A network including TGF/Smad4, Gata2 and p57 regulates...

31
A network including TGF/Smad4, Gata2 and p57 regulates proliferation of mouse hematopoietic progenitor cells. Billing, Matilda; Rörby, Emma; May, Gillian; Tipping, Alex J; Soneji, Shamit; Brown, John; Salminen, Marjo; Karlsson, Göran; Enver, Tariq; Karlsson, Stefan Published in: Experimental Hematology DOI: 10.1016/j.exphem.2016.02.001 2016 Document Version: Peer reviewed version (aka post-print) Link to publication Citation for published version (APA): Billing, M., Rörby, E., May, G., Tipping, A. J., Soneji, S., Brown, J., Salminen, M., Karlsson, G., Enver, T., & Karlsson, S. (2016). A network including TGFβ/Smad4, Gata2 and p57 regulates proliferation of mouse hematopoietic progenitor cells. Experimental Hematology, 44(5), 399-409. https://doi.org/10.1016/j.exphem.2016.02.001 Total number of authors: 10 Creative Commons License: CC BY-NC-ND General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Transcript of A network including TGF/Smad4, Gata2 and p57 regulates...

Page 1: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

LUND UNIVERSITY

PO Box 117221 00 Lund+46 46-222 00 00

A network including TGF/Smad4, Gata2 and p57 regulates proliferation of mousehematopoietic progenitor cells.

Billing, Matilda; Rörby, Emma; May, Gillian; Tipping, Alex J; Soneji, Shamit; Brown, John;Salminen, Marjo; Karlsson, Göran; Enver, Tariq; Karlsson, StefanPublished in:Experimental Hematology

DOI:10.1016/j.exphem.2016.02.001

2016

Document Version:Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):Billing, M., Rörby, E., May, G., Tipping, A. J., Soneji, S., Brown, J., Salminen, M., Karlsson, G., Enver, T., &Karlsson, S. (2016). A network including TGFβ/Smad4, Gata2 and p57 regulates proliferation of mousehematopoietic progenitor cells. Experimental Hematology, 44(5), 399-409.https://doi.org/10.1016/j.exphem.2016.02.001

Total number of authors:10

Creative Commons License:CC BY-NC-ND

General rightsUnless other specific re-use rights are stated the following general rights apply:Copyright and moral rights for the publications made accessible in the public portal are retained by the authorsand/or other copyright owners and it is a condition of accessing publications that users recognise and abide by thelegal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private studyor research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will removeaccess to the work immediately and investigate your claim.

Page 2: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

1

A network including TGFβ/Smad4, Gata2 and p57 regulates

proliferationofmousehematopoieticprogenitorcells

Runninghead:NETWORKBETWEENTGFb/Smad4,Gata2ANDp57INHPCs

Matilda Billing1, Emma Rörby1, GillianMay2, Alex J. Tipping2, Shamit Soneji3, John

Brown2,MarjoSalminen4,GöranKarlsson3,TariqEnver2,StefanKarlsson1

1Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund

University,Sweden2StemCellGroup,UniversityCollegeLondonCancerInstitute,UnitedKingdom3DivisionofMolecularHematology,LundStemCellCenter,LundUniversity,Sweden

4DepartmentofVeterinaryBiosciences,UniversityofHelsinki,Finland

Correspondingauthor:

GöranKarlsson,PhD

DivisionofMolecularHematology,BMCB12,22184Lund,Sweden

Phone:+46462221261

E-mail:[email protected]

Highlights:• Gata2 is a direct target of canonical transforming growth factor-β (TGFβ) signaling

• p57 is an indirect target of canonical TGFβ signaling regulated largely via Gata2

• Gata2 mediates a large part of the molecular programs downstream of TGFβ

signaling

• Three factors are linked to the regulation of progenitor cell proliferation

Page 3: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

2

Abstract

Transforminggrowthfactor-β(TGFβ)isapotentinhibitorofhematopoieticstemand

progenitor cell proliferation. However, the precise mechanism for this effect is

unknown. Here, we have identified the transcription factor Gata2, previously

describedasanimportantregulatorofhematopoieticstemcell(HSC)function,asan

early and direct target gene for TGFβ-induced Smad signaling in hematopoietic

progenitorcells.WealsoreportthatGata2isinvolvedinmediatingasignificantpart

of the TGFβ response in primitive hematopoietic cells. Interestingly, the cell cycle

regulatorandTGFβsignalingeffectormoleculep57wasfoundtobeupregulatedas

a secondary response to TGFβ.We observed Gata2 binding upstream of the p57

genomiclocus,andimportantlylossofGata2abolishedTGFβ-stimulatedinductionof

p57aswellastheresultinggrowtharrestofhematopoieticprogenitors.Ourresults

connect key molecules involved in HSC self-renewal and reveal a functionally

relevantnetworkregulatingproliferationofprimitivehematopoieticcells.

Page 4: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

3

Introduction

Hematopoietic stem cells (HSCs) reside in a specialized micro-environment in the

bonemarrow(BM)knownastheHSCniche,wherenumerousintrinsicandextrinsic

regulatory factors combine to determine HSC fate 1. One of these factors is

transforminggrowthfactor-β(TGFβ),anevolutionarilyconservedgrowthfactorwith

awell-documented,potent inhibitoryeffectonhematopoieticstemandprogenitor

cell (HSPC)proliferation invitro2-4,aswellasa role inHSCself-renewal invivo 5-7.

TGFβ signaling is initiated by ligand binding to the constitutively active

serine/threonine kinase TGFβ receptor type II and subsequent recruitment of the

TGFβ type I receptor to the ligand/receptor complex 8. This initiates a

phosphorylation cascade inwhich thedownstream receptor activated (R)-Smads2

and3areactivated,allowingbindingtothecommon(co)-Smad4andtranslocation

tothenucleuswheregenetargetsareregulated9-11.CentralmoleculesintheTGFβ

responseareinvolvedinallbranchesofSmadsignaling,includingthoseinitiatedby

BMP and Activin. These are the inhibitory Smads (e.g. Smad7), which inhibit the

whole signalingpathway, aswell as Smad4,which is essential for transmitting the

signal into the nucleus 9. Interestingly, it has been demonstrated that the TGFβ

signaling pathway is activated inHSCs in vivo 7, 12 and this activation seems to be

criticalforHSCmaintenanceasdeletionofTGFβreceptortypeII(TGFβRII)orSmad4

affects HSC function in vivo resulting in decreased repopulation capacity and self-

renewal6,7.WhilethemechanismmediatingTGFβsignalingiswellcharacterized,the

downstream effector molecules in hematopoietic progenitors are poorly

understood. The cell cycle inhibitor p57 has been reported to be transcriptionally

activated by TGFβ and to play a critical role in TGFβ-induced cell cycle arrest of

hematopoieticprogenitorcells13andHSCs14.Additionally,HSCshavebeenreported

to express high levels of p57,while hematopoietic progenitor cells do not 12, 15-17.

Furthermore, p57-deficient HSCs show a severely decreased self-renewal capacity

and a reducedproportionof quiescent cells 18, suggesting that TGFβ has a role in

keepingHSCsinaquiescentstatethroughamechanisminvolvingthetranscriptional

activationofp57.

Here,wesetouttoelucidatetheeffectormechanismsinvolvingp57downstreamof

TGFβ signaling in primitive hematopoietic cells. However, even though p57mRNA

Page 5: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

4

levelswere robustly upregulated following treatment of hematopoietic progenitor

cells with recombinant human TGF-β1 (from now on referred to as TGFβ), the

responsewasdelayedanddependentondenovoproteinsynthesis, indicatingthat

p57isnotan immediateeffectormolecule intheTGFβresponse. Instead,wehave

identified the transcription factor (TF)Gata2,previouslydescribedasan important

regulatorofHSC functionwithsimilar functionsasTGFβ andp57, 19, 20asaSmad-

dependent, direct target of TGFβ signaling in hematopoietic progenitor cells. Our

resultsfurtherrevealatranscriptionalnetworkinvolvingGata2,p57andmembersof

the TGFβ signaling pathway. This regulatory network is active in HSCs and

downregulated upon differentiation. However, we can show that upon TGFβ

treatmenthematopoieticprogenitorsupregulateGata2andthenetworkisrestored.

Importantly,Gata2levelsarecriticalforTGFβ-inducedgrowtharrestdemonstrating

the functional importance for the TGFβ/Smad/Gata2/p57 axis in the regulation of

hematopoietic progenitor cell proliferation. Thus, this study represents the first

detailed mechanistic insight to TGFβ-induced growth arrest in the context of

hematopoieticprogenitorcells.

Page 6: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

5

Methods

Mice

Wild typeC57Bl/6micewereused for bonemarrow (BM)harvest. Cre expression

under influence of the Mx1-promotor was induced with three intraperitoneal

injectionsofpolyinositolicpolycytidylicacid(pIC)of250or400µgat2-dayintervals

inadult conditionalMxCre/Smad4fl/fl knockoutmice 6aswellas inMxCre/Gata2fl/fl

knockoutmice21.LittermatemicelackingCre-expressionwereusedascontrols.BM

washarvestedfromMxCre/Smad4fl/flmiceandMxCre/Gata2fl/flmice7-10daysand

1-5 days, respectively, after the last pIC injection. All mice were maintained

according to Swedish animal guidelines at the animal facility at BMC, Lund

University. All experiments were approved by the Lund University Animal Ethical

Committee.

Cellpreparationsandcellculture

Femur, tibiaeand iliac crests fromeachmousewere crushedandBMwas filtered

through a 70 μm cell strainer (Becton Dickinson (BD) Falcon or Fisher Scientific),

enriched for c-kit+ cells using positive magnetic selection (Miltenyi Biotec) and

stained with fluorochrome conjugated antibodies for fluorescence-activated cell

sorting(FACS).CellswerekeptinPBS(Gibco)containing2%FCS(GibcoorThermo

Scientific). Murine BM was cultured in StemSpan Serum-free expansion medium

(SFEM; StemCell Technologies) supplementedwith100 IU/mlpenicillin, 100µg/ml

streptomycin(P/S,Gibco),50ng/mlmurinestemcellfactor(mSCF;PeproTech)and

50 ng/ml human thrombopoietin (hTPO; PeproTech). Lhx2 cells were cultured in

Iscove’s modified Dulbecco’s medium containing L-glutamine and 25 mM HEPES

(IMDM; Thermo scientific), supplemented with P/S, 10-4 M 2-Mercaptoethanol

(Sigma-Aldrich),5%FCS,100ng/mlmSCFand10ng/mlhumaninterleukin6(hIL-6;

(PeproTech).When serum-freemediumwas required, FCSwas replaced by 0.5%

BSA (StemCellTechnologies).Wheredescribed,0.05-10ng/ml recombinanthuman

TGF-β1 (TGFβ; R&D systems or Biovision) was added to cultures. An untreated

controlsampleincubatedinparallelwiththeTGFβ-treatedsamplewasharvestedat

each indicatedtimepoint.Wherecycloheximide(10μg/ml)wasused itwasadded

tothecultures3hpriortothestart-pointoftheexperiment.

Page 7: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

6

Prior to global gene expression analysis, Lhx2 cellswere serum-starved over night

before treatment with 10 ng/ml TGF-β1 for 2 h. Untreated cells were used as

controls.

Chromatinimmunoprecipitation–sequencing(ChIP-Seq)

ChIP-Seqwasperformedaspreviouslydescribed22.Briefly,1×108Lhx2cellswere

treatedwith 10 ng/ml TGFβ for 2h and then cross-linkedwith 1 % formaldehyde

(Merck) for 15 min at room temperature before sonication using a Bioruptor.

Sheared chromatin (150-500bp fragments)was incubatedwith10μganti-GATA-2

sc9008 (Santa Cruz Biotechnology) overnight and chromatin-antibody complexes

precipitated with Protein-G agarose (Roche). Library preparation and sequencing

wascarriedoutasdescribed22.Readswerealignedtothemm9versionofthemouse

genomeusingbowtie(19261174),andpeaksweredetectedusingMACS(18798982)

and selected on having a 15-fold increase over the IgG control with a -

10*log10(pvalue)>90.

ChIP-PCR

ForanalysisofLSKandcKit+cells,theChIPprocedure22wasmodifiedasfollowsto

accommodatethereducedcellnumber.Cells(300,000–6million)werecross-linked

andsonicatedwithsolutionvolumesreducedasappropriate.Antibodieswerepre-

adsorbedtoProteinGagarose,byincubating2ugofantibody(anti-GATA2sc9008,

anti-HAornormalrabbitserumIgG)withProteinGagarose(20µlofa50:50slurry)

in100ulRIPAbufferfor2hours,beforeadditionofBSAto10µg/µlforafurther30-

60min to block subsequent non-specific bindingof chromatin. The agarosebeads

were recovered by centrifugation, supernatant removed, and 180 µl of sheared

chromatinadded,beforeincubationovernightat4oCwithrotation.EachChIPused

chromatinequivalenttoapproximately100,000-375,000LSKor3millioncKit+cells,

basedonthenumberofcellsinitiallyharvested.Washvolumeswerereducedto200

µl.

Real-timePCRwasperformedusingeitherSYBRGreenPCRorTaqmanMasterMix

(Life Technologies), using custom primers and probes; p57 PCR product was

detected using Probe 76 (Universal ProbeLibrary, Roche Life Science); GAPDH

productwasdetectedusingeitherSYBRGreenorthecustomprobebelow(identified

in Fig legends as “SYBR” and “plus probe” respectively). Custom primer/probe

Page 8: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

7

sequences were: P57_F1 = gagctcccagaaagaccaca, P57_R1 =

gaaaaagagctcctatggctgta; with probe: P57_F1A = gagggctgtggcaagactc, P57_R1A =

tccagctttcaaattttatctcg, Smad7_F1 = aaaataagcaagggaagtgga, Smad7_R1 =

ctggttctcagcctggtgtc; mGATA2_F = gtatgtcgtgggaggctgtt, mGATA2_R =

taagcgccacctgaccat; GAPDH_F = caaggctgtgggcaaggt, GAPDH_R =

tcaccaccttcttgatgtcatca, Custom GAPDH probe from Sigma Genosys = FAM-

acgggaagctcactggcatggc_TAMRA.

RNAisolationandmicroarrayhybridization

Total cellular RNA was isolated using Trizol reagent (Invitrogen) according to

manufacturer’s protocol. RNA concentration and integrity were determined by

spectrophotometer (NanoDrop 1000, Thermo Scientific) and Bioanalyzer (2100

Expert, Agilent Technologies), respectively. Agilent’s recommended procedures

(Version5.7,March2008)were followedfor thepreparationand labelingofcDNA

and hybridization, washing, scanning, and feature extraction of Agilent 60-mer

oligonucleotide microarrays for microarray-based one-color gene expression

analysis.ThreeindependentRNAharvestswereseparatelyanalyzed.

Analysisofmicroarraydata

Arrayswerenormalizedusing cyclic-loess, anddifferentially expressed geneswere

identified using LIMMA (16646809)FDR< 0.2. Expression profiles were clustered

using Genesis (11836235), and ontology analysis was carried out using DAVID

(http://david.abcc.ncifcrf.gov/).

FACS

The following antibodies were used, either unconjugated or fluorochrome-

conjugated:anti-B220, -CD3, -CD4, -CD5, -CD8, -Gr1, -Mac1, -Ter119, -Sca1, -cKit, -

CD34,-CD48,-CD150(BD,BiolegendoreBiosciences).Unconjugatedantibodieswere

detected with tricolor conjugated goat F(ab’)2 anti-rat IgG (H+L) (Caltag Lab,

Burlingame,CA).Sampleswerestainedwith7-aminoactinomycinD (7-AAD;Sigma-

Aldrich, St Louis, MO) to exclude dead cells. Cells were sorted on FACSAria or

FACSVantage Cell Sorter (BD Biosciences) or analyzed on FACS Canto II (BD

Biosciences).

Page 9: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

8

Quantitativereal-timePCR(qPCR)

RNAwasextractedusingRNeasyMicroKitandreverse transcribed (Superscript III,

Invitrogen) in the presence of random hexamers. Gene specific primers (Taqman;

AppliedBiosystems)wereusedtoanalyzetheexpressionofGata2,Cdkn1c(p57),Id1

andSmad7,togetherwiththehousekeepinggeneHprt.Analyseswereperformedon

a 7900 HT Fast Real-Time PCR System (Applied Biosystems) according to

manufacturer’sprotocolusingthesoftwareSDS2.2.1.Eachassaywasmeasured in

triplicateandresultswerenormalizedtoHprtlevels.

Lentiviraltransduction

HA-Smad4wasclonedintothedestinationvector.Lentiviruseswereproducedatthe

vectorunitatLundUniversity.TransfectionoftheHIVvectorsysteminto293Tcells

was performed using Calcium Phosphate Transfection Kit (Sigma). Plates were

coatedwith40µg/mlretronectin(TakaraBioInc.)atRTfor2h,blockedwith2%BSA

solutionatRT for30minandrinsedoncewithPBS.Freshly isolatedBMwasc-kit-

enrichedandkept in SFEMsupplementedwith1%P/S,50ng/mlmSCF,50ng/ml

hIL-6 and 10 ng/ml murine interleukin 3 (mIL-3; Peprotech). Cells and virus

supernatant (MOI: 15)were added to thepre-coatedwells and incubated at 37°C

overnight. After 24 hours 50 % of the medium was removed and fresh medium

addedtotheculture.Afteradditional24hoursthecellswereharvestedforChIP.

Colony-formingunit(CFU)assays

Whole BM cells or cells sorted on the basis of surface markers were plated in

methylcellulose(Methocult3231;StemCellTechnologies),supplementedwith20%

IMDM,1%P/S,50ng/mlmSCF,10ng/mlmIL-3and10ng/mlhIL-6,withorwithout

TGFβatindicatedconcentrations,in6wellplates.Colonieswerecounted10-15days

afterplating.

Statisticalmethods

StatisticsweredeterminedusingMannWhitneytest,Wilcoxonmatched-pairssigned

ranktestorStudent´st-testandthefollowingsignificancelevelswereused:*P<0.05;

**P<0.01;***P<0.001.

DatahasbeendepositedinTheGeneExpressionOmnibusunderaccessionnumbers

GSE73641andGSM1899949.

Page 10: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

9

Results

p57expressionisindirectlyupregulatedbyTGFβinprimitivehematopoieticcells

Thecellcycleinhibitorp57isimportantforTGFβ-inducedcellcyclearrestofHSPCs

anditsexpressionhasbeenshowntobeinducedbyTGFβinprimitivehematopoietic

cells 13, 14. To investigate how TGFβ affects p57 regulation in primary HSPCs over

time,we performed a time course qPCR experimentwhere freshly sortedmurine

LSKCD34- cells (HSCs) or LSKCD34+ cells (hematopoietic progenitor cells) were

treatedwithTGFβandharvestedatdifferenttimepoints(Fig1A).Inagreementwith

earlierstudies13,14,qPCRanalysisofp57expressionrevealedastrongupregulation

at5h(2.8-fold,P=0.045)and12h(6.4-fold;P=0.018)followingTGFβ treatment, in

the hematopoietic progenitor population (Fig 1B). However, when protein

translationwasblockedbycycloheximidetreatment,TGFβ-inducedupregulationof

p57 was effectively diminished (<1.3-fold; Fig 1C). Together, this data confirms

previous findings of p57 as a downstream target of TGFβ but implies that p57

activation is a secondary effect dependent on the expression/activation of an

additional transcriptional regulator. InHSCs (Fig1D)p57mRNA levelswerehigher

thaninprogenitorcells(seeFig1B)uponharvest,andunalteredbyTGFβ-treatment

(Fig1D),possiblyduetothepreviously reportedHSCniche-inducedTGFβ signaling

activityinthesecells7.InthepresenceofcycloheximideTGFβhadnoeffectonp57

expressioninHSCs(Fig1E).

GlobalgeneexpressionprofilingrevealsGata2asatargetofTGFβsignaling

ToidentifyearlygenetargetsofTGFβsignalinginhematopoieticprogenitorcellswe

performed high throughput gene expression profiling of a primitive murine

hematopoietic cell line overexpressing the oncogene Lhx2 (Lhx2 cells), previously

demonstratedtohaveinvivomultilineagereconstitutionpotential23.Lhx2cellshave

beenshowntobehighlysimilartoprimaryHSCsinthecompositionofTGFβ/Smad

signalingmoleculesandinTGFβresponse23,24,makingthemagoodcellsourcefor

geneexpressionstudiesofTGFβsignaling,whenlargecellmaterial isrequired.The

441 most differentially up- versus downregulated genes following 2 h TGFβ-

treatmentwereclusteredinpathwaysinvolvedinHSPCregulationusingtheDAVID

database.AsubsetofthesegenesarelistedinTableS1andpresentedinaheatmap

Page 11: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

10

(Fig 2A). The microarray data confirm a change in expression of several genes

previouslyknownasTGFβtargetsinothercelltypes,e.g.Smad725,Skil26,Id127-30,

Id228,29,Id328,30,Hes131-33andCited234-36,verifyingtherelevanceofthearray.The

gene expression profiling additionally revealed a list of TFs (Table S2) responding

early to TGFβ in primitive hematopoietic cells. Interestingly, among the TFs

previously associatedwith stemcell activityonly twogenes (Hes1andGata2)had

beenrelatedtoaneffectonthecellcycle20, 37, 38.Tovalidatetheresults fromthe

microarraywestimulatedLhx2cellswithTGFβandharvestedcellsatdifferenttime

points (usingthesamesetupas for freshHSPCs inFig1A) forqPCRanalysisof the

two well-known TGFβ targets Smad7 and Id1, as well as the TF Gata2. At 1- 2 h

followingTGFβtreatmentanupregulationofSmad7(Fig2B),Id1(Fig2C)andGata2

(Fig 2D) was observed. In the presence of the translation inhibitor cycloheximide

Smad7 induction was partly blunted, but importantly, all three genes were still

upregulatedinresponsetoTGFβ(Fig2B-D),confirmingthattheyaredirecttargetsof

TGFβ signaling. This has previously been reported for Smad7 25 and Id1 27, while

Gata2hasnotbeenimplicatedinthiscontext.

Gata2 is a Smad-dependent direct target of TGFβ in primary hematopoietic

progenitorcells

ToinvestigatewhetherTGFβsignalingaffectsGata2expressioninprimaryHSPCswe

performed a second time-course qPCR experiment, using murine HSCs and

progenitor cells inplaceof Lhx2cells (Fig1A). Intriguingly, in freshly isolatedcells,

Gata2showedanexpressionprofilecomparabletop57,withhighermRNAlevelsin

the HSCs than in the progenitor cell population (compare Figs 3A and 3B).

Additionally, progenitor cells robustly upregulated Gata2 within 1-2 h following

TGFβ-treatment(2.2-fold,P<0.002;Fig3A).Thefactthatthisearlyupregulationwas

detectedalsointhepresenceofcycloheximide,demonstratesthatGata2isadirect

target of TGFβ signaling in primitive hematopoietic cells (Fig 3C). Similar to p57,

Gata2 expression was unchanged in HSCs at early time points and under

cycloheximideconditions(Fig3Band3D).

CanonicalTGFβsignalinghasbeenshowntocontrolproliferationofHSPCsthrough

Smadproteins5,6.ToinvestigateifGata2andp57areregulatedviaSmadsignaling

we used Smad4-/- LSK cells, deficient in all canonical TGFβ signal transduction and

Page 12: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

11

resistant to TGFβ-induced growth arrest 6. Following 2 h and5h TGFβ-treatment,

Gata2 expression was significantly increased in WT total LSK cells compared to

untreated control (1.4-fold and 1.8-fold respectively; P=0.004; Fig 3E), while cells

deficientinSmad4didnotupregulateGata2(Fig3E).Similarly,expressionanalysisof

p57 inWT LSK cells showed a significant increase in gene expression after 5 h of

TGFβ-treatment(2.1-fold;P=0.004;Fig3F),whereasTGFβ-treatedSmad4-/-LSKcells

exhibited unaltered p57 expression (Fig 3F). This confirms that TGFβ-induced

changes in Gata2 and p57 expression in hematopoietic progenitors are conveyed

throughSmadsignaling.

Gata2bindsupstreamtheCdkn1c(p57)genomicregion

To gain further knowledge about the relationship between TGFβ and Gata2 we

carriedoutGATA2-ChIPsequencing (ChIP-Seq)on2hTGFβ-treatedLhx2cells (Fig

4A). Interestingly, there was a significant overlap (P<<0.001) between the GATA2

targets identified by ChIP-Seq and the downstream signature of TGFβ signaling as

determinedbymicroarray, comprising110genes (Fig4B; genesare listed inTable

S3).BothSmad7andGata2wereinthisoverlapwhilep57wasabsent,possiblydue

totheshort incubation (2h)withTGFβ.Visual inspectionof theChIP-Seqdatadid

howeveridentifyweakbindingofGATA2tothep57promoter(datanotshown).We

verifiedtheseobservationsusingqPCRofGata2-boundchromatininbothLhx2and

primarycells.Theknown-77kbGata2enhancer39, 40aswellastheSmad7 intronic

regionandthep57promoterregionidentifiedfromtheChIP-Seqwereallenriched

byGATA2immunoprecipitationinLhx2cells(Fig4C-D).Bindingtothep57promoter

wasfurtherconfirmedinasecondmultipotentcellline(FigS1)-aswellasinprimary

cells(Fig4E-F)wheretheminimalamountofmaterialneededforreliableChIP-PCR

resultslimitedustotheuseofLSKcells.Together,thisdataimpliesthatGata2binds

totheregulatoryregionofp57aswellasalargenumberofadditionalTGFβtargets.

Smad4bindstheGata2genomiclocus

BasedonourfindingsthatTGFβhasadirecteffectonGata2throughSmad4(Fig3B

andC)weinvestigatedpossiblebindingofSmad4totheregulatoryregionsofGata2

in hematopoietic progenitor cells by ChIP-PCR. To this end an HA-tagged Smad4-

expressing vectorwas transduced to progenitor-enriched, cKit+ BM cells to obtain

Page 13: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

12

sufficientmaterial forHA-ChIPanalysis.FollowingtreatmentwithTGFβ for2h(Fig

4A)weobserveddirectbindingof Smad4, to the -77kbupstreamenhancerof the

Gata2gene39,40(Fig4G),strengtheningtheobservationsfromourgeneexpression

analysis. We could also detect binding of Smad4 to a Smad7 intronic region

(identified from our ChIP-Seq data) suggesting Smad7 as a direct target of TGFβ

signalinginthesecells(Fig4G).

Gata2iscriticalfornormalTGFβfunction

To investigate the relevance for the TGFβ/Smad/Gata2/p57 network in the HSC

niche in vivo we analyzed HSPCs freshly isolated from MxCre-inducible Smad4 6

knockoutmice,deficientinTGFβsignaling(Fig5A).Efficientout-floxingofSmad4in

thismodel has been shown previously 6. Highly purifiedWTHSCs (LSKCD34-CD48-

CD150+)measured4.7-fold(P<0.001)higherGata2mRNAlevelsascomparedtothe

LSKCD34+ cells (Fig 5B), and this differential expression was maintained in the

Smad4-/-mice.Similarly,p57wasexpressed25.0-fold(P<0.001)higherinLSKCD34-

CD48-CD150+cellscomparedtothelessprimitiveLSKCD34+progenitorcells(Fig5C),

demonstrating a correlation between the primitiveness of the hematopoietic cells

andthelevelofGata2andp57expression.Surprisingly,althoughSmad4deletiondid

notaffectGata2expression,purifiedHSCs fromSmad4-/-micestillexhibiteda1.9-

fold lowerbaselineexpression levelofp57 compared toWTcontrols (P=0.04, Fig

5C). These results imply thatTGFβ signaling isdispensable forGata2expression in

HSCsandthatlossofTGFβsignalingleadstoareductionofp57levelsindependent

of Gata2 levels. Thus, to clarify the role of Gata2 in this pathway we performed

similarexperimentsinBMofinducibleGata2knockoutmice21.Toverifydeletionof

Gata2 in this MxCre-mediated conditional knockout mouse model, we analyzed

Gata2 expression in freshly isolated Lin-cKit+ cells (Fig S2A);mice showing 41-99%

reductionofGata2mRNAwereincludedinfurtheranalysis,presentedasGata2KOs.

We also confirmed reduction/loss of Gata2 protein in bulk BM (Fig S2B) and

performedPCRanalysisofsinglecoloniesfromCFUassays(FigS2C).Inconcordance

withpreviously reported findingsofa reductionofHSCs inGata2haploinsufficient

mice19,Gata2deletionresulted ina lossofthe immunophenotypicLSKpopulation

(Fig S2D). However, in Lin-cKit+ progenitorswe observed a significant reduction of

p57andSmad7mRNAintheGata2-/-backgroundcomparedto littermatecontrols.

Page 14: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

13

Importantly,TGFβ-inducedupregulationofp57was lost inGata2-/-progenitors(Fig

5F) and Smad7 upregulation was significantly impaired (Fig 5G). To address the

functional relevance for Gata2 in TGFβ-induced proliferation arrest we cultured

lineage-depletedbonemarrowcellsfromGata2heterozygousmiceforfourdays in

vitrowithorwithoutTGFβ.WefoundthatlossofasingleGata2allelerenderedcells

significantly less sensitive to TGFβ-induced proliferation arrest (Fig 5H). In

accordance with this, Lin-cKit+ cells purified from our GATA2 KO mice were less

sensitive than WT cells to TGFβ-inhibition of colony formation (Fig S2E), despite

incompleteoutfloxingintheGata2KOcells(somecolonieswereheterozygotefrom

pcr; not shown) and thereby probably a selection for remaining WT cells in the

colonyassay. It shouldbenoted that, asmightbeexpected,Gata2deletionalone

markedly reduced colony output (see Fig S2D) and survival (not shown) in bulk

culture.Insummarytheseresultsimplythatmaintenanceofphysiologicalp57levels

specifically in HSCs requires the presence of TGFβ signaling (via Smad4), while

maintenanceofGata2 levels inHSCsseemtobeSmad4-independent.However, in

hematopoietic progenitor cells maintenance of p57 expression was found to be

Gata2-dependent suggesting that both Gata2 and Smad4 are required for the

maintenanceofp57.Inaddition,inprogenitorcellsTGFβstimulationleadtoaSmad-

mediatedinductionofbothGata2andp57levelsandGata2wasdemonstratedtobe

criticalforTGFβ-inducedupregulationofp57andsubsequentproliferationarrest.

TakentogetherourresultsrevealaregulatorycircuitbetweenTGFβ/Smad4,Smad7,

Gata2 and p57 critical for TGFβ-induced proliferation arrest of hematopoietic

progenitorcells(Fig6).

Page 15: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

14

Discussion

The importance of the TGFβ pathway in HSC biology has been highlighted by

observations of the Smad pathway being specifically activated in HSCs, aswell as

studies in genetic mouse models where deletion of TGFβRII or Smad4 results in

increasedproliferationanddecreasedself-renewalofHSCs6,7,14.Accordingly,recent

work suggests that the physiological relevance for TGFβ inHSC biology is to keep

HSCsquiescentandre-establishHSChomeostasisfollowinghematopoieticstress14,

41.However,themolecularmechanismunderlyingTGFβ-inducedproliferationarrest

is largelyunknown. Interestingly,TGFβhasbeenfoundto induceexpressionofthe

cellcycleinhibitorp57inHSPCs13, 14andthisactivationiscrucialforTGFβ-induced

cell cycle arrest in vitro 13. p57 is a likely downstream effectormolecule of TGFβ

signalinginHSPCsinvivo,sincep57-/-HSCspurifiedfromap57conditionalknockout

model losequiescenceandhaveseverely impairedself-renewalcapacity 18, similar

to the phenotypes observed in TGFβ/Smad loss-of-function models. Here, we

confirm that TGFβ induces upregulation of p57 in HPCs. However, in contrast to

earlierobservationsinacellline13wefoundthatTGFβ-inducedupregulationofp57

in primary hematopoietic progenitor cells was dependent on de novo protein

synthesis, demonstrating that p57 activation is a secondary response to TGFβ. To

identifyearlyandpossiblydirecttargetsofTGFβsignalingweperformedglobalgene

expression analysis of Lhx2 cells shortly after TGFβ treatment, and generated a

database of genes differentially expressed by TGFβ in HPCs. The TF Gata2 was

revealedasoneof the target genes. InterestinglyGata2genedeletion in amouse

model results in similar effects on HSCs as a total blockage of TGFβ signal

transduction with decreased abundance of LSK CD34- cells and impaired

reconstitution potential 19. Moreover, enforced Gata2 expression in CD34+CD38-

humancordbloodcellsmimicstheeffectsseenafterTGFβstimulationofHSPCswith

inhibitedcellcyclebothinvitroandinvivo2,4,20.Thesetwoseeminglycontradictory

scenarios of Gata2 haploinsufficiency and overexpression both resulted in amore

quiescentstateofprimitivehematopoieticcellsduetosofarunknownmechanisms.

Here we present evidence for Gata2 transcriptional regulation of the quiescence

markerp57downstreamoftheTGFβsignalingpathway.However,thesefindingsdo

notexcludearoleforGata2asapositiveregulatorofcellcycledownstreamother

Page 16: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

15

pathways.Importantly,wecouldconfirmGata2asadirecttargetofTGFβsignaling

inhematopoieticprogenitorcells,aswellasdemonstrateacriticalroleofSmad4for

TGFβinducedGata2expression.

ToidentifyTGFβtargetsdownstreamofGata2inmultipotenthematopoieticcellswe

carriedoutaChIP-SeqexperimentonTGFβ-inducedLhx2cells. Interestingly, there

was a largeoverlapbetween theGATA2boundgenes and the genesdifferentially

expressed after 2 h TGFβ induction. In addition, ChIP-Seq revealed evidence for

Gata2bindingtothep57locus,indicatinginvolvementinitsregulation.Thisfinding

could be reproduced by several Gata2 ChIP-on-chip experiments on different

hematopoietic cell lines (data not shown). Gata2 binding to the p57 regulatory

region was confirmed by PCR analysis of GATA2-ChIPed material in multipotent

hematopoietic cell lines, before extending this analysis into primary cells. In

accordance, Gata2 bound to the same region upstream of the p57 transcriptional

startsiteinfreshlyisolatedLSKcells.

Inactive TGFβ is abundantly produced by several cell types in the BM, including

HSPCs.However,Yamazakietal. recentlydescribedhownon-myelinatingSchwann

cells specifically express the TGFβ-activating integrinβ8, thereby creating an

environment with active TGFβ in which HSCs reside 7. It is believed that this co-

localizationofHSCstotheTGFβ-activatingSchwanncellsexplainstheobservationof

active Smad signaling in HSCs in contrast to progenitor cells 14. These previous

findingsmightexplainourresultsthatneitherGata2norp57expressionwasclearly

affected by TGFβ stimulation in HSCs. We speculated that the activated TGFβ

signalinginHSCsinvivoresultinalreadyhighbaselinelevelsofGata2andp57mRNA

blunting the response toexvivo-administeredTGFβ.However,althoughGata2 isa

directtargetofSmad4(byChIP),andTGFβ-inducedupregulationofGata2inHSPCs

in vitro isdependentonSmad4,Gata2expressionwasunaltered inhighlypurified

HSCs from Smad4 KO mice while p57 expression was significantly reduced. Still,

deletion of Gata2 had strong impact on p57 baseline levels in hematopoietic

progenitor cells aswell as on TGFβ-induced upregulation of p57 and proliferation

arrest. Together these observations suggest that even though the regulation of

Gata2 and p57 expression is governed by multiple pathways, maintenance of

physiologicalp57levelsrequiresthepresenceofbothGata2andTGFβsignalingand

thatGata2iscriticalforTGFβ-inducedproliferationarrest.

Page 17: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

16

It is known that BM levels of TGFβ spike during recovery fromhematologic stress

directing theHSCs to return toquiescence,but the roleofTGFβ inhomeostasis is

still controversial 41.TGFβsignaling isalsodescribed tobeadaptive 42opening the

possibility that Gata2 could be regulated differently by TGFβ during homeostasis

than for example uponmore sudden changes in TGFβ ligand concentrations. This

theoryissupportedbyourfindingsthatsteadystatelevelsofGata2wasunaffected

inSmad4-/-cellswhilerapidlyupregulatedasaresponsetoTGFβtreatmentinvitro.

KnockingouttheGata2genestrikinglyattenuatedthephenotypicLSKcompartment

bylossofSca1expressionandreducedc-KitexpressionwithintheLin-compartment.

This could be due to a converted HSC signature ormore likely to the loss of the

Gata2-deficientHSCsinlinewithobservationsinhaploinsufficientGata2mice19and

withGata2-deficienthumanBMshowingacompleteabsenceoftheprimitiveCD38-

cellswithintheCD34+progenitorcompartment43-45.Eventhoughwewerelimitedto

study progenitor-enriched Gata2-deficient cells we found these cells to exhibit a

strong reductionof colony-formingability and tobedesensitized toTGFβ-inducedgrowth arrest. Additionally, loss of one Gata2 allele was adequate to make the

progenitor-enrichedcellslesssensitivetoTGFβ-inducedproliferationarrest.Thus,in

hematopoietic progenitor cells, Gata2 is upregulated upon activation of TGFβ

signaling and required for proliferation arrest through amechanism that includes

transcriptionalactivationofthecellcycleinhibitorp57.

GATA2haspreviouslybeenshowntophysicallyinteractwithSMAD4invariouscell

lines and to be involved in negative regulation of TGFβ-induced erythroid

differentiation 46. This is yet another example of that TGFβ signaling activity can

result indifferentresponsesdependingoncelltypeandcontext.Furthermore, ina

previousprotein-proteininteractionscreenwheremouseandhumanTFcDNAswere

transfected into hamster epithelial ovary cells, human but notmouse GATA2was

reported to interact with SMAD4 as well as several of the TGFβ-regulated TFs

identified in our microarray, i.e. PML and CEBPA 47. Interestingly, in our ChIP

experimentswecouldobservethatGATA2bindstotheregulatoryregionofPmland

Smad4 binds to the regulatory region of Gata2, implicating several levels of TF

interactionsinprimarymurinehematopoieticcellsandamechanisticconnectionof

thisTFnetworktoTGFβsignalingandsubsequentregulationofproliferation.

Page 18: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

17

TheSmad7genomicregionwashighlyenrichedbyGATA2inLhx2cells,indicatinga

directregulationofthemainnegativefeedbackmoleculeofTGFβsignalingbyGata2.

We could show that Gata2 has an activating function on Smad7 since Gata2KO

progenitorcellsexhibitedsignificantlydampenedupregulationofSmad7inresponse

toTGFβ.ThestrongupregulationofSmad7andmodest increaseofGata2 levels in

response to TGFβ in Lhx2 cells, along with the opposite observation upon

translational block, make us speculate of the existence of a negative feedback

mechanismbetweenthesegenesthatremainstobefurtherinvestigated.

Inourstudywelinktogetherseveralmoleculesthathaveallbeendescribedtobeof

individualimportanceforHSCbiology.Ourapproachisanimportantexampleofhow

studying interactions between regulatory molecules can provide a more

comprehensive view of how these molecules are integrated and exert their

downstreamfunctions.Together,ourdatarevealatranscriptionalnetworkbetween

TGFβ,Smad4,Smad7,Gata2,andp57,importantfortheregulationofhematopoietic

progenitorcellproliferation.

Page 19: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

18

Acknowledgements

This work was supported by the Hemato-Linné grant (Swedish Research Council

Linnaeus),TheSwedishCancerSociety,TheSwedishChildren'sCancerSociety,The

SwedishMedicalResearchCouncil,TheTobiasPrizeawardedbyTheRoyalSwedish

AcademyofSciencesfinancedbyTheTobiasFoundation,andtheEUprojectgrants

CONSERT,STEMEXPAND,andPERSIST.TheLundStemCellCenterwassupportedby

a Center of Excellence grant in life sciences from the Swedish Foundation for

StrategicResearch.

The authorswould like to thankUlrikaBlank andMariaDahl for intellectual input

andadvice;JonasLarssonandJustynaRakforassistancewiththeGata2KOmouse

model;ZhiMaandTeonaRoschupkina for flowcytometryassistance,LeifCarlsson

forprovidingLhx2cells,InekeDeJongandBeataLindqvistforHA-Smad4vectorand

lentivirusandthestaffattheanimalfacilitiesatBMCLundforexpertanimalcare.

Authorship

Contribution:M.B.designed,performedandevaluatedthemajorityofexperiments

andwrote themanuscript; E.R. performed several experiments;G.E.M.performed

and supervised ChIP experiments and analysis and edited the manuscript, A.J.T.

designed experiments, S.S. analyzed microarray and ChIP-Seq experiments; J.B.

supervisedmicroarray experiments;M.S. provided the Gata2mice, G.K., T.E., S.K.

designedandsupervisedthestudyandeditedthemanuscript.

Conflictofinterestdisclosure:Theauthorsdeclarenocompetingfinancialinterests.

Correspondence:GöranKarlsson,DivisionofMolecularHematology,BMCB12,SE-

22184Lund,Sweden,phone:+46462221261,email:[email protected].

Page 20: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

19

References

1. WilsonA,TrumppA.Bone-marrowhaematopoietic-stem-cellniches.NatRevImmunol.2006;6(2):93-106.2. BatardP,MonierMN,FortunelN,etal.TGF-(beta)1maintainshematopoieticimmaturitybya reversiblenegativecontrolof cell cycleand inducesCD34antigenup-modulation.JCellSci.2000;113(Pt3)(383-390.3. KellerJR,McNieceIK,SillKT,etal.Transforminggrowthfactorbetadirectlyregulatesprimitivemurinehematopoietic cell proliferation.Blood. 1990;75(3):596-602.4. Sitnicka E, Ruscetti FW, PriestleyGV,Wolf NS, Bartelmez SH. Transforminggrowthfactorbeta1directlyandreversiblyinhibitstheinitialcelldivisionsof long-termrepopulatinghematopoieticstemcells.Blood.1996;88(1):82-88.5. Blank U, Karlsson G, Moody JL, et al. Smad7 promotes self-renewal ofhematopoieticstemcells.Blood.2006;108(13):4246-4254.6. Karlsson G, Blank U, Moody JL, et al. Smad4 is critical for self-renewal ofhematopoieticstemcells.JExpMed.2007;204(3):467-474.7. YamazakiS,EmaH,KarlssonG,etal.NonmyelinatingSchwanncellsmaintainhematopoietic stem cell hibernation in the bone marrow niche. Cell.2011;147(5):1146-1158.8. Wrana JL, Attisano L, Wieser R, Ventura F, Massague J. Mechanism ofactivationoftheTGF-betareceptor.Nature.1994;370(6488):341-347.9. ShiY,MassagueJ.MechanismsofTGF-betasignalingfromcellmembranetothenucleus.Cell.2003;113(6):685-700.10. ten Dijke P, Hill CS. New insights into TGF-beta-Smad signalling. TrendsBiochemSci.2004;29(5):265-273.11. Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev.2005;19(23):2783-2810.12. YamazakiS,IwamaA,TakayanagiS,etal.Cytokinesignalsmodulatedvialipidraftsmimicnichesignalsandinducehibernationinhematopoieticstemcells.EMBOJ.2006;25(15):3515-3523.13. ScanduraJM,BoccuniP,MassagueJ,NimerSD.Transforminggrowthfactorbeta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation.ProcNatlAcadSciUSA.2004;101(42):15231-15236.14. YamazakiS,IwamaA,TakayanagiS,EtoK,EmaH,NakauchiH.TGF-betaasacandidatebonemarrownichesignaltoinducehematopoieticstemcellhibernation.Blood.2009;113(6):1250-1256.15. Passegue E, Wagers AJ, Giuriato S, Anderson WC, Weissman IL. Globalanalysis of proliferation and cell cycle gene expression in the regulation ofhematopoieticstemandprogenitorcellfates.JExpMed.2005;202(11):1599-1611.16. ZouP,YoshiharaH,HosokawaK,etal.p57(Kip2)andp27(Kip1)CooperatetoMaintainHematopoieticStemCellQuiescencethroughInteractionswithHsc70.CellStemCell.2011;9(3):247-261.17. Umemoto T, Yamato M, Nishida K, Yang J, Tano Y, Okano T. p57Kip2 isexpressedinquiescentmousebonemarrowsidepopulationcells.BiochemBiophysResCommun.2005;337(1):14-21.18. MatsumotoA,TakeishiS,KanieT,etal.p57IsRequiredforQuiescenceandMaintenanceofAdultHematopoieticStemCells.CellStemCell.2011;9(3):262-271.

Page 21: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

20

19. Rodrigues NP, Janzen V, Forkert R, et al. Haploinsufficiency of GATA-2perturbsadulthematopoieticstem-cellhomeostasis.Blood.2005;106(2):477-484.20. Tipping AJ, Pina C, Castor A, et al. High GATA-2 expression inhibits humanhematopoietic stem and progenitor cell function by effects on cell cycle. Blood.2009;113(12):2661-2672.21. Haugas M, Lillevali K, Hakanen J, Salminen M. Gata2 is required for thedevelopment of inner ear semicircular ducts and the surrounding perilymphaticspace.DevDyn.2010;239(9):2452-2469.22. MayG,Soneji S,TippingAJ,etal.Dynamicanalysisofgeneexpressionandgenome-widetranscriptionfactorbindingduringlineagespecificationofmultipotentprogenitors.CellStemCell.2013;13(6):754-768.23. Pinto do OP, Richter K, Carlsson L. Hematopoietic progenitor/stem cellsimmortalized by Lhx2 generate functional hematopoietic cells in vivo. Blood.2002;99(11):3939-3946.24. UtsugisawaT,MoodyJL,AsplingM,NilssonE,CarlssonL,KarlssonS.Aroadmap towarddefining the roleof Smad signaling inhematopoietic stemcells. StemCells.2006;24(4):1128-1136.25. Nakao A, AfrakhteM,Moren A, et al. Identification of Smad7, a TGFbeta-inducibleantagonistofTGF-betasignalling.Nature.1997;389(6651):631-635.26. StroscheinSL,WangW,ZhouS,ZhouQ,LuoK.NegativefeedbackregulationofTGF-betasignalingbytheSnoNoncoprotein.Science.1999;286(5440):771-774.27. LiangYY,BrunicardiFC,LinX.Smad3mediatesimmediateearlyinductionofId1byTGF-beta.Cellresearch.2009;19(1):140-148.28. KangY,ChenCR,Massague J.A self-enablingTGFbeta responsecoupled tostress signaling: Smad engages stress response factor ATF3 for Id1 repression inepithelialcells.MolCell.2003;11(4):915-926.29. SpenderLC, InmanGJ.TGF-beta inducesgrowtharrest inBurkitt lymphomacellsviatranscriptionalrepressionofE2F-1.JBiolChem.2009;284(3):1435-1442.30. ChambersRC,LeoniP,KaminskiN,LaurentGJ,HellerRA.Globalexpressionprofiling of fibroblast responses to transforming growth factor-beta1 reveals theinductionof inhibitorofdifferentiation-1andprovidesevidenceof smoothmusclecellphenotypicswitching.AmJPathol.2003;162(2):533-546.31. ZavadilJ,BitzerM,LiangD,etal.Geneticprogramsofepithelialcellplasticitydirected by transforming growth factor-beta. Proc Natl Acad Sci U S A.2001;98(12):6686-6691.32. Kennard S, Liu H, Lilly B. Transforming growth factor-beta (TGF- 1) down-regulatesNotch3 in fibroblasts to promote smoothmuscle gene expression. J BiolChem.2008;283(3):1324-1333.33. BlokzijlA,DahlqvistC,ReissmannE,etal.Cross-talkbetweentheNotchandTGF-beta signaling pathways mediated by interaction of the Notch intracellulardomainwithSmad3.JCellBiol.2003;163(4):723-728.34. ChenCR,KangY,MassagueJ.Defectiverepressionofc-mycinbreastcancercells: A loss at the core of the transforming growth factor beta growth arrestprogram.ProcNatlAcadSciUSA.2001;98(3):992-999.35. Chou YT,Wang H, Chen Y, Danielpour D, Yang YC. Cited2modulates TGF-beta-mediatedupregulationofMMP9.Oncogene.2006;25(40):5547-5560.36. LuoX,Ding L, Xu J, CheginiN.Geneexpressionprofilingof leiomyomaandmyometrial smooth muscle cells in response to transforming growth factor-beta.Endocrinology.2005;146(3):1097-1118.

Page 22: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

21

37. Murata K, HattoriM,HiraiN, et al. Hes1 directly controls cell proliferationthroughthetranscriptional repressionofp27Kip1.MolCellBiol.2005;25(10):4262-4271.38. Georgia S, SolizR, LiM, ZhangP,BhushanA.p57andHes1 coordinate cellcycleexitwithself-renewalofpancreaticprogenitors.DevBiol.2006;298(1):22-31.39. Grass JA, Jing H, Kim SI, et al. Distinct functions of dispersed GATA factorcomplexesatanendogenousgenelocus.MolCellBiol.2006;26(19):7056-7067.40. JohnsonKD,KongG,GaoX,etal.Cis-regulatorymechanismsgoverningstemandprogenitorcelltransitions.SciAdv.2015;1(8):e1500503.41. Brenet F, Kermani P, Spektor R, Rafii S, Scandura JM. TGFbeta restoreshematopoietic homeostasis after myelosuppressive chemotherapy. J Exp Med.2013;210(3):623-639.42. WarmflashA,ZhangQX,SorreB,VonicaA,SiggiaED,BrivanlouAH.DynamicsofTGF-betasignalingrevealadaptiveandpulsatilebehaviorsreflectedinthenuclearlocalizationoftranscriptionfactorSmad4.PNatlAcadSciUSA.2012;109(28):E1947-E1956.43. BigleyV,HaniffaM,DoulatovS,etal.Thehumansyndromeofdendriticcell,monocyte, B and NK lymphoid deficiency. Journal of Experimental Medicine.2011;208(2):227-234.44. CalvoKR,VinhDC,MaricI,etal.Myelodysplasiainautosomaldominantandsporadic monocytopenia immunodeficiency syndrome: diagnostic features andclinicalimplications.Haematol-HematolJ.2011;96(8):1221-1225.45. DickinsonRE,MilneP,JardineL,etal.TheevolutionofcellulardeficiencyinGATA2mutation.Blood.2014;123(6):863-874.46. DongXM,YinRH,YangY,etal.GATA-2inhibitstransforminggrowthfactor-beta signaling pathway through interaction with Smad4. Cell Signal.2014;26(5):1089-1097.47. Ravasi T, Suzuki H, Cannistraci CV, et al. An atlas of combinatorialtranscriptionalregulationinmouseandman.Cell.2010;140(5):744-752.

Page 23: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

22

Figurelegends

Figure 1. p57 is upregulated as a secondary response to TGFβ in primary

hematopoietic progenitor cells. (A) Experimental setup. (B) Time course qPCR

analysisofp57expressioninfreshly isolatedLSKCD34+cellstreatedwithTGFβ(10

ng/ml)and/orcycloheximide(10μg/ml)(C)andharvestedatindicatedtimepoints.

(D)TimecourseqPCRanalysisofp57expression in freshly isolatedLSKCD34-cells

treatedwithTGFβ(10ng/ml)and/orcycloheximide(10μg/ml)(E)andharvestedat

indicated time points. Expression data is normalized to HPRT. n=5, *P<0.05; as

analyzedbypaired t-test comparingeach treated sample tountreated cells at the

same time point. Data represents mean values from independent experiments±

SEM.HSPCs,hematopoieticstemandprogenitorcells.

Figure 2. Lhx2 cells respond to TGFβ by direct upregulation of Smad7, Id1 and

Gata2mRNAlevels.Lhx2cellswereserum-starvedfor12hbeforethestart-pointof

theexperiment.(A)SelectionofTGFβ-responsivegenesseparatedintopathwaysof

interest for HSC biology as annotated in the DAVID database

(http://david.abcc.ncifcrf.gov/). Differentially expressed geneswere identifiedwith

anFDR<0.2givingrisetoalistof441genes(344up-and97downregulated)from

anexpressionmicroarrayanalysisofLhx2cells treatedwithTGFβ (10ng/ml) for2h

comparedtountreatedcells.n=3.(B)TimecourseqPCRanalysisofSmad7(n=4),Id1

(n=4) (C) and Gata2 (n=6) (D) expression in Lhx2 cells stimulated with TGFβ (10

ng/ml) and/or cycloheximide (10 μg/ml) and harvested at indicated time points.

Expression data is normalized to HPRT and presented as fold change (+/-TGFβ).

*P<0.05;**P<0.01;***P<0.001asanalyzedbypairedt-testcomparingeachtreated

sampletountreatedcellsatthesametimepoint.Datarepresentsmeanvaluesfrom

independentexperiments±SEM.

Figure3.Gata2expressionisdirectlyupregulatedasaSmad-dependentresponse

to TGFβ in primary hematopoietic progenitor cells.Time course qPCR analysis of

Gata2infreshlyisolatedLSKCD34+cells(A)orCD34-cells(B)treatedwithTGFβ(10

ng/ml) and/or cycloheximide (10 μg/ml) (C-D) and harvested at indicated time

points.Expressiondata isnormalizedtoHPRT.n=5,*P<0.05;**P<0.01asanalyzed

Page 24: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

23

bypairedt-testcomparingeachtreatedsampletountreatedcellsatthesametime

point.Datarepresentsmeanvaluesfromindependentexperiments±SEM.(E)qPCR

analysis of Gata2 and p57 expression (F) in LSK cells fromWTmice and Smad4-/-

mice. Cells were treated with TGFβ (10 ng/ml) for 2h or 5h. Expression data is

normalized to HPRT and presented as fold change (+/-TGFβ). n=9, **P<0.01 as

analyzed by Wilcoxon matched-pairs signed rank test comparing each treated

sampletountreatedcellsatthesametimepoint.Datarepresentsmeanvaluesfrom

independentexperiments±SEM.

Figure 4. Transcription factor binding to TGFβ target regions. (A) Experimental

setup. Chromatin of various hematopoietic cell fractions was immunoprecipitated

withdifferentantibodiesandDNAsubsequentlyanalyzedbyqPCRorsequencing.(B)

OverlapanalysisofGata2ChIP-Seqon2hTGFβ-treated(10ng/ml)Lhx2cellsandthe

most differentially expressed genes revealed by gene expression profiling

(Microarray) of untreated versus 2h TGFβ-treated Lhx2 cells (10 ng/ml). Overlap

represents 110 genes. P<<0.001 as analyzed by hypergeometric test. (C) qPCR

analysis of GATA2-binding to loci for Gata2 (n=5 ChIPs from three independent

chromatin preparations), Smad7 (n=4 ChIPs from two independent chromatin

preparations)andp57(n=6ChIPsfromthree independentchromatinpreparations)

in Lhx2 cells treated with TGFβ (10 ng/ml) for 2h and immunoprecipitated with

GATA2 antibody (black bars) or IgG control antibody (white bars). Enrichment is

normalized to a region of the GADPH locus (SYBR). (D) Summary of C. Data

represents mean values of fold enrichment of Gata2, Smad7 and p57 regions, in

GATA2ChIPcomparedtoIgG,fromindependentexperiments±SEM.n=3.(E)qPCR

analysis of p57 enrichment in freshly isolated LSK cells immunoprecipitated with

GATA2antibody(blackbars)orIgGcontrolantibody(whitebars).Eachpairofbars

representsoneindependentexperiment.Enrichmentisnormalizedtoaregionofthe

GADPH locus (exp. 1 SYBR, exp. 2-3 plus probe). n=3. (F) Summary of E. Data

represents fold enrichment of p57 region, in GATA2 ChIP compared to IgG, from

independentexperiments±SEM.n=3.(G)qPCRanalysisofGata2andSmad7lociin

freshly isolatedcKit+ cells transducedwithHA-Smad4 lentivirus, treatedwithTGFβ

(10 ng/ml) for 2h and immunoprecipitated with HA antibody (black bars) or IgG

Page 25: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

24

control antibody (whitebars). Enrichment is normalized to a regionof theGADPH

locus(plusprobe).n=1.

Figure 5. Gata2 is critical for normal TGFβ function. (A) Experimental setup.

MxCre/Smad4fl/florMxCre/Gata2fl/flandlittermatecontrolmicewere injectedwith

pICthreetimesandBMwasharvestedforcellsortingandsubsequentexperiments.

(B)qPCRanalysisofGata2andp57expression(C)infreshlyisolatedLSKCD34-CD48-

CD150+ (n=7) and LSK CD34+ (n=10) fromWTmice and from Smad4-/-mice (n=4).

Expressiondata isnormalizedtoHPRT.*P<0.05;***P<0.001asanalyzedbyMann

Whitney test.Data representsmeanvalues from independentexperiments±SEM.

(D)qPCR analysis of p57 and Smad7 (E) expression in freshly isolated Lin-ckit+WT

and Gata2 KO cells. Expression data is normalized to HPRT. n=10, *P<0.05 as

analyzedbyWilcoxonmatched-pairssignedranktest.Datarepresentsmeanvalues

from independent experiments ± SEM. (F) qPCR analysis of p57 and Smad7

expression(G)infreshlyisolatedLin-ckit+WTandGata2KOcellstreatedwithTGFβ

(10ng/ml)for5h.ExpressiondataisnormalizedtoHPRT.n=10,*P<0.05,**P<0.01as

analyzed by Wilcoxon matched-pairs signed rank test comparing each treated

sampletountreatedcellsofthesamecelltype.Datarepresentsmeanvaluesfrom

independentexperiments±SEM.(H)ProliferationassayoflineagedepletedWTand

Gata2heterozygote(Gata2Het)BMcells.Cellswerecountedafter4daysofculture

anddataisshownasgrowthinhibition;foldgrowthofTGFβ-treatedcells(10ng/ml)

comparedtountreatedcells,basedoncellcount.n=4.Datarepresentsmeanvalues

frombiologicalreplicates±SEM.*P<0.05asanalyzedbyunpairedt-testcomparing

growthinhibitioninWTcellsandGata2Hetcells.

Figure 6. Model of the molecular mechanism behind the response to TGFβ

signalinginhematopoieticprogenitorcells.TGFβligandsactivatereceptorsthatin

turn activate R-Smads. R-Smads form a complexwith Smad4, and this complex is

responsible for gene regulation in the nucleus. Gata2 is an early target of TGFβ

signaling,regulateddirectly(viaSmad4)withouttheneedfornewproteinsynthesis,

while p57 is a secondary target, dependent on protein translation. Smad7 is also

directly upregulated by TGFβ signaling via Smad4. Gata2 is highly involved in the

regulationofp57,whichinturnplaysaroleinthecontrolofproliferationarrest.

Page 26: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

25

Figures

Figure 1

� � � � ������

����

����

����� ������

�� �� �� � �������

���

����

����

����

���� �!����� �����

����� ������� �������"

� � � � ������

����

����

���������� �

� �

�� �� �� � �������

���

�����

���

����

����

�!����� �����

����� ������� �������"

A

CB

ED

Page 27: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

26

Figure 2

�� �� �� � ����

��

��

��

��������

���

��

���

� �!��������������� ��������������� �!������ �����������

Smad7

Regulation of apoptosis

Regulation of DNA-

dependent transcription

Regulation of cell cycle

Regulation of apoptosis

Hematopoiesis

TGFb signaling pathway

�� �� �� � ����

�����������

��

Id1

A

�� �� �� �� ����

��������

��� �

�����

�D Gata2

CB

Page 28: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

27

Figure 3

�� �� �� �� �� ��

���� �����

��������������� ���������������������

��

��

�� �� � �� �� ��

� ��������

��

������������� �����������������������

�� �� �� �� ����

���������� ��

�� ��� �

�� �� �� �� ����

���������� �� �

B

�� �� �� � ����

����

�� �

�������

������������������� �"

���

��

�!����� �����

C

�� �� �� � ����

����

�� �

�������

������������������� �"

�!����� �����

p57E F

D

Gata2

A

Page 29: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

28

Figure 4

���

���

���

���

���

�������

������������������� ������

�������

����

����� ����

��

��

������

�������������������

����� �������

� ����

�����

����

��

��

��

��

���

������������

����� ��

A

B C D

���

�������� ��

��������

E F

����������

������������������� � �

���

� � �

G

Page 30: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

29

Figure 5

����

����

����

����

����

���

��������������� �

����������

���

���

���

�����

����

����

������������ ��������������

�� ������

��������������� ��� �

� ������

����

����

����

����

��������� � �

0h

����

����

����

����

��� ��� �����

��

���������������������������������

��

����

���

����

���

����

��������������� ��

����������������������������������

�� ������ ���

A

DB C E

0h

F

���

���

���

���

���

��

����������������

� ���������

HG

Page 31: A network including TGF/Smad4, Gata2 and p57 regulates ...lup.lub.lu.se/search/ws/files/11246171/Elsevier_Billing_et_al.pdfMatilda Billing1, Emma Rörby1, Gillian May2, Alex J. Tipping2,

30

Figure 6

TGF-ß1

R-Smad

Smad4

Smad7P

Smad7

Gata2p57

Cytoplasm

NucleusProliferation arrest in hematopoietic progenitor cells