A micro/macro algorithm to accelerate Monte Carlo simulation of … · 2018-11-20 · A micro/macro...

19
A micro/macro algorithm to accelerate Monte Carlo simulation of stochastic differential equations Kristian Debrabant Scientific Computing Research Group, Katholieke Universiteit Leuven, Belgium Innsbruck, October 29, 2010 1

Transcript of A micro/macro algorithm to accelerate Monte Carlo simulation of … · 2018-11-20 · A micro/macro...

Page 1: A micro/macro algorithm to accelerate Monte Carlo simulation of … · 2018-11-20 · A micro/macro algorithm to accelerate Monte Carlo simulation of stochastic differential equations

A micro/macro algorithm to accelerate MonteCarlo simulation of stochastic differential

equations

Kristian Debrabant

Scientific Computing Research Group,Katholieke Universiteit Leuven, Belgium

Innsbruck, October 29, 2010

1

Page 2: A micro/macro algorithm to accelerate Monte Carlo simulation of … · 2018-11-20 · A micro/macro algorithm to accelerate Monte Carlo simulation of stochastic differential equations

Outline

1 Introduction

2 Accelerated Monte Carlo simulation

3 A convergence result

joint work with Giovanni Samaey (K.U. Leuven)

2

Page 3: A micro/macro algorithm to accelerate Monte Carlo simulation of … · 2018-11-20 · A micro/macro algorithm to accelerate Monte Carlo simulation of stochastic differential equations

Introduction Accelerated Monte Carlo simulation A convergence result

Stochastic differential equations (SDEs)

dX (t) = g0(X (t)

)dt +

m∑l=1

gl(X (t)

)? dWl(t), X (t0) = X0

X (t) =X0 +

∫ t

t0g0(X (s)

)ds +

m∑

l=1

∫ t

t0gl(X (s)

)? dWl(s)

︸ ︷︷ ︸, t0 ≤ t ≤ T

0 t

W (t)lim

∆s→0

∑j

gl

(X(ξj )

)(Wl (sj+1)−Wl (sj )

)

ξj =sj : Itô-integral,∫ tt0

gl

(X(s))

dWl (s)

ξj =12 (sj +sj+1): Stratonovich-integral,∫ t

t0gl

(X(s))◦dWl (s)

W (t): standard Wiener-processW (0) = 0 a. s.W (t2)−W (t1) ∼ N(0, t2 − t1) for 0 ≤ t1 < t2 ≤ TW (t2)−W (t1) and W (t4)−W (t3) are independent for0 ≤ t1 < t2 ≤ t3 < t4 ≤ T

4

Page 4: A micro/macro algorithm to accelerate Monte Carlo simulation of … · 2018-11-20 · A micro/macro algorithm to accelerate Monte Carlo simulation of stochastic differential equations

Introduction Accelerated Monte Carlo simulation A convergence result

Model problem: Immersed polymers

dX (t) =

[κ(t) X (t)− 1

2WeF(X (t)

)]dt +

1√We

dW (t)

X - polymer’s length vectorκ(t) - fluid’s velocity gradientF (X ) - entropic force, here:finitely extensible nonlinearlyelastic (FENE),

F (X ) =X

1− ‖X‖2/γ

Function of interest: non-Newtonian stress tensor

τp(t) =ε

We

(E(

X (t)⊗ F(X (t)

))− 1l

)

5

Page 5: A micro/macro algorithm to accelerate Monte Carlo simulation of … · 2018-11-20 · A micro/macro algorithm to accelerate Monte Carlo simulation of stochastic differential equations

Introduction Accelerated Monte Carlo simulation A convergence result

Euler-Maruyama method

Aim: discrete approximation Y ∆t =(Y ∆t (t)

)t∈I∆t on

I∆t = {t0, t1, . . . , tN}, t0 < t1 < · · · < tN ≤ T ,

such that Yn = Y ∆t (tn) ≈ X (tn)

X (tn+1) = X (tn) +

∫ tn+1

tng0(X (s)

)ds +

m∑

l=1

∫ tn+1

tngl(X (s)

)dWl(s)

Yn+1 = Yn + g0(Yn)

∫ tn+1

tnds +

m∑

l=1

gl(Yn)

∫ tn+1

tndWl(s)

= Yn + g0(Yn) (tn+1 − tn)︸ ︷︷ ︸=∆nt

+m∑

l=1

gl(Yn)(Wl(tn+1)−Wl(tn)

)︸ ︷︷ ︸

=∆nWl

6

Page 6: A micro/macro algorithm to accelerate Monte Carlo simulation of … · 2018-11-20 · A micro/macro algorithm to accelerate Monte Carlo simulation of stochastic differential equations

Introduction Accelerated Monte Carlo simulation A convergence result

Convergence

0 0.2 0.4 0.6 0.80

1

2

3

4

5

t

individual paths

expectation

Strong convergence:

maxt∈I∆t

E ‖Y ∆t (t)−X (t)‖ ≤ C∆tp

Weak convergence:∀f ∈ C2(p+1)

P (IRd , IR)

maxt∈I∆t|E(

f(Y ∆t (t)

)−f(X (t)

))| ≤ Cf ∆tp

Euler-Maruyama: Strong concergence order 0.5, weakconvergence order 1

7

Page 7: A micro/macro algorithm to accelerate Monte Carlo simulation of … · 2018-11-20 · A micro/macro algorithm to accelerate Monte Carlo simulation of stochastic differential equations

Introduction Accelerated Monte Carlo simulation A convergence result

Discretization of the model problem

E. g. Euler-Maruyama scheme:

Yk+1 = Yk +

[κ(tk ) Yk −

12We

F(Yk)]

∆t +1√We

∆kW

Accept-reject strategy (e.g. Öttinger):

‖Yk+1‖ >√

(1−√

∆t)γ ⇒ reject Yk+1 and try again

⇒ ∆t has to be chosen very small

8

Page 8: A micro/macro algorithm to accelerate Monte Carlo simulation of … · 2018-11-20 · A micro/macro algorithm to accelerate Monte Carlo simulation of stochastic differential equations

Introduction Accelerated Monte Carlo simulation A convergence result

Idea of accelerated Monte Carlo simulation

t∗ t∗ + Kδt t∗ + ∆t

1. simulate

4. project

5. simulate

t

Y(t,ω

)

t∗ t∗ + Kδt t∗ + ∆t

2.restrict

3. extrapolate

4.pr

ojec

t

t

Mac

rosc

opic

stat

es

10

Page 9: A micro/macro algorithm to accelerate Monte Carlo simulation of … · 2018-11-20 · A micro/macro algorithm to accelerate Monte Carlo simulation of stochastic differential equations

Introduction Accelerated Monte Carlo simulation A convergence result

Simulation and restriction

SimulationDo K ≥ 1 microsteps with one-step method ϕ: For k = 1, . . . ,K

Y (j)(t? + kδt) = ϕ(t? + (k − 1)δt ,Y (j)(t? + (k − 1)δt); δt)

Restriction

Map ensemble Y = (Y (j))Jj=1 to a number L of (macroscopic)

state variables U = (Ul)Ll=1,

U(t) = R(Y(t)

), with Rl

(Y(t)

)=

1J

J∑

j=1

ul(Y (j)(t)

).

Example: ul(x) = x l yields standard empirical moments of thedistribution in a one-dimensional setting.

11

Page 10: A micro/macro algorithm to accelerate Monte Carlo simulation of … · 2018-11-20 · A micro/macro algorithm to accelerate Monte Carlo simulation of stochastic differential equations

Introduction Accelerated Monte Carlo simulation A convergence result

Extrapolation and Projection

Extrapolation

U(t? + ∆t) =K∑

k=0

lkU(t? + kδt)

Simplest form: linear extrapolation,

U(t? + ∆t) =

U(t? + K δt) + (∆t − K δt)U(t? + K δt)− U

(t? + (K − 1)δt

)

δt

ProjectionE. g. by

Y(t? + ∆t) = argminZ: R(Z)=U(t?+∆t)

‖Z − Y(t? + K δt)‖2

13

Page 11: A micro/macro algorithm to accelerate Monte Carlo simulation of … · 2018-11-20 · A micro/macro algorithm to accelerate Monte Carlo simulation of stochastic differential equations

Introduction Accelerated Monte Carlo simulation A convergence result

Projection

Corresponding Lagrange equations:

Y(t? + ∆t) = Y(t? + K δt) +L∑

l=1

λl∇YRl(Y(t? + ∆t)

),

with Λ = {λl}Ll=1 such that R(Y(t? + ∆t)

)= U(t? + ∆t)

⇒ Expensive. Cheap alternative:

Y(t? + ∆t) = Y(t? + K δt) +L∑

l=1

λl∇YRl(Y(t? + K δt)

),

with Λ = {λl}Ll=1 such that R(Y(t? + ∆t)

)= U(t? + ∆t)

14

Page 12: A micro/macro algorithm to accelerate Monte Carlo simulation of … · 2018-11-20 · A micro/macro algorithm to accelerate Monte Carlo simulation of stochastic differential equations

Introduction Accelerated Monte Carlo simulation A convergence result

Projection

Lemma (Conditions for local solvability)For standard empirical moments Ul :

det(Ui+j−2

)i,j=1,...,L 6= 0

Neglecting statistical error:

det(

E X i+j−2)

i,j=1,...,L= 0

only possible if pdf has finite support

15

Page 13: A micro/macro algorithm to accelerate Monte Carlo simulation of … · 2018-11-20 · A micro/macro algorithm to accelerate Monte Carlo simulation of stochastic differential equations

Introduction Accelerated Monte Carlo simulation A convergence result

Projection - numerical results for FENE dumbbells I

0

0.2

0.4

0.6

ϕ(x)

0 2 4 6

x

ϕ[2]

ϕ[5]

ϕ[8]

ϕ∗

ϕ−

10−16

10−12

10−8

10−4

100

(Ul−U

∗ l)/U

∗ l0 5 10 15 20

l

L = 2

L = 5

L = 8

L = 10

1d, κ = 2, γ = 49, δt = 2 · 10−4, J = 105, t− = 1, t∗ = 1.15

16

Page 14: A micro/macro algorithm to accelerate Monte Carlo simulation of … · 2018-11-20 · A micro/macro algorithm to accelerate Monte Carlo simulation of stochastic differential equations

Introduction Accelerated Monte Carlo simulation A convergence result

Projection - numerical results for FENE dumbbells II

10−5

10−4

10−3

10−2

rel.errorin

τ p

0.001 0.01

∆t

L = 3

L = 4

L = 5

O(∆t)

1d, κ = 2, γ = 49, δt = 2 · 10−4, J = 105, t− = 1.5, 100 realizations

17

Page 15: A micro/macro algorithm to accelerate Monte Carlo simulation of … · 2018-11-20 · A micro/macro algorithm to accelerate Monte Carlo simulation of stochastic differential equations

Introduction Accelerated Monte Carlo simulation A convergence result

Numerical example: FENE dumbbells

0

10

20

Eτ p(t)−Eτ p(t)

0 1 2 3 4 5 6

t

0

200

400

Eτ p(t),Eτ p(t)

0

1

2

3

4

Stdev(τ

p(t))

0 1 2 3 4 5 6

t

L = 2

L = 3

L = 4

reference

1d, κ(t) = 2 ·(1.1 + sin(πt)

), γ = 49, δt = 2 · 10−4, ∆t = 1 · 10−3, J = 5000, 500

realizations

18

Page 16: A micro/macro algorithm to accelerate Monte Carlo simulation of … · 2018-11-20 · A micro/macro algorithm to accelerate Monte Carlo simulation of stochastic differential equations

Introduction Accelerated Monte Carlo simulation A convergence result

Idealized restriction and projection operators

limit J →∞restriction:

U(t) = R(Y (t)

), with Rl

(Y (t)

)= E ul

(Y (j)(t)

).

projection:Y ∗ = P(Y ,U∗) with R(Y ∗) = U∗.

Self-consistency: Y = P(Y , R(Y )

)

Sequences of projection and restriction operators

U[L] = (Ul)Ll=1

Corresponding projection and restriction operators: P [L] andR[L].

20

Page 17: A micro/macro algorithm to accelerate Monte Carlo simulation of … · 2018-11-20 · A micro/macro algorithm to accelerate Monte Carlo simulation of stochastic differential equations

Introduction Accelerated Monte Carlo simulation A convergence result

Properties of projection operators

Uniform continuity in U∗:

|E g(P [L](Z ,U∗[L])

)− E g

(P [L](Z ,U

+[L]))| ≤ Cg‖U∗[L] − U+

[L]‖

Consistency:

|E g(P [L](Z ∗,U[L])

)− E g

(P [L](Z +,U[L])

)|

≤ Cg,L|E g(Z ∗)− E g(Z +)|with Cg,L → 0 for L→∞

LemmaFor normally distributed random variables and sequences(

U∗[L]

)L=1,2,...

of (centralized) moment values consistent with

normal distributions, the mentioned projection operators arecontinuous and consistent.

21

Page 18: A micro/macro algorithm to accelerate Monte Carlo simulation of … · 2018-11-20 · A micro/macro algorithm to accelerate Monte Carlo simulation of stochastic differential equations

Introduction Accelerated Monte Carlo simulation A convergence result

Convergence

TheoremSuppose the following conditions hold:

(i) The SDE-coefficients are sufficiently smooth.

(ii) The one step method ϕ is weakly consistent of order pϕ.(iii) The sequence of (self-consistent) projection operators is

continuous and consistent for the numerical approximationprocess.

(iv) The extrapolation is consistent of order pe ≥ 1.Then for all t ∈ I∆t , all L ≥ L0, and all ∆t ∈ [0,∆t0]

|E f(Y[L](t)

)− E f

(X (t)

)| ≤ CL + CL(∆t)min{pe,pϕ}

with CL → 0 for L→∞.

22

Page 19: A micro/macro algorithm to accelerate Monte Carlo simulation of … · 2018-11-20 · A micro/macro algorithm to accelerate Monte Carlo simulation of stochastic differential equations

Introduction Accelerated Monte Carlo simulation A convergence result

Conclusion

acceleration technique for Monte-Carlo simulationconvergence in the absence of statistical errorfor more details and references, see arXiv:1009.3767

Open problems:prove consistency and convergence of projection step forgeneral random variables,study stability and propagation of statistical error,study possibilities for variance reduction,construct an efficient adaptive error control, controlling thenumber of moments to extrapolate, the microscopic andmacroscopic time step, and the number of SDE realizations,couple FENE-SDE to Navier-Stokes equations

Thank you very much for your attention!23