights of experimental and theoretical spectra.

Page 20: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

“Quasi-particle” dispersions and widths

Page 21: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

Is the unitary Fermi gas in the normal phase a Fermi liquid?

S. Nascimbene et al., Nature 463, 1057 (2010) and arXiv:1006.4052

A. Bulgac et al., PRL 96, 90 404 (2006)

Here T/TF < 0.03

For the normal unitaryFermi gas T/TF > 0.15

Page 22: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

A pairing gap at T=Tc (pseudogap), from close to unitarity to the BEC regime, is present in the single-particle spectral function A(k,w).

Momentum resolved RF spectroscopy: comparison between experiments and t-matrix calculations for EDCs, peaks and widths demonstrate the presence of a pseudogap close to Tc, in the normal phase of strongly-interacting ultracold fermions.

The pseudogap coexists with a “remnant Fermi surface” which approximately satisfies the Luttinger theorem in an extended coupling range.

The presence of a pseudogap in the unitary Fermi gas is consistent with recent thermodynamic measurements at ENS (that were interpreted in terms of a “Fermi liquid” picture).

Concluding remarks

Page 23: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

Thank you!

Page 24: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

Supplementary material

Page 25: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

25

Spectral weight function below Tc

),( Im1

),( 11

kk RGA

5.0)( 1 FFak

1.0)( 1 FFak

5.0)( 1 FFak

Wave vector k chosen for each coupling at a value which minimizes the gap in the spectral function.'k

P. Pieri, L. Pisani, G.C. Strinati, PRL 92, 110401 (2004).

•In the superfluid phase: narrow “coherent peak” over a broad “pseudogap” feature.

• Pseudogap evolves into real gap when lowering temperature from T=Tc to T=0.

Page 26: A. Perali,  P. Pieri , F. Palestini, and G. C. Strinati

E.D. Kuhnle et al., arXiv:1012.2626

F. Palestini, A. Perali, P.P., G.C. Strinati, PRA 82, 021605(R) (2010).

The contact