A Novel of Approach for the Identification of Lipid … The author is deeply indebted to Prof....

172
Instructions for use Title A Novel of Approach for the Identification of Lipid Molecular Species : Application of High Performance Liquid Chromatography on Fish Muscle Lecithin Molecular Species Analysis Author(s) Koretaro, Takahashi Issue Date 1984-12-25 Doc URL http://hdl.handle.net/2115/42778 Type theses (doctoral) Additional Information There are other files related to this item in HUSCAP. Check the above URL. File Information takahashi_thesis.pdf Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

Transcript of A Novel of Approach for the Identification of Lipid … The author is deeply indebted to Prof....

Instructions for use

Title A Novel of Approach for the Identification of Lipid Molecular Species : Application of High Performance LiquidChromatography on Fish Muscle Lecithin Molecular Species Analysis

Author(s) Koretaro, Takahashi

Issue Date 1984-12-25

Doc URL http://hdl.handle.net/2115/42778

Type theses (doctoral)

Additional Information There are other files related to this item in HUSCAP. Check the above URL.

File Information takahashi_thesis.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

A NOVEL

OF

App1ication of

on Ftsh Muscle

APPROACH FOR THE IDENTIFICATION

LIPID MOLECULAR SPECIES

Htgh Performance Liquid ChromatogrGphy

Lecithtn Molecular Species Analysis

KORETARO TAKAHASHI

1984

ACKNOWLEDGMENTS

The author is deeply indebted to Prof. K'o'ichi Zarna under

whese •supervision this investigation was conducted. His ideas

and advices throughout the study were invaluable.

The useful suggestions of Prof. T6ru Takagi in preparation

of this manuscript are greatly appreciated.

As'sociate Prof. Mutsuo Hatano kindly accepted the reviewer,

Sincere gratitude to Associate Prof. Ko-zo- Takama for guiding

and for drawing the authors attention to this problem. ' This work would not have been possible without the help

of Mr. Tsugihiko Hirano.

The author was favored to have the assistance of Mr.

Hideaki Ebina.

Mr. Makoto Egi did the computer programming.

Thanks are due to Dr. Masahiko Kunimoto and to Mr. Seiichi 'Ando for the encouragement.

ii

CONTENTS

ACKNOWLEDGIbC[ENTS •••••••••••••••••••e•••••••••••••e•••••••

NOMENCLATURE AND ABBREVrATIONS ..........................

GENERAL INTRODUCTION .................................... 'CHAPTER I. rDENTTFrCATrON OF LECrTH:N MOLECULAR S'PECZES ON REVERSED-PHASE HIGH PERFORIY[ANCE LrQUrD CHROMATOGRAPHY: A New Coneept that Helps the Molecular Species Determination .......

Section 1. Experimental ............................

Seetion 2. Results .................................

Section 3. Discussion ..............................

CHAPTER !I. A NOVEL APPROACH FOR THE TDENTrFrCATTON OF TRTGLYCERrDE MOLECULAR SPECIES ON REVERSED- PHASE HZGH PERFORb,VNNCE L!QUZD CHROMATOGRAPHY

Seetion 1. Experimental ............................

Section 2. Results .................................

Seetion 3. 'Discussion .................e.....v..e.•

LECITH!N MOLECULAR SPECTES TDENTTFrCATTON •CHAPTER TZr. PROGRAM'FOR THE PERSONAL COMPUTER .........

Section 1.

Section 2.

CHAPTER ZV.

Section 1.

Section 2.

Section 3.

Section 4.

CHAPTER V.

REFERENCES ee

.

.

.

o

.

.

.

.

.

.

e+

Lecithin Molecular Speeies Tdentification Program Version r. ....•.........••••.e...

Lecithin Moleeular Species rdentification Program Version Ir. ......................

MOLECULAR SPECIES OF FrSH MUSCLE LECITHZN ..

Experimental ................e...•........

Characteristics of Muscle Lecithin of Fish ....."••••....•••...•.""'''''"''' Principal Component Analysis of Fish Muscle Lecithin ..........................

Changes in Fish Muscle Lecithin of Chum Salmon during Migration .............

GENERAL SUMMARY AND CONCLUSrONS ............

eeeeeeeee-e-e-oe-ott----eeeeee' --e--eee--e-e-e

PLegie

ii

. IV

1

5

5

11

27

32

34

36

43

54

54

56

63

63

66

107

130

152

lsg

iii

NOMENCLATUREANDABBREVrATIONS

22:6

GLCHPLCJIc

:!

kE,

29

TFGFA

::T

8:

::N

X2,,

faeA

.it(-C•

DM

WM

PCAACC.

represents a fatty aeid with a chain lengthcarbon atoms with six double bonds Gas liquid chromatography High perÅíormance liquid chromatography Thin layer ehromatography Phospholipid Lecithin, Phosphatidylcholine Phosphatidylserine Phosphatidylethanolamine Non phospholipid Diglyceride Sterol Free fatty acid Triglyceride Molecular species Relative retention time Total acyl carbon number Number of total double bonds Partition number Equivalent carbon number Effective carbon nurnber Acyl group

Glycerol residue

a belongs to A Chemical potential Dark muscle White muscle Principal component analysis % AccuTnulative value of the eontributiOn.

of 22

iv

1

GENERAL rNTRODUCT!ON

Analytical techniques or instruments have been developed

for fatty acid analysis. Resultingly, many knowledge has

been achieved on the study of fatty aeid snalysis.

In contrast to this, the study of molecular species, 'namely, the study of the intact or unmodified lipid is still

away behind of development. This might be due to the limited

and time consuming conventional techniques represented by

silver nitrate impregnated thin layer chromatography (Ag+

-TLC) followed by gas liquid chromatographic analysis (GLC),

(••such exsmples are too numerous to mention ). Generally

speeking, Ag+ -TLC can separate only up to heptaene. And GLC

can analyze qu'antitatively only up to 700•v800 molecular

weight. If the sample contains highly unsaturated fatty acids

such as 20:4, 20:5 or 22:6, the degree of unsaturation will

drastically increase and exceeds the analytical limit of the

Ag"-TLC.

Fats and oils from marine sources are rich in highly

unsaturated fatty acidsi Accordingly, it is almost impossible

to analyze the molecular species from these sources by the 1)conventional method. ' ' High performance liquid chromatograph has become the

most expected instrument in separating the nonvolatile or

high molecular weight compound. Since there are significant

amount of triglycerides in marine lipid that exceed the 'molecular weight of 800 which is the limit of GLC, the

utilization of high performance liquid chromatography (HPLC)

is expected to separate the molecular species of lipids from

2

these sources. The reversed-phase type HpLc2"V4)is becoming the

main analytical type in separating the most analogouscompounds?) The earlier workers in this field tried to

characterize the chromatographic rules such ss partition 8) 6,7) or effective carbon number (EC) which arenumber (PN)

defined as PN=CN--2•DB and EC=CN-DB, respectively, in the

elution of trigiyceride or lecithin molecular species. CN is

the total acyl carbon number and DB is the total double bonds

in the molecule. This empirical equatÅ}ons were useful in

predicting the approximate retention value ( in practical

cases, retention time or retention volume ) though these

equations lacked the theoritical background. In the same 9,10)year, Plattner et al. has proposed equivalent carbon number

(ECN) which is' the same concept with PN. And recently, in

accordance with the improvement of separation on HPLC,

theoritical carbon number (TCN) has been proposed by Perkins 11) rn 1982, the generalized form of ECN (or PN) and ECet al. 12)has been presented by Compton et al. that can be written as

Iu=Is-CDb, where !s is the carbon number of the standard

alkane, Db is the total double bonds in the molecule and Iu

is the index observed for unsaturated triglyceride and

phospholipid molecular species by the coefficient of C.

In this study, the forrnulae that control the sequence of

elution of lipid molecular species on reversed-phase HPLC

are proposed. The theoritical aspect of the presented

formulae has been discussed in relation to ECN (or PN). And

it is demonstrated that the formulae proposed in this study

might be invariant rules.

Lecithin (phosphatidylcholine) were analyzed by HPLC

3

from various sources including those from fish muscle. Though

there are some reports concerning the phospholipid molecular 13i-2O) t . the studyspecies analysis by HPLC from land sources

done by the author might be the only example that have worked 'on the phospholipid molecular species enalysis on HPLC from

fish lipid except the conventional way of analysis based on

the probability simulation done by Oshima et al. , ' rn chapter r, it is demonstrated that the modification

of lecithin into diglyceride acetate via diglyceride is 'necessary for the reversed-phase type HPLC analysis in order

to have a sufficient separation between the critical pairs

that have the same ECN, PN or EC. And a new matrix model is

proposed instead of the ECN, PN or EC concept.

rn chapter rl, the proposed matrix model that exhibits

the chromatographic rules of diacyl type molecular species is

developed into the rules for triacyl type molecular species

such as triglycerides. And the physicochemical background, as

well as the theoritical relationship between the ECN (or PN)

and the new matrix model, is demonstrated.

Xn chapter :rr, the lipid molecular species 'identification software.is destgnated for the personal

computer. The accumuiated data were fully utilized for the

actual identification since the equation that regulates the

sequence of molecular species inevitably contains errors due

to the deviation of relative retention time (RRT) on HPLC.

In chapter !V, characteristics of several kinds of fish 'including cartilaginous fish, as well as fresh water fish,

are discussed from the view point of muscle lecithin. ' Zn the final chapter, summary and conclusion of this

4

work •is described with a few supplemental discussion.

5

CHAPTER r

:DENTIFrCATION OF LECrTHIN MOLECULAR SPECIES ON

REVERSED-PHASE HIGH PERFORMANCE LIQU!D

CHROMATOGRAPHY

A New Concept that Helps the Molecular

Species Determination

A satisfactory separation of lecithin molecular species

from natntal sourees including those from marine sources was

msde by modifying the lecithin into diglyceride acetate for

'HPLC analysis.

Tn this chapter, the neeessity of modificstion of

lecithin into diglyceride acetate through the hydrolysis by

phospholipase C and the subsequent acetylation by acetic

anhydride are discussed. And also the discovery of a new

empirical equation instead of the former ECN or PN for the '

identification of molecular species of lecithin is discussed.

Section 1. ExperÅ}mental

:P!l!.s22A.!:AS2,gg-g21-Lgg!,!ib2,!!ti fLthi

Total lipids were obtained from the fish muscle

tabulated in Table r-1, according to the method of Bligh &

Dyer. Soybean lecithin was purchased from Wako Pure Chemical

rndustries, Ltd., Osaka, and egg yolk lecithin was kindly

supplied by Asahi Chemical Industry Ltd., Tokyo. These total

lipid and crude lecithin were subjected to a column

chromatography which has been successfully done by Lands etal.2 ,6) namely, aliquot amount of total lipid was dissolved

Tab

le I

-- 1

.F

ish

exam

ined

Spe

cies

Mea

nbo

dy le

ngth

and

wei

gh.t

Loca

lity

ofca

tch

Dat

eof

cat

chC

hum

sal

mon

(S

umm

er)*

65cm

, 3.5

kg, (

1)**

The

offi

ng o

f

H

okka

ido

Akk

eshi

,Ju

ne19

80

Chu

m s

alm

on (

Fal

1)*

Qm

mnc

tBLs

!kss

!Lgt

Big

-eye

d tu

na

thun

nus

obes

usA

lask

a po

llack

ITLg

guep

a-ha

raua

hl

72cm

, 4.5

kg, (

1)

110c

m, 2

0kg,

(1)

Car

p

44cm

, 61O

g,

23cm

, 175

g,

(10)

(5)

The

Moh

eji

Hok

katd

oP

urch

ased

Mar

ket.

Ri•v

er,

from

The

Uch

iura

Hok

kaid

o

Cu1

ture

d

the

Bay

,

Nov

. 198

1

Dec

.

sep

1981

. 198

0pm

t sgg

!r:R

2.s2

1

* M

ale.

** N

os. o

f ind

ivid

ual

used

.

pt

into double volume of diethyl ether/ethanol ( 9:1, v/v ) and

then applied to the silica gel column. And elutions were done

through diethyl etherlethanol ( 9:1, v/v ), diethyl ether/

ethanol ( 1:1, vlv ), ethanollrnethano.1 ( 9:1, v!v ) and

finally by 100Z methanol. The 100Z methanol fraction was

collected with a fraction collecter, monitored by TLC, and

lecithin of more than 95Z purity was collected.

Purification of Di 1 ceride Acetate from Lecithin

Pure lecithin was hydrolyzed with phospholipase C

( Clostridium perfringence, P-•L Biochernical :nc.,Milwaukii ), according to the method of Renkonei.7) :t was

done in the following manner. First, 50 to 100 mg of lecithin

was dissolved in 10 to 15 ml of diethyl ether. Then, 10 to

IS ml of 1 molar Tris buffer (pH 7.3) including calcium

chloride with 5 mg of phospholipase C was added to the ether

solution. The head space gas of the container was filled with

nitrogen gas and the hydrolysis of lecithin was continued

for four hours under room temperature. The hydrolysate was

washed several times with water and diglyceride was purified

by s preparative TLC from this hydrolysate. The developing

solvent was n-hexane/diethyl ether ( 1:1, v/v ).

Acetylation was performed by adding an appropriate

amount of acetic anhydride to the solution of diglyceride in

pyridine, and by standing it for 12 hours at roomtemperature28.)The resulting diglyceride acetates were purified

by the method of preparative TLC by using the solvent

n--hexane ldiethyl ether ( 75:25, v/v ). Finally, they were

filtered through a O.457eLtype FP-45 Fluoropore filter

( Sumitomo Electric !ndustry, Ltd., Osaka ) and subjected to

7

8

HPLC.

HPLC Fractionation of the Molecular S ecies of

Diglyceride Acetate Derived from Lecithin

The diglyceride acetates were fractionated into major 'molecular species on twin 8x2SO mm LiChrosorb RP-18 ( Merck,

West Germany ) co:umns which vere connected in series. A

Hitachi Liquid Chromatograph Model 638--50 ( Hitachi Ltd.,

Tokyo ) equipped with a Shodex R: detector Model SE-11

( Showa Denko Ltd., Tokyo ) was used. The eluting solvent

used was isopropanol!acetone/methsnollacetonitrile ( 1:1:3:4,

v/v ). Diglyceride acetates were dissolved into five volumes

of tetrahydrofuran, and 25/tLl of these solutions were

applied to the column under room temperature ( lower the

better ) and qt a fiew rate of 1.5 ml!min.

Identification of Molecular S ecies of Each Peak

on HPLC . Peaks on HPLC chromatograms were numbered in sequence of

elution. The fatty acid composition of each collected

predominant peak was analyzed by gas chromatography. The

analytical conditions for fatty acids were as follows:

Gas chromatograph: Hitachi 063, Column: Unisole 3000

( Gasukuro K6gy6 Ltd., Tokyo ), Glass column O.2x200 cm,

Column temp.: 220eC, Detector: F:D, Detector temp.: 250"C,

Xnjeetion temp.: 280"C, Cerrier gas: Ns, Flew rate: 20 ml

Methyl esters of fatty acids were prepared according to

the method of Christopher and Glass described by Prevot andMofdret2.9) An aiiquot amount ( less than 2o mg ) of lipid was

dissolved in 1 ml n-hexane and O.2 ml of methanolic 2N--NaOH

9

solution was added. After shaking this mixture, it was stand

for 20 seconds under 500C and then O.2 ml of methanolic '2N-•HCI solution was added. The n-hexane layer was collected

and then concentrated. Methyl esters prepared as described

above were subjected to a GLC.

The small peaks which have critical pairs were first 'subjected to Ag"-TLC. The developing solvent used was 30)benzene1diethyl ether ( 4:1, v/v ). The band obtained by Ag'

-TLC were then eluted with diethyl ether containing

dotriacontane 'which was used as •an internal standard, and

then applied to fatty scid anslysis and total acyl carbon

number analysis. The analytical conditions for total acyl

csrbon number analysis were as follows:

Gas chromatograph: Hitachi 063, Column: OV-101

( Gasukuro K6gy6 Ltd., Tokyo ), Steel column O.3x50 cm,

Column temp.: 300.v330eC, programed as 1"C/min, Detector: F:D,

Detector temp.: 340eC, :njection temp.: 345'C, Carrier gas: 'Na, Flow rate: 60 ml/min.

H drol sis of Di 1 ceride Acetate Derived from Lecithin 2bz-tea.g!:.gg!i.iLsi-b!:l.2A.E9P tiLi

Fraction of the molecular species of

and 22:6 in position 2, that is, (16:O)(22

by HPLC. This lipid ( less than 5 mg ) was

shaking vigorously in a mixture of 1 rnolar

pH 8 (lml), 2.2Z calcium chloride (O.1 ml)

taurochorate (O.25.ml) at,40eC for 1 min.

pancreatic lipase ( Calbiochem, San Diego,

added to the mixture and the reaction was

min at 40eC by shaking it vigorously. The

16:O in position 1

:6) was collected

then suspended by

Tris-HCI buffer,

, and O.05Z sodium

Then, 40 mg of

Calif. 92112 ) was

processed for 4

reaction was

10

stopped by adding 1 ml of ethanol and 1 ml of

hydrolysate was extract•ed with diethyl ether

using a preparative TLC with n-hexane/diethyl

acid ( 40:10:1, v/v ) as developing solvent.

were the modified form of the experiment donea13.1)

6N-HCI. The

and purified by

ether/formic

These procedures

by Kosugi et

11

Section 2. Results

Figure r-1 shows the comparison of separation on HPLC by

the differences in the molecular form which has the same

acyl combination. Examples here are of soybean lecithin: 'A : Intact lecithin,

Developing solvent: methanol/water ( 95:S, vlv )

methanol 100, gradient, UV detector.

B : 1,2-Diglyceride i.e. the hydrelysate of lecithin,

Developing solvent: methanollwater ( 9S:S, v/v )

methanol 100, gradient, UV detector.

C : 1,2-Diglyceride acetate derived from lecithin,

Developing solvent: methanol/water ( 97:3, v!v )

methanol 100, gradient, UV detector.

D : 1,2-Diglyceride acetate derived from lecithin,

Developing solvent: isopropanollacetone/methanoll

acetonitrile ( 1:1:3:4, v/v ), R: detector.

As it is clear from this figure, the acetate form is the

best in separation on HPLC followed by diglyceride. The

intact lecithin is the worst among these three. It is

considered that the very high polarity of phosphorylchorine

group interferes with the interactions between the acyl

groups and the stationary phase of HPLC. Although the

polarity of hydroxy group is not so high as those of

phosphorylcholine, this group also interferes with the

interactions between the acyl groups and the stationary

phase, resulting on the poor separation on HPLC as shown in

chromatograms A and B. The combination of four solvent$ are

better than that of two solvents for the elution of

Fig

.Z

•-1.

A

c

Com

paris

onof

sep

arat

ion

D

on H

PLC

by

A

B

pc

1,2-

DG

der

ived

fror

a P

C m

etha

nol/w

ater

(95

:5, v

lv).

met

hano

l 100

Line

ar G

radi

ent 9

0 m

in

c

1,2

-DG

ace

tate

der

ived

from

PC

met

hano

l/wat

er (

97:3

, vlv

)Am

etha

nol 1

00

Li

near

Gra

dien

t 60

min

i,2-

DG

ace

tate

D d

eriv

ed fr

om p

c '

iso

prop

anol

lace

tone

!met

hano

l/ace

toni

tri1

e

(1:1

:3:4

, v!v

), ls

ocra

tic

A

, B, C

: D

etec

ted

by U

V d

etec

tor,

215

nm

D

: D

etec

ted

by R

I det

ecto

r, 2

00C

'

the

diffe

renc

es in

the

mol

ecul

ar fo

rrn.

'.

Fig.

li'

i• l t,tu-tltte ,` li: l''lt--'t l.l :ltIitilltttiI!̀ifr;"t-!Li• lli:11i •;•

ipa2

ll

llg i 1l i•

lii314

i#i

ki

lli

Ie

i•

l'

lg

l't

1.l

i

sl•

i't

;

,1-

ti

i

s

f

5

I

ll

'

il#

};,

1,

1

ii

Rxi'I'

,Ltl

u'k,

•i

Sequence

F=: Nunber of doubleDeveloping solvent:

r-•2. Ag+-TLC of

soybean lecithin

e+

l•

e

l

a

1llilIi'

ei ; ,

: ' ! l 1•

9i

on

A

,"

ll

Si

l :.

i i t i'

F

l 5 l t,i, i, g, :. 518 6 11

HPLC

il'ifisl1

tl

i;l

l

5

llll

l•

I•

•l

' l 111l iil

6 7i8 i12 Iiof elution -----i

bonds. benzenldiethyl ether

diglyceride acetate separated by HPLC.

•e,

13

{'i

Ii,

ili•

Iei

l

} FQ •-• 1

F 2•-4

F 4,v

(4:1

derived

, v/v)

frorn

13

14

A

20 4e 60 ea 1oo min

20 40 co eo 1oo

Fig. Z-3

egg

. HPLC chromatograms yolk lecithin. A: Soybean. B:

of soybean

Egg yolk.

and

15

c

20

3421

oo

D

co 1oo min

-ie.Lit--{:,-.ueo zoo ioo.,

I: Molecular species composed of highly unsaturated fatty acids such as (20:5)(20:5), (20:5)(22:6) and (22:6)(22:6).

!II: Molecular species composed of generally found fatty acids such as 16:O or 18:1 with combinations of 20:5 or 22:6, that is,, (16:O)(20:5), (16:O)(22:6), (18:1)(20:5) and (18:1)(22:6).

Il & TV: Others.

Fig. r-4. HPLC chromatograms ofC: Captured in summer.

chum D:

salmon muscle lecithin.Captured in fall.

16

1

roeacontn

oeoeaminGvaeoearnin

Fig. :-5.

and HPLC ehrornatogramsearp rnuscle lecithinE: Big•-eyed tuna.

of

.

F:

big-eyed tuna

Alaska pollack

, Alaska pollack

. G: Carp.

Tab1e Z-2of

. Determinationmajor eomponent*

of molecular .speczes

PeaknumberFattyacid 5 6 7

15:O trace16:O 25.6 48.4 53.817:O trace18,1 25.9 4.1 trace20:4 trace20:5 23.3 3.7 trace22:4 trace22:6 25.1 43.8 46.2

18:1Molecular 20:5 22:6 16:O

species 22:6 l6:O 22:616:O

* Example of big-eyed tuna in Fig. Z-5E.

17

18

diglyceride acetate as shown in chromatograms C and D. For

the diglyceride acetate analysis, this isocratic condition

was used throughout the experiment.

Figure r-2 shows the Ag+-TLC chromatograms of the

collected frsctions on HPLC. rt is numbered in sequence of

elutio'n. This is an example of diglyceride scetate from

soybean lecithin. As seen in this chromstogram, this type of

column packing i.e. the reversed phase column elutes the

polyunsaturated types first followed by tri, di, mono and

finally saturated types. This is the basic characteristics of

this type of column.

Figures I-3•v5 show chromatograms of diglyceride acetates.

derived from several kinds of lecithin sources on HPLC.

Chromatography was regularly completed in about two hours.

The diglyceride composStion of each predominant peak

collected was easily determined by fatty acid analysis, as

shown in Table r-2. This table shows the results on big-eyed

tuna lecithin as an example. Peak nurnber 7 in Fig. I-5E is

obviously sscribed to the diglyceride acetate composed of

16:O and 22:6. It is considered that 22:6 is bound in

position 2 of the molecule since this peak is the most

predominant, and it is said that highly unsaturated fatty

acids such as 20:5 or 22:6 are usually dominantly bound in 1 ,32'u36)position 2. In addition, after pancreatic lipase

hydrolysis, only a trace amount of 22:6 was detected in the

free fatty acid fraction ( this fraction represents the fatty

acid in pesition 1 ), although more than 70% of the lipid

was hydrolized ( determined by a densitometric method ). Peak

number 6 has the same combination as that in peak number 7,

Tab

leZ

-3.

Det

erm

inat

ion

of1e

cith

inm

o1ec

u1ar

spec

ies

of m

inor

com

pone

nt*

eakn

umbe

rF

atty

acid

12

34'

s6

l4:O

21.3

30.6

34.6

446

16:1

53.0

47.7

28.3

19.0

19.6

.9Z

20:5

22:6

47.0

52.3

50.4

36.2 .2

IS.6

30.2

37

.8.3

.9

Car

bonn

umbe

rtik

*'

.

3442

.663

.332

.2IO

836 38

95,<

90.0

10.0

.4S

.7'

31.0

41.7

26.1

89..2

Car

bonn

umbe

r*V

c34

20:5

14:O

l42.

,14

:O20

:563

.3l8

i.g32

.,l1

4:O

20:5P

O.8

36i2

i.{lg

s.<

16:•

190.

020:

S16

:120

:557

.416

:120

:S5'

.722

:641

.714

:llg

•l289

.2

3822

:616

:131

.0lg

i.g26

.i

in r

elat

ive

* E

xam

ple

of

7o -chu

m s

alrn

Qn

(Fal

l)>

'clc

Tot

alac

ylca

rbon

num

ber

H o

20

whereas (18:1)(20:5) is considered as contaminants of peak

number 5. Nevertheless in this case, 22:6 is considered to be

bound in position 1 in the molecule. Peak number 5 has an 'almost even amount of fatty acids of 16:O, 18:1, 20:5 and

22:6. Among these fatty acids, 16:O as well as 22:6 are

regarded as contantnants from peak number 6, considerin' g that

peak number 6 is larger than peak number 5. It iss concluded

that peak number 5 is the combSnation of 18:1 and 20:5.

Molecular species from other biological sources were alsQ

determined in the same manner. The small peaks which have

critical pairs were first subjected to Ag'-TLC and separated

according to their degree of unsaturation. In most of the

small peaks in the first half of the HPLC chromatograms of

fish lecithin,' only one band appeared on Ag+-TLC plate. The

complex combinations of molecular species were identified in

the fol!owing manner. An example of determination of

molecular species in the small peaks with critical pairs 'appeared in the first half of the HPLC chromatogram of chum

salmon ( captured in fall ) is shown in Table I-3 ( also see

Fig. r-4D ). Small peak number 1 is obviously a combination

of 20:5 and 16:1. Small peak nurnber 2 is also a combination

of 20:5 and 16:1 with 10Z unidentified contaminants. The

differences in retention time on HPLC between these two peaks

is attributed to the differences in binding position of the

fatty acid. :t is considered that small peak number 1 has

20:S in position 1, whereas srnall peak number 2 has it in

position 2 in the molecule, since molecular species which

have a highly unsaturated fatty acid in position 2 are likely 'to elute later than the one which has the same fatty acid in

21

position 1. Small peak number 3 is a combination of 20:5 in

position 1 and 14:O in position 2, and also 16:1 in position

1 and 20:S in position 2 since this peak is composed of two

combinations of total acyl carbon numbers of 34 and 36,

respectively. However, the latter molecular species, i.e.

(16:1)(20:5), are considered to be contaminents from the

previous peak. From the fatty acid composition and total acyl

carbon number, three molecular species are presented in

small peak number 4, i.e. combination of 14:O in position 1

and 20:5 in position 2 for 63,3Z; combination of 16:1 in

position 1 and 20:5 in position 2 for 5.7Z; and combination

of 22:6 in position 1 and 16:1 in position 2 for 31.0%. Among

these moleclar species, (16:1)(20:5) can be considered as

contaminant from the two previous peaks. rn small peak number

5, three molecular species, i,e. 14:O in position 1 and 20:S

in position 2; 22:6 in position 1 and 14:O in position 2;

and 16:1 in position 1 and 22:6 in position 2 is identified

in the same manner as that in small peak number 4. rn this

case, molecular species of (14:O)(20:5) is considered to be a

contaminant from the previous peak. rn the case of small

peak number 6, molecular species of 14:O in position 1 and

20:5 in position 2 are congtdered to be the contamtnants Erom

the previous peak. By analyzing the data in this way,

molecular species of all other small peaks were identified.

The relative retention times (RRTs) of all peaks were

determined by dividing the retention time of each peak by the

retention time of (16:O)(22:6). In the case of soybean

lecithin, (16:O)(18:2) was used as a reference peak and the

RRT were recalculated against (16:O)(22:6) by using the RRT

22

Table 1 d- 4..

and Relationmo1ecular

between .specles

relativeof soybean

.retentlon Zecithin

time on HPLC

PN "1S Rt RRIT *

26

28

tt

te

30

ll

tt

31

32

tt

tt

tt

tt

34

tt

18:218:318:218:218:118:316:O18:318:118:216:O18:218:O18:317:O18:218:118:120:118:216:O18:118:O18:216:O16:O18:O18 .: 1

18:220:O

27.6

37.6

39.2

42.0

Sl.4

5S.2

60.0

62.8

73.8

tt

79.6

tt

83.6

113.2

tt

70.4

95.8

99.9

107.1

131.0

140.7

152.9

160.1

188.1

et

202e9

tl

213.0

288.6

tt

Abbreviations: PN:Partition tion time.

* 1262106 is used

number. MS:MolecularRt:Retention time.

as the reference

.specles .

peak.

RRT:Relative 'reten-

Tab1e r-s.

and Relationmoleeular

betweenspeeies

relative retentionof egg yolk lecithin

time on HPLC

PN MS Rt RRT

28

lt

tt

26

28

It

tt

30

tt

tt

et

28

3i

et

tt

30

32

tt

tt

tt

34

16:118:218:218:214:O18.:2

16:O22:616:O18:318:120:416:O20:416:O22:416:118:118:118:216:O18:218:O22:615:O18:116:O17:117:O18:218:O20:418:118:l18:O22:416:Oi8:1:8:O18:218:O18:1

'

41:2

tt

tt

tt

47.0

te

50.4

54.4

55.6

tt

59.2

tt

72.4

tt

tt

tt

79.0

tt

83.6

tt

121.8

100;O

tl

tt

tt

114.1

et

122.2

132.0

:34.9

tt

143.7

tt

175'.7

tt

tt

te

191.7

tl

202.9

tt

295.1

Abbreviations: PN:Partition Rt:Retention

nurnb er ,

'tlrne.MS:Molecu!ar species, RRT:Re1ative retetition time

23

Tab

leI-

-6. R

elat

ion

betw

een

rela

tive

mol

ecul

ar s

peci

es o

f'fis

h m

uscl

ere

tent

ion

time

on 1

ecith

in

HP

LCan

dm

a1n

Chu

m s

alm

on (

Sum

mer

)C

hum

sal

mon

(F

al1)

Big

-eye

dtu

naA

1ask

apo

l1ac

kC

arp

MS

PN

/RR

TM

SP

NIR

RT

MS

PN

!RR

TM

SP

NIR

RT

MS

PN

1RR

T

20 20 20 22 22 22 14 22 16 20 18 22 22 16 16 22

:5 :5 :5 :6 :6 :6 :o :6 :o :5 :1 :6 :6 :o :o :6

20 37.

3

20 40

.7 2

0 4

4.2

24 69.

7

26

92.

2

26

92.

2

26

97.

1

26

1OO

.O

20-:

520

:5

20:5

22:6

22:6

22:6

18:-

120

;5

20:5

16:O

16:O

20:5

18:1

22:6

22:6

16:O

16:O

22:6

20 37.5

20 40

.4

20 44.

1

26 87.

0

26

89.

5

26

91.

9

26

91.

9

26

96.

7

26

1OO

.O

20:5

22:6

22:6

22:6

20;4

22:6

22 :'

5

20:5

22:5

22:6

18:1

22:6

16:O

20:5

22:6

16:O

16:O

22:6

16:O

22:5

'20

41.

2

20

44.

6

22

55.

2

22

55.

2

22

60.

5

26

93.

5

26

93.

5

26

96.

8

26

1OO

.O

28

134.

9

120:5

20:5

20:5

22:6

22:6

22:6

18:1

20:5

20:5

16:O

22:6

18:1

16:O

20:5

18:1

22:6

22:6

16:O

16:O

22:6

16:O

18:1

14:O

20:1

l l

20

37.

2

20

40.

4

20

44.

3

26

86.

7

26

89.

8

26

89.

8

26

92.

0

26

92.

0

26

97.

1

26

1OO

.O

32

216.

6 3

221

6.6

i l l20:5

22:6

22:6

22:6

16:1

2e:5

18:2

20:5

16:1

22:6

18:2

22:6

14:O

22:6

18:1

20:5

16:O

20:5

18:1

22:6

16:O

22:6

16:e

20:4

l

20

42.

5

20

46.

2

24

62.

5

24 62.

5

24

67.

7

24

67.

7

24

67.

7 2

6 8

8.3

26

93.

7 2

6 9

3.7

26

1OO

.O

28

124.

0

Abb

revi

atio

ns:

PN

: Par

titio

nnu

mbe

r. M

S:

Mo1

ecu1

arsp

eci e

s• R

RT

:R

elat

ive

rete

ntio

ntim

e.N )

25

Table !-7. Relation between relative .retentlon .tzrne on HPLCand molecular .specles of fish musc1e lecithin

Chum salmon (Summer)

Chum salmon (Fall)

Big-eyed tuna Alaska porlack Carp

MS PN/ RRT MS PN/RRT MS PN/RRT MS PN/RRT MS PNtRRT

120:41i22: 61

l22: 51

l20; Sl

I22: 51

t22: 61

ll6: lll20: Sl

llgi•g

l16: 11l22: 61

1?zlg

l53igl

117: ll

l22: 61

IS:l X

l5i,iX

l20; 51

118: 11

1:8: 11t20: 51

iigi•a

I22: 61l18: 11

116: olt22: Sl

I16: Ol

l20: 41

BII•X

l20: ll120: 51

120: li122:61

118: Oll20: Sl

l18: ltl16: 11

I18: Oll22: 61

114: Ol118:•II

1l2liil

T24: ll120: 51

22 50.6 22 50.6 22 52.8 24 60.8 24

64.8

24 65.8 24 67.425

77.82S82.326

82.32584.426

87.2.

2690.22690.22690.228

121.9

28126.627

126.6

28126.628

140.628

14e,6 30143.628

152.S

30IS2.S

30IS2.5

3226S.7

118: 3I122: 61

120: 41l22: 61

l22: 51120: 5t

120: 51l16: ll

I20: SIlt8': 21

lt6: 11l20: 51

I18: 21120: Sl

R21a

1t4:Ol120: Sl

l22: 61116: ll

116: IIl22: 6I

ll:X

ll:i•X

116: 11122: 51

ll5: OIi20: 51

117: II122: 61

120: 5Il18: ll

122: 5Ii16: Ol

'116: Oll22: 51

116: oll20: 41

120: 11l20: Sl

118: O[l20: 51

'118: ltl16: lt

114: Oll18: 11

1l2,L gl

22 48.7

2248.7

2248.7

2459.1

24 S9.!

2460.8

2460.8

2462.2

2464.2

2464.2

2467.1

2467.1

2469.5

2677.8

2577.8

2S77.8

2682.2

28116.6

28119S28

124.6

28124.6

28133.3

30137.2

30142.9

30l42.9

l;zlgl

118: 21t22: 61

Il:i•g

122:4Ilza: 61

116: II{20:4t

120: 41t22: 5E

i22: 61l17: ll

122: 51t22: 51

117: 21l20: 41

117; 21l•22: 51

llS;: !l

l22: 6i

IS;l-X

l20: Sllt8: ll

l18: 11t20: 5t

122: 61P8: ll

l?21a

li21•81

llllX

118: 11122: St

1581,st

l?Zl81

lizi•,g

Isgi•x

118: !1

t18: ll

llg]N

l16: Oli18: 11

24 65.0 24 66.9 24 71.1

24 71.1

26 7!.1

24 74.025

78.42478.42S78.42S78.52S82.7es84.72684.72688.226

91.32691.3

28116.7

27116.7

28116.7

28124.6

28130,O

28143.2

28148,1

32189.6

32206.1

3221S.5

116: IIt20: 51

l5gi.;

lsgl g

lt6: llt22: 61

lsi.a

llSl X

lizi•a

ll8i•X

Isgl g

120: 11l20: Sl

Bgi•g

1:g,`g

118: 11l16: ll

l18: 11t18: 2t

ilgl9I

llgi• 91

Il6,i•X

llg:rX

llg•iu

li2i• 61

IS81?l

li 8,i 91

24 61.0 24 61.0 24 M.2 24 6S.9 24 6S.9 24 69.9 28 115.7

28llS.7

28120.3

28125.0

28137.S

28137.S

30137.S

30137.S

30150.0

30'ISO.O

30ISO.O

28 150.0

32207.4

32207,4

34301.9

34301.9

118: 31

122: 61

I20: 41

t20: Sl

lsla

120:4I.I22: 61

l16: ll

t22: 51

118: 21

l22: 51

l1S: Oi

t22: 61

ISi7i•gl

116: ll

t20:41

118: 21

120:41

II8: ll

t22: Si

ugioa

l18: ll

t20: 41

Issi. g

ISi'i•X

l20: ll

l22: 61

118: ll

l16: ll

118: lll18: 21

IIglX

llgl?l

lsig

Isgi• x

118: 11

t18: ll

Il6: Ol

l18: ll

22 5e.7 22 52.3

n 54.5

n 56.4 26 79.4 26 79.4 2S 79;4 2S 79.4, 26 82.7 26 82.7 28111.7

28111.7

2811S.8

28119.3

30133.8

28133.8

30138.4

30138.4

30148L4

30148.4

28148.4

30179.4

3219S.3

32210.1

Abbreviations:PN: Partition number. MS: Molecular .specles. RRT: Relative .retentlon .tlme.

26

data in egg yolk

is summerized in

lecithin. The RRT of each

Tables I-4-7.

molecular species

27

Section 3. Discussion

We have piotted the RRT of each molecular species

semilogarithmically against the partition number (PN) defined

as PN=CN-2.DB where CN is the total acyl carbon number and

DB is the total double bonds since PN is proportional to the 37)logarithm of RRT. A general expression for this can be

written as:

PN ee log(RRT) (1) After plotting the RRT of each molecular species

semUogarithmically, a similar correlation was obtained, that

i8: ' PNee log(RRT)+AQ (2) ,(2) is similar to (1), and if we formulate (2) into an

eguation: • PNm P•log(RRT)+dQ (3)where P becomes the slope of the oblique line, and zfQ becomes

the intersept on the ordinate. This equation (3) suggests

that PN is not only a function of RRT alone, but also a

function including dQ.

Back to the definition of the PN, that is, PN=CN-2.DB,

the left member in (3) can be changed as: ' CN-2.DBur P•ldg(RRT)+aQ (4)So, RRT can be expressed as follows:

' CN--2 •DB-dQ P RRTa 10 (5)

If we put aQ as Q,+oC, equation (5) may be written as:'

S!twa!IE;S9,L992DB(Q+q) RRT= 10 P (Q, is a minimum of "Q) (6)

28

where P and Q are invariables and OC is a variable range of Q,.

By letting CN and DB be invariables, RRT becomes a function

of OC which is:

RRT= .{(C() (7) Back to equation (4), by putting dQ as Qi+CX, the

following equation can be obtained: ' CN-2•DB" P.log(RRT)+Q,+ex (4') rf we let DB be invariable and rearrange the expression

for CN, (4') will become:

CNn P'log(RRT)+ct +Qa (Q2m Q,+2•DB) (8)

On the other hand, if we let CN be invariable and 'rearrange the expression for DB, (4') will become: DB= -- -ll-log(RRT)-S+Q, (Q, =--iltr(Q, -CN)) (9)

' ' These two functions, i.e. (8) and (9) have a deviation

which are O( for the former and -- O(/2 for the latter. Alfa is

considered to be a factor that has a small but significant

effect on RRT, and it may be due to the positional isomers

such as between 1 and 2 positions in the molecule, or by the

large differences in number of double bonds between the two

acyl group in the molecule. This leads us to the model of a

matrix since it is convenient to distinguish the positionaZ

isomers or the bias in the number of double bonds between the

two acyl groups in the molecule. So in order to simplify the

equation, we can induce the following equations from (8) and

(9) respectively under the conditions of:

cN,.x d, (c2, di and d2 are invariables) c2 d2

Cl Y DB'= (ct, c2 and d2 are invariables) c2 d2

29

CB'= P,•log(RRT)+q, (8') DB': P,•log(RRT)+q, (9')by analyzing the RRT data of each molecular species.

After plotting the RRT of each mo;ecular species from

the source examtned against the total acyl carbon number or

the number of total double bonds of each molecular species, 'the RRT plots of molecular spectes Zatd almost on a straight

line by giving a variable integer x for the carbon number and

a variable integer y for the number of double bonds of each

acyl group in the molecular species, when we express the

molecular species in matrix relation. The oblique line is

almost parallel to each other as shown in Fig I-6. By

applying these correlations between the RRT and the

correspo,nding molecular species under the condition of matrix

for the determination of molecular species, it is suggested

that an unidentified molecular species can be predicted from

RRT on HPLC even if it has the most complicated composition

of molecular species such as fish muscle lecithin.

Another method for HPLC analysis of phospholipid 19) . To ourmolecular species was published by Petton et al

surprise, the sequence of each molecular species in elution

on HPLC, when the RRTs are plotted against the total acyl

carbon number from our biological material, sre the same as 'common molecular spectes of rat liver which was analyzed by 19)Patton et al. despite the fact that the analytical

conditions are significantly different. This suggests that, 'although there are differences in retention time or in RRT

among the different conditions on HPLC, the sequence in

30

e.E

"8

----

sN

y•.re.-

cr-.

mo5ooaoo

3oo

2oo

100

70

50Lo30

20

10

5oo4' oo300

200

100

70

504o30

20

il,g 81 l,: gL 21,g 9

7I,6 21, sl,! 21, gl,C

i4I,: }L isl,: kl, i61,6

1812: :1

ll

g

2

,: 6L

L pt,:

I, i71,6

31,g :L 41

gL nl,x, i

gL

2

iE IL sl,g gl, 61,g IL

L i21,: 21, i31,6 }L

1

34

57

10 11 1312 14 15

16

17

IS

10

30 32

31

Tok

iglii

36 38 40 acyl carbon number,

xl lii gl, roIi: xL 2ili8 g

2415g gl, asli2 xl, 26E: I

rellg gl, sollg I

725so

28 2

42

l, 221I; XL

L 2711: Il,

L 3iE2 Xll

23 20 1924

21 22

44

231i: gL

2sll2 'oL

l2 gl

1 2 3 4 5 Number 678ot totat9 10double

11 12 13 14 15 16 17bonds

Fig . :-6. Relation between relative retention time total acyl carbon number and relation between retention tirne and total double bonds on HPLC

andrelativeof lecithin .

31

elution of each molecular species might

leads us to a conclusion that in HPLC, 'elution might be controlled by a fixed

matrix relation. By accepting this idea

matrix model to triglycerides. Details 'the next chapter.

be unchangeable. This

the sequence in

correlation, that is

, we can expand this

will be discussed in

32

CHAPTER II

A NOVEL APPROACH FOR [I'HE IDENTIFICAT!ON OF TR!GLYCERIDE

MOLECULAR SPECZES ON REVERSED•--PHASE HIGH

PERFOMANCE LIQUrD CHROMATOGRAPHY

Zn ehapter :, two rules in the elution of diglyceride

acetate derived from lecithin on HPLC were diseovered, that

CN= P,•log(RRT)+Q, CN= ll, gl (1)

DB- P,•log(RRT)+Q, DB= g; Xa (2)

where P is the slope and Q is the intercept on the ordinate

of the semilogarithmic plots of the RRTs of molecular species

against CN or DB. c and d are acyl carbon number and number

of double bonds in each acyl group, respectively. x and y are

variables of acyl earbon number and number of double bonds,

respectively.

The structure of diglyceride acetate is:

Acylt

Acy12 ( Acyl : esterified fatty acid ) (3)

CO.CH3

And the structure of triglyceride is:

Acyli

Acy13

The difference between (3) and (4) is at position 3 in the

molecule. But CO.CH3 in (3) can also be considered as the

shortest form of acyl group.

33

So: Acyl, Acyli Acy12 !!l) Acy12 ( where 9 means "include" )

Acy13 CO.CH3 'therefore, (1) and (2) can be rewritten as:

c N = pt •i o g (' R R T ) + Q, c N = ll.i? ddo ll ( i ) '

DB= p2'iog(RRT)+Qa DB"lii ili21 (2)'

sÅ}nce (2, O) in position 3 exhibits the acyl (acetyl) group

which has two carbons and no double bond. So we can conclude

I\:.E,:l.i:g.(ik,:ie,::mg.ei:,:l..:hg,g ix;.,erlei:iiiifog,l.

By adapting the general expressions to triglyceride, the

following equations can finally be obtained.

cN. p,•log(RRT)+Q, cN=lll; dgil (5)

D B n p, .i o g ( R R T ) + Qz D B al ii Ydd 32 ( 6 )

rn this chapter, the theory that has proved

mathematically, is verified by the actual experiment.

34

Section 1. Experimental

Preparation of Triglyceride

Linseed oil and olive oil were purchased from Wako Pure

Chemical rndustries, Ltd., Osaka. Rapeseed oil was obtained

from a commercial source. Cacao butter was supplied by

Yunokawa Seiyaku Co. Ltd., Hakodate, Hokkaido, Japan.

"Ogonori" ( Gracilaria Msuz.!!s;g.s3a ) was collected at the shore

of Taisei-ch6, Hokkaido, Japan. Total lipid was extracted

from "Ogonori" using chloroform/methanol ( 1:2, v/v ) with

the use of an ultra•-turrax for comminution.

Triglycerides from these oils were purified by a

preparative TLC using n-hexaneldiethyl ether ( 4:1, vlv ) as 'the developing solvent.

HPLC Fractionation of the Moleclar S ecies of

:TkELg.ILI id

The purified trigiycerides were filtered through a O.4S>,"

type FP-45 Fluoropore filter ( Sumitomo Electric rndustry,

Ltdi., Osaka ) and subjected to HPLC. Separation of

triglycerides by HPLC has been achieved on LiChrosorb RP-18

( Merck, West Germany ) twin 8x250 mm columns. These columns

were connected in series. The instruments used consisted of a

Hitachi 638-50 Liquid Chromatograph ( Hitachi Ltd., Tokyo )

equipped with a Shodex SE-11 RI detector ( Showa Denko Ltd.,

Tokyo ). The eluting solvent used was acetonelacetonitrile

( 3:1, vlv ). Triglycerides were dissolved in chloroform at

52ug125>pLl and applied to the column under room temperature (20-•

220C). The flow rate was 1.5 ml!min.

35

ldentification of Molecular Species of Each Peak

on HPLC.

Peaks on HPLC chromatograms were numbered in

elution. The fatty acid composition and the total

carbon number of each collected predominant peak

by GLC as previously shown in chapter I.

sequence of

acyl

was analyzed

36

Section 2. Results

Figure !I-1 shows chromatograms of triglycerides on

HPLC. The aeyl combination of each predominant peak collected

was determined by fatty acid analysis and total acyl carbon

number anaylsis as shown in Table II-1. This table shows the

results on linseed oil in' Fig. I!-1 as an example. Peak 'number 1 in Fig. !r-1 is triglyceride composed of 18:3 alone, 'i.e., (18:3,18:3,18:3) because over 98Z of fatty acid of

this fraction is 18:3, in addition, the total acyl carbon

number of this peak is mostly S4. Peak number 2 is considered

to be the combination of one mol of 18:2 and two mols of

18:3, thst is, (18:2,18:3,18:3). This is supported by the

data of total acyl carbon number of this fraction. Peak

number 3 is mainly (18:3,18:2,18:2) for the same reasons in 'peak number 2. Peak number 4 is (18:1,18:3,18:3) with 4NIO%

contaminants because 9.7Z of 18:2 is detected as overlaps

from the previous peak. Peak number 5 has at least two

contaminants, i.e. 18:1 and 18:2. This peak is concluded to

be (16:O,18:3,18:3) from the data of total acyl carbon

number. All other peaks were indentified in the same manner.

The relative retention times (RRTs) of all peaks were

determined by dividing the retention time of each peak by

that of triolein. When the amount of triolein was very small

and or the peak overlapped considerably, purified triolein

was added to the sample as an internal standard. Predominant

or reliable peaks were selected (Table rl-2) to plot the RRT

of individual triglycerides on a semilogarithmic graph paper.

Results are shown in Fig. II-2A. The RRT were also

1 ro

2

4

5

LIN

SE

ED

TG

1 ( v-co

1i

i

N iX

V N

JN,,

so

RA

PfS

fEO

TG

co tc

o 1?

O

to

OLI

VE

TG

co

iib'ri

n

60

rooo

co10

0 m

in

colo

o rin

ro

ro ro

co to

"O

GnN

oRl.

rg

40 6

0 tiO

co co

ea -

co

1oo

nin

cAcA

o su

rrE

n T

6

1co

tro

140

PA

UI T

6

rOO

1ro

1

too

min

IGO

min

Fig

.zr

-1.

HP

LCch

rom

atog

ram

s of

trig

lyce

rides

from

natu

ral

sour

ces.

lt]

Tab

le;Z

-l.D

eter

min

atio

nof

trig

lyce

ride

mol

ecul

arsp

ecie

s*

Pea

k nu

mbe

r

12

34

5

F

atty

aci

d

16

,O

18

,1

18

,2

18

,3

Car

boti

nunb

er**

52

54

Mol

ecul

ar s

peci

es

98.0

<

98.4

***

Eii.

:ill33

.466

.6

98.3

***

liiii3

I

63.2

36.8

96.6

***

l18:3

18,2

18,2

28.9

9.7

61.4

96.8

***

IZ•ii

lls29

3 1

65 98 16 18 18

` . . . . : : :

6 7 1 5 o<**

de

gl

in

rel

ativ

e *

Exa

rnpl

e of

***

Per

cent

age

' z linse

ed o

il.by

wei

ght,

** T

otal

acyl

carb

onnu

mbe

r.

w oo

Tab

1err

-2. R

elat

ions

hip

mol

ecul

ar s

peci

es o

fbe

twee

n re

latiV

e re

tent

ion

trig

lyce

ride

from

nat

ural

time

and

sour

ees

Rap

esee

d oi

lLi

nsee

d oi

lC

acao

but

ter

Psl

m o

ilO

gono

riO

live

oil

RR

TM

olec

ular

spe

cics

RR

TM

olcc

ulas

spe

cfes

RR

TM

olec

ular

spe

cies

RR

TM

olec

ular

spec

ies

RR

TM

olec

ular

spec

ics

RR

TM

olec

ular

spe

cies

28.6

35.9

375

45.0

".8

S8.

461

.076

.385

.510

0.0

112.

412

2.4

128.

314

3.9

160.

016

2.8

(18:

3> X

2(1

8:2)

(18:

2)

Å~

2(

18:3

)<

18:3

) Å

~ 2

(18:

1)(1

8:2)

X 3

(18:

1) (

18:2

) (1

8:3)

(18:

2) Å

~ 2

(18:

1>(1

8:1)

Å~

2(1

8:3)

<18

:1)

Å~

2<

18:2

>(1

6:O

) (1

8:1)

<18

:2)

(18:

1>Å

~3

(18:

1) X

2(1

6:O

)(1

8:1)

(18

:2>

(22

:1>

(18:

1) Å

~ 2

(20:

1)(1

8:1)

Å~

2(1

8:O

)(1

8: 1

> Å

~ 2

( 22

:1)

(

isom

er)

22.5

28.6

35.5

36.S

40.1

".4

46.5

SI.O

58.4

61.0

76.6

92.6

1oo.

O

(18:

3)X

3(1

8:3>

X 2

(18:

2)(1

8:2)

X 2

<18

:3)

<18

;3)

X 2

( 18

;1)

(18:

3) X

2(1

6;O

)(1

8:2>

X3

(18:

1)

(18:

2)

(18:

3>(1

6:O

> (

18:2

) (1

8;3>

(18:

2)

X 2

< 1

8: 1

)(1

8:1)

Å~

2(1

8:3>

(16;

O)

(18:

1) (

18:3

)(1

6:O

) (1

8:O

) (1

8:3)

<18

:1)X

3

91.2

11Z

S13

6.2

143-

146.

8IM

.823

8.S

(16:

O)X

2(18

:2)

62.3

"6:O

)Å~

2(18

:1)

74.7

(18:

1>X

2"8:

O)

83.6

(18:

O)Å

~2(

18:2

) 92

.1<

16:e

) (1

8:O

) {1

8: 1

) 12

8.6

(18:

O)

Å~

2(1

8:1)

(18:

O)

(18:

1) (

20:O

)

(18;

2)

X 2

"6:O

>(1

8: 1

} X

2(

18: 2

)(1

6:O

) (1

8:1)

(18

:2)

(16:

O)

X 2

(18f

2)(1

6:e>

X 3

27.8

32.8

37.0

43.8

47.8

(20:

4> Å

~ 3

(20:

4>X

2<

20:3

)(2

0:4)

X 2

(14:

O)

(20:

4) Å

~ 2

(18:

1)(2

0:4)

X 2

(16:

O)

12S

.414

4.8

(16:

O)

Å~

2(1

8:1)

{18:

1> X

2(1

8: O

)

RR

T :

rela

tive

rete

nt{o

n tim

e w

hert

<18

:1)

Å~

3 is

usc

d as

the

refe

renc

e pe

ak.

w e

A s e to -8 io v e .E N c .9 3

00E e

2oo

2 g •.-.

1oo

-rt, di r

o

so

co

3b

ro

104o

o

mo

mo

1oo

ro 50 40 so ro

Ab. c.

. e

.

.

4e50

52

54 5

6T

otal

acy

l car

bon

num

ber

58oo

A e ra v ut o 2 v e E •.- - c .9 E e i s

oo" m

oo .)

150

ts i 1oo

ec sc

4

1 foo so 40 30 20 10

B

i

a. g• ta-

a.

b. 'e d.

t t . .

Fig

.

. :

.

.. rf

lt g.

' j.k

rn' t

'

t'

36 3

8 40

42

44 4

6 48

'Tot

al a

cyl c

arbo

nso

52

54nu

mbe

r

4co

soo

mo

30

O

1234

5678

9 lo

11

t2 1

3 10

Num

ber

ot to

tal c

loub

ie b

onds

lsl

lsl x

e 2e

rls

e ls

l:s

s, b

• :s

s .•

c•

le l•

d•

;e i•

e•

;o, t

• t•

;g 2

• a.

ll,2

,g

i•i+

I• h

• l•!

i• t•

lil•

j• iii

i• k•

lii•

i• iii

,g•

t•lli

ll,

IS 2

, n. 1

6 O

.Ie

y ls

r

( b

X.::

g l.,

a,r.

e.g2

5.`a

z}le

;.:f a

eyi

and

y c

an ta

ke 1

, 2, 3

, 4, 5

II-2

. Rel

atio

n be

twee

n re

lativ

e r

elat

ive

rete

ntio

n tim

e an

d to

tal

stu

dy. B

: Dat

a of

E.G

. Per

kins

et a

l. 4

60•v

463

(198

2). C

: Dat

a of

C. M

errit

t

. .

100

ro

so

40

x so

-rd M

20

o 9 v 10

Åë E •.

- - c o '.= 3

00E g

roo

a. b. c.

e. f' 9.

i i

O

1234

5.6

78

N

utnb

er o

f tot

al d

oubi

e bo

nds

l,

6. i

: ogl

, c•li

: oil.

d. l

t: i ,

e. i

:t

,: w

w h

. iil;

, t.li

`:;.

s.lli

carb

on n

umbe

r an

d nu

tmbe

r of

exa

mpl

e, x

can

take

16,

18,

20,

.•...

etc

.)re

tent

ion

time

and

tota

ldo

uble

ben

ds o

n H

PLC

of

in J

. Am

. Oil

Che

m.

et a

l. in

J. A

m. O

il

g '" i1oo

cr- .-

ro

so

co

so

ro

o

to

;,

g

.

' a.

I2 o

i

xO

d

oubl

e 2

2 ••

•••

acyl

Soc

., 58

48 . .

so

Tot

al 5

2 Y

56

acyt

car

bon

num

ber

d.

e.

f' 9.

ss

o l•

1 2

3N

umbe

r of

b•lig

,il•

carb

on n

umbe

rtr

igly

cerid

es. A

,

867

'"872

ch

em. S

oc•,

E:tL

,

4S67

89 r

oto

tat d

oubt

e bo

nds

c•li:

,il d

•ll'ij

' e•ll

:'ll t

•ll:s

;,

1

6 O

s•

16

Q

18

y a

nd r

elat

ion

betw

een

: Pla

nt s

ourc

es in

this

(19

81)

and

Lipi

ds, 1

7,42

2'v4

32 (

1982

). '

t

b o

41

calculated from the chromatograms in the reports of Perkinset ali.i'38)( see Table xl-3 in the next section ) and those

39) ., and plotted on a semilogarithmic graphof Merritt et al

paper as shown in Fig. !I-2B and Fig. rl-2C, respectively. As

it is clear from these figures, the sequence in elution

might be controlled by a fixed correlation, that is, a matrix

relation, though the analytical eonditions are different

among the three figures in Fig. :I-2. !f we express these by

ernpirical equations, the two equations described previously

( equations (5) and (6) in section 1 ) can be obtained.

rn Fig. II-2, it is observed that even triglycerides

from plant sources show complicated sets of oblique lines.

This is due to the extreme increase in probability in

combination of fatty acids. For example, if we have four

kinds of fatty aeids, there is a probability that diglycerideor lecithin might have a maximum of 42u16 kinds of acyl

combinations. But in csse of triglycerÅ}des, this willdrastically increase up to 43a64 kinds of acyl combinations.

More specifically, in case of fish lipid, for instance if we

have'ten kinds of fatty acids, there is a probability that 2diglyceride or lecithin might have a maximum of 10 =100 kinds

of acyl combinations, while in case of triglyceride, ' 310 =1000 combinations might be possible. The author has tried

to analyze the molecular species of triglycerides from fish

muscle. But the theoritical plate of the HPLC column is still

not enough to separate the very complicated combination of

molecular species of triglyceride from marine sources.

Recently, column packing with 3-)-Ltm particles has been 40)developed by Dong et al. for triglyceride analysis from

42

vegitable sources.

packing is shorter

it is expected to

Though the life of this type of column

than the coventional 5-7tLm particle type,

give a high resolusion chromatograms.

43

Section 3. Discussion

11,38) The chromatograms of Per'kins et al . were introduced

in this study in order to calculate the RRT of each peak on

HPLC since it is bssed on 28 kinds of known triglyceride

standards purchased from Nu-Chek--Prep (Elysisn, MN) and

Supelco (Supelco, Bellefonte, PA). RRT of each peak on 11,38) s chromatograms 'were calculated by dividingPerkins et al.'

the retention time of each peak by that of trio!ein. And

multiple regression was performed against RRT using Personal

computer Model PC-8001 (NEC, Tokyo) to link the two concepts,

that is, ECN or PN and the new matrix model. The commonlyused computer program for the multiple regression4i)was

written in N-BASIC available for most of the NEC personal

computers.

Theoritical Relations between the ECN or PN and the

New Matrix Model

We will express the molecular species of triglyceride ina matrix form as it is written previousiy such aslii gti.

a so called functional group X ( in this case --CH2- ) isWhenadded to Cc'

2 dd' 2,then Cc2i Si win becomelg:X gll. The theory

of Martin42g3.gg:' C3 d3 le3 d31 Ali{Z.F:!}T =-fL{;l.IiEeLT +-4f{ltili2!- (1)

ln(ctqBA)=Afl.$LT ' (2)

(7(L: Chemical potential, R: Gas constant, T: Absolute

temperature, B: Substance which contains group X in addition

to substance A, (X: Partition coefficient ) :.ig,l andBas i'iX g,l in If we substitute A as

44

equations (1) and

obtained:

' a (g;+x R•T

c( ln (X

On the other

chromatography

Vr za (XVs

( Vr: Total

liquid

So, vr 8; Cl c,+X Vr g;

From equations

v. g}'x g

v. g•l g

The right member

corresponds to

c,+X ct ga

c( cl ct C3 '

By substituting

hand

was

adjusted

stationary

(5)

retention

ln (RRT)

1og(RRT)

(2), the following equations can be

' g,g =ALI,(illiiLgiL,gl.zts,.,

ww,,+x gs.g lgi g;tl R•T

, the general rule for the liquid

:

retention volume, Vs: Volume of

phase, at: Partition coeffi.cient )

gjl- cxi k g;1•v,

gi ==at g+x gi•v.

and (6),

".-.sut.:+Xg,

i o( g21 gi

in equation (7) is a partition ratio

value, namely:

g: --RRT gi

equation (8) into (4),

-as!g R•T ti vKZx 2.303 R•T

(3)

(4)

the

(s)

(6)

('7)

which

(8)

45

' •'• log(RRT) oc d2L(x (9)rf equation (9) is held, the following correlation should

tt

E.

o " log(RRT)= k•,Ot'ztZx (10) d7tZx

And if we let the x-axis be the carbon number:

E %

HO log(RRT)= P,C+ qt (11) Carbon number

where P becomes the slope and q becomes the intercept on the

ordinate. This equation (11) is exactly a modified form of

the emperical equations:

c N - p, •i o g ( R R T ) + Q, c N = li; ddd ,Ll

DB= p,aog(RRT)+Qt , lcC3' li, DBm c2 d21

namely, the new concept of the chromatographic rule

discovered in this study.

So far, the physicochemical background of this new

concept has been demonstrated by intfoducing the theory ofMartin4.2)

In the same way, for all of the functional groups added

to the triglyceride gC 3> gd l, equation (11) should hold,

namely:

46

log(RRT)= Pi .Ci +q, (12) log(RRT)=P2 .C2 +q, (13) l o g ( R R T ) -- P3 .C, + q, ( 1 4 )

log(RRT) :P,'•D, +q, (15) ' (16) 1og(RRT)=P"'D2 +qs

log(RRT)=P3'•Ds +q, (17)Careful considerations should be done here.

r. :f we take notice of one hydrocarbon chain of the

triglyceride molecule, -CH2- snd -CH=CH- can be

considered as physicochemical functionai groups. And

adding to those, the differences in arrangement of these

units might affect the total chemieal potential of the

triglyceride molecule and this should also be considered

(We will call this as se factor).

II. From the view point of stereo specific structure,

unless three carbon chains are the same, we should

consider about the degree in bias betvieen the

positional isomers.

rlr. Specific fatty acids such as iso, trans or hydroxy fatty

acids might also affect the total chemical potential of

the triglyceride molecule. 'So, strictly speaking, we can conclude that the chemical

potential of the triglyceride molecule is the resultant of

all physicochemical functional groups in the molecule. If we

do not consider about the affection of ZIr since these fatty

acids seldom appear, the chemical potential (-LC) oftrigiyceride lg'2 ddil can be written as fonows:

/t,c = gt{Cl(l( c9 3,ld, ,,st,),}(c, ,d2,slsa),f(c3,ds ,Ste)} (18)

where sc is an se factor,/Lt is the chemical potential given by

47

the hydrocarbon chain. And g is the function of chemical

potential given by the differences in positional isomers.

Finally, we have reached to the function (18) that sums up

the chemical potential of the triglyceride molecule, and this

(18) is at the same time, an equation that controls the

sequence in elution on HPLC. This will be discussed in

chapter V again.

We will derive ECN (or PN) from function (18). When we

neglect the fsctor numbered lr, and suppose there is no iso

or trans or hydroxy fatty acids, we can rewrite equation (18)

as: ' .,cc s {( c, ,d, ,st,)+ l( c, ,d, ,sc.)+ f( c3 ,d3 ,se,) (19)

Adding to it, if we neglect the st faetor, equation (19) will

become: .L,C.=f(ci ,di )+f(c, ,d. )+f( c3 ,d3 )

= f( cl +c, +c3 , d, +d. +d3 )

=f(CN,DB) (20)This equation (20) exaetly corresponds to the equation of ECN

(or PN). Another way of demonstrating the theoritical

relation between the new concept and ECN (or PN) is as

follows. If we do not consider about the SZ factor and also

the iso, trans and hydroxy fatty acids, we can add both

members from equation (12) to (17), namely:

6.Iog(RRT)=p, .C, +P,.C, +P,.C, +P",D, +Pt'.Dz +P3'.D3 +q, +q, •+q, +q, +qs +q`

(21)

And if we put Pnnl16 Pn, P'n=116 P'n,Zq/6mQ, the following

equation gan be obtained:

log(RRT)=Pi.Ct +P2.C2 +P3.Ci +Pi '.D, +P,'.D. +P,'.D3 +Q (22)

This equation (22) can be considered as the first order

48

Table rZ-3• Relative retention time calculatedchromatograms of E.G. Perkins et al. in J.Soc., 2t, 867•v872 (1981) and on Lipids, U

from the Am. Oil, 460•y463

HPLCChem. (1982)

Molecular species RRT- LaLaLatrt-13:O LL Le MMM LLL LeL L'L P

LOOtrt-15:O

PLO PPL PLP LPP ooo

21,9 33,g 31L;,3

L12e1

44,8 58e7 63e3 76,7 81,8 83,7 89', 5

90,7 94,2100,O

Molecular species RRT-

MOPSOLSPLpooSOMPOPPPPsooSSLsopsoospoSPPsos

101,104,i08e113,117,120e132,144,145,152,155,162,179,208e

1

1

7

1

3

1

9

2

o

7

3

38

1

Abbrev La :

M:"RRT :

e

Lauryl, L : Linoleyl,Myristyl. O : Oleyl. P Relattve retehtton time the reference peak,

Le : Ltnolenyl,: Palmityl,

when OOO is used as

Tqb1e. ;r-4. Multip1e regression analysis of the data in Tab1e TZd-3

DRTE 74/m.::t."1,.n.TIr•IE e?,;p-ltl:s.t:,Per"ki'il=-. T.13'. bFITfrl Pt:1 :J. I T r Ctt•lnL e-• -d i r(i

:S:S blULT1F,LE F.1Et3•ElE:;ti;ION

INPUT PfiR.Hr•IETEP.t'.'No. OF .SRrdlF•LENO. OF VAR.ltkELERRN( e')l$T[)" 1)

INPUT PRTH SnMPLE 1 2 3 4 5 6 7 e 9 le 11 12 13 14 15 16 17 t8 19 2e 2t 22 23 24 25 26 27 29•

RVER.AGESTD.PEV

CORP.ELHTION

x( lr, XL: .-) ,X< :i) ;C 4) t)t tt " At. Ul Y,C E) Y

X< 1)s2.ees13.gee1:-.cJeet2.eeelg.see1e.eeell .egelg• .eeg1s.ese16.eeg16.eee1s,ege1e.eee1e.eea.N.eee1 :B . eI3e

1•y.eee '16.erJsip..see1"o.n.FJe1 s. e m. e

v•.gseie.socJ1 e. e e. n.

1 ,e•. fi.t Et fJ

1 li? . klse

1 ?• . EIEt Et

1 9• . Et pO t)

ISS,. r• 14

1. ::- C-:7

PIHTEI Y•: :v.: (. 1 :, 1 . r)t•trJ

Ei. 7:- El crJ, 7• IL"

Lb . :-, Y, tl

El. :Y t:L

p1 . t1 2y6

P1. tt; :; "

: :.B: lt:,

n.

nr•IRL,t':AJrS :t:t

X,( 2) i2.er"N 1:..E'see 1 ?. s a. e

i4,L-Jee1e.ege1e.eee1s.eselg• .ese1s.eee1e.eee16.eee

.1s.ege16.eLle13.eDe1e.ese1e.gge16.ev"Js1 ?. E, e e

1?•.Etn.g

1e.eee16.gei)16.see1e.gge1?••.rJrJe

1g.sEtro1E.ek-letfiiF)t-J'n.

I Et . Et lY LI

1ff.f-aJ:--

1 . it". ff f:r

:PT:t: le- ).

Ei . 7` 3g

1.gp-le vo , ;::' t r:•1

e.e$e. il•1. fE• :- t:;

l'il . I:-t :., :.:

Et.fiEt7

X< 3) 12.see1•3.gee1R..eEte14.ese1g.gse1s.eerJ1 6. e Ll e

1e.eeels.ege.1e.eee1B. eg,j16.esele.eDelg• .see1 6. e a e.

13.eselg• .m. eg

1e.ees14.eee16.ses1 6. M. e N

1s.see1e.ewm.1s.eEte13. r..l tN rp

1 t:a . el•1 ttl

1 lt: . EIL•le

1 •e-• . eeg

IE.64r.u 1 . 7• 1 ,3

7x:< 3• rJ Ei. 7• 1" M. . T• 1L',

1 . Ei t:•IC.t

'[" • eil ri

l:•l. :q F.",:t

g. t'• 9. I]

Et . 4t-:,E

PCn E: rJ EI 1 M-BRS-.':C 3:* By

>l< 4) e.eee e.see-2.eee

e,eeptJ . 2.eee 2. n. ee

2.eee 2.DSP3e.eeee.eeBe.eeee.gee2.ege

1.eeee.eeoe,esee.eeee.eeee.eege,eeee.eeee. ofiJee. gores.seroe. gs f:g. et:•]e

s. cJ e e

e. tttee

FJ.4fi4PJ.tn:.:t

k•;(l 4) t3 . .'.k-, ?,4

cr.1 . 3•:'FJV

L•t. :,,4tl

1 . ,:,t L-l if

E"n47'6 l:,t.::t3."t-•

-e.':-gg.

F',( 5) e.eee e.ees 2.eee s.serJ 2.eee 1.SFJe 2.ege 2. eege.eeg2.seee.egs2.eeee.eeg

1.eee 1.eee 1.eeae.eee1.eeg1 , e'ee

i.ecJse.seet.seee. eee1.see1.eeee.eeee.gget.tttFJe

e, :: aJ 1

e. 7Et e•

Y, L: S) e. . :.• .39

E . ff :- ,L

rJ . ?•E::t

{].47• S..

1.eec;n e.z'gcrJ-- ttt.11Y•

MAKrJTO

X( 6) e.ees p.1.eee s..eee e.eee 2.gee 2.ege s.ess 1.eee s.ege 1.eee

2. e rJ e

'e.esgg.eee

1. eEl p)

e.eee2.eee

'2.eee1.sese.eese.eeee.eest.erJro2. eeee.eEte1.eeEt1.Bgeg.EIFJa.e.f.lb-Jpcr

e. r• eeEt . 9• gl

X•'< 6) e.426 V).Lre""e fi.1. lt-, -. rj

p). 3 2 7

3.2rJS 1.ees"Et,1::.'.'l

EGI

Y•1.o•4.e2s 1VJ2.992 ts.a.se2 162.399165.e9S176..e321 e• s. 1 g e

1gB.446191.2•411y•2.2,e.•e

19S.14719-5.725197.37e199,964zes.43g2e1.7S92eA..5S6:.s.s..Qe.g

2e6.e932 CJ 7. 9 1 7

212,314215.S5S2s6.ege218.345219.e78.22e.992Z2S.438:..?1.7g5

i 9 5. 1. 8 7

23.S25

sf, e.s.gg e.se7 bl 4Fv6 -e.?9.9- -e.119 -e.1?•3 1. en- e

tsm=:st:setemm :=====n :v=t ==u== R==wttatu=m=sc==s :====== a=== == ===nnm=m--==ma=mxvnnptun:=u#ttutt

SRNPLE No. :SHptPLE No. :SRt,IPLE No. :SRMPLE Ne. :SHMPLE. Ne. :SHblPLE No. ;SHt•IPLE No. :SRNPLE No. :SRMPLE Ne. :SRt•IPLE No. :SRMPLE Ne. ;SRr,IPLE Ne. :SHNPLE Ne. :$Rr,IPLE htc,. :SHr•IPLE No. :SHPIPLE Ne. :SRblPLE No. :$HblPLE Ne. :SRptPLE Ne. :SHt•IPLE Ne. ;$Rr,IPLE Ne. :SHblPLE Ne. :SRr•IPLE No. :SHNPLE Mo. :SHrfiPLE No. :$HptPLE Ne. :SRMPLE No. :SHblFLE Ne. :

TRBLE eF THE

U$E VRR No. 1USE VHR Ne. 2U6E VRR No. 3USE VRR No. 4usE vnR Ne. sU$E.VAR No. 6•

REGRES$:ON EXPRE$S:ONy n. s.s73sl * x< 1• 5.9ele9 * X< 2 7.ee699 *. X( .? -11.e?•26e * XC 4 -13.4e241 * K( $ -•15.4e73B X: X< 6 -e5.7744g

Y8 Y' FOR ERCH SUB.TEÅëT t- 1

2 3 4 5 6 7 ?, yle11121 :3

1415IE17ig•12-.•

-E,VJ

2.13•Pz'

ee:.4:xS:FS:7•

Z'e.,

-t-

YYYYYvY'c'

YYY-)J

st--

'•r

'T'

YYvtr

e)i

Yte)

'v'

4t)

Y'v

'v'

:

;

:

:

;

:

:

:

;

:

:

CiF

)

)

)

>

)

)

134. M. 2S2SIS2.9924g153.5ei75162. :-•Pe.g41 6ut-. g.gges1 76. 9• •31 9• .'t"-

1Se.1e7911e8.4tis.rj•s1 9 1. L) 4 e S 9•

1 Y, LT . ::L)• 7• 93

1 ", E, . 1471 t:.

1S5.?;.5461 97. :s, t:--, .". S2

1 Y. S. 96 :.- ."-. 7•

2ee. 4[;,: Al"s

2vS1. 7• eS T• 42F.-.t:s.5Ett3.Ry7t

2LDE,.Ltl-,:":.7:- es. e•g2s:•:2.,rA7•.f-1F:•:.`1

21 :- . :.• 14a$

:.15.e5ra2.21s. ef 't"• ,ee,

:1e. ;tv14572,1Y'.e7•7t;.5:'2 e. -g a. Ei r.g

2' :.S. 4 S• :t ;:i4

i, it 1 . 7S,:J4tt

N"RF: I Rt•IC E

v' ;Y, :Y' :Y, :Y' :41)- :

Y' :Y" :stPl :

Y' :'Jl.`J :

Y' :4t"1 :

Y' :tr' :'T'' :•li)" :-v-" :

Y' :'1') :st"" :

Y' :•-tJJ :-tpt :-)") :sl") :tti-J :

tlJl :

136.ee.9531$4,4S1531sg.6e.; 4e1G1 . 52rr,"71

a66.g1S7717Y.41.9181g2.$17crJ4l e l. 4 :. 4 1 5

1:,1.45554t93.341S21S3.1:?67't'1 yr 4. s :a 4 y• 1

1Y7• . :?• 2., Et 17

:- e6 . 4 f:i •:- 1 t:.

1 9' 7. 1 E:949G•'tS:-,,Ee•4::t?•

2tEit4. :2S4ffet) rJ i-: . :- `i :ts::

2Et5. 4;•' 1 1 tt•

:-rJ?,.:<t7:t2y:.• Ei 49 . Yl [:t 7S4

Z1g,ef-176:. 1 h'.'• . eE: i:.7V

:.1:-.4:"•51S:.ls.ey" r•E:. 1 g• . E• :-is:e•

:. 3••' 1 . g::.s:g7

:.' :J. :e . 4YT '- 13

ERROREP,ReP.ERRORERRORERReREP.ReRERROREE•ROR.ERROREERORER.ReNERRCtREFIRt:1R

EREtCtREFIRaREREIOR.ERFIEIFIERP.rJRE FI R, l;I F:

ERF:Cer<EK:Rt)EERFteR.EF:FlCsFl

EF:E:OREFIRCIREFIF:rJR

ERP,OREEEIs:tR,

:

:•

:

:

-1.9S927,.- 1,4S913 2.e9236 e.57323-- e.91B72-2.5S721-2.7e963 7.e2144-e.21466-1 . ?•e:.•sg•

2.e1g3s e.7gess-e.45e64-6.4951S •3.24:-51-fi d 97 5,64

-• e. 6y aa. 3-1.E34-.-•6 :.4Z.1:-7-e.42e49• ?.17672•- 2.2?.414 e. S l l Ln 7

•- 1,14e57 e. g B "Js y

i.e•eeeE 4.3529• ?-1.713E9

Ht•IHLY$' I 3' ---------d--------"----------hri------------------"--------p--------p"-----------------P-- Åë.'OURC:E a.S [i,.F. N.$. F--RHTIe -----.---...dP-----.--..-.--.-.-----.-.--.--.------..d--"-.-.---.--.-..--------------.-----""-.-- REGRE:i'P.IrJtU:i44C..t;•:::v:1:-il E• 2yff,74.4:?g•42 2:;.:?•.:?•gcl:?•]3 RE5'IOLIHL ICel.:.',"..ig:t2•v:g :Mt ?•.E,::st:•t::s':-- Tl:ITHL 1$lt::-'S.1iE•EtE:1 :)7• ----------hpt--------------------\---p------------------------------h--"-------"-v----------blULTIPLE Ci)RRELfiTION C:OEFFICIENT tri.9:a,41g••COEFFIC:ENT OF- DETEFIr,IINRTICtN e.Yty•:!•4e

)o

50

combination of C,, C2, C3, Dt, D2, D3 against log(RRT). The author

have performed the multiple regression analysis by using thechromatograms of perkins et aii.i'38) The RRT caicuiated from

the chromatograms exhibited by perkins et ali.i'38)are shown

in Table r!-3. And the results calculated by the multiple

regression analysis are shown in Table II-4. This multiple

regression analysis program is the commonly used software

from "Personal Computer Program Library Vol. 3" published byKogakutosho, Ltd., Tokyo.41) ":NPUT DATA" in Table !!-4 are

the data of RRT ( written as column Y ), and acyl carbon

number in, position l ( written as X(1) ), position 2

( written as X(2) ), position 3 ( written as X(3) )e and also

number of double bonds in position 1 ( written as X(4) ),

position 2 ( written as X(S) ),'position 3 ( written as

X(6) ) from Table II-3. "REGRESSION EXPRESSrON" corresponds

to equation (22) and the coefficients of each term are

determined. "Y & Y" is the actual RRT and the predicted RRT

by multiple regression analysis, respectively. In this case,'p6sitionai isomers sueh aslii66 8 and l6s 02 can be

1182 160distinguished ( see sample PPL and PLP in Table rr•-3 ). But

if the positional isomers eannot be distinguished, each

coefficient i.e. Cn and Dn will become equivalent. So if we

rewrite Pn as P and P'n as P', the following equation can be

derived from equation (22):

iog(RRT)= P(Ci+C2+C3)+ P'(D,+D2+D3)+Q

=P(CN)+P'(DB) +q (23)This equation (23) is actually the same with the definition

of ECN (or PN) since P'IP corresponds to the coefficient -2

in ECN (or PN).

•AZaLovZvw-vco-eh-t

"=Åë>coUvcovo.e--

-.v-.-

vo=

55

50

as

40

35

t"x :t '

:ee

i

r•, i tSs

:e

:e

ie

e-"t te t

e'

t

ee!eeeee-e

tee-ee ' ttt

at

-ebett

Fig.

Sequence of elution '

- :Modtfied ECN (or PN) ----------- : Conventional ECN "

rZ-3. Modified ECN suggested in this study andthe conventional ECN in relation to the sequenceof elution of triglyceride species on HPLC.

51

Finally, we have induced the cpnclusion of ECN '(or 'from Martin's theory.

Back to the results in Table TI-4 "REGRESS:ON

EXPRESSION" was 5.57391 for Ci, 5.90109 for C2, 7.00699

C3, -11.63260 for Dt, -13.40241 for D2 and •-15.40738 for

Accordingly, if we do not consider about the positional

isomers, from equation (23): - 11.63260+13.40241+15.40738 L P'IP

This

(or PN)

5.57391+5.9 109+7.00699 ratio i.e. --2.2 is near but not

definition ratio which is -2.

Limitation of the ECN (or PN) Concept

By changing the equation from (22) to

limitation in positional isomers will be released

exampie,lii g32i and i32t gdil cannot be distinguished

equation (23). And what is more important,

cannot be distinguished also after changin

(23). Adding to this, the ECN definition ratio

integral number which is -2. This implies

molecular species exist that have the same

regression coefficient on equation (23) which

least it is possible to distinguish the following

has the same ECN (=38):

llii (A) es ogt (B) '

Namely, by using coefficient -2.2, ECN' of (A) becomes

60-2.2xll=35.8 and ECN' of (B) becomes S8-2.2xlO=36.0.

author have performed a sequence simulation on HPLC of

!I-3 by using equation (23). Results are shown in Fig.

As it is clear from this Fig. II-3, all the molecular

52

PN)

for

D3 .

-2.1882 . -2.2

equal to the ECN

(23), the

. For

ing•i g,i and 2.l g2]l

g the equation

was an tthat a lot of

ECN. rf we use the

is •-2.2, at

case that

The

Table

II-3.

'specles

53

in Table Ir•-3 become irreversible ( shown as a solid line ).

Zn conclusion, we might say the coefficient of phe ECN

should•not be an integral number, and this coefficient.is

affected by the analytical conditions employed. This was alsosupported by the latest work done by Toya et ale3)

The matrix model might be the invariant rules that

controls the sequence in elution of molecular species on

HPLC.

54

CHAPTER•Ilr

LECrTHIN MOLECULAR SPEC:ES rDENTIFICATION PROGRAM

FOR THE PERSONAL COMPUTER

' So far, the matrix model, namely, the formulae that 'control the sequence in elution of individual molecular

spesies on HPLC have described.

The next step of this study was the efficient progress

in the rnolecular species indentification on HPLC

chromatograms by utilizing these formulae. A personal

computer was introducted for this purpose. NEC personal

computer Model PC-8001 ( NEC Ltd. Tokyo ) was used.

Section 1. Lecithin Molecular Species rdentification

Program Version I.

' At first, the slopes of the formulae ( formulae (8') and

(9') in chapter r ) were set by analyzing the data of

lecithin molecular species on HPLC that had been accumulated.

And the intercepts of the same formulae were all determined

by the regression analysis. The identification program was

designed by using these slopes and intercepts. Though this

identification program was a concrete form of the

chromatographic rules presented in chapter r ( equations (8')

and (9') ), there were some identification errors. Zt was

observed that in some cases, specifically in the case of

tetraene group, there were seme deviations as shown in Fig.

rrl-1 resulting in the errors for the molecular species

identification. The main reasons were considered to be the

55

following two:

1. When the peaks overlap, it is hard to determine the

RRTs of positional isomers.

2. Both "r3 and ur6 type fatty acids exist in tetraene groups

that make the large deviation of RRT.

So, it can be concluded that the thorough development of

instruments i.e. the column, the pump etc. of HPLC are

required in order to clearify the RRT differences in

positional isomers as well as the differences in ur isomers,

and to complete the molecular species indentification program

that exactly reflexes the equations ( (8') and (9') ).

56

Section 2. Lecithin Molecuiar Species Identification

Program Version rr.

Though it was found to be hard to design a computer 'program that strictly follows the chromatographic rules

presented in this study due to the inadequate imformation of

RRT between the isomers or the inadequate reproducÅ}bility of

RRT on the present HPLC, a more practical identification 'program based on the collation with the deposit data were

designed. !t runs as follows as designated in Seheme III-1:

At first, the fatty acid composition data of the

colleeted peak on HPLC was entered ( shown as B in Scheme

:Z:-1 ) aÅíter initialization ( shown as A ). Then the

identification subroutine starts running according to the

priority order of identification that goes as follows:

1. Search the same molecular species in the data file and

when there is, then print out the RRT of it that meets

the condition of ct which restricts the range of RRT that

has entered from the keybord manually ( shown as C-1 and

D, E ). Thi•s is called "PREDZCTED BY S. T. D. RRT" in

Program III-1.

2. rf not in the case of 1, search the molecular speeies that belongs tolg2 dd2il( or fi' gS ) group, and then

generate a regression line as shown in Fig. Trr-2.

After that, print out the RRT of it that meets the

condition of C( ( shown as C-2 and D, E ). This is called

"Liner prediction routine" as well as "RREDICTED BY

3-VAR. LrNER METHOD" in Program IT!-1.

3. If not the cases eÅí 1 and 2, search the molecular

57

GENERALFLOW SUBROUTINE

Initi'alization of variables. A"

Searchspec1es

the in

the GLe fatty

samethe

molecularda'ta fi1e.

Enter

C-•1 .), Ve

results ofacid.

" x' >tc

B

"

Prediction of RRT. (Subroutine) c

1

Searchspec1esto

a

xC2

the molecular that belongsd,

d2

group, and regresslon

or :' gij

then generate 1ine.

Enterct manually. D

J

Print outRRTcondition

thatmeetsofa.

the E

1

To continue ornot. F

C-2•Sk

1

J ve*

Generate aand search

paral1elogramthe vertex.

C-3)vle.

1 't's'*

Searchspeclesdefined asintroducethe

the molecular that can be

d,

d2

theregresslon

, Thenslope of 1ine.

C •- 4ÅÄvc

1",'e

Impossible. C-5

Scheme

>'e Searched. ele*

Zrr-1. Flow chart ofidentification prograrn

Not

the for

searched.

Ieeithin moleeular species the personal computer.

t PRINT "IF YOU WANT TO ONLY PREDICT ONE M.S. RRT THEN ELASE , OF L!NE 75":DELETSe"1`):3!iiptP p.,.G,. RRT, ..pREDIos. pRos, .RIAIvt l.A.sT vERS,lo.N. ,(.EVERY WAY.)

6e WIDTH8ig•,25:CbNSOLE,.,O,,.1-:COLDR7,e,'1,:,P.RrNT 1 HRst'i2) :LOC'ATE"'1eile :PR:tNrr ,"MLECULER SPECIES OF DI--GLYCERI•DE DETERMINATION."ELPER".:LOCATE le,12:PRINT "PROGRAMEDBY M.E. 19B3.10.18.":LINE(16,G6)-•(13e,S.4),PSET,B7e LOCATE 15,18:PRINT "INITIAL:ZE PHASE": ' GOSUB 7pme72 PRINT CHR$(12)75 'INPUT CI,nl,C2,D2:GOSUB leee:PR:NT PR,ME$(M):GOTO 7K.Se FOR Inl TO 1e :FC(I)=e:FD(1)=e:FPU)ne:FOR J=1 TO le:MM(:,J)=e:ML(:,J)=e:NEXT J:NEXT ::PR:NT CHR$(12)9e PRINT ::NPUT "SAMPLE NAME IS ";SN$:INPUT "HPLC PEAK NO. IS "INS:PR:NT ::NPUT":NCLUDrNG F.A. NO.";Nlee PRINT :FOR 1=1 TO N11e PRrNT "F.A. NO.";I:rNPVT"CARBON NO:";FC(:):INPUT"DOUBLE BOND NO: "IFD(:):PR:NT :NEXT rsPR:NT CHRS"2)12e PR:NT "SAMPLE NAME : ";SN$:PRINT :PRINT :PR:NT "HPLq PEAK NO. :";NS:PR:NT ":PR PEAK':PR:NT "CALCVLAT!NG NO. ";S:S=S+1:PRINT :PRINT ":NCLVD:NG F.A. OF THrS:NT13e FOR I=1 TO N:PRINT "F.A. NO. "lr;:PR:NT " "sFC(1);":";FD(I);" ":NEXT 1:PRrNT :PR:NT "OK":PRINT14e rNPUT "REAL RRT OF THIS PEAK"IRT:PR:NT :PR:NT "NOW CALCULATING PHASE"tPRINr15e FOR 11=1 TO N:FOR JI=1 TO 11:Ct.FC(:1):C2mFC(Jl):DlxFD("}:D2=FD(Jl):GOSUB 1eee:MM(:1,Jl)=PR:ML(r1,Jl)gM:NEXT JItNEXT I116e BEEP:PRINT "CALCULATION ENDED":PRINT17e :NPUT "ENTER MAX. OF ALPHAn;KsPR:NT18e FOR r=1 TO N:FOR Jmt TO I:IF ABS(tvlM<1,J)•-RT)<K THEN PRItNrr nlesFC(";N:";FD(1

jl,l,;;" : PRII IT, , ,;." : ; FC` "' ; " : " ; "D` "' ; "AE.; ili,, ., e, ;,R,R;t:,!1,:, tl;,i:S; J, l,;A,,t7LPHA:"'" s,vM< i , J> -RT :P

19e NEXT J:NEXT 12ee AN•S--"yes":!NPUT "ANY MORE PREDICT:ON ";AN$t:F AN$m"yes" THEN 17e21e AN$="yes"::NPUT "ANY MORE CALCULATION ";AN$::F ANS:"yes" THEN 8egee 6oTo seleOe '-------------------•-- PR Calculation --------------'-'---'--"-----d-"1e1e K=e:K1=e:K2=e:PR=e:M=1lelS :F DI>D2 THEN C=Cl:D=Dl:Cl=C2:Dl=D2:C2urC:D2=Dle20 rF (Dl=D2 AND CI>C2)THEN C=Cl:D=Dl:Cl=C2:Dl=D2:C2:C:D2=Dle3e FOR 1=1 TO SN:IF DI=SDS:,2)AND D2=SD(:,4) THEN K"tK+1:SS(K)"::NEXT : ELSE NExT rle7e FOR :=tl TO K:IF CI=SD(SS(:},1) AND C2mSD(SS(:),3) THEN PRisSD(SS(r),5):Mm2:GOTO 12ee' ELSE NEXT 1leBe FOR :=1 TO Ks:F CIsSD(SSU),1) THEN KImKl+t:Sl(Ki)"SS(I)1eB5 rF C2=SD(SS(1),3) THEN K2=K2+1sS2(K2)=SS(I)le9e NEXT :illei :F KI>---2 OR K2>=2 THEN 60SUB 40ee:GOTO 12eei13e :F FO(n1,[t2,1)nt THEN T1=LOG(SD(FO(D1,n2,4),5))X43.429:T2m(C1d-SD(FO(D1,D2,4),1))XFO(n1,[I2,2):T3=(C2-Sn(FO(O1,P2,4),3))XFO(D1,D2,3):FRpt1eA((T1+T2+T3)11eO):M=5:GOTO 12ee1145 IF K<>e THEN PR--1eA((A1X(C1+C2)+QQ(nl,D2))/1ee):M=3:GOTO 12ee115e M=1:PR---e12ee RETURN4eee '--b------------------------ Liner prediction routine -----'-"--`----"---"---4ees sx=e:sy=e:xx=e:yy=e:xy=e:M=44elO :F KI>---2 THEN FOR 1=1 TO KI :X=SD(Sl(I),1)+SD(SltI),3):Y=LOG(SD(Sl(:),5))X43.43:SX=SX+X:SY=SY+Y:XX=XX+XXX:YY=YY+YXY:XY=XY+XXY:NEXT•I:KS=XX-SXXSX/Kl:LS=XY-SXXSYIKI :MS=YY-SYXSY/Kl :A4=LS/KS :B4=SY/Kl-•A4XSX/Kl :R4taLS/SQR (LSXMS)4e15 SX:e:SY=e:XX=e:YY=e:XY=e:Pl=(Cl+C2)XA4+B4:Pl=leA(Pl/lee)4e2e IF K2>=2 THEN FOR I=1 TO K2 :X=SD(S2(1),l)+SD(S2(I),3):Y=LOG(SD(S2(:),5))X43.43:SX=SX+X:SY=SY+Y:XX=XX+XXX:YY=YY+YXY:XY=XY+XXY:NEXT I:KS=XX-SXXSX/K2:LSsXY•-•SXXSY/K2 :MSmYY-SYXSY/K2 :A 5i=LSIKS:B5 :SYIK2-A5XSX/K2:R .rc. =LS/SQR (LSXMS)4e25 P2=(C1+C2)XA.sc+B5:P2=1eA(P211eO)4e30 IF KI>K2 THEN PR=Pl ELSE :F KI<K2 THEN PR=tP2499e RETURN7eee '--------------------------- PR Calculation rnitialize ----•-----•-•--•-b---"-'"---7ee5 SN=69:K=e:K1=e:k2=e:PR=e:T=24:A1=7.665e9:PR=e'7ele DIM SP(SN,E),SS(IE),FO(6,6,4),DS(T,2),Q3(T),QQ(7,7),FCCIO),FD(le),FP(le),MM(le,le),ML(le,le)7e20 FOR 1=1 TO SN:FOR J=1 TO 5:READ SD(r,J):NEXTJ:NEXT 17e3e FOR 1=1 TO T:FOR•J=1 TO 2:READ nS(:,J):NEXT J:READ Q3(I):QQ(DS(I,1),DS(I,2))=Q3(1):NEXT I7e4e FOR :=1 TO 5:READ ME$(1):NEXT I7e5e FOR I=1 TO 5:READ DO,DT:FO(DO,nT,1)=1:FOR zz=2 TO 4:READ FO(DO,DT,II):NEXTII:NEXT r7e6e FOR I=1 TO 2:FOR J=1 TO 2:READ PS(:,J):NEXT J:NEXT r9e4e RETURNleeee '------ DATA SET OF STO. D.G. RRT ( MEAN OF DATA ) FROM D.G. BOOK ----leele DATA 16,e,16,e,2131ee2e DATA 14,e,18,1,141.B,18,e,1e,1,295.2,16,e,18,1,2e8.7B6,1S,e,1B!1!175.7,16,e,17,1,175.7,16,e,16,1,148.45,14,e,2e,1,212,16,O,2e' ,1,3el.91ee3e DATA 14,e,18,2,1ee,16,e,16,2,111.7,16,e,1B,2,145.7,17,e,18,2,167.9,1B,e,18,2,2e2.9,2e,e,1B,2,2B8.6iee4e DATA 16,1,1B,1,138.26,18,1,1B,1,1•91.1751ee5e DATA 16-,1,18,2,1Oe,1S,1,18,2,135.45s2.e.,1',18.,2,18S.11ee6e DATA 16,O,1,B,3,Ue..6,1B,e,18,3'1,i52,.91 ee 7' e nATA 16 ,e ,2e ,.e , 122 . e57 ,.1 6 ,e ,22', ,4 , 1321. 9: i ;' 8t. e ,2e ;4 , 1'" ". 55 "8 ,0 , 22 ,4 ,1 91 .7

1au•DATA 18,1,IB,3,99.9 '1ee9e DATA 18,2,1S,2,97.9letee DATA 14,e,2e,5,63.85,15,e,2e,5,77.B,16,e,20,S.,91.S667,14,e,22,5,82.3,16,e,22,5,122.28e,1B,e,2e,5,137.1331e11e DATA 16,1,2e,4,76.9,18,1,2e,4,114.951012e DATA IB,2,IB,3,7e.41e13e DATA 14,e,22,6,68.9143,15,e,22,6,e2.8333,16,e,22,6,98.77,17,e,22,6,121.65,1e,e,22,6,147.6Slel4e DATA 16,1,2e,5,6e.B4,1B,1,2e,5,e6.e125,1S,1,22,:,114.2,2e,1,2e,5,125.4,24,1,2e,5,265.7,16,1,22,5,7B.61e1sc •DATA 17,2,2e,4,78.4,1e,2,2e,4,82.7ieS6e nATA 16,1,22,6,65.95,17,1,22,6,ae.12,1B,1,22,6,91.S25,2e,1,22,6,137.31O170 DATA 18,2,2e,E,6e.85,17,2,22,Je,7B.5,18,2,22,S,79.4jle18e DATA 18,2,22,6,66.B3331e19e DATA 2e,4,2e,5,52.3,2e,4,22,5,741e2ee [IATA 1S,3,22,6,49.71e21e nATA 2e,5,20,5,37.33,2e,S,22,5,51.5,,22,5,22,E,,78.41e22e DATA 2e,4,22,6,52.725,22,4,22,6,71.11e23e DATA 2e,5,22,6,41.e4,22,5,22,6,5S.76671e24e OAtA 22,6,22,6,44.6Ble5ee t•---------------•-------•- Q3 DATA •--------------------•-------------•-------••-•-----------1e51e DATA e,e,-1i.369,e,1,-2B.418,e,2,-45.81e,1,1,--47.7e9,1,2,-63.869,e,3,-56.93,e,4,-72.2S,E,e,5,-7B.3e3,1,4s-eE.423,2,3,-91.215,,e,6,-91.93Bi,1,5,-97.eB45,2,4,-99.553,1,6,--11e.e12,2,5,--t13.45f,,2,6,-124.747,4,5,--l34.785,3,6,-136.999,5,5,-i49.3481e52e DATA 4,6,•-151.SS2,5,,6,-t6e.477,6,6,-172.366,1,3,-76.e1S49,2,2,-77.8345le60e '------•----•------•--- METHODS ------•----•-------------•-------------------le61e DATA "IMPOSSIBLE TO PREDICT.","PREDICTED HY S.T.D. RRT","PREDICTED BY (Dl,D2) METHOD.","PREMICTED BY 3-VAR. LINER METHOD.","NETWORK' PREDICTION"le7ee '---•---•-•-------------•-- NETWORK [tATA ---•------------•-----------------------1e71e DATA e,2,7.623S..5,5.77e32,12,e,4,B.1379e,1.84811,23,e,5,8.24843,5.51i94,29,1 ,5 ,.8 .e1 82i ,5.E61 67 ,43 ,2 ,5 ,8 .ee)eee , 5e .778ee ,5Ble72e '------•--•------------•---•- NAME OF VARIABLWE ------•-•-•-----------------•--------le73e DATA "Cl","Ol","C2","D2"lesee sTople9ee END

Program Ul--1. Lecithin molecular species identification program for the personal computer, written in N-BASIC. uoo

59

RRT

1620

e:o:4

1820

1622

:o:4ee:o:4

18:O22 :4

e

RRT,

36 38 40 Total acyl carbon numberFig. III-1. Deviations in tetraene and saturate cornbination group.

-ee---d--:,

::::::t

32 34 36 38 co Total acyl carbon numberFig. IIT-2. RRT prediction by the regression line.

RRT

-..-... -eeeee-e--dP-d.-e.pde.---eee -de" d- " -"-" -"-" --e-- ted-

d-"-.-e

:--tet-eel--

-e--d

----

. 18 :4 t--t .x- 20:4-e 22:4 - - -- -- --

18 :O

16 :O

'''ee'

te-

Fig.

32

III-3.

34 sa Total acyl

RRT prediction

38carbon

by the

4C)number

vertex

42

of a parallelogram.

60

RRT

150

1OO

50

A

eResult of the program

identi fi ca tion

Actual RRT

Seqyence of elution

RRT

15

1oo

50

ECN

so

25

20----.7

' -----------v tsts

/

B

Reversed point ,, i /' --s -le---ee- th t t -vt tt ' e---e-----" t-

el

te

tlt--lt

tt

.'

t

Actual RRT.ECN

t

-----e-- .-e

Sequence of elution

Fig . IIr-4. Results (RRT predietion) of the lecithin molecular species identification program in relation to the sequence of elution on HPLC.Sample is of sardine muscle.

61

species that can be defined as dd2i and then search the

molecular species that can generate a parallelogram

(network) as shown in Fig. II:-3, and print out the RRT

of the vertex molecular species on the parallelogram

that meets the condition of O( ( shown as C-3 and D, E ).

This is called "NETWORK PREDZCTrON" in Program rl!-1.

4. If not the cases of 1, 2 and 3, search the molecular species that can be defined as g; as it has been done

in 3. Then, introduce the slope and the intercept (shown

as Q3 in Program rll•-1) of the generalized regression

line and print out the RRT that meets the condition of ar

( shown as C-4, D, E ). ThÅ}s is calied "PREDrCTED BY

(Dl, D2) METHOD" in Program rZr-1.

5. Impossible ( shown as C-5 ).

Finally, it goes back to the main routine that continues

or ends up the identification prograrn. The whole view of the

program is shQwn in Program rll-1. The results obtained by

this program were compared with the results obtained from the

actual analysis of sardine muscle done by enormous labor.

Fig. !II-4A illustrates the good agreement between the actual

analytical results shown by solid line and the

identification via personal computer shown by dots. And for

the comparsion, ECN (or PN) is also shown ( shown by the

broken line in Fig. UI-4B ). None of the reversed point in

RRT was observed in this example by the presented

identification program making good contrast with those of ECN

(or PN).

Although, in some cases, there might be some rare

missidentification, this personal computer program is sure to

62

be

are

of great help in

generally found.

predicting the molecular .specles ,that

63

CHAPTER IV

MOLECULAR SPECIES OF FrSH MUSCLE LECITHIN

' ' So far, the formulae that control the sequence of

elution of lipid molecular species on HPLC have been

demonstrated. It has been proven that the matrix model

presented is invariant. And this matrix model forms the bases

of molecular species identification of muscle lecithin from

fish sources that will be discussed in this chapter.

The characteristics of each fish from the view point

molecular species of muscle lecithin is discussed with some

supplemental analysis such as principal component analysis.

Section l. Experimentsl

Total lipids were obtained from the fish muscle

tabulated in Table IV-1 according to the method of Bligh &

Dyer. Neutral lipid composition and phospholipid composition 44•t47)were measured by the Iatroscan-Chromarod Method. The

developing solvent used were n-hexane/diethyl ether/formic

acid ( 85:IS:O.5, vlv ) for the former and chloroform/

methanol/ammonia/water ( 70:30:2:3, vlv ) for the latter.

Phospholipid content was determined by multiplyÅ}ng 25 to the

phosphorus content of the lipid which had been determined by

Fiske-Sabbarow method. Preparation of pure lecithin,

hydrolysis of lecithin into diglyceride, and derivation to

diglyceride acetate from diglyceride were done in the same

manner as shown in chapter I. HPLC fractionation and

identification of molecular species of each peak on HPLC were

Tab1e :V-1. Fish examined

Sampl es Mean body len9thLocality of

'

andcatch

weight..

Date of catch.

Sardinesisa9!S!J.ngREdiosmelanosticta

20.0cm,Kamiiso

17.1cm,Kamiiso

80g, Hokkaido.

43g ', Hokkaido. '

July

oct. ,

1982

1983

Mackerelscomber japonicus

•41.8cm, 647gKam"so, HokkaSdo

32.2cm, 409g 'Todohokke, Hokkaido

July

oct.

1982

1983

A

' Big-eyedParathunnus

tuna, Frozenobeu.s

11O.Ocm, 20kgfrom the market

1,OO.Ocm, 24kgrndian sea

.

.

BrownLimanda

solelf!Lgrryg.!.nggerria

23.7cm,Kikonai

21.2cm,Kamiiso

169g, Hokkaido

207g, Hokkaldo

oct

May

. 1982

1983

SandLlnanda

flounderPY!lgStA.!2EE:!!!Atsa

18.3cm,Karn"so

18.6cm,Abuta,

65g, Hokkaido

139gHokkaido

Dec

May

. 1982

1983

B

Rockbebastes

M•fishstEn!.sgglichl 1i

19.6cm, 187gToi, Hokkaido

27.0cm, 471g'Kamiiso, Hokkaido

oct.

July

T982

1983

' Alaska pollackth9treE!A.ragachalcogranvna

44.0cm,Uchiura

41.7g,Shikabe

61Og bay, Hokkaido

509g ••, Hokkaido

Dec

Jan

.

.

1981

1984

• Churn salmon,thcorhyncus keta

Churn salmon, rh ncus keta

Ma1e

Fema1e

65.0cm, 3500g Akkeshi, Hokkaido 42.7cm, 1367g45e59'•-49029tN, 167007'•-175930'E

4s4.6s'

g8,C.M.4'g.i ig9t3Ng, 'i67oo7,-i7s63o'E

June

Aug.

tl

1980

1983

c

Blue sharkPrionace.gLreaysguca

114.5cm, 8.5kq38e30'-39030'N, 155000tE June 1982

Mackerel sharkLamna cornubica

88.5cm, 1O.2kg41O30'-•43OOO'N, 175e30'E

July 1982D

CarpC rinus .car lo

23.0cm,from the

175gmarket •

Sep. 1980

Rainbow trout.Esi1!!!!gmogAt.tn!!ng!l.!irdnen irideus

33.8cm,Nanae,

38.0cm,Nanae,

455gHokkaido

780gHokkaido

Sep.

May

1982

1983

E

A:

D:

Migratory fishCarti 1 ag'i nous

.

fish.

B: Bottorn fish

E: Fresh .c:water fish.

Hard to classify.

64

also done

available

verify the

in the same manner

in identifying the

results.

though a

molecular

new matrix

species in

model

order

65

is,

to

66

Results and Discussion

Section 2. Characteristics of Muscle Lecithin of Fish

The yield of total lipid and the percentage of each

lipid class against total lipid are shown in Table rV-2 and

Table IV-3. Fatty acid composition of diglyceride acetates

which represent the fatty acid composition of lecithin are

shown in Table :V-4 and Table rV-5. Samples shown in these

tables were subjected to the lecithin molecular species

analysis.

HPLC chromatograms of each fish are shown in Figs. IV-IN '6 and the detected molecular species of lecithin in sequence

of elution on HPLC with the percentage data and those of

mg/100 g muscle are shown in Figs. rV-'7tv32.

As illustrated in Fig. ZV-1, the HPLC ehromatogram of

diglyceride acetate of fish muscle lecithin can be devided

into four molecular species groups, that is, :: molecular

species composed of highly unsaturated fatty acids such as

20:5 or 22:6, for instance (20:5)(20:5), (20:5)(22:6) and

(22:6)(22:6), III: molecular species composed of generally

found fatty acids such as 16:O or 18:1 with combinations of

20:5 or 22:6, that is (20:5)(18:1), (18:1)(20:5),

(22:6)(18:1), (18:1)(22:6), (20:5)(16:O), (16:O)(20:5),

(22:6)(16:O) and (16:O)(22:6), and II and rV: others. As it

is evident from the chromatograms ( see Figs. IV-1,v6 ),

groups I and III accounts for at lesst 60% of the molecular

species examined'. Specifically, as shown in Fig. IV-1 and

Fig. rV-7, groups I and XZI of the sardine white muscle

Tab

leIV

-2•

Lipi

d co

mpo

sitio

n of

fish

mus

cle

in 1

980•

-198

2

exam

ined

,ca

ptur

ed

-Li

pid

Non

-pho

spho

lipid

**P

hosp

holip

id**

Sam

ple

Yie

ld*

TG

FF

AS

TN

Pot

hers

PC

PS

+P

EP

L.ot

.hei

'`s

Sar

dine

(D"v

l)26

.892

.5O

.4O

.41.

73

.7l.8

trac

e

Sar

dine

(WM

)4.

383

.1O

.51.

82.

08

.62.

6O

.2

Mac

kere

l(DM

)5.

872

.5•

O.9

O-.

3O

.34

.68.

52.

6.

Mac

kere

l(WM

)O

.932

.02.

72.

51.

233

.29.

45.

6

Big

-eye

dtun

aO

.713

.4O

.21.

7tr

ace

59.4

9.0

O.5

Bro

wns

ole

1.7

62.2

5.4

2.3

O.7

16.o

3.1

3.4

San

dflo

unde

r1.

364

.1O

.92.

04.

218

.8Ll

O.6

Roc

kfis

h1.

458

.82.

5O

.5O

.318

.53.

85.

0

Ala

skap

olla

ck1.

042

.711

.445

.6tr

ace

81.2

trac

e1.

7

Blu

esha

rkO

.61.

1O

.26.

01.

356

.520

.16.

2

Mac

kere

lsha

rk2.

048

.92.

21.

91.

523

.18.

513

.9

Car

p1.

655

.5tr

ace

6.7

trac

e29

.112

.42.

7

Rai

nbow

trou

t3.

372

.71.

1O

.5O

.111

.75.

0O

.4

See

the

*g/1

00g

abbr

evia

tions

in th

e op

enin

g.

mus

ele.

**g

/100

g to

tal l

ipid

.a N

Tab

leIV

-3. L

ipid

in 1

983-

-198

4

com

posi

tion

of fi

sh m

uscl

eex

amin

ed,

capt

ured

Lipi

d•N

on-p

hosp

holip

id**

Pho

spho

1ipi

d**

Sam

ple

Yie

1drk

TG

FF

AS

Tm

eoth

ei's

PC

PS

+P

EP

Lot

hers

Sar

dine

(DM

)3.

353

.81.

92.

11.

211

.227

.72.

1

Sar

dine

(WM

)'O

.829

.2O

.34.

86.

312

.144

.35.

0

Mac

kere

l(DM

)20

.090

.9O

.2O

.41.

32

.44.

5O

.3

Mac

kere

l(WM

)8.

592

.0tr

ace

O.6

O.9

4.6

O.6

1.3

Big

-eye

dtun

aO

.56.

43.

813

.42.

811

.757

.84.

1

Bro

wns

ole

O.9

20.0

trac

e6.

02.

117

.554

.0O

.4

San

dflo

unde

r1.

762

.92.

53.

03.

47

.9i8

.61.

7

Roc

kfis

h1.

679

.etr

ace

1.0

O.2

3.5

13.4

2.9

Ala

skap

olla

ckO

.73.

63.

09.

82.

626

.747

.07.

3

Rai

nbow

trou

t2.

569

.81.

01.

1O

.28

.917

.61.

4

For

chu

m s

alm

on, s

ee T

able

IV-9

.S

ee th

e ab

brev

iatio

ns in

the

open

ing•

*g/1

00g

mus

cle.

rkr

kg/1

00g

tota

l lip

id.

a oo

Tab

le !V

-4.

fr

om

F

atty

leci

thin

acid

of

com

posi

tion

fish

mus

cle,

of d

igly

cerid

e ac

etat

eca

ptur

ed in

198

0-19

82de

rived

Sam

ple

Sar

dlne

Mac

kere

tB

tg.e

yed

Bro

vnS

and

Roc

kA

lask

aB

lueM

aske

ret

Car

pR

atnb

ov

Fat

tyac

id-o

u

Wou

wu

tuna

sote

tlo

unde

rfts

hpo

ttark

sal-o

nsh

ark-

shar

k•tr

out

12:O

o.0

7

14:O

:.09

1.48

o.ge

t.39

O.7

22.

00:.5

4l.1

12.

693.

271.

041.

301.

11o

.97

15:O

O.3

7O

.26

O.2

8O

.63

O.6

Se.

goO

.34

O.3

tO

.69

o.1

7

l6:e

IB.4

232

.35

3e.s

22-

.42

25.6

022

.70

29.1

426

.50

41.S

835

.19

22.8

234.

Se

32.2

829

.70

t6:1

O.7

4l.7

e2.

t3e.

75a.

48l.9

51.

S3

6.5t

O.5

7O

.45

5.40

3.60

2.59

3.3

0

17:O

O.8

2e.

52O

.56

O.5

21.

46t.2

21.

09t.3

3O

.37

l.e4

O.4

5tra

ceo

.3S

17:t

e.48

O.5

0O

.45

O.7

9Ll

lO

.90

O.9

1e.

49O

.43t

race

o.3

2

18:O

5.99

Lll

e.go

4.29

O.9

2l.9

3t.4

1t.6

3O

.82

O.7

88.

932.

803.

ee3

.46

18::

IS.6

96.

SO

4.22

I2.e

97.

24:O

.24

8.27

16.4

9t2

.32

6.26

le.0

4lt.3

e'16

.7t

29.7

5

18:2

1.e9

1.S

4O

.45

t.34

O.5

6O

.2t

O.6

6O

.46

O.3

3e.

77e.

6o9.

068

.6e

:9;l

19:

2 2

0:O

'

20:

l

20:

2

20:

3

20:

4

2e:

5

22:

1

22:

2

22:

3

22:

4

22;

5

22:

6 2

4:2

24:

3

24:

6

VnN

'nov

n

e.4S

1.93

3.5

0

1e.4

7

1.3

7

3.3

9

31.5

7

e 1

.63

e.2t

.44

e.34

1.26

O.9

4

o 2 ;3

o o

1 30

.30

.7: ,

I.96

.9e

le.6

4

.62

.45

.76

.42

O.3

7

O.4

2

1.1

1

34.9

e

O.3

2

tA5

3.37

ll.08

l.l4

2.1

6

35.7

0

O.3

3

1.3t

t.2si

*O

.97

**

5.27

7.4

3 6

4.58

3t.6

d 27

5.7

S

O.4

4

45.5

6

O.2

4

O.6

6

e.3s

o4.

51 2

ZO

.69

15

O.3

0

O.2

:

97 59 .89

.73

.77

O.2

1

O.2

9

O.5

6**

1.6S

**

3.54

O.S

8t3

.S3

16.7

9

e.8

3

1.3

4

24.2

1

O.3

5

O.5

6

O.7

t

e.35

:.Isk

*

t.45

1.07

3.6

0S

.79

tO.9

2

e.

13

l.7

0

O.5

5 O

.89

6.01

19.9

3 39

.62

24.5

6 O.2

4

trac

e

trac

e

2.o

e

trac

e

4.8

a

tt.30

trac

e

trac

e

trac

e

2.5

e

24.9

0

l.16

O.8

2

3.e5

.6.3

9

1.1

7

20.6

7

t.u

*rk

O.I8

t 1 1 a 1 o o o o o t4 o o

3t 13 32 a6 79 te 05 07 31 S3

69 56 06

* F

eedi

ng o

tgra

tions

Ma1

e.

**E

tber

20:

O o

r'20

:1

DM

: Dar

k nu

scle

. VM

: Vht

tenu

sc1e

.

a v

Tab

1eZ

V-5

from

. Fat

ty a

cid

leci

thin

of

com

posi

tion

fish

mus

cle,

of d

igly

cerid

e ac

etat

eca

ptur

ed in

198

3•v1

984

deriv

ed

+T

.-.-

--.-

--.-

-tt+

--ttT

Ht-

"tt

--=

----

--.-

.nt-

--+

-HP

-+rk

..-H

-'---

----

v--+

.--

-.-+

---.

-.--

-+--

tN--

t-.

-T-

---e

n-

Snm

pte

Sar

cli

neM

acke

rel

Big

-eye

dB

row

nS

and

Roc

kA

l,i.fi

kaR

nit}

bow

Frlt

t,Y;J

Åëi

cll)M

WM

1)M

l,IM

tvlla

sole

floun

der

fish

pol.1

ack

t,rot

tt

14:O

I.08

;.20

".92

O.8

3o

.75

2,77

'1.7

7

t.0

32.

t3t

.27

l5:O

e.41

O.4

3O

..33

O,3

1o

.4g

I.07

o.sr

,o

.32

O.3

4o

.22

lc,:a

24.0

!3G

.38

2t.1

528

.17

33,2

{34

,"3l

.22

33,4

129

.al

36.7

3

16:1

1.43

t.25.

1.42

1,34

t.o

o7.

552.

393

.76

1.96

3.o

:

17:O

O.5

1U

.50

O.7

8O

.43

1.7

51.

781.

llo

.74

O.4

6o

.23

l7:1

O.4

1O

.33

o.rJ

7O

.69

o.8

4O

.84

O.9

1o

.64

O.3

6o

,t5

t8:O

O.8

8O

.71

5.44

3.05

2.2

S2.

381.

701

.99

O.7

4l

.81

18;1

5.02

2.I1

;5.9

3tO

.24

23.0

21l

.31

1O.7

7IB

.93

I3.3

4;2

.8;

l8:2

O.4

9O

.60

l.89

O.9

9o

.67

O.4

6O

.70

1.4

0l.2

35

.97

19:to

rl8:4

O.:7

O.5

1O

.47

o.3

1O

.33

o.3

7O

.45

e.6

3

19:2

O.1

7o.

'roO

.28

G.2

3O

.49

Q.2

5

20:O

O.il

O.3

31.

30O

.23

o.1

21.

051.

86o

.34

20:l

O.1

2O

.72

o.9

8O

,07

2.24

o.7

53.

02o

.15

20:2

.o.

tlO

.t4o

.33

O.0

8O

.06

o.2

1O

.l4o

.30

20:3

2.99

O.1

24.

26O

.13

o.t3

4.64

O.I7

o.1

8o.

oc,

2.9

9

20:4

O.;5

2.35

3.74

5.f)

6O

.19

4.70

3.8

72.

21o

.29

20:5

18.8

5l4

.20

l6.4

116

.78

3.7

418

,53

25.1

210

.02

24.4

65

.90

22:l

O.1

1O

.27

22:3

O..2

1O

.10

o.2r

Jo

.28

1.32

O.7

0o

.19

O.2

4o

.22

'

22:4

O.9

1O

.71

O.8

0O

.70

2.5

1O

.35

O.4

1o

.47

O.1

1o

.2r)

22:5

1.08

O.9

82.

461.

85o

.43

3.71

2.62

1.I8

O.5

6l

.04

22:6

36.e

637

.24

24.6

829

.11

21.0

67.

l39.

8920

.26

l8.6

825

.35

othe

rs4.

98O

.23

O.2

0O

.08

o.0

6O

.28

O.2

to

.05

O.O

lo

.09

DM

:D

ark

mus

cle.

wM

: wht

tem

e.ss

c1e.

N o

ro to

SA

RD

Ime

ec a

.(D

ark

mvs

cle)

to sm

e1m

e rc

a.

{"ht

te m

uscl

e)

se n

vn

toee

min

I 1 2

II I

IIIV

roto

4,3

56 S

AR

DIN

E e

c b.

(Dar

k nv

scle

)

coco

sm

oiN

E n

c b.

{Nht

te "

uj$c

te)

1co

min

roto

eeoo

1co

min

r:

Irr:

I!&IV

:

Gro

ups

Gro

ups

3:(2

0:

Oth

ers

com

pose

d of

com

pose

d of

5)(1

6:O

), 4

:

. Fig

. rV

-1.

high

ly u

nsat

urat

ed fa

tty a

cids

,

high

ly u

nsat

urat

ed fa

tty a

cids

(1'6

:O)(

20:5

), 5

:(22

:6)(

16:O

) an

d

H]?

LC c

hrom

atog

ram

sa:

Cap

ture

d 'in

198

2.

that

is, 1

:(20

:5)(

22:6

),

and

gene

rally

foun

d fa

tty

6:(

16:O

)(22

:6).

of s

ardi

ne m

uscl

e b

: Cap

ture

d in

leci

thin

.19

83.

2:(2

2

acid

s

: '

6)(2

2

that

:6)

is

. '

N p

20

20

ro

I II

III

12

3di

IV

tlAC

KE

meL

PC

a..

CD

ark

mus

cle)

60 m

in

mex

xeeL

ec

a.{w

htte

nvs

cle)

ro 20

to Lo

uekR

ÅíL

nc

b.

(Dar

k m

uscl

e)

seco

ncxx

neL

?c b

.

{Mttt

e m

uscl

e}

1co

rin

co

4o

so1o

o m

in

60 m

in

Fig

.IV

-2.

HP

LC c

hrom

atog

ram

s of

a: C

aptu

red

in 1

982.

Num

bers

as

in F

ig. Z

V-1

b .

mac

kere

l mus

cle

leci

thin

.: C

aptu

red

in 1

983.

h..J

.....

ro ro

to

Fig

.

to

BR

ouN

soE

pc

a•

se60

min

SA

ND

mom

oER

PC

a.

eo80

mS

n

TV

"3. H

PLC

chr

omat

ogra

ms

mus

ele

leci

thin

.

a: C

aptu

red

in 1

9.82

.

Nun

bers

as

in F

ig. I

V-1

.

III

III

1

IV

2 20to

4 6

se

BR

owN

soE

pc

b.

co1o

o m

in

ro

4o

of b

row

n so

le a

nd

b: C

aptu

red

in

SA

ND

FLo

vND

ER

ec

b.

60

san

d

1983

.

co 1

oo m

in

f1ou

nder

su w

Fig

.

pa mu ro

'-.-.

)L

"

BT

G-E

YE

D T

UN

A P

C a

.

eoto

sta

o

Aus

xx r

oLta

cx n

c a.

se

CA

RP

rc

to m

in

I II I

IIr-

-kN

- t-

T-,

'1

2 20 ro 20

co

40

-..:N

5

co

IV

LO

se

6 .s...

..

60

BIG

-EyE

D T

urm

ec

b.

eo1o

o

Aus

ua r

ouzc

K e

c b.

S20

ILO

tn;n

seco

Ioo

MIN

BO

U T

RO

UT

ec

;ro

1co

n'n

6060

co m

in

1oo

;ro

ntn

IV-

4.

mus

c1e

Car

p is

Num

bersH

PLC

chr

omat

ogra

ms

of b

ig-e

yed

tuna

, ala

ska

polla

ckle

cith

in. a

: Cap

ture

d in

198

1. b

: Cap

ture

d in

the

sam

ple

of 1

980

and

rain

bow

trou

t is

the

sam

ple

as

in F

ig. I

V-1

.

,car

p an

d19

84.

of 1

983.

rain

bow

trou

t

N )

ro ro ro

co

RO

CK

FIS

H P

C a

.

so

BLu

e S

HA

RK

PC

co1o

o m

in

se

RA

INB

OW

TR

Our

PC

a.

co

min

Fig

.

40so

loo

inin

I II

III

12 ro

IV

4 3 to

ZV

-5. H

l?LC

chr

omat

ogra

ms

ofm

acke

rel s

hark

and

rai

nbow

trou

t

a: C

aptu

red

in 1

982.

b:

Blu

e sh

ark

and

mac

kere

l sha

rkN

umbe

rs a

s in

Fig

. IV

-1.

roto

6

mex

Fis

H e

c b.

coco

hAC

xxR

EL

SH

AR

K P

C

ooco

RA

meo

w T

Roo

r pc

b.

1co

min

1oo

min

ro L

O 6

0ro

ck fi

sh, b

lue

shar

k,

mus

cle

leci

thin

. 1

983.

are

the

sam

ples

of 1

982.

co1o

o m

in

v u

76

I II IH IV

--r-pt'-s 6

1

2

20 to

5

4CHUM SALMON PC, MALE

(Feedtng m1gratlon)

60 co 1oo min

CHtnVl SAUVtON 'PC, FEMALE

(Feed!ng mtgrat!on)

20 40 60 80 1oo min

Fig '• ZV-6• HPLC chrornatograms of ' Both are the samples of 1983. Numbers as in Fig. :V-•1.

chum salmonmuse1e leeithin

Fig.

77

%!pc

(20:5)

(20:5)

(22:6)

(22:5)

(20:4)

(20:3)

(22:4)

(16:1)

(22:6)

(16:1)

(i4:O)

(i8:1)

(20:5)

(16:O)

(22:6)

(16:O)

(16:O)

(20:4)

(16:O)

(18:O)

(18:1)

(16:O)

(20:5)

(22:6)

(22:6)

(22:6)

(22:6)

(22:6)

(22:6)

(20:5)

(16:1)

(22:6)

(22:

(22:

(16:

(20:

(16

6)

6)

o)

5)

:o)

(22:

(22:

(16

6)

5)

:o)

(20:

(22:

(16

4)

6)

:o)

(18: 1)

10 20 30

As•rii Lsi,as,:::J.•.,usn:•,,'•",,•l,T,.•u.,•is:T•:.7.,•l,s•[tT;,!lnn.r•,s]ast•ES•Sl•'•,v",:•, tt,v-p.r-t•

,i ,.N'",,'",S,',,,,,,,,,",isS.,,',,S,,,S,sS,S,,,,,,S.S,",,,S,S,',",,,S,S,

i.LL.LLL

tt- -- t-Ltlt

-t-'tt-t-tt-T--t

,1-

Julyi982•:-"k:]Oct,1983lthliH-t s'idL-ii-d-

t1tli

tx,,e,S-l'-t

=----,s',,' si s',,' s'tt',,-

me -Ll=]-Li

.T,;"rr,"T;-V:":,,,,,i:T,-;TT,Trr,,:"t:,,-C':,-,,,-tieUXi,,,t1U'",,ust-4-,'",l,'','V' -----.v,,,,s,,,x,s,t,,,,,,,,,,,,,,,M,,.,,,NT,IY,,,":,":'S":,,s,,,s:e;,X,",,.wwL-

"`tr---t matU-l2Ltmmt':t-lt-mst,--i"--lx"--u--"Je--i-t-tl,1----"-t-t"U-ll.IH:L

,,,-il"1.1--lte--T----

lti

IV- 7.

lecithMolecular

.In ., zn

.speclesrelative Z.

composition of sardine dark muscle

Fig.

78

%/pc

(20 :.

(20:

(22:

(22:

(20:

(20:

(22

(16

5)(20:

5)(22:

5)

6)

6)(22:6)

5)(22:6)

4)(22:6)

3)(22:6)

:4)(22:6)

:1)(20:5)

(22:

(16:

(14

6)(16:1)

1)(22:6)

:O)(22:6)

(22:6)(18:1)

'(18:1)(22:6)

(16:

(22:

(16:

(22

(16

(16

O)(20:5)

6)(16:O)

O)(22:6)

,: 5) (16:O)

:O)(22:5)

:O)(20:4)

(1 8: O)(22:6)

10 20-' r----'v--

,•,,.;;rs,",iK,,ps,.,ilx,i"lysN,,"s,,,-1-t------ltlttl--1--U""-i---A--.

,,s:X•SCn,•,,u,tl,wwM,t,cu,t",,,,, S-n.se-- ,s',,NNN',,,s,sL .tt -s,-,-s

,

,st

July1982

.-,

f;mst,v,;s-:;r,"t,clL.=l,L'th:,.SJ Oct,1983

-tt,

',,=,,,,".;,,tt,,,;T,VX,,,llXlli

N-pt---- th------tpm :="•u•"•.ys,'tSlf-----r- .

'•'y•th•'•'"':•"•1'llvF:tN'•S'il'I•tll.;iTT't'iY.'I'••'sT'TuY'`ts,l'lili]tt:,illSt•nyN•pm

--t"- nt --e,•

•,NE,ll••t"•..,"""',••,,'•'•,,:.l,Si••li•l!lil,s,",wst,,•dt',C;i;,,,,,•",il•i$ll,XS`iit•,,•,Ft;il,n,iX,IEIi•,t,i,s'•"',•s,-,i.•,•.ww••"s•••'tr,E,s,:t,•, TV-t.H.---tei-t

-"-

30 40-' V-----.-rt.w

---: :----:-=

IV-8. Moiecular speeies 'Zecithin, in relative Z.

--compos1tzon of sardine white muscle

79

(20:5)(20:5)

(20:5)(22:6)

(22:6)(22:6)

(20:5)(22:5)

(22:5)(22:6)

(20:3)(22:6)

(22:4)(22:6)

(16:1)(20:5)

(22 :6) (16 :•1)

'(16:1)(22:6)d4,o) (22,6)

(16:1)(20:4)

(20:5)(18:l)(18:1)(20:5)

(22:6)(i8:1)(18:1)(22:6)

(16:O)(20:5)(22:6)(16:O)

(16:O)(22:6)

(18:1)(20:4)

(22:5)(16:O)

(16:O)(22:5)

(16:O)(20:4)

(l7:1)(22:6)

(20:5)(18:O)

(18:O)(20:5)

(22:6)(18:O)

(18:O)(22:6)

(18:O) (20 ': 4)

(18:1)(16:O)

(16:O)(18:1)

%/pc

10 20

----

'

----i -- -

.-- --- -4 -- -- i- -i-- -- -- -- --+----itt--

ss',',44-

,,t,'-.L.,,".,s',.'s,S,.,',S,',

d-- t, --

'

---. ----- -- ---

x.:,

',sv

,s.

'---

--- c= July 1982jtl"dc/a't-Ul':i'llt tSl' X"- oct, 1983

.-s---

sSN'. -i

. ,,.,..s

's -i--i SN

. ,, ,,..S.N,..S

,., NSVtVsS''s'"N.NSS

,I-t-

---i -t -t-i- -it

---t-- --J ----- q- -Slt--

.,s,i-- -s-,-.-i-t---1-1

tv --

-t-t--'u3.

, .. ,. ,s.'..•

.vs' -Si,.,,.,.,,.

sx---

.

',s--

---d"-- ---s--t-----1----4t-

, .NV. .,

's"k --- -d -- --

t--i-t- -d.

-----

-L----L-t4tt--.---idny---i----d-----

-i-/i

,--

SlkS--1

,

?,q--

Fig. rV-9• Molecular specieslecithin, in relative Z.

composition of mackerel dark muscle

F .:g•

7o/PC

10 20 30

(20:5)

(20:5)

(22:6)

(20:5)

(22:5)

(20:3)

(22:4)

(16:1)

(22:6)

(16:1)

(14:O)

(16:1)

(20:5)

(18:1)

(22:6)

(18:1)

(16:O)

(22:6)

(16:O)

(20:4)

(22:5)

(16:O)

(16:O)

(20:5)

(18:O)

(22:6)

(18:O)

(18:O)

(18:1)

(16:O)

(20:5)

(22:6)

(22:6)

(22:6)

(22:6)

(22:6)

(22:6)

(20:5)

(16:1)

(22:6)

(22:6)

(20:4)

(18:1)

(20:5)

(18:l)

(22:6)

(20:5)

(16:O)

(22:6)

(18:1)

(i6:O)

(22:5)

(20:4)

(18:O)

(20:5)

(18:O)

(22:6)

(20:4)

(16:O)

(18:l)

,

'"1',S,,':Vt:

., ,, ,NS ,, .-, ,'s S

---

iS--

N''

,

L

+

+-

-- a July'i-S-' S',,S,-i,S:.,

l--tSll-oct,

19821983

s

- -.s

v

, N

-i - 1

N s, ,s 's ' '

x ..' - '. .- ', ,,'. ,,', ,,, . ., s -- -

'• st

,- kls ,,

--it l--- 1- ti

.,

.

s s,

". uS v:,,

,

.

,i-

ZV-1O.

lecithMo1ecu1ar

""ln, zn

.speclesrelative Z.

composition of mackerel white

80

musc1e

Fig.

--- r'e:• 1]•,y

10

%/pc

-"- rH---------T20 30

81

'(20:5)(22

' (22:6)(22

(20:4)(22

(22:4)(22

(16:1)(22

(15:O)(18

(17:O)(22

(18:i)(22

(16:O)(20

(22:6)(16

(16:O)(22

(16:O)(22

(16:O)(22

(18:O)(22

(18:O)(20 ' (18:l)(18

(i8:i)(16

(16:O)(18 ' (16:O)(16

' Unknown

(16:O)(l8

IV-11.

Iecithin,

:

:

:

:

:

:

:

:

:

:

Le

,

'

'

,

'

'

'

,

,

,

,

,

',

1

,

t

e

6)

6)

6)

6)

6)

1)

6)

6)

5)

o)

6)

5)

4)

6)

4)

1)

o)

1)

o)

o)

-- ---:-==

r-'-.-"---'"-F-r----ny--`"

rmt---".-1-t-ll-et-t

=]'s"

------H.

t- -lt -

-1-1S,

-lttll

,,"II

ke

]

-----

, 'rr',rms,,,,, e-== :]

-tv,

i-t -t --si t-t

:==]

I]FL•:tll-l,1,i///Ii•l,iN

xtw-

Ana1yzedAnalyzed

'K' S, 'nX's',,KS,

in

ini9811983

- pt•" •,k:`;x• [:• •,,':ss'swwrw, ,, I,]sl asss!sisE,xsr"'cs;,'zv,x, ",:El,scr,s"cg","TT•,f• 'r:, ., ,,s. •,,•,,•, , ,•, , •,, , •. =,. ,•, S,.' l,,k,s'xx::,"'

' -,t .,N i, ,`,X ,'

-• T-r'

- - 1 --

t--

ts"'et-

- --

-"- x

••• •s,••1!y

NT"

I;1

iwwt U I't S:tL:S, 's S t

b

-' i-r't-r-tr'vrt'rr'',,', ,' ,,' s',,' t's',' ",Vs',,'!'ny,',,K't,'

,IEI]

l

•A

"-j-

Molecular speeies in relative Z.

•x••':,:SllX•Åí;.s•z•"••:rff

'+ rt-- tt

L:

. --compos1t1onof big--eyed tuna musc1e

82

(20

(20

(22

(20

(20

(16

(16

(14

(22

(14

(15

(20

(18

(22

(16

(22

(i6

(22

(16

(16

(18

(16

(18

(16

:5)(20:5)

:5)(22:6)

:6)(22:6)

:4)(22:5)

:5)(22:5)

:1)(20:5)

:1)(22:6)

:O)(20:5)

:6)(14:O)

:O)(22:6)

:O)(20:5)

:5)(i8:1)

:1) (20:5)•

:6)(18:1)

:O)(20:5)

:6)(i6:O)

:O)(22:6)

:5)(16:O)

:O)(22:5)

:O) (20:4)

:O)(20:5)

:O)(16:1)

:O)(20:4)

:O)(18:1)

10

y,/pc

20 30-- )

,s,tt

s

'tl

-es-1t-

's's ,tt

's' [.:rj oct, 1982e-Sbf-l-t

reti"F'.'•i"sl:'Elll] May 1983

-t-,

,

,x, -- Si,S,

----- t- t,NEY-"

--,N'4-s''-! ,' ,sss,s•s ts,,s •s,s s'',,,s,,,,,,,,

s ,1 ts-tl

-1- t--te ,,,t,s,s,,s,kk,,,TS"S,,"J -l-l

t-tst

'sS' s""", -- tlS-e-.tlttS-ltSttSi-

-S-"nt ,e--s.,',,',-s,',,S,"t,sS,

"2,•,XM

'LF,l'tz:, ,,

Fig. IV-12• Molecular specieslecithin, in relative Z.

cornposition of brown sole rnusc1e

10

%/pc

20 30 40

83

(20

(20 'tt

tt(20tt

(22

(20

(16

(16

(14

(20

(18

(20

'(16

' 'tt

(22

(16

(16

(16

(18

(18

:5)(20

:5)(22

ttt ':5)(22 ' ':5)(22

tt ' ':3)(22 '

:1)(20

:1)(22

:O)(20

:5)(18 '

:1)(20 ':5)(16

'

:O)(20 ' ':6)(16

:O)(22

:O)(22

:O)(2Q

:O)(20

:O)(22

:5)

:6)

:5)

:6)

:6)

:5)

:6)

:5)

:i' )

:5)

:o)

:5)

:o)

:6)

:5)

:4)

:5)

:6)

--,:te--tstt'1

:-e--t,:s:S:tt,-lde

-" -"n-"'pm-pm

-,,s.:

i-e

-t-

",

tl-

-:s--s-

,"'s

:'v's,N.Y N,X,: S, , s's

antl /di- -i----t-ll,tSi,1S',N'i

Dec tMay

19821983

it- - X-S S-

t- -1 e-- ee.-um-- s t v i--e t t - t - t t vts ,-b -l -et --t -S-tt- -- tlti -t -X i- t --- N' ',, -tl - -- -e- t- tb- e-1 -- Xt nt t N-

nti4' t:'t,e',:tl"XS"St

'N,t S:-,,'e,:ts"

F"t"'•'ti•'k:'s's:'•:s:

tt:---st

;'i

Fig. rv-13.

IeeithinMolecular species, in relative Z.

composition of sand flounder muscZe

84

%/pc

(20:

(20

5)(20

:5)

(22:

(22:

(16:

(16:

(18:

(18

(16

(22

(16

(16

6)

5)

:5)

(22:

(22:

(22:

1)(20

1)(22

1)(20

:1)

:o)

6)

6)

6)

:5)

:6)

:5)

(22:

(20:

:6)(16

:O)(22

:o)

(16:

(18:

(16

o)

6)

5)

:o)

:6)

(22:

(20:

O)(20

:1)

(i6:

,(16:

(18

o)

5)

4)

:5)

(18:

(i6:

O)(18

:1)(16

(i6: O)(18

,,

1)

1)

2)

:o)

:1)

10

"--.

'

-rrrrn"Txusx'mult--t------tt--t--t-tit t- te-e--

v..

pt"t'-e-tt---nyt-t-t's""'S"i'

S",","'t,"t' SS,' S'ts',"s','-."--S"'t

Ss.--

-r.-tt'-se,e-i

S-1tStlt-l--

[:i:Il':-]

FkS,•'"I,3si;•s.sd:•••slt.]

,s,sN',,"iEi's-'-lt-

,1,,K[N;:l--1-- -. t-s--et

st-s--t--,--t--tts,stt,-,1-es,,,e-,-is-es-S'eS

"'s:N'ny,:'"'s,"s",",N',"'s,s,sssl,,NsL

ww-rrr'r',",,S.NS,,S,i",,,.,,1SsL,SS,'sS,,",N'sS'"sNSNS'"

,s,:,,:s,',:N".

,, ,, ,s,'.,s,'sNF.,s,'.,

,,s,-Lt

,' ,s,tl-

;AZI:]'tdtlt--tt-t

-t-te-l--

---- -]'•,'!••S

rrrm"rrrr'T'Tn-rrl:LSM:LX,un

-----t--

'st-,-t,'-"s',t',,'t-sS,i,X,-s'i,Kk:S,'xt,,'s',',,-,"s'-L

P-r-rww

L"

oct , 1982July

,

,,

--

1983

' ss

,, S,", V,: ,,SNS' 's 't NS

20 1

Fig. ZV-14. Molecular .specles composition of rock fish musclelecithin, .mre1 .atlve Z.

85

%IPC

(20:5)(20

(20:5)(22

(22:6)(22

'(20:5)(22tt

(16:1)(20

(16:1)(22 t. '(14:O)(20

(14:O)(22

(20:5)(18

(18:1)(20

(22:6)(18

(18:1)(22

(20:5)(16

(16:O)(20

(22:6)(16

(16:O)(22

(20:1)(20

(16:O)(22

(16:O)(20

(16:O)(18

10 20 30

:5)

:6)

:6)

:5)

:5)

:6)

:5)

:6)

:1)

:5)

:1)

:6)

:o)

:5)

:o)

:6)

:5)

:5)

:4)

:1)

--s- e-"-

,'•,, s, tF• S`• •,-•F, • •, '•"'• ••

,I N Se, ei, St s .-S

,'v

,N, S, ,t,, S, ' s'

,V,,V,N

x''

"N '

z", ", N,,S,,

b -t" ' s -t i Nt--i --- ' -i -

tl- 'TS-1'-t---t-i'L:tt:t

Dec-:, Jan

,

t•

19811984

--

-s- '-,

-l e S t tt- - -- ell- -t lt-

et-t-et t t

,, ,S, ,,-,, ,,,,,,,, ,,,, ,,, ,,S, ,N,X,,,,, ,S,SN, S,,,,,,, ',,IL ', t,, S, k, ,,S ,,,,,', ,,, ,S, , ,, , s s,N

,:- 1

t-tl-

pm- =]

,n, •, , ks•',E]

l- -t --

m,,,, t,, s, 1, ',

,, ,",,X:'s

Fig. rv-ls.

IecithinMolecular' species, in relative Z.

composition of Alaska pollack musc1e

Fig.

86

10 20

%/pc

30 40 50

(20:5)(20:5)

(20:5)(22:6)

(22:6) (22 :6)

(20:4)(22:5)

(20:5)(22:5)

(22:5)(22:6)

(16:i)(22:6)

(14:O)(20:5)

(22:6)(14:O)

(14:O)(22:6)

(17:O)(22:6)

(18:1)(20:5)

(22:6)(18:1)

(18:1)(22:6)

(16:O)(20:5)

(22:6)(16:O)

(16:O)(22:6)

(16:O)(22:5)

Unknown

(18:1)(16:O)

(16:1)(18:1)

di ' si--t-Tlild sdS-tdi-it-t-li-i

J- Lt t- - l ,f i- -i +- 1- -e -t -t-

+-llt-lt tlt

1, s

t-lt N' k-"1,-S-

==]----t--

JuneAug,

i- tLS-

VS"iV

-tl -- -t- -et-t- lt- tt -l- t-t-te et

e--z-- -/ti - t t-e -- lt -- it - - SI -t lt :- -- e--- l- -- -t -i -t --

i9801983

t -,l ',, ll, E- ',l t,, -., 'II S, -ll 1- tt -t, S- tll 'tt S, 'ti }, t-,'-l- S, i-- N, -s S, S- Ut S, lit Sl S, -., Sl '-, --l

'

:t--i1----1tl-li-tdt

,' i,' "tS,

rV-16. Molecular speciesleeithin at the stage of

composition of rnalefeeding migration, in

churn salmon

relative Z.mUsc1e

87

%/pc

(20

10 20 30 40

:5)(20:5)

(20:5)(22:

(22:6)(22:

(20

6)

6)

:4)(22:5)

(20:

(16:

(14

(14

(17

(18

(22

(18

(i6

(22

(16

(16

5)(22:5)

1)(22:6)

:O)(20:5)

:O)(22:6)

:O)(22:6)

:1)(20:5)

;6)(18:1)

:1)(22:6)

:O)(20:5)

:6)(16:O)

:O)(22:6)

:O)(22:5)

Unknown

(16: O) (18:1)

Aug, 1983

ny-.-..-----.r

Fig. ZV-17. Molecular speciesleeithin at the stage of

composition of femalefeeding migration, in

chum salmonrelative Z.

muscle

Fig•

%/pc

10

(20 :.

' (20:.

'(22: (16:

(16:

(i4: (i8: (15:

(17:

(16:

(20:

(16: ' (22: (16:

(16:

(16: (1 8:

(16:

(20:

(16:

(16:

(l8:

(18:

(22:

(16: (20:

(18:

(20:

(i8:

(18:

(20:

5) (20 :.

5).(22: '5)(22:.

1)(20:1)(22:O)(20:2)(20:O)(20: ' '1)(22i1)(20:5)(16: ttO)(20:6)(16: 'O)(22:O)(18:

O)(20:1)(22:O)(20:1)(20:O)(22:

O)(20:o)(2e,

1)(i6:6)(18:O)(i6:l)(22:O)(20:O)(22:1)(18:

O)(22:O)(18:

5)

6)' '

6)

5)

6)

5)5)

5)

6)

4)

o)

5)

o)

6)

3)

4)

5)

4)

5)

5)

5)

5)

1)

o)

1)

5)

4)

5)

1)

5)

3)

June 1982

TV-18. Molecularin relative Z.

.specles --compos1t1en of blue shark muscle

88

20

lecithin,

%/pc

10 20 30

(20:

(20

5)

i5)

(22:

(i6

(16

(l4

5)

:1)

:1)

:o)

(14:

(20:

(17:

(i6

o)

4)

1)

:1)

(18:

(16

(22

(16

(16

1)

:o)

:6)

:o)

:o)

(18:

(16

(16

(18

(i8

1)

:o)

:o)

:o)

:1)

(•2O

(22

:,5)

:6)

(22:

(20

(22

6)

:5)

:6)

(20:

(22

5)

:6)

(22:

(22

(20

(20(20

(16

(22

(20

(22(20

(22

(20

(18

Unknown(18:

(16o)

:o)

(20:

(20:

(18:

(i8

-(16

1)

o)

1)

:o)

:o)

(18: o)

(22(16

5)

:6)

:4)

:5)

:5)

:o)

:6)

:4)

:5)

:4)

:5)

:5)

:2)

:6)

:l)

(22:

(22

(18

(22

(18

5)

:5)

:1)

:5)

:1)

(20: 4),

July 1982

Fig. rv-19.

musc1e.

Molecularlecith 'ln

.specles ., ' zn

compositionrelative Z.

of mackerel

89

40

shark

90

%IPC

10 20 30

(20:

(22

5)

:6)

(18:

(20

(22

'(20

(16

(16

(18

(14

(16

(i8

(15

(18

(16

(16

3)

:4)

:5)

:4)

:1)

:i)

:2)

:o)

:1)

:2)

:o)

:1)

:o)

:o)

(18:

(18

(i6

(16

1)

:1)

:o)

:o)

(20:

(18:

1)

1)

(22:

(22

6)

:6)

(22:

(20

(22

(22

(20

(22

(22

(22

(22

(22

(22

(20

6)

:5)

:6)

:6)

:5)

:6)

:6)

:6)

:5)

:5)

:6)

:5).

(20:

(22

(22

(20

(22

(20

(22

(18

5)

:6)

:5)

:4)

:5)

:4)

:6)

:2)

Sep, 1980

(18:

(18

(18

(18

1)

:2)

:o)

:1)

(16: o)

(16

(16

(20

(18

:1)

:o)

:4)

:1)

(18: 1)

ii

Fig. IV-20, Molecular .specles composition of carp musc1e lecithin,

.zn relative 7e•

Fig.

(20:5)(20:5)

(20:5)(22:6)

(22:6)(22:6)

(20:5)(22:5)

(22:5)(22:6)

(20:3)(22:6)

(18:2)(20:5)

(18:2)(22:6) ' ' '(16:1)(22:6)

(14:O)(22:6) '(18:1)(20:5) '(16:O)(20:5)

(22:6)(16:O)

(16:O)(22:6)

(16:O)(22:5)

(16:O)(20:4)

(18:1)(18:2)

(i8:O)•(22:6)

(16 ;. O)(18:2)

(18:1)(18:1)

(18:1)(16:O)

(16:O)(18:i)

10

%/pc

20,r

et-

ttt,-t----tt

-1,s,,,,,s SePei9Mayi9,,,,,,,,, ""::,stul"rve

--t

SS1,:-

s,ZVk,,'k,,1,,,t,,'kNk,N

'e'r'T.'1"S",'",SS,' SS

pm,"""".,,,r,",,,,,,--It1---t--1l--StSt--St--I-ltte-tit--e--et-tt-i-tt--.-L

-- ------t -St- SSt--il1--

.kel'-tl-

,- s,1i---ie-

rl-' ,s'-'

-"---------"rrt'trmu,",,,,,

ew,,",",,,,

itle----"

,,

,' :-t edt4t1

1- l-t-,-eeltSltlSt -

30

il tl -- -t- -1 - k -t- - S - Sl -t

------ -]

40

91

IV-21. Molecular speeieslecithin, in relative Z.

--compos1tzon of rainbow trout musc1e

Fig.

92

100

mg/100g muscle

, 200 300 400

(20:5)(20:5)

' ' '(20:5)(22:6)

(22:6)(22:6)

(22:5)(22:6)

(20:4)(22:6)

(20:3)(22:6)

(22:4)(22:6)

(i6:1)(20:5) ' '(22:6)(16:1) '(16:1)(22:6)

(14:O)(22:6)

(18:l)(22:6)

(20:5)(16:O)

(16:O)(20:5)

(22:6)(16:O)

(16:O)(22:6)

(16:O)(22:5)

(20:4)(16:O) '(16:O)(20:4)

(18:O)(22:6)

(18:i)(16:O)

(16:O)(18:1)

---.---r-'-.--pt--

'1 -tt -- '--S k- N- S'--

,,", ,,,,sN'

--

,

,

sv

tI Ll:]ras,••:x=•i,i••:r,[•]

Julyoct,

19821983

t t- e -ts --t-

t e-tte

tl "- -- --te-t -- -

,,

'

rV-22, Arnount of each molecularleeithin, in mg/IOOg muscle.

.specles of sa.rdine dark musc1e

Fig.

mg/100g muscle

100

93

200

(20:5)(20:5)

(20:5)(22:6)

(22:6)(22:6)

(22:5)(22:6)

(20:4)(22:6)

(20:3)(22:6)

(22:4)(22:6)

(16:1)(20:5)

(22:6)(16:1)

(16:1)(22:6)

(14:O)(22:6)

(22:6)(18' :1)

(18:1)(22:6)

(16:O)(20:5)

(22:6)(16:O)

(16:O)(22:6)

(22:5)(16:O)

(16:O)(22:5)

(16:O)(20:4)

(18:O)(22:6)

,

==],.NS,'s '

,'N ,.S,

,,,"' u

Julyoct,

19821983

,

,n,S,

k' s, , N,!,,

:]

IV-23. •Amount of each molecularlecithin, in mg/100g muscle.

species of sardine white musc1e

Fig.

mg/100g muscle

(2O •: 5)

(20:5)

(22:6)

(20:5) '(22:5)

(20:3)

(22:4)(16:1)

(22:6)

(16:1)

(14:O)

(16:1)

(20:5)

(18:1)

(22:6)

(18:1)

(16:O)

(22:6)

(i6:O)

(18:1)(22:5)

(16:O)

(16:O)

(17:1)

(20:5)

(18:O)

(22:6)

(18;O)

(18:O)

(18:l)

(16:O)

(20

(22

(22

:5)

:6)

:6)

(22:

(22

(22

(22

(20

(16

5)

:6)

:6)

:6)

:5)

:1)

(22:

(22:

(20

6)

6)

:4)

(18:

(20

(18

(22

(20

(16

(22

(20

(16

(22

(20

(22

(18

(20

(18

(22

(20

(16

(18

1)

:5)

:1)

:6)'

:5)

:o)

:6)

:4)

:o)

:5)

:4)

:6)

:o)

:5)

:o)

:6)

:4)

:o)

:1)

20 40 60

•,,l---

's;,-'..''.ss,,

-ttsk,-,t-t-SS-n- ,1.', stn,ss

,s,.' sN,N' sS..,Ni'

ls,",

--- .

July1982'

Oct,1983s

's

-- x

,

,+-

x-sN'

-i-s-

'-s' s".

,S1SS,S'.,'

t----i----d-------t'

'.,,',.',',ss`

.i,.,,1'+,,L.,,k,' 1'..,v-

-d-- -- -- -q --1

',,",'".N"n'"','-

+.b--h.Ai' L.i-

ss,',

-tt-1----t

S1l.kS.,,-----------

ZV-24. Arnount

lecithin, .mof each

mg11OOgmolecular

muscle.

species of rnackerel dark

94

muscle

Fig.

(20:

(20:

(22:

(20:

(22:

(20:

(22:

(16:

(22:

(16:

(14:

(16:

(20:

(18:

(22:

(18:

(16:

(22:

(i6:

(20:

(22:

(16:

5)

5)

6)

5)

5)

3)

4)

1)

6)

1)

o)

1)

5)

1)

6)

1)

o)

6)

o)

4)

5)

o)

(16:O)

(20:5)

(18:O)

(22:6)

(18:O)

(18:O)

(18:1)

(16:O)

(20:

(22:

(22:

(22:

(22:

(22:

(22:

(20:

(16:

(22:

(22:

(20:

(18:

(20:

(18:

(22:

5)

6)

6)

6)

6)

6)

6)

5)

i)

6)

6)

4)

1)

5)•

1)

6)

(20:5)(16:O)

(22:6)

(18:i>

(16:O)(22:5)

(20:4)

(18:O)

(20:5)

(18:O)

(22:6)

(20:4)

(16:O)

(18:1)

20

mg/100g 40

musc1e

60 80 100

-- --------qq-,s,

--J"

.

.S.L.N'..S.S,'s ,- s,,' s..' s,,-q{--

s'

, .'

. July 1982-.

--lt-d1:-N-iii---s-ei-N-ti oct, 1983

-

., -

' '' kS, ,

'-i- --

.

i---tt,,

,' s.s.x". -s-

s

LS'

, -----J ,

'

1.' SV'til-- -,i- +--1

v

'

-

,-f--,

ZV-25.

IecithinArnount of eaeh molecular, in mgllOOg rnuscle.

.specles of rnackerel white

95

musc1e

Fig.

96

mg/100g musc1e

(20

(22

(20

50 100

:5)(22:6)

:6)(22:6)

:4)(22:6)

(22:

(16

(15

(17

(18

4)(22:6)

:1)(22:6)

:O)(18:1)

:O)(22:6)

:' 1)(22:6)

(16:

(22

(16

(16

O)(20:5)

:6)(16:O)

:O)(22:6)

:O)(22:5)

(16:

(18:

(18:

(18:

(18

(i6

(16

O)(22:4)

O)(22:6)

O)(20:4)

1)(18:i)

:1)(16:O)

:O)(18:1)

:O)(16:O)

Unknown

(16 :O)(18:O)

--

'

=]

s,

,s,

[ =]-t-vrr"-T'rr,,,s',v,,,s'l-lti-tt-lllttlt

is-e-

AnalyzedAna!yzed

in.In

19811983

-- tt', s s,si,,

--tt lt

-tt-

1-v

,

V,,N,

t l-

--

rv-26. 'lecithin

Amount of each molecular, in mg/100g muscle.

.specles of big-eyed tuna musc1e

(20

(20

(22

(20

(20

(16

(16

(14

(22

(14

(15

(20

(18

(22

(16

(22

(16

(22

(16

(16

(18

(16

(18

(16

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

-t

,

te

'

,

,,

1

'

,

l

.e

e

'

mg/100g muscle

50

5)(20

5)(22

6)(22

4)(22

5)(22

1)(20

i)(22

O)(20

6>(14

O)(22

O)(20

5)(18

i)(20

6)(18

O)(20

6)(16

O)(22

5)(16

O)(22

O)(20

O)(20

O) (16

O)(20

O)(18

,

'

'

'

,

,

I

,

,

'

,

,

'

,

,

t

,

'

.'

,

,

t

.

,

,

,,

t

,

,

,

,

,

'

.

'

,

,

'

,

,

'

,

,

,

,t

5)

6)

6)

5)

5)

5)

6)

5)

o)

6)

5)

1)

5)

1)

5)

o)

6)

o)

5)

4)

5)

1)

4)

1)

:-==- )-

,

,

- ---L--]

1

-

i-

,

-t

,

,

,

[= ]-i- Li-t'-----i1VS 'i '" ', V,

octMay

,s,

t-e- -

,19821983

,s ,s v', s', s'Ns sE, ,, s

s,

••M,s ,,,,,,,,,

--

"Sl ' S S, ', •,, S ',,

='

S, ,S, S, ,, ",

ti- tt

-"e

i•l•l•53

Fig. TV-27.

Iecitihi Amount of each molecularn, in mgllOOg musele.

.specles of brown

97

100

sole musc1e

98

(20:5)(20:5)

(20:5)(22:6)

(20:5)(22:5)

(22:5)(22:6)

' (20:3)(22:6) ' ' (16:1) (20 :5)' ' '

(16:1)(22:6)

(14:O)(20:5)

(20:5)(18:1)

(18:1)(20:5)

(20:5)(16:O)

(16:O)(20:5)

'(22:6)(16:O)

' '''

(16:O)(22:6)

(16:O)(22:5)

(16:O)(20:4)

'(18:O)(20:5)

'(i8:O)(22:6)

mg/100g

50

musc1e

Ss' s

-Ktt,-tt,

,,

t

[]d-

ti-t slt--l- s--tl--ttt-1-

Dec,May

19821983

:s,N'is,,s,Xs

-s,l,,=]

-et l---l-ttr"v't',,S',,',',,S'V'X,,,'S,tW''NSSblS'',i'kS,

-s:---t:

:]

,

,s,s•rm,,s,v,asIV•:T,ilKs,sK,,,U'XLL'Li''llU"'M3'

-'s'

s

,' s,S s'i,,ks'

La"L

100

Fig• rv-2s.

IecithinArnount of each molecular, in mg!100g muscle.

species of s and f1ounder muscle

mg/100g musc1e

10 20 30

(20:

(20

5)(20:

:5)(22:

(22:

(22

(16

(16

(l8

6)(22:

:5)(22:

:1)(20:

:•1) (22

5)

6)

6)

6)

5)

:6)

:• 1) (20 :

(i8:

(16:

(22

1)(22:

O)(20:

:6)(16:

(16:

(16

O)(22

:O)(22

(16:

(18:

(16:

(16

O) (20

O) (20

5)

6)

5)

o) •

:6)

:5)

:4)

:5)

1)(18:

:O)(16:

(16:

(18

(16

O)(18:

:1)(16

1)

z)

2)

:o)

:O)(18: 1)

', ,, L'

,

-et-v, '",x

,

,

-t 1

[=]tS ISi-ttStl- -- -- 11 -t t- -t l.

i---

oct,July

1982l983

e st tt--}i sx,

s

,ny 1 , -,tKskt s

== =,s, s,, ,, sSn s ', N

1

,

s,-t

•)

,

,

,

v

'L'i,' ".lst .LLS

Fig. rv-2g.

IecithinAmount of each moleeular, in mg/100g rrruscle.

.speeles of

40

ro/ek

99

so

fish musc1e

100

(20:5)(20:5)

(20:5>(22:6)

(22:6)(22:6)

(20:5)(22:5)

(16:1)(20:5)

(16:1)(22:6)

(14:O)(20:5)

(14:O)(22:6)

(20:5)(18:1)

(18:1)(20:5)

(22:6)(18:1)

(18:1) (22:6)

(20:5)(16:O)

(16:O)(20:5)

(22:6)(16:O)

(16:O)(22:6)

(20:1)(20:5)

(16:O)(22:5)

(16:O)(20:4)

(16:O)(18:1)

50

mg/100g muscle

100 150 200

--

''

,s

L=] Dec, 1981ge/li['s""1:,x'1tw Jan, 1984

,

s

=:=]-e

,

'v

l'

v,ttS,N,,,.N. ,,s

-

"nv(F35-N[S,i, -%-si-

:s,

]

Fig. TV-30•

lecithinAmount of eaeh moleeular, in mg!100g muscle.

.specles of Alaska pollack muscle

Fig.

50

mg/100g musc1e

100 150

101

(20:5)(20

(20:5)(22

(22:6)(22

(20:4)(22

(20:5)(22

(22:5)(22

(16:1)(22

(14:O)(20

(22:6)(14

(14:O)(22

(17:O)(22

(18:1)(20

(22:6)(18

(18:1)(22

(16:O)(20

(22:6)(16

(16:O)(22

(16:O)(22

Unknown

(18:1)(16

(16:O)(18

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

5)

6)

6)

5)

5)

6)

6)

5)

o)

6)

6)

5)

1)

6)

5)

o)

6)

5)

o)

1)

-tli

's' sS,V,,'s's'r,'

it- ee te- -l--et -t- --lt- le -

,

--

---s

kt i s -t Ss e

t-t

t- s-

1-- k! s,

-e- S- t-- -- '-1 tt ti l n '

==],,NS,X,'v,NV--- -llt

,, S, ',- S, 'i, t, ',, -",, , 't ', , ', ,

JuneAug,

19801983

.' k'i,'i,'t,'i-{,,5-' nX't,';,S,'kN,',--s,S"tt-1:sv,s,',ts-)t-s,s,r

,

-tt t-- -- -t -ls

rv-31.

Iecithin

Arnount of each molecular, in mg/100g muscle, at

. speclesthe stage

of of

male feed

chum salmon muscle

-- .Ing mlgratlon.

102

mg/100g musc1e

50 100

(20

(20

(22

:5)(20:5)

:5)(22:6)

:6)(22:6)

(20:

(22

5)(22:5)

:5)(22:6)

(20:

(18:

<18:

(16:

(14:

(18:

(l6

3)(22:6)

2)(20:5)

2)(22:6)

1)(22:6)

O)(22:6)

1)(20:5)

:O)(20:5)

(22:

(16:

(16:

(16:

(18:

(18

(16

6)(16:O)

O)(22:6)

O)(22:5)

O)(20:4)

1)(18:2)

:O)(22:6)

:O)(18:2)

(18:

(18:

(16

1)(18:1)

1)(16:O)

:O)(18:1)

----

,s, sS'

N

v ,"

s, s,

mu

t x,-

,,smu,,,, SSSSSSSSSJ

[=]Eilli'•.',:'i";..•vu,!•s'g

Sep,

May19821983

,rg,s:-["

-- "X" NS s,, ,N

v,, ,,s:!-rC,':'='"st,', t,,,,',ss ,,,s', ','s '' ,NS'. tt - s S-

"'iLS-sc

-•]i '• 'X

---• ====-:-=

,uat•,,,

i,r,rs"s,"i,,i,,

v•M

:::]

,

----.-t.-L----pu---" L ]Ie-]---"i-.,inl..-

-eww---,•,

::,,K,'t;,'iwr,,rv,,S:di, -----w-tnvpt-----------ww-'-i-'-N---t----" := :=I]

Fig. ZV-32,

lecithinArnount of each molecular, in mgllOOg muscle:

.specles of rainbow trout musc1e

103

accounts for about 87•v88%. These two groups might control or

represents the characteristics' of lecithin of fish muscle.

The left side chromatograms in Fig. IV-1 are the

sardines captured in summer ( July, 1982 ) and the right side

chromatograms are of those captured in fall ( Oct. 1983 ).

Though a supplementary experiment should be done to give a

conclusion, sardines captured in summer might have the

tendency to lose the molecular species which combines the

highly unsaturated fatty acid in position 1 such as

(22:6)(16:O) and (20:5)(16:O) compared with those captured in

fall.

Figure IV"2 shows the chromatograms of mackerels

captured in the same day with sardine. The characteristics of

this fish is the very complicated eomposition in group IV

especially in dark muscle. Molecular species of (16:O)(22:5),

(16:O)(20:4), (17:1)(22:6), (20:5)(18:O), (18:O)(20:5), '(22:6)(18:O) and (18:O)(22:6) can be named in this group '( see also Fig. IV-9 ). ' Figure :V-3 shows the chromatograms of bottom fish

eaptured in October, December and May. These fish are

extremely outstanding since the most predominant component of

these fish is (16:O)(20:5) instead of (16:O)(22:6) unlike

other fish examined ( see also Fig. IV--12 and Fig. rV-13).

The chromatograms of big--eyed tuna, Alaska pollack,

carp, rainbow trout are shown in Fig. :V-4, and the

chromatograms of rock fish, blue shark, mackerel shark,

rainbow trout are shown in Fig. rV-5. Throughout the

chromatograms in Fig. IV--4 and Fig. IV-5, (16:O)(22:6) is the

most predominant peak though in case of Alaska pollack, it

104

contains (16:O)(22:6) and (16:O)(20:5) almost equally ( shown

by arrows in Fig. ZV--4, see also Fig. IV-15 and Fig.

IV--30.). The similarity among fresh water fish and

cartilaginous fish is the very few content of group ! i.e. 'the molecular species composed of highly unsaturated fatty

acids such as (20:5)(20:5), (20:5)(22:6) and (22:6)(22:6)

( see also Figs. ZV-18'"21 ), although the former contains

less amount of molecular species that contains 20:5. The

content of group I differs significantly in the case of

big•-eyed tuna. This is seemed to be the result of differences

in days of frozen storage since other freshly prepared

migratory fish examined contains group : abundantly.

Figure TV-6 shows the chromatogrsms of chum salmon. As

it is evident from this Fig. rV-6, chum salmons under feeding

migration are extremely rich in (16:O)(22:6) ( see also Fig. ':V-•16 and Fig. IV-17 ).

Observations throughout Figs. :V-7.v32 give information

that the molecular species with the eombinations of saturated

fatty acids such as (16:O)(16:O) and (16:O)(18:O) are found

only in big•-eyed tuna. The reason why those are not found in

other fish is considered that the melting point of

(16:O)(16:O) or (16:O)(18:O) is higher than other molecular

species observed so that the liquid crystal conformation of

cell membrane composed of these saturated molecular species

might be convenient for the warm environment and inconvenient 'for the cold environment.

' Zt has been wide!y accepted that the amount of

phosphol'ipid of muscle is almost constant. But the

expressions by mgllOOg muscle of eaeh lecithin molecular

105

t SARDINE(Dark muscle)

SSs

SNs

sv

' SARDINE •(White muscle) ' ' .

Nt Nl Nl sl

; MACKEREL(Dark rnuscle)

ss' ,J..

t • MACKEREL(White muscle)

N" N v

lBrG-EYED TUNA i

".•;)- ----b- be

ALASKA

-p--dd-d- dpSNtst st s v

f'POLLACK

s

BROWN

t-l vttt

-t

fSOLE

.t

I CHUM SALMON, MALE (Feeding migration)

.k'-. -.- - .. --..-

fSAND FLOUNDER

:

tCHUM SALMON, FEMALE(Feeding migration)

ROCK

--tSs t st

fFISH

I BLUE SHARK

re'e.eest s"t

20:S 20:5 IY[ACKERE}L SHARK cAlitp ".RAINBollr TRouT lgl'? 2202ig

IN 1 Ns t ss ' -pt 16:O 22:6 'te".e'.-.'; C<.. "-"- 22:6 22:6 S8i•g ,,,, {gi,il

22:6One scale corresponds to 10Zllecithin.Fig. IV-33. Radar charts of the main molecular species of fish muscle

lecithins, in relative Z. . ' Solid lines are the ones captured in 1983'v1984, and the broken lines are the ones captured in 1980"1982.

106

species ( Figs. IV-22-32 ) shows that even the amount of

lecithin changes in a eonsiderable degree. ' As it is observed throughout the figures, predominant

molecular species are usually composed of 16:O, 18:1, 20:5

and 22:6 such as (20:5)(20:5), (20:5)(22:6), (22:6)(22:6),

(18:1)(20:5), (18:1)(22:6), (16:O)(20:5), (16:O)(22:6) and

(16:O)(18:i). Figure ZV-33 illustrates the amount of

(20:5)(20:5), (20:5)(22:6), (22:6)(22:6),

(20:S)(18:1)+(18:1)(20:5), (22:6)(18:1)+(18:1)(22:6),

(20:5)(16:O)+(16:O)(20:5),(22:6)(16:O)+(16:O)(22:6) and

(18:1)(16:O)+(16:O)(18:1) by radar charts. These charts are

shown in sequence of elution (clockwise) and the Loriginal

data have been employed from Figs. IV-7'-21. As it is evident

from this Figi IV-33, the predominant peaks composed of 16:O,

18:1, 20:5 and 22:6 well characterize the characteristics of

each fish. Bottom fish such as brown sole and sand flounder

is of outstanding owing to the ratio of (16:O)(20:5) and

(16;O)(22:6). All other fish except Alaska pollack contains '(16:O)(22:6) as the most predominant component while Alaska

pollack contains both cornponent almost equally. From the view

point of seasonal variation, rainbow trout shows an

extraordinary change. It is considered that the closed

environment of this fish forced the changes of lecithin for

the adsptation. Fatty fish such as sardine and mackerel also

show considerable changes compared with other marine fish

examined.

107

Section 3. Characterization of Each Fish

by Principal Component Analysis

Principal component analysis (PCA) is well known as the

tnost representative way of multivariate analysis., PCA gives

i•nformations on allover relative relations of multivariate

data of mulitiple samples at the same time.

Fig. IV-34 illustrates the dispersion of data on the

second dimensional plane (Xi ,X2 co-ordinate) as an example of

explanation of PCA. If we consider new axes on the same

plane such as Zi and Z2, the projection of each data (shown

by arrow) on Zi.axis well represents the characteristics of

this set of data. Namely, we can decrease the dimension from

second (plane) to first (line) with the smallest information

loss. In this example, variates are only two. But if we

expand this concept on multiple variate (multiple 'dimensions), and then if we decrease the dimension with the

smallest information loss, such as, up to third or second

dimension, this will become a so called PCA. In this study,

the multiple dimension is decreased to second demension for

the ease of comprehension of the whole view of data. Fig.

:V•-35 shows how to interpret the print out from the computer ' 'on PCA analysis. The axis named as large number 1 is the

first principal component and the axis named as large number

2 is the second principal component. First principal

component has the mesning of 'tthe axis' that represents the

data most,tt and second principal component has the meaning of

"the axis that represents the data next to the first

principal component". Vectors shown as broken lines stand for

108

Å~2

Z2 Zi

eeeee e

e e

e e e xeN e

e ee

e .t

1

Fig. rV-34• Simplest form of PCA asThe arrow shows the projectionon the axis of first principal

an example.of each datacomponent.

109

2"

a tt

A"*'""'"'T

'

,

ele

e

,t e2ct b'

•-••-N,.

X'x.xl•-sb;B

cw".""

ttc

1""

Component A

Component B

Component C

: Number 1

: Number 1

: Number 1

> Number 2

= Number 2

< Number 2

abcc

tt

'

'

tt

:

:

:

:

,

ScalarScalarScalarScalar

ofofofof

thethethethe

* Second principal component.** First principal component.

eigenvector of component A on secondeigenvector of component B on firsteigenvector of component C on firsteigenvector of component C on second

principalprincipalprincipal principal

eomponent.eomponent.component. component.

Fig. ZV-35. rnterpretation of the results of PCA as an exarnple

110

Table IV--6. Print out of the mean and the standard deviation of the amount of all fish muscle lecithin examined, and print outs of correlation matrix arnong the main molecular species, eigenvalues as well as contributions and finally component loadings ' XXXXX PK!NC;F•AL CSi Fbel ET,N;T ANALYS:C.. KXk'Y. X NumDer or' Variables 9

Numbar' c- Samol? :S

s.[,. VAR:P9L• :- ,M,Sa,N : 3.t;3g f,.sgs• ' :• lg.?69 3 S .4 S L) 3- 2• 2.:• r-i: 39 .: 63 4 • 2•2.;:•: :7.776 $ 8.vWS7 :E.364 6 3Q. .97a a6 .67e 7 9:-.2•37 76.:S,9 S 11.161 :2- .f,91 =====.=s=-"==. ====. -u=s====t====n====npts===xn======ts====#=-==="m====s=n=

*

**

< Ccrrr?: at :' on Matrix >

t 1.q) g)e 2- O.4 EEt 1.th. et:, 3 O.279 (P.96t;, t.tb(btb 4 tb .434 ti, .98ct) ti) .93 f, 1.0ee s (p .;7tb -- q) .t:.,s, :• -- iil .op lg -op .o31 i .oee 6 ib .t; cb3 {:) .t:o :• e} -tt) .1 39 -(b .op11 -(b .e 5, :• 1.e k')e 7 ::,).:•61 u) .Be.b: O.7S4 op .75•5 -O .tpSe tb .3(b7 1.Cn ib fb 8 -ti) .:97 -fb .1 1: -tZ) .:06 -cb .Co75, -(l, .l q)1 -(P .:Sl -op .tb34 1.,v:) t.) (:,)

T!fiAC:- = 8

=.==•--==.--=-.=st--===-=#=-==.==#==-#====---===-=-.-=#======--====.=-=-.==.=-==-.

*EI3•-ENVALU,E Z Ae:- .z .COMF•8NENT 4S.:52 3.Sb(b 4S.252 1 -: 1.S,3:• 19.15,inr, 67.4u)7 3 1.eeS 13.6v)2 Sl.tbi:n9 4 tr) .674 le .? 2•9 9i .93S :-i :lf,g: {:ztas g;ie-g? '7 f:4.ee36 C).446 99.947 s e.tbo4 op.te.f•3 lee.opee **.SCCMFeN:-NT LeA:t;NS >•

:; iri F• ; iV' :- it T

1 2= 3 4 S 6 7 S 1 q)..e.av'J tb.6L•? e:,.t:,,39 e.2•31 tb.464 e.12•8 k).opE,e e.,E.,t:}5 2 ti.,.7e3 -cl,.::•6 t:,).t:,}2•S -e.op2•:• op.tb59 -e.v.)87 O.,t134 -(:,).tb.er.:" 3 O.935 -ti,,2•9.9 t:t,.:i4 --,b.g174 -Co.e)41 -tb.e14 op.12•6 u).op32" 4 g:,.95S -e.:7:• cb.c:,,.=.rL:- e.E,{b9 cir.op9S -tb.i.=',9 --(1).12-3 O.eb2•1 S - ti . Li) :• 4 t,) . 2• 4 3 t,) .S t;•4 • pt .4 tl, 7 - v: .2• 1 2 - e .kl :• 8 -- e .n e). 2 - (P .u:,tb:- 6 k) .161:,) tb ,S:•S -c?. ,41 :- g) ." tb -e.:• 48 •- (b .:65 e) .tcI Z•9 O. t":,ti) t;, 7 te ,S73 tb .t:,) :• tb -t:, .2• t,t t:,, e.tbS:• -- {b .367 op .2. 33 -tt).th. a7 -• lt).{bEI3 S -t,b.IE•:t -gb.46i -op.26tz) q}.79-F tb.tb42• -t).::,:6, a).Ct):4 O,etbl

'Eigenvalues were calculated by the Jacobi method, and the iterationwas 60 on this PCA.Component loading corresponds te the scalar of the eigenvector on PCAThe row and the column are variable numbers same with those in thenext figure (Fig. ZV-36).

111

component loadings. For example, suppose vector A stands for ' 'water content, B for protein content and C for lipid

content, water content is almost negatively cerreZative and

st the same tirne' , no correlation with protein content. Zf we

have deta number 1 and number 2, we can get the following

informations:

Water content : nurnber 1 > number 2

Lipid content : number 1< number 2

Protein content : number 1 = number 2

By introducing this PCA, the whole view of all fish

examined can be summerized in one or two plsnes with the

minimum loss of inforrnation.

•The computer program used for PCA was the modifiedprogram of "personal computer Library, vol. 3".48)The original

program was written for NEC PC-8001 personal computer. But

it was modified for NEC PC-8801 mkll personal computer, for

instance, the arrangement of the program was changed into

N-88 BASrC, and the character mode was changed into graphic

raode .

Table !V-6 shows the print out from the computer. !n

this Table, "Number of Variables 8" are the main molecular

species which have been discussed in the radar chart on Fig.

rV-33, namely, those corresponds to the footnote in Table

:V--7 shown as "Row". "Number of Sample 26" are the fish

examined and those are also shown in the footnote of Table

:V-7. "MEAN" is the average amount of each molecular species

mg/100g muscle. "S.D." is standard deviation. "Correlation

Matrix" shows the correlation of each variable (molecular

species). "EIGE•NVALUE" is ealculated by the Jacobi method

112

2

6'tl`t'j..1lt'l..-}f'

st/.,./// '

l.i5 Ix.•tl)-t s/l ltt.i'`, t"It"t

sl ta. -KL-w--e..-.-'N--t---------N'--'za------::r-T.'--

F'--":r-=-L::Ls4-i---------N--

--' 7

8

1, .(20:5)(20:5) 2,3, (22:6)(22:6)'4, (20:5)(18:1)+(18:5, (22:6)(18:1)+(18:6, (20:5)(16:O)+(16:7, (22:6)(16:O)+(16:8, (18:1)(16:O)+(16:

(20:5)(22:6)

1)(20:5)1)(22:6)O)(20:5)O)(22:6)O)(18:l)

Fig. TV-36.first

Eigenvectors of major molecular species onand second principal component plane on PCA.

the

113

35';:`}iis`

ev--.:g=,---=J- --pt-b.----

3E------42

"t

}t

ll,

!

----- -s.1-NxN-.-x-sN.xs ---- s. N..---- 7

xtx,1

6

1

1, (20:5)(20:5) 2,3, (22:6)(22:6)L4, (20:5)(18:1)+(18:5e (22:6)(18:1)'(18:6, (20:5)(16:O)+(16:7, (22:6)(16:O)+(16:8, (18:1)(16:O)+(16:

(20:5)(22:6)

1)(20:5)1)(22:6)O)(20:5)O)(22:6)O)(18:1)

Fig. IVL- 37.

ffrst

Eigenvectors of major molecular gpecies onand third principal component plane on PCA.

•the

114

Tab1e ZV-7. Print out of the principal loading (component score) on PCAe'

<PR :• NC:,:•AL

PR• 1 1 :-

3 4 f'

6 7 B ?

1 [;.}

1112"

13141:-•

:617::-

19.

:' c,}

2•12.e.•

2•3

:4:'S.i

.-.,. 6

LeA":NG)••

:NCr AL:6.92:

:• .2• :• S

r.467•- 1 ..rr• :• 6

-1.4e9 cb .151-ij) . 31 tZ)

(b.198-1 . :• 4ti)

-:• .616 1 .6(i)-7

.-r• ra "i--4--• b.773-1.7S7-1 . .e-, ..i c:.:

-:, .a:-,4

f, .:F7.-1 .1 rt) tb

ci) . :.S:-

-t:,) . 6tl•IS

-1 . 2• 6;r,,

-i . E: ;-, (b

-ti:1 ,S67':' .t!,:"L,:.

-- :• .S -i 3

-:,6lt-

F• 2•- 2• ..e, :• a

-1.39: "3 .9=:•6

-tb .714-(b . :- 46

(b . f•36-ote . 2. ag

O.215-C,} .65•5

-(b .746 3.:-7tr'"- tb .1 t:1 :-',

1.471 E).Eii1-cb . :•• 15

-{l) . .L.3..h

4.346 cli . "' .E.3

-O . i, .e. cb

-til . 193-{:) . .=.; 13

op .: S2• t:1 . 2. (IIa

-{b .663-2.996-(!) . -'6 1

3 op ,1 s ,x.

ql . ttl73

-• {b . SEop

tb .47e-e:, . 363

3.374-{b .373

t.S`97 C).71.e-, c:4 .2• 41

1.3:•:--(b .034-t) .74:-(;.1 .3:• 6

k'i .: 4a (b .12•-3

-T 7La. -- -" {II .: E:= (b . tt): 2"

Cn.46:• q, .417-(l .4S7-1 .1:•9-tb.s,a,t-,

-- 1.92...•

.el . f, ts

4-e . :gt,:)

-de . !,9:•

-t;.! .n6a-tb . 7op 5,

.{:,) . ff, op3

1 . .'.• 15

tP . 2• 6-'

e.49(b-tb .31 t{)

-ti., .E;69

:.2•2•6-tb . aE):=

.- cl) . -' cb c.:)

-- t:,, . 62- 4

-ih •'•',S' , --- i-v-cb . 64c:,i

O.i•1:-(:) . 2(i)t:n

-- (:n . 371

-c;.) . tb f, .--,

-fP .4c;} 1

-(p' .646 {b.:•:4-tir . til f,2

3.31u:i-tl) .1S5

s v).2•7e e.:•69-{tb . 499

e . 14(t) q'i . tb53

--i.:l .949

-tt) .347- {b .B .-) 6

-- cb.:73 O.:•76 1.5,45, O . {b E 2••

ql.:36 (;.) . 2-•97

(:,, . :• 37

(t) .:.: co

-- •/Z, . 6e• qh

fb.129-(b . tt3:•

vP . (b96 tb . u:,82"

-(b.11S-tb . E,thtl)

tb . tb61

qb.:•S6•- (b . di46

6-cb.aot;6- op , e .e., ib

th. .u)74 u:) , tcb a) 3

-{:n . 1 t:) Cn

.ti) -eo . ti":. I-(lp . t:i 1 3

l!I . :l) 1 til

cb . (bf:',

' ."e-(t) . vp-" ti) . : f,6

•- (b.16g-O .14t8-(,) . 1 33

-ti).c!)1:

-O . t:,I6t;,

-cb . cllE6

-[b . 1a4 O.46.e, cfb .: (b •f,

cb . [f17tli

Q'i ,tf) E, tb

th .177-tb . ul ,e.,7

-eJ . tb1•6

O . trb E,9

7.- cb . f' f) : '="

cb . u:it:):•

tip ,113 a, . tb43 tb . 'y.h 2. f:')

-t:,I . tb 1 :"

q) . r.} 5• E)

-- tb . t!J 1 rd

e . {:)as,-t:n . t't) 1 '9

sb.tbtb'7-- til . ttl 1 q.

-cb . 'vl 1 I',

-Ei.op1.e.,

ti: . c:)tb f,

-c:) . (b u:)9

-(ll . ci}tb5

-{ll . t:,) :• 4

-tb . tb:• :•

c,.e17 tb.qt19-tt) . ::,b:9

-!) . [i)73

-{i} . tD :. 6

e.t;.)17-tij .{b:•3

s t.h . Cb CJ 2•

"c4 ,e:i)e.c{ .tl)({16

C4 . :b t,:)2

e) . t:,)tl)L

-,b , et:.) :.

tb . (il(i) 5.

-tt) . 'v:) ci) ttl

(b . :i) 1 :•

-ct) {;)thr}- - t- i- c;p . (b (i} :=

(il . ::l c:,) :.

-(tl . Eitlic!;

tb . cb t;.) :

-tZ, . f)<•;E,

-Ei) . tlltb2

tc1 . cb t;.) t;.}

(b . :i)tb cb

e . c,] (b 1

-tr .cblul t:.j . tb tj) :.

-i:.) . t:,)E) 1

op . t:,rtZi c!}

e . Ll t:,, 2"

-({) . tb(l) 1

(;p . ti;tO Cil

Row li 3. 5. 7. 9. 11. 13. 15. 17. 19. 21. 23. 2S.Co1umn 1. 4. 6. 8.

SARDINE PC (Dark muscle), July 1982SARDINE PC (White muscle), July 1982)CACKEREL PC (Dark muscle), July 1982MACKEREL PC (White muscle), July 1982B!G-EYED TUNA PC, Frozen 1981BROWN SOLE PC, Oct. 1982SAND FLOUNDER PC, Dec. 1982ROCK FrSH PC, Oct. 1982ALASKA POLLACK PC, Dec. 1981CHUM SALMON PC, MALE, June 1980CHUIyl SALMON PC, FEMALE, Aug. 1983MACKEREL SHARK PC, July 1982RArNBOW TROUT PC, Sep. 1982

(20:5)(20:5) 2. (20:5)(22:6)(20:5)(18:1)+(18:1)(20:5)(20:5)(16:O)+(16:O)(20:5)(18:1)(16:O)+(16:O)(18:1)

3.5.7.

2. 4. 6. 8.10.12.14.16.18.20.22.24.26.

SARDrNE PC (Dark muscle), Oct.SARDINE PC (White muscle), Oct.MACKEREL PC (Dark muscle), Oet.MACKEREL PC (White muscle), OctB!G-EYED TUNA PC, Frozen 1983BRowN SOLE PC, May 1983SAND FLOUNDER PC, May 1983ROCK FISH PC, July 1983ALASKA POLLACK PC, Jan. 1984CHUM SALMON PC, MALE, Aug. 1983BLUE SHARK PC, June 1982cARP PC, Sep. 1980RA!NBOW TROUT PC, May 1983

(22:6)(22:6)(22:6)(18:1)+(18:1)(22:6)(22:6)(16:O)+(16:O)(22:6)

1983 1983 1983. 1983

115

2

ol1 o1713'14o

18o3

. o2o25 ol

1

1. 3. s. 7. 9.11.13.15.17.19.21.23.25.

SARDrNE PC (Dark muscle), July 1982SARDZNE PC (White muscle), July 1982MACKEREL PC (Dark muscle), July 1982MACKEREL PC (White muscle), July 1982B!G-•EYED TUNA PC, Frozen 1981BROWN SOLE PC, Oct. 1982SAND FLOUNDER PC, Dec. 1982ROCK FISH PC, Oct. 1982ALASKA POLLACK PC, Dec. 1981CHVM SALMON PC, MALE, June 1980CHUM SALMON PC, FEMALE, Aug. 1983MACKEREL SHARK PC, July 1982RAXNBOVI TROUT PC, Sep. 1982

2

468

101214161820222426

. SARDrNE PC (Dark muscle), Oct.

. SARDrNE PC (White muscle), Oct.

. MACKEREL PC (Dark muscle), Oct.

. MACKEREL PC ,(White muscle), Oct

. BIG-EYED TUNA PC, Frozen 1983

. BROWN SOLE PC, May 1983

. SAND FLOUNDER PC, May 1983

. ROCK FISH PC, July 1983

. ALASKA POLLACK PC, Jan. 1984

. CHUM SALMON PC, MALE, Aug. 1983

. BLUE SHARK PC, June 1982

. CARP PC, Sep. 1980

. RAINBOW TReUT PC, May 1983

1983 1983 t983. 1983

Fig. IV-38. Plo,ts of principalprincipal component planeRefer to the eigenvectorsp1ane.

loadingon PCA.in Fig.

on the first and secend

ZV-36 as background of this

116

from correlation matrix. t'%t' shows the contribution for the

information of the whole data of each principal component and

"ACC.%" is the accumulative value of these "%". "< COMPONENT

LOADrNG >" is the scalar of the eigenvector ( see Fig.

rv-3s ).

:n Fig. IV-36, eigenvectors of major molecular species

are shown as small numbers on the first and second principal

component plane. These are drawn up from the print out of

"< COMPONENT LOADZNG >" on columns 1 and 2 in Table :V-6. And

in Fig. IV-37 eigenvector of the same molecular species are

generated on the first and third'principal component plane.

And these are drawn up from the print out of "< COMPONENT

LOADING >" in columns 1 and 3 in Table IV-6.

"< PRrNCIPAL LOADZNG >" in Table rV-7 is the print out

of principal ioading of each fish which shows the position on

the PCA plane. For example, the cell in the 1-th row, the

1-th column shows the distance on the first principal

component, and the cell in the 1-th row, the 2--th column

shows the distance on the second principal component. These

principal ioadings were plotted on the first and second

principal component plane as shown in Figs. IV--38•-40 and on

the first and third principal eomponent plane as shown in

Figs. rV-44'v46 in different scales. Eigenvector of Fig. IV-36

is for Fig. IV-38 and' that of Fig. !V-37 is for Fig. IV•-44.

As shown in Fig. ZV-38, sardine dark muscle has a drastic

seasonal change ( points number 1 and number 2 ). And among

the white fiesh fish, Alaska pollack has a large seasonal

change ( points number 17•and number 18 ). The movement of

point number 1 to point number 2 is the direction of

117

2

olle17

o1314oo lged3 o3

oi8&W,zi o19

o2

o25

1

1357

911

1315171921232S

.

.

.

.

.

.

.

.

.

.

.

.

.

SARDINE PC (Dark muscle), July 1982SARDINE PC (Vlhite muscle), July 1982MACKEREL PC (Dark muscle), July 1982MACKEREL PC (White muscle), July 1982BIG-EYED TUNA PC, Frozen 1981BROWN SOLE PC, Oct. 1982SAND FLOUNDER PC, Dec. 1982ROCK FISH PC, Oct. 1982ALASKA POLLACK PC, Dec. 1981CHUM SALMON PC, MALE, June 1980CHUM SALMON PC, FEMALE, Aug. 1983MACKEREL SHARK PC, July 1982RAZNBOW TROuT PC, Sep. 1982

2. 4. 6. 8.10•12.14.16.18.20.22.24.26.

SARDrNE PC (Dark muscle), Oct.SARDINE PC (White musele), Oct.MACKEREL PC (Dark muscle), Oct.MACKEREL PC (White rnuscle), OetBIG-EYED TUNA PC, Frozen 1983BROWN SOLE PC, May 1983SAND FLOUNDER PC, May 1983ROCK FISH PC, July 1983ALASKA POLLACK PC, Jan. 1984CHUM SALMON PC, MALE, Aug. 1983BLUE SHARK PC, June 1982cARP pC, Sep. 1980RAINBOW TROUT PC, May 1983

1983 1983 1983. 1983

Fig. IV-39. Plots of principalsecond principal componentRefer to the eigenvectorsp1ane.

loading on the plane on PCA.in Fig. ZV-36 as

magnified first

background of

and

this

118

2

oll

o13

o3o14o22o18

o23

o6o8

o10

o12

a16o24-

oo207 o19

1

. o2

o25

L 3. 5. 7. 9.11.13.15.17.19.21.23.25.

SARDrNE PC (Dark muscle), July 1982 SARD!NE PC (White muscle), July ,1982MACKEREL PC (Dark muscle), July 1982

MACKEREL PC (VJhite muscle), July 1982 BIGeEYED TUNA PC, Frozen 1981,BROWN SOLE PC, Oct. 1982 SAND FLOUNDER PC, Dec. 1982 ROCK FISH PC, Oet. 1982ALASKA POLLACK PC, Dec. 1981

CHVM SALMON PC, MALE, June 1980CHUM SALMON PC, FEMALE, Aug. 1983MACKEREL SHARK PC, July 1982

RA;NBOW TROUT PC, Sep. 1982

2. 4. 6. 8.10.12.14.16e18.20.22.24.26.

SARDINE PC (Dark muscle), Oct.SARDINE PC (White musele), Oct.MACKEREL PC (Dark muscle), Oct.MACKEREL PC (White muscle), OctBIG-EYED TUNA PC, Frozen 1983BROwN SOLE PC, May 1983SAND FLOUNDER PC, May 1983ROCK FrSH PC, July 1983ALASKA POLLACK PC, Jan. 1984CHUM SALMON PC, 1![ALE, Aug. 1983BLUE SHARK PC, June -1982CARP PC, Sep. 1980RArNBOW TROUT PC, May 1983

1983 1983 1983e 1983

Fig. ZV-40. Plots of principal loading on the highly magnified firstand second principal component plane on PCA.Refer to the eigenvectors in Fig. ZV-36 as background of thisp1ane.

119

2

1

LineLtneLine

A:

B:

c:

SARDZNE PC (Dark muscle)CHUM SALMON PC, MALERArNBOW TROVT PC

Fig. rv-41.

on theMovement

same planeof in

the plots between the two different seasons Fig. rV-38.

120

2

B

c A!s-

1

LineLineLine

A:

B:

c:

SARD:ISE PC (Dark muscle)CHUM SALMON PC, MALERAZNBOW TROUT PC

Fig. ZV-42.on the

Movementsame plane

of in

the plots between the two different seasons Fig. rv-39.

121

2

6

-`: B

cA

K

1

LineLineLine

A:

B:

c:

SARDZNE PC (Dark muscle)CHUM SALMON PC, MALERAINBOW TROU'Ir PC

Fig. :V-43.

on theMovement

sarne planeof

inthe plots between the two different seasons Fig. zv-40.

122

3'

6.

1 oll

o25 o17

1

1 3 5 7

911

13151719212325

'

.

.

.

.

'

.

.

.

.

.

.

SARDINE PC (Dark muscle), July 1982SARDrNE PC (Vlhite muscle), July 1982MACKEREL PC (Dark muscle), July 1982MACKEREL PC (White muscle), July 1982BIG-EYED TUNA PC, Frozen•1981BROWN SOLE PC, Oct. 1982SAND FLOUNDER PC, Dec. 1982ROCK FISH PC, Oct. 1982ALASKA POLLACK PC, Dec. 1981CHUM SALMON PC, MALE, June 1980CHUM SALMON PC, FEMALE, Aug. 1983MACKEREL SHARK PC, July 1982RAINBOw TROUT PC, Sep. 1982

2. 4. 6. 8.10.12.14.16.18.20.22.24.26.

SARDZNE PC (Dark rnuscle), Oct.SARDrNE PC (White muscle), Oct.MACKEREL PC (Dark musele), Oct.MACKEREL PC (White muscle), OctBIG-EYED TUNA PC, Frozen 1983BROwN SOLE PC, May 1983SAND FLOUNDER PC, May 1983ROCK FTSH PC, July 1983ALASKA POLLACK PC, Jan. 1984CHUM SALMON PC, MALE, Aug. 1983BLUE SHARK PC, June t982cARP pC, sep. Ig80RAZNBOW TROUT PC, May 1983

1983 1983 1983. 1983

Fig. ZV-44. Plots of principalprincipal component planeRefer to the eigenvectorsp1ane.

loadingon PCA.in Fig.

on the first and third

rV-37 as background of this

123

3

------gkgg o 24

o25

. edi3

ma

6

o8 ol1

M-------1o3

o17

'1

3s7

911

13151719212325

.

.

.

.

.

.

.

.

.

.

.

.

.

SARDZNE PC (Dark muscle), July 1982SARDINE PC (White muscle), July 1982MACKEREL PC (Dark muscle), July 1982MACKEREL PC (White muscle), July 1982BrG-EYED TUNA PC, Frozen 1981BROWN SOLE PC, Oct. 1982SAND FLOUNDER PC, Dec. 1982ROCK FISH PC, Oct. 1982ALASKA POLLACK PC, Dec. 1981CHUM SALMON PC, MALE, June 1980CHUM SALMON PC, FEMALE, Aug. 1983MACKEREL SHARK PC, July 1982RAINBOW TROUT PC, Sep. 1982

2468

101214161820222426

. SARDrNE PC (Dark muscle), Oct.

. SARDZNE PC (White muscle), Oct.

. MACKEREL PC (Dark rnusele), Oct.

. MACKEREL PC (White muscle), Oct

. BrG-EYED TUNA PC, Frozen 1983

. BRowN SOLE PC, May 1983

. SAND FLOUNDER PC, May 1983

. ROCK FrSH PC, July 1983

. ALASKA POLLACK PC, Jan. 1984

. CHUM SALMON PC, MALE, Aug. 1983

. BLUE SHARK PC, June 1982

. CARP PC, Sep. 1980

. RATNBOW TROUT PC, May 1983

1983 1983 1983. 1983

Fig. ZV-45. Plots of principal loading on the rnagnified firstand third principal component plane on PCA.Refer to the eigenvectors in Fig. ZV-37 as background ofplane.

this

124

3

o6

osoll

9o

10Ool oodi5%18 mo

dq4

o7o13

a3oas

o25

1

1

357

911

1315171921232S

.

.

.

.

.

.

.

.

.

.

.

.

--

SARD!NE PC (Dark rnuscle), July 1982SARDrNE PC (White muscle), July 1982MACKEREL PC (Dark muscle), July 1982MACKEREL PC (White rnuscle), July 1982BrG-EYED TUNA PC, Frozen 1981BROWN SOLE PC, Oct. 1982SAND FLOUNDER PC, Dec. 1982ROCK FrSH PC, Oct. 1982ALASKA POLLACK PC, Dec. 1981CHUM SALMON PC, MALE, June 1980CHUM SALMON PC, FEImu.E, Aug. 1983MACKEREL SHARK PC, July 1982RArNBOW TROUT PC., Sep. 1982

2. 4. 6. 8.10.12.14.16.18.20.22.24.26.

SARDrNE PC (Dark muscle), Oct.SARDINE PC (White muscle), Oct.MACKEREL PC (Dark rnuscle), Oct.MAeKEREL PC (White rnuscle), OctBrG-EYED TUNA PC, Frozen 1983BROVIN SOLE PC, May 1983SAND FLOUNDER PC, May 1983ROCK FrSH PC, July 1983ALASKA POLLACK PC, Jan. 1984CHUM SALMON PC, MALE, Aug. 1983BLUE SHARK PC, June 1982CARP PC, Sep. 1980RAINBOW TROUT PC, May 1983

1983 1983 1983. 1983

Fig. TV-46. Plots of principal first and third principal Refer to the eigenvectors p1ane.

loading on the component planein Fig. IV-37 as

highly magnified on PCA. baekground of this

125

eigenvector number 4 that shews the direction of

(20:S)(18:1)+(18:1)(20:5) cornbinations. So we might say that

sardine dark muscle has a large seasonal variation in the

molecular species composed of 20:5 and 18:1. ' Fig. IV-39 is the magnified figure of Fig. IV--38. And LFig. IV--40 is the further magnified figure of Fig. IV-39.

Frorn these two Figures i.e. Fig. IV-39 and Fig. IV-40,

generally speaking, there seems to be a direction on the axis

of oval shape shown in the movement between the same fish

except in the cases of sardine dark muscle, chum salmon and

rainbow trout. This direction coincide with eigenvector of

(20:5)(20:5). Though, further supplementary studies should be

done to get a conclusion, it is assumed that (20:5)(20:5) is

the most reflectable molecular species against seasonal

variations among the majority of fish. This is more evidently

shown in Figs. IV-41N43 in three different scales, and only

sardine dark muscle ( shown as A ), chum salmon ( shown as

B ) and rainbow trout ( shown as C ) have different

directions. As it is well known, the general characteristics

of these three fish are as follows:

Sardine dark muscle : Drastic change

in lipid content.

Chum salmon : Migration from sea to river. Rainbow trout : Fresh water fish.So, these characteristics might affect the molecular species

4of muscle lecithin.

Through Fig. IV-44 to Fig. rV-h46 show the distribution

of each fish on the first and third principal component

plane. The outstanding deviated points are those of sardine

126

3

1

Fig. ZV-47.

on theMovement

same planeof in

the plots between the two Fig. rv•-44.

different seasons

127

3

1

Fig. ZV-48.

on theMovement

same planeof

inthe plots between the two Fig. IV-45.

different seasons

128

3

1

Fig. rv t- 4g.

on theMovement

same planeof

inthe plots between the two . Fig. IV-46.

different seasons

129

dark muscle ( point number 1 ) and Alaska pollack ( point

number 17 ) as it is seen in the first and second principal

component plane. Those'of rainbow trout and mackerel dark

muscle also have a deviation in this plane, but not so large

as it is in the csse of sardine dark muscle and Alaska

pollack. Figure rV-47 through Fig. ZV-49 show the seasonal

variations by lines on the first and third principal

component plane, rt is hard to find a general movement of

molecular species in this plane according to the seasonai

variation unlike it is observed in the first and second

principal component plane.

130

Section 4. Changes in Fish Muscle Leci'thin of

Chum Salmon during Migration

Total lipids were obtained in the same way as described

in seetion 1 from the fish rnuscle of chum salmon tabulated in

Table IV-8. Lipid composition analysis as well as molecular

species analysis were also done in the same manner as

described in section 1. PCA analysis was done in the same way 'as described in section l. - ' Table rV-9 shows the yield of total lipid and the

percentage of each lipid class against total lipid. And on

the right end of this table, the lecithin amounts!100g muscle

are shown. Though there is a drastic drop in the amount of

total lipid and triglycerides between the stage of feeding

migration and spawning migration, the amount of lecithin

ranges between 161.-230mg/100g muscle.

In Tablg IV-10, changes in fatty acid composition of

diglyceride acetates ( this represents the fatty acid

composition of lecithin ) during migration are shown. At the

level of this analysis, not any significant differences are

observed amoung the four stages.

HPLC chromatograms of each stage of migration are shown

in Fig. IV--50 and the detected molecular species of lecithin

in sequence of,elution on HPLC with the percentage data are

shown in Figs. :V-51NS4. As it is obviously seen in these

figures chum salmon at the stage of feeding migration has

(16:O)(22:6) as the most outstandingly predominant peak

( shown by arrows in Fig. IV-50 ) compared with other three

stages. At the stage of spawning migratien, this peak i.e.

Tab

le IV

-8. C

hum

salm

on (

Onc

orh

ncus

keta

)ex

amin

ed

Sta

geof

mig

ratio

nan

d se

xM

ean

body

leng

th L

ocal

ity o

fan

d m

eigh

t c

atch

Dat

eof

cat

ch

Fee

ding

Fee

ding

mig

ratio

n, m

ale

mig

ratio

n, fe

mal

e

42.7

cm45

e 59

'

46.8

cm45

e59'

, 136

7g,

-49e

29'N

:46e

5923

g9rk

' `

1670

07

1670

07

, ,

-• 1

750

30

-175

030

, ,

E E

' '

Aug

Aug

. .

1983

1983

Spa

wni

ng

Spa

wni

ng

mig

ratio

n,m

a1e

Sea

run

mig

ratio

n,fe

ma1

eS

ea r

un

63.0

cm, 3

267

Yak

umo-

cho,

64.3

cm, 3

573

Yak

u rn

o- c

ho ,

ft6kk

a i d

o

ff6kk

a i d

o

' '

Japa

n

Japa

n

oct

oct

. .

1983

1983

Spa

wni

ng

Spa

wni

ng

mig

ratio

n,m

a1e

Riv

erm

igra

tion,

fem

a1e

Riv

er

73.e

cm, s

ooo

Yak

umo-

cho,

70.0

cm, 4

740

Yak

umo-

cho,

ft6kk

aido

g6kk

aido

' '

Japa

n

Japa

n

Nov

Nov

. .

1983

l983

Spe

nt

Spe

nt

' '

ma1

e

fem

ale

74.2

cm, 5

140

Yak

umo-

cho,

72.7

cm, 4

273

Yak

umo-

cho,

ft6kk

a i d

o

R6k

kaid

o' '

Japa

n

Japa

n

NQ

v

Nov

. .

1983

1983

N o H

Tab

le IV

-9.

Lipi

dco

mpo

sitio

n of

Chu

m S

alm

onex

amin

ed

.

Lipi

dS

ainp

1eY

ield

*T

G

Non

-pho

spho

lipid

**F

FA

ST

NP

PC

PS

+P

F-,

Pho

spho

lipid

ftrk

PL

,PC

mg/

100g

mus

cle

othe

rjcot

hers

Fee

ding

mig

ratio

n,10

.492

.1.

O.4

O;7

O.2

2.33

.6O

.723

0Ii,

•1al

e

Fee

di'n

cJm

igra

tion,

12.4

94.1

trac

eO

.7O

.71.

32.9

O.3

161

Fem

a1e

Spa

wni

ngm

igra

tionJ

Ll40

.7O

.84.

71.

1i9

.329

.83.

621

2

Mal

e(S

ea)

Spa

wni

ngm

igra

tion)

1.4

49.9

trac

e2.

6O

.317

.326

.73.

224

2

Fer

nale

(Sea

)

Spa

wni

ngm

igra

tion,

1.3

40.7

5.7

6.2

trac

e12

.732

.91.

816

5

P•.

/laIe

(Riv

ei'n

y)

Spa

wni

ngm

igra

t.ion

s1.

641

.52.

615

.5O

.19.

228

.13.

014

7

Ftt•

iinal

e(R

iver

)

spet

)ts

1.1

32•.

'Z2•

2••.

54.

I35.

2"12

•.2l

l.2

-ti.

913

2

Mal

e

Spe

ntv

O.9

11.6

19.9

'7.

85.

519

.115

.920

.217

2

Fen

nale

See

the

*g/1

OO

gab

brev

iatio

ns in

the

open

ing.

mus

ele.

**g

/100

g to

tal l

ipid

.- o N

133

Tab1e TV-1O.

derivedFattyfrom

acid compositionlecithin of chum

of diglyceridesalmon muscle

aeetate

--ij------Ft .---"-.. -"-.+.-.--+- -fpt . + "- -zae-

Satnple FeeclSng mtgration SPaWtltt19 mlgratlon'

Spent

Fattyact(l Ma1e F'ema1e Female* 'Me1e** Ma1e Fema1e

•12:O O.09 O.03 trace o .06

14:O 4,58 3.10 1.98 2.78 3,34 3.74 3.49 3. 53

15:O O.82 O.68 O.37 O.42 O.42 O.44 O.37 o .32

16:O 29.02 432.26 30.02 26.84 23.95 28.61 29.51 26, 15

16:1 :.79 1.38 1.66 2.19 2.60 2.56 2.41 L 83

17:O 1.t4 O.92 O.43 O.38 O.61 O•SLO O.35 o. 4B

17:1 O.44 O.,37 O.25 O.16 O,36 O.25 O.42' o, 27

18:O 1.03 1.lt O.72 O,59 1,23 O.52 1,45 o. 83

t6:1 8,43 8.27 6.40 4,68 5.04 7.25 9,65 6, 64

18:2 O.51 O.52 O,37 O.51 O,94 O.64 o.fio o. 46

t9:tor18:4 O.46 e.63 O.97 O,97 O.34 o. 39

19:2 O,69 O.56 1.36 1.19 O.33 o. 49

20:O 1.0t O.77 O.67 o.7.q 3.27 trace trace o. 79

2o:r O.10 O.10 O.39 O.29 2.29 O.52 Lll o. 05

2{-):2 o,;t O.09 O.06 O.04 O.33 o. l4

20:3 o.6r) O.58 O.1:'l O,13 O.06 O.93 o. 88

20:4 O.79 O.67 l.54 1.83 3.00 1,80 O,41 o. 51

20:5 !1,49 10,18 15,OO t6,22 19,OO 23,66 S5,87 16. 96

22:3 O.07

22:4 O.42 O.34 O.18 O.19 o, 12

22:5 1.05 O.98 1.16 1.87 2.48 1,93 1,75 2, 37

22:6 3r,.oo 36.40 38.20 39.30 28.77 25.43 30.67 36. 70

others O.77 O.73 O,Ol O.13 O.31 e,ol o, 03

Z itl

* Sea

muscte

vuu.

lectthin.

rk* River.

134

/r

CHVMSAUVION,MALE CHVMSALMON,FEMALE(Feedtng mlgrotlon) (Feedtng mtgratton)

eo 1oo'20 co oo mln 2 40 60 ,60 100min

CHcuSAUVION,MALE• CHmuSAthON, FEMALE{Spowning mlgratton) (Spowntng mtg'ratton)

Seo Sea

o Lo 60 eO1oomin 20 40 oo co1oomin

CHVMSAUVION,MAE CHUMSAMON,FEMAE(Spowntng mlgrotton) (Spowntng migratSon)

Rtver Rtver

20 AO 60 801oom;n20 co se 80:oom;n

11

CHUM SAthON. MALE (Spent}

CHUM SALMON,

CSpent)FEMALE

20 40 60 co 1oo min

20 40 oo co 1oo min

Fig. rv-so.on each

HPLC

stage

chromatograms of migration.

of chum salmon musc1e• lecithin

(20:5)(20

(20:5)(22

(22:6)(22

(20:4)(22

(20:5)(22

(22:5)(22

(16:1)(22

(14:O)(20

(14:O)(22

(17:O)(22

(18:1)(20

(22:6)(18

(18:1)(22

(Z6:O)(20

(22:6)(16

(i6:O)(22

(16:O)(22

Unknown

(18:1)(i6

(16:O)(18

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

10

ZIPC

•20 30

5)

6)

6)

5)

5)

6)

6)

5)

6)

6)

5)

1)

6)

5)

o)

6)

5)

o)

1)

=]E65ssi

Ma1eFema1e

Fig. IV -51.

at the

Molecular species of chumstage of feeding migration.

salmon muscle

135

op

lecithin

136

10

ZIPC

20 30 40

(i6:2)(20

(20:5)(20

(20:5)(22

(22:6)(22

(20:4)(22

(20:3)(22

(20:4)(22

(22:5)(22

(16:1)(20

(16:i)(22

(iA :.O) (22

(18:1)(20

(20:5)(16

(16:O)(20

(22:6)(16

(16:O)(22

(16:O)(22

(16:O)(20

Unknown

(18:O)(16

(16:O)(18

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

5)

5)

6)

6)

5)

6)

6)

6)

5)

6)

6)

5)

o)

5)

o)

6)

5)

4)

o)

1)

[1=]Malefi"gN"SSFema1e

(l4Fig.

:O)(20, IV-52.at the

S), (17:O)(22:6) and (22:6)(18:1) are trace Molecular species of ehurn salmon muscle stage of spawning migration (sea).

amoutit .

Iecithin

137

Z/pc

10 20 30

(16:2)(20:5)

(20:5)(20:5)

(20:5)(22:6)

(22:6)(22:6)

(20:4)(22:5)

(22:5)(22:6)

(20:3)(22:6)

(22:4)(22:6)

(16:1)(20:5)

(22:6)(16:1)

(16:1)(22:6)

(14:O)(22:6)

(20:5)(18:1)

(18:1)(20:5)

(18:1)(22:6)

(20:5)(16:O)

(16:O)(20:5)

(22:6)(16:O)

(16:e)(22:6)

(22:5)(16:O)

(16:O)(22:5)

(16:O)(20:4)

Unknown

(14:O)(20:5)Fig. ZV-53. at the

c=EXNXN

Ma1eFema1e

s

, (17:O)(22:6) and (22:6)(18:1) are trace amount. Molecular species of chum salmon muscle lecithinstage of spawning migration (river).

138

(20:5)(20:5)

(20:5)(22:6)

(22:6)(22:6)

(20:4)(22:5)

(22:5)(22:6)

(16:1)(20:5)

(16:1)(22:6)

(14:O)(22:6)

(18:1)(20:5)

(20:5)(16:O)

(16:O)(20:5)

(22:6)(16:O)

(16:O)(22:6)

(16:O)(22:5)

(16:O)(20:4)

Unknown

(16:O)(18:i)

(14:

Fig.

O)(20:5) ZV-54. at the

10

Z/pc

20 30

C=]MaleNXXesssFema1e

, (17:O)(22:6) and (22:6)(18:1) are trace arnount.Molecular speciesof chum salmon muscle leeithin.

stage of spent.

Soo

wnt

ng

S

ea

llgl?

l

lg•1

.gl 4

o ...

2

--s

mtg

rotS

on

run

li8

1gl

4

0

20

ll,6i

•2i

li2ig

l

20

Fee

dtng

mtg

ratto

n

lig

l;l

l16:

Oi8

:i

l40

ligig

l

20

40.2

0LO

---

20

i16:

O20

:5l

40llg

l,il

il8[•

el

Lo

--s

llgl.g

l

20

LO

llgi.}

l

Bgi

.Il

llS.ig

l

li;i.g

l

Spa

"nin

g m

lgra

tion

Rtv

er

li8

175,

I

I>g;

o,i

l16:

O18

:1

i40

I20:

522•

61

20

4e20

'N.

LO.s

s.

s.

s

20

l16:

O20

:Ss

40

l18:

120:

5I

Sga

les

ere

tn X

.

- M

ale,

---

- F

enal

e,

TV

-55.

Rad

ar c

hart

s of

rrra

scle

leci

thin

on

each

llgig

l

Ii2,i.

gi

Spe

nt

li81r

5sl

Fig

. . m

aln

stag

e

Ilg•l?

I40

i20:

S22

•6l

20

op2e

ttK

.20

to.s

s..

s

--t

N. ..

20

ll8i•g

l

40B

gi,}

I

IBI6

,l

llgi.t

l

mol

ecul

ar s

peci

es o

f o

f mig

ratio

n.ch

um

ISI,6

1

salm

on- w o

140

Tab1e rV-ll. Print outthe amount of chummigration stages

of the mean and salmon muscle

the standard deviation oflecithin throughout all

t,J S,)l tX• •X X X X

Nu rt) t.) Rrt

r-•F'ltIN[ XFtC,L COl,VIltONENTcrf Variain 1 es * 31

ANALYSTS XXXXX

Numin en o.f Sample* 9

iVItK• : Lr ,-th] st- EI

1 -.n,:

3 4• f-F",

6 7 s 9 i (:')

11 ILt j' :i

1 `1•

itLti,

16 1. -;,•

:8 1 Ci?

:.1[',?)

2•?2 :••, :•i

L: l3

:"fii

tt,•cr-,

:• 6.,

:-7 ;:'"i

:: cs

LT3{tL•}

zJ,1

MEAN tZ} . ZI•74

4.1631 e, . (!) ff, G)

:t:3.S49 i.5i63 tz; . 64(r,)

c:4. .E-t31

(Z) . E-:.t 1 ;-,

c:} . eS :•II• 8

1 . .cr-t49

(I} . .ny,• 2•• 7

3 e t:)'76 tZ) . "'78El;

4 . 5, 48 {!) . 63 .=-:,

:Lt e14S c2) . 633

t:) .331

3.67S 1 n :I,ll• "79

: . S (:) E,

-1 . :-,871 C2 . d) :.•.•i7

16 n 17C:}4rtt . t:)3:•!'

iZ} .i1 'i

r,.c,).cr-,i

1 e38'7 s . :r,s :'l7

(l') e 1 `{;•'-"-.;

r..36c?

S.[l . t:) .-681

1.861 6.c:)ff,8'

1{:4 . 1. 2••6

1.148 1.186 (;) . 83 1

1 .t:} l•ll• c:)

1.1S:" 1.S,68 (i) . 4"7 ff,

4 . `[l- :--'t3

1 .:-r•• J. C7

:" n'=-"' (S •t

1 e :" t:)1

E•l .6C79 1 . l•l!- 7(Lt)

(Z) .936 tZ) .9E} "7

2• .385 2• . -7 CI?3

5, . F,67

7 . 9E;S 7 . 61.:3 {:,)

1 CI7 . "7B(Zl

(Z) e 2" 2' 3

(:} .g79 1 . C,)3rf

3 . CIi, E• I• Ei

(r,) .36e

2• .691

* Variable numbersand sarnples are

are shown inshown in the

the footnote offootnote of Table

Fig. ZV-56 IV-15.

141

(16:O)(22:6) becomes relatively smaller. Up to these two

stages, the chromatographic patterns are analogous between

male and female. When the fish starts ascending the river,

drastic decrease in the asmount of group Ir! ( see the

footnote of Fig. IV-1 in section 2 ) especially the molecular

species of (16:O)(22:6) and (16:O)(20:5) are observed.

Unlike the chromatographic patterns at the stage of sea,

outstanding differences are observed between the male and

female. The coqtent of (22:6)(22:6) is extremely high

followed by (20:5)(22:6) in male. Finally at the stage of

spent salmon, (16:O)(22:6) as well as (16:O)(20:5) relatively

increase compared with the former stage in the river. These

are more concretely seen in radar charts of the main

molecular spe'eies as illustrated in Fig. rV-55. The axes of

these charts are the same with Fig. !V-33 in section 2. These

charts are arranged in sequence of mtgration movement

(anticlockwise). It is clearly seen from this figure that at

the stage of sea run, slight differences in patterns of radar

charts can be observed between the male and female while

that of river, outstanding differenees are observed

especially at the spawning stage. rt is obvÅ}ously seen from

this Fig. :V•-55 that the amount of (16:O)(20:S) is relatively

very small in feeding migration stase compared with those of

other three stages. The amount of (20:S)(22:6) and

(22:6)(22:6) is surprisingly high at the river spawning

stage.

The author has employed PCA again as discussed in the

previous section. As it is shown in Table IV-11, number of

variables which correspond to the number of molecular species

142

Tab1e IV-12,

.speeles

Print out of the correlation matrix atnongdetected.*

all molecular

=St=tSSst==t=S-S==tksnn-ta#=utnsx=St=MIIs=sansan#-ttnabnt==slt#=sk#stel=Sbe=sttt=t

'< -eareela'-ion Ma`.nu; > '

::3aS6 .7 9 1 t . :). ::, t- : e.e:e 1.•bt:,}tp 3 "J .77: ,- .l c-a : ."vae a op.ees. th.ss-t e.Ge3 ,:.•h. tpe S th.16: -•;.) P. 77 th.t03 e,3t-9 ' !Ree 6 e.sL3 A. i-=ls e..6:s e.3s6 .-e.:e3 1.etbo 7 e, .:t:,3 e.47g e.:• f,s e.:• ee -e .7e3 e.ae6 1.opoe S -tfl.k-: ;b.S.7e -!P.a19 -,e.:3e -e""99 -t-. .31t -e.369 :.tee.(b 9 op,tb76 -b.tJnlS e.•2,96 e.ae6 e.2•ee9 -e.32B e.:66 .e.3e7

ti:4 -Lh .::: -tP .2: :- -e .tlt e.eet e.f• 33 -tb .6e9 .e .t79 -e .399tl e.6S7 tt,.6ft',9 e.33S e.op:5, -e.466 e.9e: e.472 .e.2•76:: .`).ii.htld -:,.:-13 -e.:eb -e.349 e.t63 -e.e7t .-e.:e:, .e.39eIa e.76t" kl.?:: e.471 Åë.:69 -e.39B Åë.g67 ".4S$ .e.:98:a e.:ga e.t"3 e.i:e e.:tJg e.642 .e.1:t -e.:le -e.6:7:: -e.a2: -tb.4:•a .-e..191 .e.:63 -e.eop9 -e.3:6 .be.3e7 e.SA.e,l6 -e,4tt, -`b.aSa -e.t68 .*.:$e e.46S .".SS3 -".6"9 va.4elt7 -e.297 -t).349 .-,.E,94 .tb.:SS e.e:S -".3e7 -e.3e4 e.7:•4le tb.417 e.3gi e.kS37 -e.:S9 .Åë.S:e e.683 e.4S6 .e.:e4t9 • -e.:2T, e.i,S7 e.1:7 .Åë.vae9 e,39e .".441 -e.1:3 .9.4e6:te -e),4:•7 -e..r.=s -te.331 -te.:ss -•".e6:• .-e.33t .e.3e2 e.?7e:: -•?.•":7 e.ttl:: tb.t:3 -op.19e -e.iel e.tS3 -9.124 e.:•a92: O.:eS e.3e•S e.ii9 e.e37 -e,27: e.39: ".573 .0.7e6:•3 -e.3:6 -tb.::-7 -tb.::4 -e.:15 e.ISe -e.3•32 e.:6: -tb.SSt .2a c".t)67 e.e7c e.:se -e.13t e,e6? e.te6 -g.es: .e.e732: -,-.S;6 -tb.723 -e.:*3 -e.lr•e e.t32 -e.97e -e.:3: e.3ta:•6 e.7!• e.7k',6 e.4:t9 e.:56 -e.4eS e.962 e.4Se .e.:•962•7 -th.690 -`t).93a --").733 -gl.S3e e.213 -e.732 -e.6a4 e.736:•S op.*"E k).;14 e.e6ip e.::e e.36: -e.:17 e.W4 -e.77e:•9 --tb.2fe -"b.437 -`-.tlS op.2:8 e.::t -e.b?: -e.e62 e.:•9t3e -(e.e:t. •-tp.tdt7a e.:•:7 -e.nj7.t -tte.2•.e,e -e.3.7.-6 e.:A4 e.ve3: -t-.6a6 -fb.t4a -e.:•93 -t).a:3 -tb.t:+4 -e..t,43 -tb.::5, e.663 ' 9 trb. :: :: :3 ta 1: 16e s.tptittblf) t).7.S7 :.tbtbe:1 -,).:?tb -e.S39 t.etb".:".. -:b.:ea e.,':,!") -to.ey.s 1.eee:3 -b.314 -tP.!e3 ,O.9e2 -e.Q6: t.(b,be:a e.seg e.7o6 ee.2:4 e.:•J-7 .e.1:e. }.eee blr --.:•:: -tp.:sn .-).:sg .e.41B "e.3t:- .e.63e 1.eee16 -e.,ez: e.:• g7 ." .agt -,b .: t.? -a. .ev :•7 .-,e .e4s Åë.7?6 s.eee;r• .:o,3it',2• -x".::m. -,th.:72 -e.3g3 -e.2g4 `-e..e,s3 e.get e.e:•ale -e.::e. -`P.399 e.?31 -".•e39 e.e47 -e.e91 -e.2S4 -e.3:,3:? e.a .$ op .e:: -fe .37s -e.1:•a. ."."3 e..ssg .".e2g e.se42ti} -e.3:6 -e.363 .tb.:?3 .e.4:3 -Q.3t7 -e.6t-4 e.9Se e.63S:•: -`b.a:•6 -op.499 {-.:38 -e.4:3 e.:•:e -e.637 e.S27 e,.t•erp:: e) .:69 e.le9 `b .ael e.!S{b e.e:4 tb .39 th .sb .e24 -" .714:•3 tb.7:9 t".i3? -e.:•e7 e.3.:b -e.46e op.614 .`b.433 e.e:t:a -ti).:•f•1 --.I47 k).:::- e."41 e.;:2 .`.h.;99 e.3:2 e.36S,:f, ,e .Si6 e.S: :- -,b .74: •-t .th:- -J .e .et6 e.::e e.3ip9 op .4e• 2-2S --,b.3:: -•b.f•et;) {b,;es .-tb,tl6S. 1.op,be .-t-.::eaj .-tb.31t •fb.f•:a:7 -,t:t .::a {i, .,P7Åí -,.A .bi,3 O.:3r) .e .6'7a .tl, .: 23 e,664 tb .6a6:e J.,.53C, tb.Ttbl -:}.:1: e.a6a -e.:•66 op.776 -h..9e7 •t:.,.3bg2T" tb .S:3 op .:96 -i) ,SS3 .;b.: 7S .tZ .6?: k) .t,1 7e e.3a6 e.4373ep op.::: e.•be.:, -,b,:s? -e,.:-f•e -fb.31:• -re.a26 e.s,7e e.:ee31 -fi,.•)97 -,b .1:a -op .a6; -e.177 .th. ,e• :• ," -e .6:1 e.eVe e.6S:

:7 16 i9 :e 2: :: :3 24t7 t.GJaJro:S .,- ,2• U)t :.t"tb t.-:? .:.h.::t- -,-.:63 1,v)tbe:• U) tP .9.7t -oj .::7 `-t) ,:.t" S.". `lkb:i g',.:-66 th.:aS -tl.•b:.9 ").699 t.etb,-:•: -e,77: e.4ea -,tb.t.h64 .i-.$3S, .e.S3:• i.e`bfb23 -Åë.3E.e .e.:ts,e t",537 -ib.R,2,b -tP.f,66 ".49e 1.et)e2i g';.;.tr.s. s.::)•-:, :•:,.::2 ,".!t-e e..e.ag e.tt4 e.ess :.e*e:•e e.:S3 -,",!:t tb.324 e,3:4 .-e.::9 -e.:•e5 e.6ee pt.*2226 -`ip.:•9:• tuS:i -tb.41e .*.alS e.22-2 e.aS7 -th..4e,3 op.i:2:7 e.ee7 -e.4e.: -e.e74 o.733 e.nc6 -e.e6op e.ee7 e.lt:•:e -tb.76:b -•h.3tl e.a19 -op.9:e -e.S94 e.e.5,S th. .747 -e.:• f•S:q ei3akli -- i"".f,e8 e.:• 9S 9, .3 .".9 -e .e14 •- tb .2• L3 th .462 e.l f•63tb op .669 -u) .:• :a e.4Ee e.365 e.545 -e .3th.6 -.17S Åë.4e43: E,,.=64 -t:n.:•S.•6 op.'e'6B C..779 op.61: -e).5i3 -op,op44 e.4:9

:•S :•6 27 :•e :•9 3e 31:S 1.tbt:,,O:6 -E, .61t:o :.e p) ,b27 o.s=7 -*.66e 1.eee:•S e.139 .e.:67 -e.33e 1,etbtP29 i).9t):, -e.69E- op..S6e, e.Qt77 :.eee:•op op.413 -t-.3:ti, ,i,.:2•9 -.3e:• e.5e5 t.eee3t op.E,93 •-e.517 op.676 -e).S4e e.S96 e.776 1.tbeLa

TRA::- = 31

* Variable numbers are the same with those in Table ZV-11.

Tab

leZ

V-1

3.P

rint

out o

f the

eige

nval

ue a

ndco

ntrib

utio

nson

PC

A.

,::t,j

iY,r

.•fL

':N,E

-:'N

-r

1•

2"

3 4 5-,

6 7 s 9 1 [r

)

11

1:•

:

13

14

1 ff

,

16

17

*

:- X

GE

' NfV

ALU

L-

11

.534

S

.2•

19

3 .

E,B

9

2•

.BE

ii

2•

.189

1

.41E

)

1 .

2••

tZ}9

tb

. tb

q)

(z)

V

H)

" t{

}{{S

ft)

tp

. t{

} g.

} t{

)

t{

} . t

{} tt

) u)

t'

) t')

t'}t')

-

t-.-

(

,) .

{:)

(b (

,:)

. t

t) .

(t)

tt) t.

s)

c

:) .

cZ)E

)(i)

tJ

} t7

)t7)

t,)

-I-

.-

t,! (

A C

,) C

,)

---

--

**

nl-

37 .

2••

t:,)6

2•6.

.C-,

13

11.E

,77

9.1

96 7

. t:,

)61

4 e

'rr-

.'47

3 .

9tZ

) Lt

")

(!;

. c:,)

t:)

f:,)

ti)

[,)c,

)f,)

"s-

-- t,

) ;t)

ct)c

,) -

e.--

(t)

tt}

{t)

tt)

.-.-

- (

7-)

. Ci){

Z}{

Z)

cn

tt)u}

;,) -

I-.-

t/)

{/)

tt) tt

) -

t' -

- tt

) . c

p c.

,) tt

)

t!I .

{!}

tb tb

c{)

. t,.

) ct

) tt)

***

Aec

.'z 3

7 . :

• t:,

) eS

63.

719

75

.:• 9

6 8

4 .4

91•

91

.lf, l

f,3

96

. 1 C

,)(o

1 tZ

} f!)

. (:

)f)(

b

1 q-

} t!)

. {b

E)

cZ)

1 ct

)t:)

. q)

tz)t

;.)

1 ti;

C}

. tb

t:,)

t7.)

i tix

zl .e

t:x:)

1 (Z

l (Z

l . (

Z}

(ZlO

1 cb

t:t)

. {t

") c

i} cb

1 C

,) t:

) .E

)O(b

1()e

l . q

) c,

) (z

)

1 q)

c)

. (z)

cz)

o

1 ql

(b .

cbcz

}(:s

* **

***

Eig

enva

lues

wer

e ca

lcul

ated

by

the

Jaco

biZ

is th

e co

ntrib

utio

n.A

CC

.Z s

tand

s fo

r ac

cum

ulat

ed c

ontr

ibut

ion.

met

hod.

' ) w

144

Tab1e ZV-14.

to thePrint

scalar•::CXF•CNENT

outof

ofthe

LOADING >

the .elg

componentenvector on

loading rkPCA.

which corresponds

: 2 3 4 s 6 7 B gy le :1. t:'

:3 t4 sr•

:6 t7 le S9

:•e

21::

•:3:4:f:b:7,:•e

:•9

3e31

1 : :.

4e67e9

lelit::3ta:f'

;6!7:5:92e:'t

:•2:•:.

:a:f:s:7:s2q:. ti.)

-v:

COM i op . 779 tb.7e7 th . f,: :

e.36"•b i!, . :• 1 :

e.ea: A. .S•t7-t b.s3e-tfl . tb: 7

-e .: 23 e.774 ti .IXt e.e :• 3 e.:•75-e.779-t-.795-, " .7fe

tb .S99-e.:•31-tb .763-e.333

e.7 :• 3-e.eg:-e.13:-e.7.s1

te .st?.ttb .sgl

t" ."c09-e.6::-k" .:J.,S

-op .e44

9-e , to tb lt) ,

tb.';ntbt:-

e . ti,t) th

e , :st' tht-

.e , ,l)i{')tc1

-its , ,.-t:,)e

op . /t:)v:ip)

-e . lt:ici)e

a •;-lhth -ti-- e . :.:,tl,e

-e . ,bl't lb

-lt) ")'-'-

--le - /lll.t-;.)

--1 ::lt;pc;) te.---lh Jltht;1 -- --t- t-.:b-1-!h :"ath ---+--v). .'i Gi (-

• -tb . tht-e

- ve . lt.s v.le

-W.tptopki e , :btlpttl

ttl.t:"(-l)

-* . ::.t.:•t!b

- ..:t . :A:. th O

.t) . •h. e-:)

.tb,Cdtbtb

cb.."kbt).-tl) - v:)lt'itl

th si(:1th ------tb . :t 4El{b

:N :- :• ip.lf,1 e).t57 e.t:s--te.:f4

-• b.4f3 e.:e3 tb . tb f• e

e.563-,-.7::•-tb,se6 e.r,i:-op.34S e ,s:ib.Te.g:pe e.:;f:- e.,L)ga e.tf•6 e.4ae.e e,e.1 --k'-- e.fge e.8:7O.375-e.es6 te.:47-e.47te e.s:to e.est-- .9:7-e.37e e.se: e.3:7 :e-e . eth. op

e . etb(.n

.op . eklt:,

e . !btbk',

-e . th. ee

.".,-v)e e.t"opop e.•i ee.i- .et;"t.I

.e . et:d th.

.tZ- . C-9tb

e.t-et:o"tt) - L:)t)l:l

tl.tblb: tp . ;hetb

.e . ee,cn

-,b.:btbeb

-(h ththe ------ op . fhee

e.e,-e e.!-the-e .th. **

-a ththe .---. El.tbti)th

-e.tbtiitb.!h. .e. ti,cb

-e.e*").op.tbeli-.tb.,.:ltbte

e.tpoptb e.t;.lt-,"

N T 3 e.4lt- e.:44 *.793 e.691 e.3t: e.t4s e.egg -e.141 e.:ee e.236 .ti .tb46 .te . ,t.ng

op.e36 e.133 -).t9: op.34: e .3e :• -e.:•el e.494 e.ee7 e.339 -e.2:3 e.Qe: e .3e :, e.elg e .e :• e

.e.3te -op .0f,2 e.367 e,:is e.131 11 -e.oee .ib . ::ng`}lt1

.- .fbee . Tb . eltl ib

-e .etbQ "'0"a. th . •" ": e

-tb .eee •-,b .eee e.eee e.*tpe -se . t:-tbe

i- . tc'Hb`b

'b ")`)ti) -e . te t- el

e . eeth. -t) . eee q.eee' *.e"-e -e.eee -e.eee •-e.*ee e.?ee -e.eee .fb . ,;-elt-

e . the. e

-e.eee e.tbe{b e.eet .tb .l E,pt.

-(b .eee

4 e.3ope op .e: :-

e.t37 O.276 O.7S5 e.e7e-e .7t•9 e.i76•• e.:','3-e ,e :• 2•

..,- . 1bt)

e.e::•-".e6" e .:• 92 e.oj:g e.:65-e.e4e-• ib.331.e.:49 e.llt-a. .Ie3-e.4:7-e.444-e.2e:-e.3ts-e.e?3 e.t39 e.e3s.e =• 49-e.6"7-e.34s t:.e.klee-te.,etbe-e.+btbe * . :eti,t-

-e.lee.op . :-*e

".eee e.eee e.Qthe-e . .e v:pe

e thtath ------,i ththt;l - - - . - (- . :bt{ttl)

-,- . ,",;.!e

e . th. ,p e.

-e.cbee-e.t ee e.-ee-e.eee e.eee e . thee-e.etbe-e,eebe•- e.eee e.etbe e , ek'Ie

e.eee e.-bg)e e.:;,ope.t:i :;lthe -t--i-e . te' t-e

5 e . ope)tl)

-t).th16

emls.9.44f e.3e4 e.e4e-e.371-e. .3 2• 6

-e.283 e .: 2• :

e,t r• :-

e .3 :- 9

e.te7 e.2ee e.th. r•2

e.3ss e.tef, e.::s e.36e-e.166 e.2• s4 e.le7 e.sg7 en:t-e.t7e e."2 e.og:• e.e3:-e.249 Åë,M97 e.e49 t3-tb.pme e.oee e.eee e.oee e.eee-e . eept.

-".ecbe' e.eope-"."ee-e.eeeie . eeop-e.eetp.," . -:}*Et

-i ) . tc)e{tl

e.t"ecp ,e .eete op .eee-e,eeop e,eeo ".eeo e , tbec4

e.eope-eJ.eee-e.eee-e . tA. ope

-t e . optbt-

-e.eee-e.eee-e.eee-e . kb e',e

e.ÅëE,"

6-e . •h. a4

-tl.ees"tb.:43-op.:6a-,b .044-t.i ."a9

-e.e:1 e.e47 e.:a7 e.3e6 e.2:e.- !) . S• : 8

e.tln e.:s:• e.e4e kl.:•:4 e.e:u L-.a:9 e.362 e.e46 e.iee-e.t:4 e.of,4.e.422-e.ee: e .t -. s

"e.elg-e.1:•s-e.tss-e."o3-e.2:7 I4 e.eee ".ec-e e.i)etb. e.ope e.eopÅë-t e-pt"e.".tee o.oeÅë-th . thee

-e.eee-e .et)e-,) . t)eop

.i).*,be rb . gltt)t-

e.opee-e . ept)e

-r4 fht)e ------[-.•"e. op

.,h :hthtn •- -.-+ tb .eo,b e . t.h t:mp

-tb thtbe ----- e.eee-e . ee t.n

-,:e .epa.

-e.,)e. e-e. .e<4Q.tb . :bee

.(b .""ee"".•h. ee-,e.eeth

7 e.33t-e.:g3-e . e`,86

e.t39 e,t2-9 e .ee f•-e . cpt6B

e.194 e.4e6 e.to27 e.:g: e . t;n6e

a.:r, t., e.:•lf• e.di4e e.e37-e.elg e.:f.A-op .31 2•

e.131 e.e"g e.:la e.e63 e.: :• f•

e.2?4 e .1 : t• e ,: e f,

.e,s:7 e.373.e ,:e,.6

e.o:a ts e.eee e,etbe-e.i-e,e.e.e*e op .eetp.

e.opemp-e.eee-e.eee e,tee e.eee e.et)e.ih :nythth -t--- " . 'O v:t f-.

m a,h(b ------e.eeop e.eee-tb . eeti."

e.eee-,e.ee*-- e.etbe-e .eÅë' e

-tb.eee e.eee-e.e"e.e.thee e.eee-e.eee e.eee-e.ÅëÅëe-e.elecb e.thtbe

e kl.-gleO e.eee. e . ,et.bdi

e . .h ,- (e

-tt) . eedi

.!b . t?"be

e.thee-e.eech.e.eee e,eee.{b . etfie.

-tb , e)tptb

.e pl-1th -1-.] e.eeee-e.tbee-, b .eope-tb .eee o).oee e.eee-e . thk)e

-e .I ee e,eee e.eee- e .e t- e

.{b.et-Åë

.o)...)the

*.t-el g.-e"e-tb .e-b-p

e.eeo e.eoe t6 e.eee e.eee e , th. ee

pb . etb op

e.ei"e.t- . ee,-.e . •e eo d,"

e.eee-e . th op, e

-e.eee-e.eÅëe o . :bet"

.di . e*e";) "vhi.) i - - - .-e . -i tbop

.a. .{"e("-op . ectbte

-e . th. et"

.tn . t-tbe

-e . *E;e-e .elt',e

-e.eee-o.eee e.ee,e.- e . •"th. e

-e.ecne-th .et:.,e

e.eee-e .et) ut.

.th. . etbe

e . tptblip

1

234

f'

67e9

1t",

"12•

:3:4:5t6t7:8192•e

21:•:

:•3

:a:f'

:e272•S

:9:, p:)

3t

17 o . ,J efpt

• GJ.•t"ea.

•- e . k)ee

--,-.eope"- "tlopop

-t;J .oc-e th . ,J:I e) e.

{- . •,bei.lv

.t-,tbtPop

-A zae,Ih '-)--t'-e.etbe-op . •hee

-e,teee--).eee-e . ." ". op

-e , ,e e. `-

e . f"• fb to

.e.titee tb . te' etb

-e . t;Jtbe

-e.noe op,;ilE)tO

-te .t:4ope

t.h . ,-emp

.e . tbetp-,b . tn: ee

-op . it)ipe

th •n' th M ----- th :h p) th ----i a /:)th(" - - - - - th •:}(hdi .I---

rk The row andnurnbers

the

as same

columnwith

arethose

variable.In Tab1e ZV-11.

145

2

21'

',atlxt{151Z70I,.8..,,.ZX,

11,26--

ts.;2.x,s.ts "..".itXs,t3i•--.........-2)J,,-"'--b--cr,-,-Ni'kk>,,

.l;--f?..'

r't"2'

.."

.Z,.tl-.e."/x-'

.JldvrSieF-

"-t 5ee--

"/--

.

..lae'X------t-

ri-t-.."

--'-1,2

27JS:-:---"ny-ut:EL--;......"-"---s•--- .-

"3.-ny-------7

N't)'N"N..s's-.'-t-

Nix"":-7::.:::4---t"Ns...S'-.'1XNs12

ls--N

"' "22'

x,

"l

I

•14}

-t

:10as ,s

28

1

1. (16:2)(20:5) 5. (20:4)(22:5) 9. (20:4)(22:6)13, (22:6)(16:1)17. (17:O)(22:6)21. (18:1)(22:6)25. (16:O)(22:6)29. Unknown

2.6.

10.14.18.22.26.30.

(20:S)(20:5)(22:5)(22:6)(22 :5) (22 •: 6)

(16:1)(22:6)(20 :5) (18: D(20:5)(16:O)(22:5)(16:O)(18:1) (16:O)

3. (20 7. (2011. (2215. (1419. (1823.27.

(16(16

31. (16

:S) (22:6):3) (22 :6):4) (22:6):O) (20 :5):1)(20:5):O)(20:5):O)(22:5):O)(18:1)

4, (22 8. (2012. (1616. (1420. (2224. (2228. (16

:6)(22::5)(22::1)(20::O) (22::6) (18::6) (16::O) (20:

6)5)5)6)1)

o)4)

Fig. IV-56. Eigenvectors of al1 detected mo1ecu1ar .specles on thefirst and secend principal component plane on PCA.

146

3

30x19Lst29i6..I!.-...l)tsY2xpt.sX>249

,,1-5.:-:-,,;.:..-:':.=--'{-//t`;-:.,tL,.!OgS..k,,,,--k----;;.-

31-t1ttt4.,f])i"1,,1ti,/1.-•2!l••//.r;1.1i,{li""!r.t]-'"'!ri,/x'.Ct..tst"fiii..:......-..-.,,..7-•-----O-136

'x-- ---- -I-

""---t.i-"--..

8----'--- .-"---'-'-

-' `",,'"----".' ;-;2Elpt.-:--11'

}'-e.---------S/,,,-""")""-8""---22

xIIs,x,12

•1

1. (16: 5. (20: 9. (20:13. (22:17. (17:21. (18:25. (16:29.

2) (20 :5)

4)(22:5)4)(22:6)6) (16 :1)

O)(22:6)1)(22:6)O) (22:6)

Unknown

2. (20: 6. (22:10. (22:14. (16:18. (20:22. (20:26. (22:30. (18:

5)(20:5)5)(22:6)5)(22:6)1)(22:6)5)(18:1)S)(16:O)5)(16:O)1)(16:O)

3. (20 7. (2011. (2215. (1419. (1823. (1627, (1631. (16

:5) (22:6):3)(22:6):4) (22 :6):O) (20:5):1)(20:S):O) (20 :5)

:O)(22:5):O)(18:1)

4. (22: 8. (20:12. (16:16. (14:20. (22:24. (22:28. (16:

6)(225)(221) (20O)(226) (186) (16O) (20

:6):5):5):6):1):o):4)

Fig. ZV-57. Eigenvectors of all the detected molecular .speczes onthe first and third principa! component plane on PCA.

Tab

1e:V

-15-

.P

rint

out

of th

e•pr

inci

pal

load

ing

(com

pone

ntsc

ore)

on •

PC

A

<P

RrN

CIP

ALL

OA

D:N

G>

1 2 3 4 .Je 6 7 8

PR

:

l-1

6.35

,2--

12.7

37 L

n . c

:)44

-• r

) .9

2• 7

14.3

1517

. 1

th. e

tb.3

68-1

.812

N C

IP

2 8

.e27

8.e

,1E

, -

-6.2

45-1

2.11

6 4

.3e7

e.9

46 -

5 .5

2•

6 -

5t .

4th8

AL

3 4e4

58-3

.S,6

4 1

.'e7

7

3.1

77 3

.65B

-1.7

S4

-1.9

12--

S .

1 1

a.J

4 -1.IB

q) 1

.9M

. 2

--5

. 3th

6

t.65

4 3

.165

-2•

.333

2.3

37-E

, .23

9

e,

2 .5

e3-3

.121

-2•

.76e

o O

.24B

-1.th

11 1

.217

v).

221

:.7C

i2•

6 e.e

E,3

e.1

48-c

n.f,4

•e

e.9

91-1

.82•

5

;.49

3 t

.7 "

s S

.

-2.E

,2.E

t

7 -e.4

49 e

.837

-e.6

e6 1

.841

-e.4

66 e

.76G

)-2

.172

e.2

EE

,

8 -C)

. Q)L

)O-e

) . c

4 ti)

ro

e.e

ee e

. t!}

v'4

tb

-Q)

. cb

G)

tb

-e .

e) c

ew e

. ql

u).

":J

e .

c) (

1) c

o

t 2 3 4 eJ 6 7 8

9 e.o

ee e

. co

tbth

.

cn.

.a)e

op

-o.e

ee-e

. ee

th.

-e.e

oe-c

t) .

u)w

o

o.c

)c4e

10

-e.e

ee-e

.eeo

e.e

ee-e

.eeo

e.e

eo e

.eee

e.u

)ee

e.e

ee

11

--e

.ooe

e.o

pee

-e .e

ope

e.c

oec)

-(b

.eet

h.

Q)

. ooe

-e .

op (

be

e.e

ele)

12

-e.e

eo e

.opo

pe-e

.eeo

o .o

opq)

-tb

.eee

e.e

ee e

. cJ

ec,)

-e.e

oe

13

E)

."pe

e-c

b . c

:4ee

o .

eop

a.1

-c,I

. cbe

tb

-q, .

ope

e

Q}

. eee

)

-(i .

eee

e.e

ee

14

-o.e

ec.

-e.e

ee o

.eee

e .e

eo e

.eee

-e.e

eo e

.eJe

e o

p . t

eetb

15

-eo

. a)

ti.)e

e.u

')oe

e.e

eo-o

.o":

e

e.o

poe

--o.

eoe

-e.e

,ee

-(b

. e. o

cn

16

-c )

. cn

t.t)

e

--e)

.tbop

e e

. g)

etb

-t)

. c)

t:)e

Q)

. c:,)

oqi

e .e

c;)e

-e .

v:}c

4e

QI.Q

)OE

)

t 2 3 4 5-, 6 7 s

17

op

. a.)

a)

th.

tt)

. EJ

clJ

th

-- E

:J .

c:}

e) e

t:•)

. tl)

t:,1

tiJ

-E, .

deo

e

o .

I:)oe

O .

oi:}

q')

-O .

Q)

iz1)

q)

Row

1:F

eedi

ng m

tgra

tton,

2:F

eedi

ng m

tgra

tton,

3:S

paw

ning

mtg

ratto

n, 4

:Spa

wni

ng m

igra

tion,

s:S

paw

ntng

mlg

ratlo

n. 6

:Spa

wni

ng m

igra

tion.

7:S

pent

, Mal

e, 8

:Spe

nt. F

efna

le,

Ma1

e.F

efna

1e,

Mal

e (S

eQ).

Fem

ale

(Sea

), M

ale

(Riv

er),

Fet

na!e

(R

tver

),

p ) N

148

2

IVIFoo

MAFMF

1

oM:oF:eM:eF:aM:mF:AM:AF:

Feedtng migration,Feed1ng migratlon,Spawning mtgratton,Spawnlng migration,Spawning migration,Spawning migration.Spent, Male,Spent, Female,

Ma1e,Fema1e, Male (Sea), Female (Sea), Male (River), Fema1e (River),

Fig. TV-58• Plots of principalprincipal component planeRefer to the eigenvectorsthis plane.

loading on the first and secondon PCA.in Fig. ZV-56 as background of

149

3

oF Me o

M

F M -oEo F

A

1

oM:oF:eM:eF:oM:oF:AM:AF:

Feeding migration,Feeding mtgration,Spawning mtgration.Spawning migration.Spawning migration.Spawning migration,Spent, Male,Spent, Female,

Ma1e,Fema1e, Male (Sea), Female (Sea), Male (River), Female (River),

Fig. :V-59 Plots of princÅ}palprincipal eomponent planeRefer to the eigenvectors

loading on the first and thirdon PCA.in Fig. IV-57 as background of this plane.

150

are 31 ( see the footnote of Fig. rV-56 ). And number of

samples correspond to the four different migratory stages of

two different sexes ( see the footnote of Table ZV-15). '"MEANt' is the average amount of each molecular species of the

four stages and "S.D." is standard deviation. Correlations

among all detected molecular species are shown in Table TV-12 'and eigenvalues calculated by the Jacobi method from Table

rV-12 are shown in Table rV•-13. Values of contributions are

also shown in this Table. Though variables were up to 31, the

accumulated contribution was 63.7Z when employed to the

second principal component.

rn Fig. IV-56, eigenvectors of all detected molecular

species are shown as small numbers on the first and second

principal component plane. These are drawn up from the print

out of component loading in columns 1 and 2 in Table :V-14.

And in Fig. !V-S7, eigenvectors of the same molecular species

are generated on the first and third principal component

plane. And these are drawn up from the print out of component

loading in columns 1 and 3 tn Table IV-14 as well.

Principal loading in Table rV-15 was plotted on the

first and second principal co' mponent plane as shown in Fig.

rV-58 and on the first and third principal component plane as

shown in Fig. IV-59. The mQvement according to the stage of

migrations are shown by arrows. Very interesting movements

are observed in this figure. By refering the eigenvectors in

Fig. rV--56 at the same time, it can be observed that the

movement direction from feeding migration stage to spawning

migration stage (sea) is nearly parallel to the eigenvectors

numbered 8, 15, 17, and 20 whiie it mtikes a right angle

151

against eigenvectors 25 and 29. This shows that although the

amounts of number 8 ( (2Q:5)(22:5) ), number 15 ( (14:O)

(20:5) ), number 17 ( (17:O)(22:6) ) and number 20

(.(22:6)(18:1) ) are small as have seen in Fig. !V-51 and

Fig. :V-52, drastic decrease of these molecular species

occurs between these two stages, making good contrasts to

number 25 ( (16:O)(22:6) ) and 29 (Unknown) which keep the

constant amount. On the other hand, when the migratory stage

proceeds to the spawning stage in the river, the movement of

the arrow in this figure becomes almost parallel to the ,

eigenvectors of number 25, 29 and also 6, 11, 13, 18 and 26.

Number 25 is (16:O)(22:6), and the rest 6, 11, 13, 18 and 26

are small peaks. So it might be possible to conclude that

(16:O)(22:6) is almost constant at the sea stage and becomes

changeable at the stage of river.

Spent salmon showed an analogous position with thst of

spawning migration stage in the sea in PCA planes as it is

shown. in Fig. IV--58 and Fig. IV-S9. And from these two

figures, it is clearly seen that the differences between male

and female are considerablely smail compared with the

differences among the migratory stages.

152

CHAPTER V

GENERAL SUMMARY AND CONCLUSIONS

Superiority of the reversed-phase type HPLC was

emphasized.

rn chapter I, it was suggested that dephosphorylation

followed by acetylation is effective in separating the

critical pairs of the lecithin molecular species on HPLC. The

positional isomers were also separated to some extent unlike

the triglycerides. And a new matrix model was proposed for

the prediction of molecular species of lecithin. The matrix

modei was as follows: 'x d, CN= Pi.log(RRT)+qi CN" c, d2 DB= Pz•log(RRT)+q, DB= cC,' 212

where ci, c2 and dt, d2 are acyl carbon number and the number

of double bonds in each acyl group line up in a similar way.

x and y are variables of acyl carbon nurnber and number 6f

double bonds, respectively. P, and P2 are the slopes and q, and

q, are the in'tercepts on the ordinate of the semilogarithmic

plots of the RRTs of molecular species against CN or DB. RRT

is the relative retention time ( in general, it should be

relative retention ).

Zn chapter I:, the matrix model proposed in chapter :

was developed into the rules for molecular species of

triglycerides. This idea was based on the expansion of matrix

of (2,2) ty.pe model for the lecithin molecular species to

the matrix of (3,2) type model for the triglyceride molecular

species. The matrix model for the triglyceride was as

fo;lows:

153

cN= pi•iog(RgT)+q, cN=lll; ddd';i

DB= Pa'log(RRT)+qi DB" ICC.'2, Ydd,2i

' 'where ci, c2s c3 and dh d2, d3 are acyl carbon number and the

nu•mber of double bonds in each acyl group linhe up in a

similar way. x and y are variables of acyl carbon number and

number of double bonds, respectively. Pi and Pi are the slops

and q, and q, are the intercepts on the ordinate of the

semilogarithmic plots of the RRTs of molecular species

against CN or DB. RRT is the relative retention time. This

matrix model was verified by the actual analysis of

triglycerides from natural sources and from thechromatographic results presented by other investigators!1,38,39)

The theoritical background of the proposed new model was 'considered by introducing the theory of Martin.42) He

formulated the equation:

'kiZ.F!}T='4`iS.iFAT +4fig.2S'T , in(ctqAB)=ALi(l.I&T

where A, B are members of a homologous series, differing bythe functional group X, ct is the partition coefficient and ";l!tZ

is the differences in chemical potential of the group X in

polar or non-polar phase of the chromatographic system. It

follows that each group in the solute molecule contributes

more or less independently to the differences in standard

free energy of the solute between the two different phases.

Thus, in general, there is a linear relationship between ln 6<

or log <)( and the number of functional groups in a homologous

series. By substituting A in Martin's theory42)as

154

c, d, c+i x dltriglyceride species c2 d2 and B as c2 d2, X will becomea functionai group. orC3wed3couid aisoCgubgeitute A as icC2i dd2'l

and B as Ccci 32 giltYl, then y win'aiso become a functionailC3 d3t

group. rn this case, X corresponds to -CH2- unit and Y

corresponds to -CH=CH- unit. The chemical potential of the 'triglyceride molecule is principally affected by these X or 'Y, since in accordance with the elongation of the hydrocarbon

chain or increase in the nurnber of double bonds in the acyl

group, the plots of RRT of each molecular species draw an

ascending or a descending straight line.

Thus the physicochemical background ef the matrix model

has been demonstrated from the theory of Martine2) A more

detailed considerations were also done in this chapter !r. ' 'Strictly speaking, in additton to the physicochemical

functional groups, that is, -CH2- and --CHsCH-, the

differences in arrsngement of these units might slightiy

affect the total chemical potential of the triglyceride

molecule ( it was called sc factor ). And from the view point

of stereospecific structure, we should consider about the

degree in bias between the positional isomers. So the author

has concluded that the chemical potential of the triglyceride

molecule is the resultant of all functional groups in them o l e c u l e . T h e c ? g md, u p p e d c h e m i c a l p o t e n ti a l ()/cC ) o f

triglyceride C2 d2 was written as follows: d3 C3 xtL=g[f(ci, di, 3tt ), l(c" d,, R. ), }(c3, dj, St3 )}

where St is an St factor, f is the chemical potential given

by the hydrocarbon chain, and g is the function of chemical

potential given by the differences in positional isomers. Zn

order te give shape to this function, it was concluded that a

155

more precised instruments ( column, pump and detector of the

HPLC ) that gives a perfect reproductive data is required.

Name2x,dÅíor ,example, if the differences of RRT between 2C i ddd31

and c, di can be measured perfectly, then the relation c3 d3between f(ci, di,.Sti) and f(c. d2, SUL) can be formularized by

analyzing the multiple data. The 3-7ttm type column packing is

'expected for this purpose.

The theoritical relationship between the presented

matrix model demonstrated in this study and the conventional

ECN theory was also discussed in chapter I:. Tt was proved

mathematically that ECN is the degradated form of the

presented matrix model.

In chapter Irl, the computer software for the

identification of lecithin molecular speci,es was designated.

The order of priority in the computer program for the

identification of'lecithin molecular species was as follows:

1. When there is a same molecular species in the data ' file, the RRT of this moiecular species is printed out.

2. When there are molecular species that belong to the E2 dd2t group ( or fii gij ), a regression iine is

generated and the RRT of the predicted molecular species

is printed out.

3. When there are two parallel line groups that slightly

differ in the slope due to the arrangement of -CH2- and

-CH=CH-- units in the molecule, parallelogram is

generated. And the RRT of the unknown vertex of this

parallelogram is printed out.

4. When there are molecular species that belong to the d, group ( when the combination of the acyl carben d2

156

' number is unknown ), the slope of the generalized

regression line is introduced. And the RRT of the

predicted species is printed out.

Though there is still a limitation for the perfect

identificstion of all the molecular specÅ}es contained in the

samples from natural sources due to the incomplete

reproducibility of.RRT, this computer software might be

convenient in predicting the generally found molecular

•specles.

rn chapter rV, from the view point of muscle lecithin 'molecular species, sardine, mackerel, big-eyed tuna, brown

sole, sand flounder, rock fish, Alaska pollack, chum salmon,

blue shark, mackerel shark, carp and rainbow trout were

examined on HPLC. Amoung the fish examined, flat fish such as

brown sole and sand fiounder were extremely characteristic

since these fish contained (16:O)(20:5) as the most prominent

species unlike the rest of the fish that had (16:O)(22:6) as

the most prominent species. Cartilaginous fish such as blue

shark and mackerel shark had a very few amount of molecular ' 'species that have the combination of highly unsaturated fatty

acids such as (20:S)(20:5), (20:5)(22:6) and (22:6)(22:6).

This was also observed in fish from fresh water such as csrp

and rainbow trout. The main differences between the

cartilaginous fish and the fresh water fish were in the

contents of molecular species composed of 20:5 represented by

(16:O)(20:5). These were rich in the cartilaginous fish.

Principal component analysis (PCA) was done in order to

characterize each fish in relation to all other fish

examined. Except sardine dark muscle, chum salmon ( feeding

157

migration ) and rainbow trout, a reflectsble movement in the

content of (20:5)(20:5) was observed in the majority kind of

fish examined.

Chum salmon of four different migratory stages were

analyzed in the sarne manner. By introducing PCA again for the

interpretation of muscle lecithin molecular species analysis

amoung the migratory stages, interesting movement were

observed on the first and second, as well as the first and

third principal component plane Sn accordance with the

advance in migration. The plots of male and female moved

aimost together on these plane. This ituplies that although

there are some differences between male and female especially

at the stage of spawning migration in the river, these

differences are not so large as the differences between the

migratory stages. Zt was clearly seen that at the stage of

spawning migration in the river, molecular species of

(16:O)(22:6) drastically decreased.

The study in molecular species of fish lipid is at the

dawn of a new age. Especially for the analysis of

triglyceride molecular species, an effective high performance

column that has a thorough theoritical plate to separate

individuai molecular species is principally required. And a

conbination with the flame ionization detector (FID) or with

the mass spectrometer is expected to back up a more precised

determination. Attempt on the analysis using (FID) on HPLC 49-S4)has done by Privett et al. And that on the analysisusing mass spectrometer combined with HPLC has done by Kuksiset al?5) Matsushita et a15.6) have used a mass spectrometer on

the fractions obtained by HPLC manually. There is also an

158

attempt done on a mass spectrometer without using HPLC forthe fractionatioi7'"63)or by high a field ?3c nuclear magnetic

resonance spectrum (NMR) alone64? But from the author's point

'of view, at least the HPLC fractionation might be inevitable

prior to the mass spectrometer or NMR analysis. And these

should be used only when it is necessary to analyze the

overlapped peak on HPLC since the analytical cost using the 'mass spectrometer or NMR might be wasteful.

In this study, principal consideration for the complex

lipid molecular species analysis was on lecithin. But the

author is quite sure that the matrix model presented fQr the

lecithin HPLC analysis well fits to the other complex lipidmolecular species analysis as wen. Nakagawa et a16.5'66)worked

'on the phosphatidylethanolamine molecular species of bovine ' 16) 13)brain and Un Hoi Do et al., as well as Smith et al. worked

on the ceramideS of bovine brain in addition to the studieson lecithin molecular species97) !n accordance with the data

accumulation in these field, the invariability of the matrix 'model for all kinds of lipid molecular species is sure to be

verified.

1.

2.

3

4

s

6

.

.

.

.

7.

8.

9e

159

REFERENCES

'K. Takahashi, K. Zama and T. Matsuoka: Molecular Species

of Fish Muscle Lipids. r. Molecular Species of

Triglyceride and Phosphatidylcholine of Sardine and

Rainbow Trout. Bull. Fac. Fish. Hokkaido Univ., 2:tL,

378'v385 (1978)•

A. H. El-Hamdy and E. G. Perkins: High Performanced

Reversed-Phase Chromatography of Natural Triglyceride

Mixtures. J. Am. Oil Chem. Soc., 2t, 49.-63 (1981).

H. Hatano: "Saishin no Ekitai Kuromatog'raf' i." J. Jap.

Chem., 3:5, 283•v292 (1981). (In Japanese).

R. E. Pauls: A Time Normalization Study of the

Separation of Olive Oil Triglycerides. J. Am. Oil Chem.

Soc., S.StL, 819.v822 (1983).

Waters Associates Inc. LC seminar, held in Sapporo,

Japan, in June 6th, 1980. 'S. Wada, C. Koizumi, and J. Nonaka: Analysis of

Triglycerides of Soybean Oil by High-Performance Liquid

Chromatography in Combination with Gas Liquid

Chromatography. Yukagaku, Z6, 95N99 (1977).

S. Wada, C. Koizumi, A. Takiguchi and J. Nonaka: A Study

on Triglyceride Composition of Lipid from Commercial

Beef by High-Performance Liquid Chromatography. ibid.,

kt, 579N584 (1978).

N. A. Porter, R. A. Wolf and J. R. Nixon: Separation and

Purification of Lecithins by High Pressure Liquid

Chromatography. Lipids, L4, 20•v24 (1979).

R. D. Plattner, G. F. Spencer and R. Kleiman:

10.

11.

12.

13e

14.

15.

16.

160

Triglyceride Separation by Reverse Phase High

Performance Liquid Chromatography. J. Am. Oil Chem. Soc.

,L4, 511N515 (1977).

R. D. Plattner: High Performance Liquid Chromatography

of Triglycerides: Controlling Selectivity with Reverse

Phase Columns. ibid., Lt, 638•v642 (1981).

A. H. El-Hamdy and E. G. Perkins: High Performance

Reversed Phase Chromatography of Natural Triglyceride

Mixtures: Critical Pair Separation. ibid., SLt, 867tv872

(1981).

B. J. Compton and W. C. Purdy: The High-Performance

Liquid Chromatography and Detection of Phospholipids and

TriglyceridesL Part 1. Nonpolar Stationary Phase

Chromatographic Behavior in Ultraviolet Transparent

Mobile Phases. Analytica Chim. Acta, 141, 405'v410

(1982).

M. Smith, P. Monchamp and F. B. Jungalwala: Separation

of Molecular Species of Sphingomyelin and Ceramide by

Argentation and Reversed-Phas6 HPLC. J. Lipid Res.,

Lt, 714'v719 (1981).

J. Y-K. Hsieh, D. K. Welch and J. G. Turcotte: High

Pre.ssure Liquid Chromatographic Separation of Molecular

Species of Phosphatidic Acid Dimethyl Esters Derived

from Phosphatidylcholine. Lipids, L6, 761•v763 (1981).

N. A. Porter, R. A. Wolf and H. Weenen: The Free Radical

Oxidation of Polyunsaturated Lecithins. ibid., L5,

163•-167 (198O).

C. G. Crawford, R. D. Plattner, D. J. Sessa and J. J.

Rackis: Separation of Oxidized and Unoxidized Molecular

17.

18.

19.

20.

21.

22.

23.

Species of Phosphatidylcholine by High Pressure Liquid

Chromatography. ibid., Lt, 91tv94 (1980).

Un Hoi Do and P. T. Pei: Separation of Molecular Species 'of Ceramides as Benzoyl and 7e-Nitrobenzoyl Derivatives

by High Performance Liquid Chromatography. ibid., !-Q,

855'-862 (1981).

J. Y-K. Hsieh, D. K. Welch and J. G. Turcotte: General

Method for the Analysis of Phosphatidylcholines by

High-Performance Liquid Chromatography.

J. Chromat., 208, 398'v403 (1981).

M. Smith and F. B. jungalwala: Reversed Phase High

Pe'rformance Liquid Chrornatography of Phosphatidylcholine

: A Simple Method for Determining Relative Hydrophobic

lnteraction of Various Molecular Species. J. ,Lipid Res.,

k2, 697N704 (1981).

G. M. Patton, J. M. Fasulo and S. J. Robins: Separation

of Phospholipids and :ndividual Molecular Species of

Phospholipids by High-Performance Liquid Chromatography.

ibid., Z.L3, 190•v196 (1982).

T. Ohshima, S. Wada and C. Koizumi: Estimation of

Possible Fatty Acid Combinations in Phosphatidylcholine

and Phosphatidyl'ethanolamine of Cod. Bull. Japan.iSoc.

Sci. Fish., A:tL, 123A-130 (1983).

T. Ohshirna and C. Koizumi: Accumulation of

Lysophosphatidylcholine and Lysophosphatidylethanolarnine

in Muscle of Fresh Skipjack. ibid., A:ti, 1205.v1212

(4983). (In Japanese).

T. Ohshima, S. Wada and C. Koizumi: Deterioration of

Phospholipids of Skipjack Muscle during Ice Storage:

161

24.

25.

26.

27.

28.

29.

30.

31.

32.

162

Mainly Concerning to.Enzymatic.Hydrolysis of

Phosphatidylcholine. ibid., A.Lt, 1213•v1219 (1983).

(In Japanese). 'T. Ohshima, S. Wada and C. Koizumi: Enzymatic

Hydrolysis of Phospholipids in Cod Flesh during Cold

Storage. ibid., 24 , 1397A.1404 (1983). (In Japanese).

T. Ohshima, S. Wada and C. Koizumi: Enzymatic

Hydrolysis of Phospholipid in Cod Fresh during Storage

in Ice. ibid., SLO, 107.-114 (1984). (In Japanese).

W. E. M. Lands and P. Hart: The Control of Fatty Acid

Composition in Glycerolipids. J. Am. Oil Chem. Soc., AtL,

290-295 (1966).

O. Renkonen: lndividual Molecular Species of Different

Phospholipid Classes. Part II. A Method of Analysis.

ibid., 42, 298•v304 (1965).

O. S. Privett and L. J. Nutter: Determination of the

Structure of Lecithins Via the Formation of Acetylated

1, 2-Diglyceride. Lipids, Z., 149.v154 (1966).

A.. F. Prevot and F. X. Mordret: "Utilisation des

Colonnes Capillaires de Verre pour 1'Analyse des Corps

Gras par Chromatographie en Phase Gazeuse." Rev. Fse

Corps Gras, Z;3L, 409•v423 (1976). (In•French).

S. Funahashi, I. Hara and T. Yamakawai in "Lipid 1.t'

Published by Ky6ritsu-Syuppan, Tokyo, 1970, 531 pp.(tn Japanese).

H. Kosugi and N. Ueda: "Hito Hishi no Bunseki•-tokuni

Toriguriserido no K6z6." Proc. J. C. B. L., Lt, 9"v12

(1976). (rn Japanese).

K. Zama, T. Maruyama and K. Takahashi: Lipids of the

33.

34.

35.

36.

37

38

.

.

39.

163

Crustacea. I. Lipids of the Muscle and the Egg of the

Prawn(YPgul!gJLgJ2-s.i.sandlo japonica).Bull.Fac.Fi.sh.Hokkaido

Univ., 2.7L, 181•v190 (1976). 'K.Takahashi, F. Cabling Jr and K. Zama: Molecular

Species of Fish Muscle Lecithin. II. Changes in

Triglyceride and Phosphatidylcholine Molecular Species

of Sardine after Frozen Storage. ibid., 2.Lt, 386."391

(1978).

A. Kuksis: in "Progress in the Che'mistry of Fats 'and'

Other Lipids" (ed. by R. T. Holman), Vol. 12, Pergamon

Press, Oxford, New York, Toronto, 1972, pp. 105-vlll.

R. Wood and F. Snyder: Tumor Lipids: Metabolic

Relationships Derived from Structural Analyses of Acyl, 'Alkyl, and Alk-1--enyl Moieties of Neutral Glycerides and

Phosphoglycerides. Arch. Biochem. Biophys., 131, 478,v494

(1969). 'D. B. Menzel and H. S. Olcott: Positional Distribution

of Fatty Acids in Fish and Other Animal Lecithins.

Biochim. Biophys. Acta, eL4, 133N139 (1964).

S. Wada: User's Communications. Jasco Report, Lt, 18•v20

(1983). (In Japanese).

E. G. Perkins, D. J. Hendren, N. Pelick and J. E. Bauer:

High Performance Reversed-Phase Chrorn' atography of the

Triglycerides from Human Plasma Lipoproteins. Lipids,

L7, 460•v463 (1982).

C. Merritt, M. Vajdi, S. G. Kayser, J. W. Halliday and

M. L. Bazinet: Validation of Computational Method for

Triglyceride Composition of Fats and Oils by Liquid

Chromatography and Mass Spectrometry. J. Am. Oil Chem.

40.

41.

42.

43.

44

45

.

.

46.

47.

48.

164

Soc., :Lt, 422"v432 (1982).

M. W. Dong and J. L. Dicesare: Improved Separation of

Naturai Oil Triglyceride by Liquid Chromatography Using

Columns Packed with 3-7-Lcm Particles. ibid., 6Lt, 788,v791

'(1983). ' 'M. Watari and M. Kishi: in "Personal Computer Library

Vol. 3." Published by K6gaku Tosho, Tokyo, 1982, pp. 4•-1-v '4-11 (In Japanese). 'A. J. P. Martin: Some Theoretical Aspects of Partition

Chromatography. Biochem. Soc. Symposia, (Cambridge,

England), .;i}., 4•-20 (1950).

Y. Toya, M. Umezawa, T. Takatori and S. Hara:

"Toriguriserido no HPLC Bunseki.t' Sammary book of the

22th anual meeting of Japan Oil Chem. Soc., Osaka, 1983,

144 pp. (In Japanese).

Z. Isihii: "!atorosukyan (Shinkurogurafu)." Med.

Technol., Q, 1196.v1202 (1980). (In Japanese).

R. T. Crane. S. C. Goheen, E. C. Larkin and G. A. Rao:

Complexities in Lipid Quantitation Using Thin Layer

Chromatography for Separation and Flame Zonization for

Detection. Lipids, Lt, 74At80 (1983).

J. K. Kaitaranta: TLC-F!D Assessment of Lipid Oxidation

As Applied to Fish Lipids Rich in Triglycerides. J. Am.

Oil Chem. Soc., 2t, 710'v713 (1981).

C. C. Parrish and R. G. Ackman: The Effect of Developing

Solvents on Lipid Class Quantification in Chromarod Thin

Layer Chromatography ! Flame ronization Detector. Lipids7

Lt, 563-565 (1983).

M. Watari and M. Kishi: in "Personal Computer Library

49.

so.

51.

52.

53.

54.

55.

165

Vol. 3." Published by K6gaku' Tosho, Tokyo, 1982, pp.

9-IAv9-12 (In Japanese). 'A. Stolyhwo and O. S. Prevett: Studies on the Analysis

of Lipid Class by Gradient Elution Adsorption

Chromatography. J. Chromatogr. Sci., Lt, 20,v25

(1973).

W. L. Erdahl, A. Stolyhwo and O. S. Privett: Analysis of

Soybean Lecithin by Thin Layer and Analytical Liquid

Chromatography. J. Am.' Oil Chem. Soc., ,5!OL, 513tv515

(1973).

O. S. Privett, K. A. Dougherty, W. L. Erdahl and A.

Stolyhwo: Studies on the Lipid Composition of Developing

Soybeans. ibid., 5Q, 516,v520 (1973).

F. C. Phillips, W. L. Erdahi and O. S. Privett:

Quantitative Analysis of Lipid Classes by Liquid

Chromatography Via Flame Ionization Detector. Lipids,

L7, 992'v997 (1982).

F. C. Phillips and O. S. Privett: Analysis of Lipid

Clas,ses and LipofuscÅ}n Sabstances by High Performance

Liquid Chromatography. J. Am. Oil Chem. Soc., L8,

59Otv594 (198!).

F. C. Phillips, W. L. Erdahl, J. D. Nadenicek, L. J.

Nutter, J. A. Schmit and O. S. Privett: Analysis of

Triglyceride Species by High-Performance Liquid

Chromatography Via Flame :onization Detector. Lipi'd$,

Lt, 142•-150 (1984).

A. Kuksis, L. Marai and J. J. Myher: Strategy of

Glycerolipid Separation and Quantitation by

Complementary Analytical Techniques. J. Chromat., 273,

S6.

57.

58.

59e

60e

61.

62.

166

43-•66 (1984).

S. Matsushita, Y. Tada, N. Kawamura, E. Ohnishi, Y.

Maeda and T. Ikushige: Rapid Analysis of Triglyceride of 'Oils and Fats by High Speed Liquid Chroma.tdgraphy. "T6y6

S6da Kenkyfi H6koku," 2L4, 29N33 (1980). (Zn Japanese).

M. Fukatsu, Z. Watanabe and T. Tamura: GC-MS Analysis of

Triglyceride I. Total Fatty Acid Composition.

Yukagaku, 2t, 215.v217 (1982). (Zn Japanese).

M. Fukatsu, K.Tanaka and T. Tamura: GC-MS Analysis of

Triglyceride !I. The rnfluence of Low Ionization Voltage

on Fragment ron rntensity. ibid., 3.Ll, 461'"463 (1982).

(In Japanese).

M. Fukatsu and T. Tam.ura: GC--MS Analysis of Triglyceride

III. Relqtionship Between the Fatty Acid Distribution

and rntensity Ratios of Specific Fragment Ions. ibid.,

3Lt, 92tv95 (1983). (In Japanese).

M. Fukatsu and T. Tamura: GC--MS Analysis of Triglyceride

IV. Correction of Fatty Acid Composition. ibid., ;L3,

144"v147 (1984). (In Japanese).

J. Ahlberg, T. Curstedt, K. Einarsson and J. Sjovall:

Molecular Species of Biliary Phosphatidylcholines in

Gallstone Patients: The Tnfluence of Treatment with

Cholic Acids and Chenodeoxycholic Acid. J. LÅ}pid Res.,

Lt, 404.v409 (1981).

M. Kino, T. }(atsumura, M. Gamo and K. Saito: Studies on

"lolecular Species of Choline and Ethanolamine

Glycerophospholipids Obtained from Rat Brain Myelin and

Synaptosomes by Gas-Liquid Chromatography Mass

Spectrometry. Biomed. Mass Spectrom., 9, 363N369

63 ..

64.

65.

66.

67.

167

(1982).

C. G. Crawford and R. D. Plattner: Ammonia Chemical

Ionization Mass Spectrometry of Intact Diacyl

Phosphatidylcholine. J. Lipid Res., ;L4, 456N460 (1983).

J. Y--K. Hsieh. D. K. Welch and J. G. Turcotte: General

Method for the Analysis of Phosphatidylcholines by

High-Performance Liquid Chromatography. J. Chromat.,

208, 398•v403 (1981).

Y. Nakagawa and L. A. Horrocks: K6soku Ekitai

Kuromatografi' ni yoru N6 Etanoruamin Bunshishu no

Bunseki oyobi Taisha e no Oyo-." Proc. J. C. B. L. 2.Lt,

356r-359 (1983). (In Japapese).

Y. Nakagawa and L. A. Horrocks: Separation of

Alkenylacyl, Alkylacyl, and Diacyl Analogues and Their

Molecular Species by High Performance Liquid

Chromatography. J. Lipid Res., g:4L, 1268•v1275 (1983).

M. Smith, P. Monchamp and F. B. Jungalwala: Separation

of Molecula•r Species of Sphingomyelin and Ceramide by

Argentation and Reversed;Phase HPLC. J. !aipid Res., Z.Lt,

714-719 (1981).