A Method to Estimate Climate-Critical Construction ...

25
University of Rhode Island DigitalCommons@URI Marine Affairs Faculty Publications Marine Affairs 2016 A Method to Estimate Climate-Critical Construction Materials Applied to Seaport Protection Austin Becker University of Rhode Island, [email protected] Nathan Chase See next page for additional authors Follow this and additional works at: hps://digitalcommons.uri.edu/maf_facpubs e University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you. is is a pre-publication author manuscript of the final, published article. Terms of Use is article is made available under the terms and conditions applicable towards Open Access Policy Articles, as set forth in our Terms of Use. is Article is brought to you for free and open access by the Marine Affairs at DigitalCommons@URI. It has been accepted for inclusion in Marine Affairs Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Citation/Publisher Aribution Becker, A., Chase, N.T.L., Fischer, M., Schwegler, B., Mosher, K. (2016) A method to estimate climatecritical construction materials applied to seaport protection. Global Environmental Change, 40, 125-136, DOI 10.1016/j.gloenvcha.2016.07.008, ISSN 09593780. Available at: hp://dx.doi.org/10.1016/j.gloenvcha.2016.07.008

Transcript of A Method to Estimate Climate-Critical Construction ...

Page 1: A Method to Estimate Climate-Critical Construction ...

University of Rhode IslandDigitalCommons@URI

Marine Affairs Faculty Publications Marine Affairs

2016

A Method to Estimate Climate-CriticalConstruction Materials Applied to SeaportProtectionAustin BeckerUniversity of Rhode Island, [email protected]

Nathan Chase

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/maf_facpubs

The University of Rhode Island Faculty have made this article openly available.Please let us know how Open Access to this research benefits you.

This is a pre-publication author manuscript of the final, published article.

Terms of UseThis article is made available under the terms and conditions applicable towards Open Access PolicyArticles, as set forth in our Terms of Use.

This Article is brought to you for free and open access by the Marine Affairs at DigitalCommons@URI. It has been accepted for inclusion in MarineAffairs Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please [email protected].

Citation/Publisher AttributionBecker, A., Chase, N.T.L., Fischer, M., Schwegler, B., Mosher, K. (2016) A method to estimate climatecritical construction materialsapplied to seaport protection. Global Environmental Change, 40, 125-136, DOI 10.1016/j.gloenvcha.2016.07.008, ISSN 09593780.Available at: http://dx.doi.org/10.1016/j.gloenvcha.2016.07.008

Page 2: A Method to Estimate Climate-Critical Construction ...

AuthorsAustin Becker, Nathan Chase, Martin Fischer, Ben Schwegler, and Keith Mosher

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/maf_facpubs/6

Page 3: A Method to Estimate Climate-Critical Construction ...

Page 1

Title:AMETHODTOESTIMATECLIMATE-CRITICALCONSTRUCTIONMATERIALSAPPLIEDTOSEAPORTPROTECTIONShortTitle:ESTIMATINGCLIMATE-CRITICALRESOURCEDEMANDAuthors:AustinBecker◇,NathanChase✣,MartinFischer✣,BenSchwegler◆,KeithMosher✩Authoraffiliations:◇DepartmentofMarineAffairs,UniversityofRhodeIsland,CoastalInstituteRoom213,1GreenhouseRoad,Suite205,Kingston,RI02881✣NathanChase,PE–RMCWaterandEnvironment◆BenSchwegler,PhD,CivilandEnvironmentalEngineering,StanfordUniversity✣MartinFischer,PhD,–CivilandEnvironmentalEngineering,StanfordUniversity✩KeithMosher,MS–MosherConsulting/StanfordUniversityCorrespondingauthor:AustinBecker,PhDDepartmentofMarineAffairsUniversity of Rhode Island, Coastal Institute Room 213, 1 Greenhouse Road, Suite 205,Kingston,RI02881e:[email protected]|p:401-874-4192|f:401-874-2156Citeas:Becker,A.,Chase,N.T.L.,Fischer,M.,Schwegler,B.,Mosher,K.(2016)Amethodtoestimateclimate-critical construction materials applied to seaport protection. Global Environmental Change, 40,125-136,DOI10.1016/j.gloenvcha.2016.07.008,ISSN09593780.AbstractClimate adaptation for coastal infrastructure projects raises unique challengesbecause global-scale environmental changes may require similar projects to becompletedinmanylocationsoverthesametimeframe.Existingmethodstoforecastresourcedemandandcapacitydonotconsiderthisphenomenonofaglobalchangeaffectingmanylocalitiesandtheresultingincreaseddemandforresources.Currentmethodsdonotrelatetothemostup-to-dateclimatescienceinformation,andtheyare too costly or too imprecise to generate global, regional, and local forecasts of“climate-criticalresources”thatwillberequiredforinfrastructureprotection.Theyeitherrequiretoomuchefforttocreatethemanylocalizeddesignsoraretoocoarseto consider information sources about local conditions and structure-specificengineering knowledge. We formalized the concept of a “minimum assumptioncredible design” (MACD) to leverage available local information(topography/bathymetryandexistinginfrastructure)andtheessentialengineeringknowledge and required construction materials (i.e., a design cross-sectiontemplate).Theaggregationoftheresourcesrequiredforindividuallocalstructures

Page 4: A Method to Estimate Climate-Critical Construction ...

Page 2

thenforecaststheresourcedemandforglobaladaptationprojects.WeillustratetheapplicationoftheMACDmethodtoestimatethedemandforconstructionmaterialscriticaltoprotectseaportsfromsea-level-rise-enhancedstormsurges.Weexamined221 of the world’s 3,300+ seaports to calculate the resource requirements for acoastalstormsurgeprotectionstructuresuitedtocurrentupper-boundprojectionsoftwometersofsealevelriseby2100.Wefoundthataprojectofthisscalewouldrequireapproximately436millioncubicmetersofconstructionmaterials,includingcement, sand, aggregate, steel rebar, and riprap. For cement alone, ~49 millionmetrictonswouldberequired.ThedeploymentoftheMACDmethodwouldmakeresource forecasts foradaptationprojectsmore transparentandwidelyaccessibleand would highlight areas where current engineering knowledge or material,engineeringworkforce,andequipmentcapacityfallshortofmeetingthedemandsofadaptationprojects.

Acknowledgements

Wearegrateful for inputandguidanceprovidedbyourcolleagues, including:Dr.MiguelEsteban, Dr. Michael Lepech, David Newell, Kyle Johnson, Eric Kretsch, Robert DuncanMcIntosh, Cossel Chang, Dr. Christopher Baxter, and Dr. Robert Nicholls. We are alsograteful for funding support from theWoods Institute for the Environment at StanfordUniversity.Wethanktheanonymousreviewersofthispaperfortheirthoughtfulcommentsandsuggestions. 1.IntroductionScientistsexpectglobalsealevelrisetorangefrom0.6to2.0metersby2100(Hortonetal.,2014;ParrisandKnuuti,2012;Rahmstorf,2010)andsomeprojectanupperboundof4.3metersofriseby2200(Vellingaetal.,2008).Evenasmallamountofsealevelrisecanhavemajorimpactsonstormsurgeheightsandassociatedflooding(NRC,2010).Recentstudiesalso found the number of strong (Cat 3-5) hurricanes in the Atlantic basin are likely todoubleinawarmed-climatescenario(Benderetal.,2010).Thesedramaticclimatechangesprojected for 2100 and beyond may result in a worldwide competition for adaptationresourcesonascaleneverseenbefore.Individualsandorganizationswilllikelyimplementadaptation measures, such as constructing storm barriers to protect the world’s majorcoastalseaports(NGIA,2014).Suchadaptationsolutionsareoftendiscussedwhendecisionmakers think about long-term solutions to reduce risk from storm impacts (Blodget andWile,2012;J.Dronkersetal.,1990;Lonsdaleetal.,2008).Thesetypesofprojectswillplacesimultaneousconstraintsonnaturalandmanufacturedresources,constructionequipment,skilled labor, engineers, and project managers. Current estimating methods are notadequate for global and regional estimates of the demand for basic resources likeaggregate, sand, cement, specialty ships, and equipment like dredges, and coastalengineers.Wecallsuchresources“climatecritical”andsuggestthat,occasionally,estimatesof thedemand forclimatecritical resourcesshouldbemade todeterminewhether therearesufficientresourcesgiventheprevalentdesignsofprotectionstructures.

Page 5: A Method to Estimate Climate-Critical Construction ...

Page 3

ResearchershavealreadygeneratedestimatesofthecostofadaptivestructuresfortheU.S.(Aertsetal.,2014;Neumannetal.,2011)andataglobalscale(Nichollsetal.,2010)forawidevarietyofstructures(Jonkmanetal.,2013).Thesestudiesassumethatthenecessaryresources will be available, should the funding be in place to carry out such projects.However, no such estimates of potential construction resource demand have beenconductedtotestthisassumptionagainsttheprojectedsupply.Attemptingaglobalestimateofclimate-criticalresources,whicharetypicallyunderprivatecontrol,necessarilyraisesaquestionofcumulativeeffects—whichanyoneactoractinginself-interest would not necessarily consider. The built-in incentive of cost-efficientoperations formost seaportmanagers virtually guarantees that all the actorswill delayconstructionuntil the last responsiblemoment (Beckeretal.,2013). In this light,weareremindedof theassumptionsmadeby individualactors in the“creditriskbusiness”pre-2008 and the assumptions made by individual actors planning for climate adaptationtoday.Inthecaseofthecreditriskmarket,actorsassumedthatindividualriskwastrivialbecauseof the enormityof theglobalmarket.Theydidnot consider that the cumulativeeffect of all the individual risks could actually deplete the global market, which, inhindsight, isexactlywhathappened.Inourcase,everycityorseaportmayestimatetheirown individual resource demand, correctly assuming the trivial strains each may placewith respect to the global market. This assumption may be faulty because it does notconsiderthatthecumulativeeffectoftheindividualprojectscouldbelarge.Estimatingconstructionresourcesonaglobalandregionalscaleposesuniquechallenges,themost obvious ofwhich is the site-specific nature of infrastructure design. Resource-demandestimatesfornecessarymaterialswouldnormallyemergefromindividualdesignsof required adaptation structures, such as breakwaters and flood walls. Best practiceengineeringdesignmethods require extensive sitedata, compliancewith local standardsand regulations, and multi-stakeholder performance criteria (Goda, 2000; Puertos delEstado, 2002; Thoresen, 2003). On a global scale, however, estimating constructionresources requiredby individualdesignswouldbeagargantuan task.Forexample, foralarge infrastructureprojectsuchasdevelopingacoastaldefensesystemforasingleport,thecostofapreliminaryengineeringdesignistypicallyontheorderof1-5%ofthecapitalcostforconstruction(specificfiguresaregenerallyproprietary,butseeforexample(TCRP,2010)).FollowingHurricaneKatrina,fiveyearswererequiredforadesign-buildapproachtocompletethe1.8-milelongInnerHarborNavigationCanalSurgeBarrierinNewOrleansatacostofapproximately$1.1b(USACE,2013),representingthousandsoflaborhoursofskilledplanners,engineers,scientists,andtechnicians.Assumingthat1%ofthiscostwasrequired to complete a preliminary design and cost estimate, at an average professionalstaff fee of $200/hour this would represent 55,000 hours (which equates to 26 staffworkingfull-timeforayear).Whilesufficientlyaccurate forbudgetinganddecision-making for individualprojects, themethodofforecastingresourcedemandsfromconceptualengineeringdesignsofindividualprotectionstructuresistootime-consumingtocompleteaglobalestimate.Inourexampleofseaportprotection,thiseffortincludesagreementonforcingfunctions(i.e.,waveenergy,surgeheights,tidalranges),geotechnicaldesign,designlifespans,andmaintenancecriteria

Page 6: A Method to Estimate Climate-Critical Construction ...

Page 4

inadditiontoconditionassessmentofexistingstructures(USACE,2008).Attheotherendof the spectrum of estimating methods, conceptual, order-of-magnitude estimatingmethods reduce a structure to one or a fewvariables only (e.g., length of theprotectionstructure)leavingoutvariablesthatarecriticaltoestimateresourcedemand(e.g.,depthofthestructuresandoptimalalignment)(Hinkeletal.,2012).Whilequick,thismethodleadsto results that are too inaccurate for a credible prediction of resource demands foradaptation structures. In summary, existing global demand estimation techniques areeither too costly to apply or too inaccurate to understand the potential scale of thisconstruction challenge. Against this background of current engineering practice,researchers seeking a global-scale estimate of construction resources face the tradeoffbetweensimplifyingassumptionsandaccuracy.We show here a novel technique that addresses this tradeoff. We call the technique“minimumassumptioncredibledesign”(MACD). The intuitionbehindtheapproach is tocombine engineering knowledge with easily available local data to minimize the effortrequiredtodesignastructurethatcouldprotectanareawhileimprovingtheaccuracyofglobalestimatesofmaterialsrequiredforadaptationstructures.TheapproachreliesonaMACD for coastal protection structures to estimate an order-of-magnitude demand ofconstruction materials. The remainder of the paper explains the MACD approach byapplying it to estimate the materials required to protect the world’s most importantseaports.2.PortadaptationandsealevelriseTheMACDapproachisbestdescribedbyexplainingitsapplicationforaspecificresourceprediction challenge.We selected theestimationof thematerials required toprotect themost important seaports as the application area. We first highlight the importance ofprotectingtheseseaportsandthendescribetheMACDmethod.2.1WhySeaports?In its most recent report, the Intergovernmental Panel on Climate Change (IPCC, 2014)foundthatoverUS$3trillioninportinfrastructureassetsin136oftheworld’slargestportcitiesarevulnerabletoweathereventsandthat,“portswillbeaffectedbyclimatechangesincluding higher temperatures, SLR, increasingly severe storms, and increasedprecipitation” (p. 675). As projected changes in sea level and storm intensity progressthrough this century and beyond,many coastal decisionmakers, particularly thosewithresponsibilityforportoperationsanddevelopment,willlikelyimplementtransformationaladaptationstrategies (Estebanetal.,2014;Katesetal.,2012)suchasoneof threemajoradaptationsolutions:elevate,defend,orretreat(Aertsetal.,2014;Cheong,2011;Katesetal., 2012).Elevating aport typically entails filling theport lands to raise themabove thefloodplain, reconstructing facilities at the new elevation, and designing a system toaccommodatethedifferenceinheightsbetweenthewaterlevelandtheportinfrastructure(MSPA,2007).Defendingaportentailsconstructionofacoastalprotectionsolution,suchasa caisson breakwater, often with floodgates or locks to allow for the passage of ships

Page 7: A Method to Estimate Climate-Critical Construction ...

Page 5

(Dircke et al., 2012). In areas where adjacent land is not available for development,seaports can expand by filling in submerged land to a sufficient elevation that will alsoprotect existing infrastructure. Retreat will likely be the option of last resort becauseadjacenthinterlandareasaretypicallynotvacantoravailableforrelocation,andregionaleconomiesdependheavilyontheir localport.Unlessaprotecteddeepriverorestuary isavailable,most seaportswill likelyeitheroccupy their current locationorbeabandoned,perhaps in favorofconsolidation intoa largerregional “super-port”.Regardlessofwhichstrategy local decision makers choose, climate change adaptation through elevation,defense, or re-construction of infrastructure will require vast amounts constructionresources.Giventhesestrategies,wewerecuriousaboutthematerialsrequiredtoprotectseaportsandfocusedthepilotstudyontheworld’sseaportsforthefollowingfivereasons:1) Seaports sit on the front lines of coastal climate change. Many seaports arelocated in areasmost exposed to natural disasters (Becker et al., 2012).Mean sea level(MSL)rise,higherstormsurgesandriverfloods(Jonkerenetal.,2013;Tebaldietal.,2012;VonStorchetal.,2008),increasedtropicalstormintensities/destructiveness(Elsneretal.,2008; Emanuel, 2005), and potential changes inwave regimes (IPCC, 2012) could causesignificantdamageandoperationaldelaysatseaports (EQECATInc.,2012;HavemanandShatz,2006;PANYNJ,2012).Theseextremeeventscausecoastalinundation/erosion,windhazardsandinlandfloodsthatcandisruptentiretransportationnetworks(USCCSP,2008).Many seaports have been hit directly by tropical storms, with damages totaling in thebillions of dollars (Blake et al., 2011). In theU.S. for example, HurricaneKatrina caused$100millionindamagestoMississippi’sportsalone(PEER,2006),andSuperstormSandyshutdownthePortofNewYork/NewJerseyforovereightdays(PANYNJ,2012).2) Portsplayacriticalroleinglobalandlocalcommerceandfulfillawidevarietyof functions for the local, regional, and global economy (AAPA, 2015; Baird, 2004; Goss,1990). They provide jobs, facilitate trade, and serve as critical links between thehinterlands(backregionfromwhichgoodsoriginateortowhichtheyaredestined)andtheforelands(seawardregionfromwhichgoodsoriginateortowhichgoodsaredestined).3) Ascritical infrastructure, seaportsaredifficult to relocate. They requiredeepwater, intermodalconnectionsforrailandroad,andsomeamountofprotectionfromtheelements.Globaltraderoutesevolvedaroundthenetworkofports,andevenashort-termlossofportcapacity(e.g.,duetoaclimate-drivennaturaldisaster)causeslocalandglobalripple effects in logistics and trade-dependent industries (Losada and Benedicto, 2005;Reeve,2010;Thoresen,2003).4) Delineating seaport infrastructure from an aerial map presents fewerchallenges than delineating other types of coastal uses (e.g., cities, neighborhoods,commercialdistricts,orsewernetworks).Seaportinfrastructure(includingwharves,piers,cranes, tanks, laydownareas,andwarehouses)canbe identified fromaerialandsatelliteimagery,anecessarystepinourmethod.Althoughseaportsrepresentjustoneimportantcoastal use amongstmany,making subjective decisions aboutwhich other coastal areaswarrantprotectionandwhichdonotfallsoutsidethescopeofthispilot.5) Designguidanceforanumberofcoastalprotectivestructurescanbeadaptedintoaparametricmodel,allowingforestimatesofmaterialrequirements(USACE,2008).Ourmodeldependsontheuseofstructuraldesignsthatareappropriateforawiderangeoflocalconditionsandareconducivetodevelopingresourceestimates.

Page 8: A Method to Estimate Climate-Critical Construction ...

Page 6

3.TheMACDApproachTheMACDapproachasappliedtoseaportsconsistsofthefollowingfivesteps: Step 1. Develop the “Minimum Assumptions for Credible Design” The MACD approach relies on a minimum number of assumptions with respect togeophysicallocation,landuse,andstructuredesigns.Step1a-Developgeophysicalandland-usecriteria.Webeginwiththefollowingassumptions:• Currentseaportconfigurationswouldnotchange.• Anewstructurewouldbecompletedforeachseaport(i.e.,noretrofits).• Portareastobeprotectedcanbeinferredfromsatelliteoraerialimagery.Step1b-SelectcredibleonshoreandoffshorestructuredesignsConventionalseaportandharbordesignsuseaprobabilisticassessmentofa“maximumcredibleadversecondition,”requiringjointanalysisofdesigncasesforthedriversofwave-overtoppingfloodingandstill-waterlevelflooding(Pullenetal.,2007b).Giventhattheobjectiveofdeterminingaglobalresourcedemandestimateprecludesintensivesite-specificdatacollection,wepreparedathree-partparametriccoastal-protectionstructuredesigntemplatebasedonexistingengineeringguidelines(USACE,2000).Eachstructuralsegment’sdimensionsarecalculatedbasedondefendingfromstillwaterlevelflooding,resultingfromthestormsurgeheightsexpectedateachseaport,notincludingwaveactionplusa2mSLR(seeAppendixCfordetails).Thewavecomponentwasexcluded,asitwasassumedthattheseaportsstudiedwouldhaveexistingstructuresinplacetosheltertheberthsfrompresent-daywaveovertopping,ifrequired.Forsimplicity,wehaveexcludedtheimpactofSLRonincreasingtheheightofwaves,ofincreasedextremewindspeedsthatinturnwouldincreasethestormsurgelevels,andofsubsidencethatmayexacerbatefloodingvulnerability(Muisetal.,2016).Foreachdesigntemplate,wecalculatedonlymaterialsofconstructioncriticalformostheavycivilandmaritimeinfrastructureprojects:sand,gravel,quarry-runstone,riprap,concrete,andsteel.Toretainsimplicity,wedidnotincludeafloodgateorlocksystemtoallowforshippassageinthisdesign,thoughifactuallyconstructedsuchasystemwouldberequired.Thedesigncross-sectionsforthefollowingthreestructuretypesareshowninFigure1,forwhicheachcomponenthasadefinedconstructionmaterial.

Page 9: A Method to Estimate Climate-Critical Construction ...

Page 7

Page 10: A Method to Estimate Climate-Critical Construction ...

Page 8

Figure1-Floodwall,RubblemoundBreakwater,andCaissonBreakwaterdesigns(seealsoAppendixC)Theonshoreportionsofthealignment(i.e.,whereexistinggradeishigherthanmeansealevel) consist of aT-Type Floodwall (USACE, 2008). This design templatewas developedfromUnitedStatesArmyCorpsofEngineers(USACE)EM1110-2-2502and“HurricaneandStormDamageRiskReductionSystemDesignGuidelines”(USACE,2012).Theoffshoreportionsofthealignment,uptoastructuralheightof15m,usearubblemoundbreakwater.The offshore portions of the alignment, for structural heights greater than 15m, use acaisson breakwater (USACE, 2008). The latter design templates were developed fromUSACEEM-1110-2-1100anddetailscanbefoundinAppendixC. Step1c-DeterminedesignconstraintassumptionsWeconstrainedthemodeledstructuralalignmenttoamaximumdepthof60meters,basedon a survey of existing structures. The world’s deepest breakwater, the Kamaishibreakwater in Japan, is 63m deep and 8m abovemean sea level (Mimura et al., 2011).Although existing techniques conceivably allow structures to be constructed at greaterdepths, (e.g., EurOtop guidance provides for caisson structures in depths greater than100m(Pullenetal.,2007a)),the60meterconstraintprovidesareasonableassumptioninkeepingwiththeoverallapproach.Wedeterminedtherequiredstructurecrestelevation(SCE)toprotectagainstafloodeventattheportlocationbycalculatingadesignwatersurfaceelevation(DWSEL)usingtideandsurgeprobabilitydata(seeAppendixCfordetails),asfollows:

DWSEL = SS + SLR SCE = DWSEL + FB

DWSEL = Design water surface elevation or “assumed flood level” SS = Storm surge height derived from .01% annual probability height as found in the DIVA database (Vafeidis et al., 2008), does not include wave action (See Appendix C for details) SLR = Assumed sea level rise (our pilot study uses a SLR of 2m) FB = Additional freeboard height of .9m for onshore structures (based on the USACE minimum freeboard of 3 feet for levees) and .6m for offshore structures (which are expected to be more tolerant to modest overtopping) SCE = Structure Crest Elevation. This SCE is input into a calculation that selects the appropriate design template and then scales each of that cross-section’s structural component material areas to reach the SCE. The various cross-sectional areas are then multiplied by the length between topographic/bathymetric grid points to obtain the volume of construction materials for that segment.

Page 11: A Method to Estimate Climate-Critical Construction ...

Page 9

This process is repeated along the length of the structure to obtain an overall volumetric estimate by type of construction material (for more details, see Appendices B and C). Step 2. Select representative seaports Therearesome3,300+seaports intheworld(NGIA2014),soforthepurposeofmethoddevelopment, we sampled a subset of seaports based on economic value, populationserved,anddataavailability.Weincludedthetop100coastalseaportsbytonnagevolumeandcontainerthroughputoftwenty-footequivalentunits(TEUs)in2011(AAPA2011).WealsoincludedallcoastalseaportsidentifiedintheWorldPortIndex(NGIA2014)thatwerelocated within or nearby a metropolitan area with a population of approximately onemillionormore(Nordpil,2009).Thisresultedin221seaports(seeFigure2andAppendixAforthelistorseaportsincluded).

Figure2-Mapof221coastalportsthatareinthetop100bythroughput(2011)orserveapopulationgreaterthan1million.

Step 3. Determine affected areas in representative seaports To delineate the areas to be protected in each of the 221 seaports, we created a “portpolygon” that encompasses major seaport infrastructure identified by visual analysis ofaerial imagery available inGoogleEarth, including shippingberths, large tanks, shippingcranes,warehouses,laydownareas,andaccesspoints.TheredpolygoninFigure3showstheportinfrastructureinKingston,Jamaica,asanexample.Forsimplicity,noattemptwasmade to consult property records or other maps to determine exact boundaries ordifferentiatebetweenvariousownershipentities.

Page 12: A Method to Estimate Climate-Critical Construction ...

Page 10

Figure3--ExampleofportprotectormodelrunforKingston,Jamaica,showingelevationsinmetersandstructureselections.Numbersrepresentelevationandbathymetrydatapoints(meters).Redpolygon=portpolygon;Greenpolygon=start/endpolygon,Darkblue=naturalelevation(nostructureneeded),Yellow=T-Floodwall,Red=CaissonBreakwater,LightBlue=Rubblemoundbreakwater Step 4. Create model Start/End abutment locations Once the protected port area polygon is identified, terminating abutment locations aremanually chosen using elevation data available in Google Earth (USGS, 2004). These“start/end polygons” (green polygons shown in Figure 3) are located at or above therequiredstructurecrestelevation(SCE).Step 5. Calculate resource requirements via port protector Toautomatethecalculationofthematerialsrequired,weimplementedasoftwaretoolwecalledthePortProtector.Thetoolfirstfindsthepathbetweenthestart/endpolygonsthatminimizesthevolumeofconstructionmaterialsrequired,whileenclosingtheportpolygondescribed above. We used the SRTM-30 global dataset of bathymetry and topographyelevation data available through Google Earth (USGS, 2004), and an optimal structuralalignmentpathderivedusingashortestpath,weightededge,graph-searchalgorithm(SeeAppendixBforinformationondataandAppendixCforinformationonthealgorithm).ThePortProtectorsoftwarecalculatestheconstructionmaterialvolumeforeachstructuresegment,which isusedas theweighting factor toconnecteachsetof twobathymetryorelevation points along the alignment path. The volumes for each of the three differentdesign structure choices are compared to find the lowest volume alignment, first on theoffshore side of the seaport infrastructure (comprising caisson and rubblemoundbreakwaterdesigns),andthenagainaroundtheonshoreside(comprisingtheT-floodwalldesign).AsseenintheexampleofKingston,Jamaica,depictedinFigure3,theyellowlinesrepresent paths that require the T-floodwall structure, the red lines represent caissonbreakwaters,thelightbluerepresentsrubblemoundbreakwaters,andthedarkbluelines

Page 13: A Method to Estimate Climate-Critical Construction ...

Page 11

represent areas where no structure is necessary, as the natural elevation providesadequateprotection.Wedidnotmakeanydecisionsaboutthemodelpathwithrespecttootherfactors(e.g.,environmentalresources,otherinfrastructure,populatedareas,historicresources, intermodal connections). After manually verifying each seaport’s protectivestructure path to ensure no egregious errors, the Port Protector Model calculates totallengths, volumes, andmaterials required and aggregates totals, as described in the nextsection.4. Estimates of resource demand using theMACD approach to protectseaportsBeckeretal. (Beckeretal.,2012)showa2-metersea levelrise(SLR)asthethresholdatwhich all seaportmanagers surveyed feel that theywould be required to take action toprotect their facilities. Several published estimates (Rahmstorf, 2010; Vermeer andRahmstorf,2009)seta2-meterSLRby2100astheupperbound,thusweusedthisasthebasisfortheapplicationoftheminimumassumptioncredibledesign(MACD)approachtoestimate the main construction materials required to protect the 221 seaports. Bycalculatingtheshortestandshallowestalignmentfortheprotectionstructureandapplyingaparametriccoastalprotectiondesignacrossthealignment,thePortProtectorgeneratesrequiredmaterialquantitiesthatareaggregatedtoformglobalestimatesforconstructingdefensesfortheworld’sseaportsfromstormsurgeassociatedwithahypothetical2-metersealevelrise.In total,3,600kmofstructurewouldberequired toprotect theworld’s top221seaports(Figure 4). This would equate to a single structure spanning from Los Angeles (CA) toChicago(IL).Bylength,71%ofthestructureswouldbebuiltoffshore.However,asseeninFigure 5, about 92% of thematerials requiredwould be used in the offshore structuresbecause the structural height required for the onshore portions to reach the DWSEL issignificantlylessthantheoffshoreportionswhich.

Page 14: A Method to Estimate Climate-Critical Construction ...

Page 12

Figure4 -Thisgraphdepicts the total linearkilometerof structuresneeded toprotect seaports ineachof thesevenglobalregionsstudied.Inaggregate,3,600kmofstructurewouldberequired.

When the volume of materials required to construct these structures is aggregated, wefoundthat436Mcubicmetersofconstructionmaterialswouldberequiredtoprotectthe221seaportsinourstudy.Thisincludesallmaterialsforthethreestructuredesignsusedin the model. Figure 5 shows the quantities of materials required by material type. Byvolume,sand,stone,andconcretearethethreemainmaterialsrequired.Thetotalvolumeofmaterials requiredwould equate to about7ThreeGorgesDams (basedon65McubicmetersofmaterialusedintheconstructionoftheThreeGorgesDamontheYangtzeRiverin China) (Chinese Embassy, 2014). The143M cubicmeters of concrete required alone isequivalent tobuilding about52HooverDams (basedon2.74Mcubicmetersof concreteusedintheconstructionoftheHooverDamontheColoradoRiverintheUnitedStates).

0

500

1000

1500

Asian = 61

Europen = 36

NorthAmerican = 49

MiddleEast

n = 16

SouthAmerican = 25

Oceanian = 14

African = 24

km

StructureT Floodwall

Caisson Breakwater

Rubblemound Breakwater

Page 15: A Method to Estimate Climate-Critical Construction ...

Page 13

Figure5–Globalvolumesofvariousconstructionmaterialsrequiredtoprotect221seaportsFigure6showsthesumtotalamountsofallmaterialsfortheseaportsineachregion.Asianseaportsalonerequire47%ofallmaterials,eventhoughonlyaboutaquarterofthemostimportant seaports inour studyare inAsia.Protecting the36most importantEuropeanseaports will require more materials than protecting the 45 most important NorthAmericanseaports.Thus,thenumberofseaportsinaregionaloneisnotagoodindicatoroftheamountofmaterialsrequiredtoprotectthatregion’smaritimeinfrastructure.Othersite-specific factors—which the Port Protector does account for following the MACDapproach—playamajor role indetermining the constructionmaterialquantities suchasportareaextent,lengthofwaterfrontencompassed,surroundingtopography,andoffshoredepths.

148

125

110

29 28

16

20

50

100

150

Concrete Quarry Run Stone Sand Gravel Large Riprap Small Riprap Structural Steel

106 x

m

3

MaterialConcrete

Quarry Run Stone

Sand

Gravel

Large Riprap

Small Riprap

Structural Steel

Page 16: A Method to Estimate Climate-Critical Construction ...

Page 14

Figure6–Totalvolumeofconstructionmaterialsrequiredtoconstructthreetypesofprotectivestructuresaround221seaports(bytypeofmaterialandbyregion)4.1Resourcedemandvs.supplyOurmethodgeneratesanestimateofthedemandsideofthesupply/demandequationforresources required to constructprotective structuresaroundseaports.Thenatureof theglobalcompetitionforresourcestakesonaddedsignificancewhendemandexceedssupply.Fu et al. (Fu et al., 2013) show that estimating global capacity for the supplyof climate-criticalresourcesalsoremainsasignificantchallengeduetolimiteddataavailability, lackofuniformity, andother complications.Here,weuse the results fromFuet al.’s studyofglobal cement production capacity to examine the supply/demand balance for cement.Many of the resources required in civil construction (e.g., aggregate, pumping, batching,labor, construction equipment) are proportional to the cement used, though globally orregionally, other materials, human resources, or construction equipment may be thecapacity constraint (Peduzzi, 2014). Capacity utilization for cement manufacturing istypicallyhigh inall regionsof theworld(Figure8), thusweanalyzedcementproductioncapacityandcomparedtheresults toourestimateofnewcementdemandthatwouldbegeneratedbyanefforttoprotect221seaports. Asseen inFigure5,148Mcubicmetersof concretewillberequiredbasedonourglobalestimate for seaport protection. Each cubicmeter of concrete consists of approximately345kgofcement(Kosmatkaetal.,2011);thus,ourglobalestimateforcementrequiredtobuild out the protective structures comes to 49Mmetric tons of cement, as depicted in(Figure7)andbrokendownbyregion.

0.0e+00

5.0e+07

1.0e+08

1.5e+08

2.0e+08

Asian = 61

Europen = 36

NorthAmerican = 49

MiddleEast

n = 16

African = 24

SouthAmerican = 25

Oceanian = 14

m3

MaterialConcrete

Quarry Run Stone

Sand

Gravel

Large Riprap

Small Riprap

Structural Steel

Page 17: A Method to Estimate Climate-Critical Construction ...

Page 15

Figure7–Showingcementrequiredbyregionandatotalof49metrictonsofcementrequiredtoconstructprotectivestructuresaround221seaports,withAsiarequiringthemostcementat23.6metrictons.Withunused,expandableglobal cementproductioncapacityofabout1.1B tonsperyear,the cement required to protect just 221 of the world’s 3,300+ coastal seaports (NGIA,2014) represents about 4% of the available estimated unutilized annual productioncapacityforcement,ascalculatedfor2008.AsdepictedinFigure7,Asiaalonewouldneed23.6Mmetrictonsofcementtoprotectits61 most important seaports. In 2007-09, it used approximately 69% of its productioncapacity(Figure8), leaving31%of itspotentialcapacitytodevotetoadaptationprojectssuchasarmoringseaports.

23.6

8.3

5.34.7

2.92.3 2

0

5

10

15

20

Asian = 61

Europen = 36

NorthAmerican = 49

MiddleEast

n = 16

African = 24

Oceanian = 14

SouthAmerican = 25

Met

ric T

ons

CementRequired

Page 18: A Method to Estimate Climate-Critical Construction ...

Page 16

Figure 8 – Showing average annual cement capacity utilization by region (2007-2009) with 95% confidenceinterval(Fuetal.2013).Asotherglobalresourcecapacityestimatesbecomeavailable,themethodproposedinthispaper could allow engineers and policymakers to quickly check for the largest gaps incapacitytomeetexpecteddemandforclimateadaptationconstruction.4.2LimitationsoftheCaseStudyThe difficulty of producing a global-scale estimate required us to make a number ofassumptions that reduce the accuracy of our results. One could, of course, point to anumber of issues with respect to our chosen design. For example, each seaport wouldrequireatleastoneopeningtoallowforthepassageofships(e.g.,astrategicallyplacedgapbased on coastal hydrodynamics, a floodgate, or lock structure), thereby increasing thecomplexityandconstructionmaterialsrequiredfortheprojectandpotentiallydecreasingshippingcapacitybycreatinganavigationalbottleneck.Also,thepathwaythatourdesignfollowsdoesnotconsideranyothervariablesoutsideofoptimizationofmaterials.Thus,itis most likely not an optimal alignment to mitigate local wave dynamics and may cutthrough other important infrastructure, densely populated areas, critical habitat, orhistoric landmarks. Therewould be important environmental considerations should onewanttoactuallyconstructsuchaproject.Largelinearprojectshaveahugearrayofothersecondary impacts, let alone an enormous price tag. We also do not consider the cost-effectivenessofourdesignstructureversusanyotheroption,northepotentialtoretrofitexisting structures. Lastly, shipping volumes are expected to grow significantly over thecoming century and our model does not account for any resulting expansion (or

0%

25%

50%

75%

100%

Oceania SouthAmerica

Europe Africa Global NorthAmerica

Asia MiddleEast

Perc

ent o

f Cap

acity

Util

ized

CementUtilization

Page 19: A Method to Estimate Climate-Critical Construction ...

Page 17

consolidation)ofseaportfacilities(Allen,2012).Someseaportswouldlikelychooseotheradaptationsolutions,suchaselevatingtheirland,consolidatingoperationsandabandoningsome infrastructure, or simply relocating up a river system and out of harm’sway. Ourmethod simply calculates a reasoned resource requirement for one scenario, withoutmaking value judgments on the “best” plan of action to adapt to climate change for thespecificcontextforanyindividualport.Allthesesite-specificrequirementswillcertainlybeconsideredwhensuchaprojectwillbedesignedforaport.Our model can be further developed in terms of accuracy and comprehensiveness. Ourmethodrequiresglobaldatasets forelevationandbathymetry inordertocreateadesignpathoptimizedforleastmaterials(i.e.,shallowestandshortestpath).Unfortunately,high-resolution data are not available for all locations throughout the world, though we didcompareresultsofourmodelusingbothhigherandlowerresolutiondataforaselectionoftenportsand foundcomparableresults(seeAppendixB fordiscussionof thissensitivityanalysis).We thus relied onbest-available elevationdata to conduct our study.Regionalvariationsinsealevelriseandsite-specificparameterswouldnecessitatefullengineeringstudies;theseadditionalcriteriahavebeenignoredinordertoallowforaglobalapproach.5.DiscussionofthevalueoftheMACDapproachEngineers, in particular, may be uncomfortable with the concept of a “minimumassumptionsforcredibledesign”approachinlargepartbecausetheengineeringprofessionitselfhasevolvedtomanagedesignriskanddesignliabilitybyindustrybestpracticesandlegal/regulatory requirements. Best practice therefore requires a site-specific designtailored to its unique set of conditions andproject requirements (Losada andBenedicto,2005; Thoresen, 2003). However, the quality and quantity of data required for bestengineering practice design is simply not available to satisfy questions around globalestimates (Hanson et al., 2010; J.Dronkers et al., 1990). TheMACDapproachpresents asolutiontothisissuebyincorporatingaselectedfewdesignrequirementsdeemedcritical(which would also be used in a conventional engineering design together with asignificantlylongerlistofdesignrequirements),whileatthesametimesimplifyingthedatarequiredtogenerateadesignthatcanbereadilyestimatedinthecontextofglobalcapacity. Ofallpossibleprojectcriteriaforprotectivestructures,engineersanddesignersprimarilyconsider safety, accessibility, and environmental effects (Puertos del Estado, 2002;Thoresen, 2003; USACE, 2008). Specific site locations dictate other criteria, such as thelocalforcingfunctionsofwaveheight,waveperiod,stormdurationandsurgewaterlevel.Additionally,localgeomorphology,inlandconnections,andsurroundinglandusepatternsmakeeachportunique(NGIA,2014).Creatingwhatamountsto221uniquedesignsfortheworld’s most important seaports would require thousands of workhours for engineers,planners, architects, and other construction professionals (OEM, TCRP (TransitCooperativeResearchProgram),2010;2015).Ourdemandestimateforcementtoprotect221 seaports represents 4% of the amount theoretically available, and this percentagewouldescalate rapidly ifmoreof theworld’s3,300+seaportswere included.Accountingfor additional coastal uses thatwould requireprotective structuresorother constructedadaptationsolutions(Jonkmanetal.,2013)wouldfurtherescalatethedemandandcould

Page 20: A Method to Estimate Climate-Critical Construction ...

Page 18

quickly cause constraints on availability that may outpace the rate at which furtherproduction capacity could be added. These additional coastal uses include vulnerableinfrastructure, such as power plants, sewage treatment plants, airports, roadways,railways, and bridges. Whole cities may need protection, bringing the resourcerequirementstolevelswellbeyondcapacity.The methodology presented here could be useful in quantifying this broader set ofdemands for construction materials anticipated to be used in climate-change responseschemes. Conventional planning techniques for infrastructure construction projects takeinto account design performance, life-cycle costs, constructability, and schedule as thecritical limiting factors(WorldBank,2010).However,resourceavailabilitymayalsobeabottleneck,giventhatlocalorglobalsupplyandproductioncapacitymaybeinsufficienttoperformall theworkrequiredwithinanacceptable timeframeandatanacceptablecost.Indeed, cement, aggregate, sand, and steel all comewith their ownunique limitations indifferent parts of the world (Peduzzi, 2014). Sand for example, necessary for theconstruction of breakwaters, may not be available locally for many seaports in thequantitiesandqualityrequired(Simpsonetal.,2005).The results of this pilot study raise serious questions about constructing coastalprotections on a global scale:Whatwill happen to the 3,100+ seaports that are not theworld’smost important?Whatwill the local resource bottlenecks be? On a global scale,cementmaybe the limiter, but resources arenotwell distributedand for a specific site,sand,riprap,orgravelcouldprovetobealargerbottleneck.Ifseaportscomprisejustonepart of the urban coast that needs protecting, what is the magnitude of the resourcequantities required to protect all the important uses? Will construction resourcelimitationsresultinfewer(butfarlarger)seaportsinthefuture?Willtheseaportsthatarebetter protected today have a market advantage over those that are more exposed toclimate-driven storm impacts? To answer these types of questions,we encouragewiderapplications of our data and methods for future research that combines engineering,science,economics,andpolicyinordertobegintoaddresssuchchallengingquestions.6.ConclusionsAdapting urban coasts to increased flooding arising from climate change might rely onconstruction of conventional engineered onshore and offshore barriers, similar to theresponseofNetherlandstotheNorthSeafloodof1953byconstructingaseriesofdams,stormsurgebarriers,andotherstructures.Scientistsandengineerswhoprovidetechnicalinformationanddesignsforadaptationstrategiesneedtocontributetopolicyandplanningdiscussions to prioritize and allocate climate-critical resources, such as constructionmaterials. Though individual actors and governments may default to a heavy civilinfrastructure construction approach as an adaptation solution, a global uncoordinatedresponse of this nature may be unsustainable simply from a resource availabilityperspective (Peduzzi,2014). If so, theglobal communityhasawindowofopportunity toavoid this scenario by developing alternative solutions and new strategies to protect itscoastalseaports,cities,andothervulnerableresources.Globalestimatesforclimate-criticalresourcesprovideessentialdatatothisemergingglobaldialogue.

Page 21: A Method to Estimate Climate-Critical Construction ...

Page 19

Wehavemadethefirstsuchestimateforinfrastructureassetscriticaltoonesectoroftheglobaleconomy.Naturally,protectingseaportinfrastructurealonecomprisesbutonepieceof the adaptationmeasures necessary for resilience to natural disasters exacerbated byclimate change. Other critical infrastructure such as rail, highway, and utilities also faceclimate-related impacts and will require additional resources.We formalized the MACDmethod to estimate the resource demand from such adaptation measures. Our initialresultssuggestthatadaptationwillbeamonumentaltaskandwillsignificantlytaxglobalresource capacity. The results reinforce the necessity for the global community to takesignificantstepstoreducegreenhousegasemissionsandslowthepaceofglobalwarming.We hope that the improvement and use of global demand estimates for climate-criticalresourcescanleadtotimelycapacitydevelopmentforsuchresources.REFERENCESAAPA(AmericanAssociationofPortAuthorities),2011,WorldPortRankings2011,AccessedJuly18,2014,Onlineathttp://aapa.files.cms-plus.com/PDFs/WORLDPORTRANKINGS2011.pdf.

AAPA(AmericanAssociationofPortAuthorities),(2015)TalkingPointsU.S.SeaportsandJobCreation.http://aapa.files.cms-plus.com/PDFs/USSeaportsandJobCreation5-12-2015.pdf

Aerts,J.,Botzen,W.j.,Eamanuel,K.,Lin,N.,deMoel,H.,Michael-Kerjan,E.(2014)EvaluatingFloodResilienceStrategiesforCoastalMegacities.Science,344,473-476.

Allen,C.(2012)FuturePortsScenariosfor21stCenturyPortStrategicPlanning.JournalofTransportationLaw,Logistics,andPolicy,79,89-137.

Baird,A.J.(2004)PublicgoodsandthepublicfinancingofmajorEuropeanseaports.MaritimePolicy&Management,31,375-391,ISSN0308-8839.

Becker,A.,Acciaro,M.,Asariotis,R.,Carera,E.,Cretegny,L.,Crist,P.,Esteban,M.,Mather,A.,Messner,S.,Naruse,S.,Ng,A.K.Y.,Rahmstorf,S.,Savonis,M.,Song,D.,Stenek,V.,Velegrakis,A.F.(2013)ANoteonClimatechangeadaptationforseaports:Achallengeforglobalports,achallengeforglobalsociety.ClimaticChange,120,683-695,DOI10.1007/s10584-013-0843-z.

Becker,A.,Inoue,S.,Fischer,M.,Schwegler,B.(2012)Climatechangeimpactsoninternationalseaports:knowledge,perceptions,andplanningeffortsamongportadministrators.ClimaticChange,110,5-29,DOI10.1007/s10584-011-0043-7,ISSN0165-00091573-1480.

Bender,M.A.,Knutson,T.R.,Tuleya,R.E.,Sirutis,J.J.,Vecchi,G.A.,Garner,S.T.,Held,I.M.(2010)ModeledimpactofanthropogenicwarmingonthefrequencyofintenseAtlantichurricanes.Science,327,454-458,DOI10.1126/science.1180568,ISSN1095-9203(Electronic)0036-8075(Linking),Onlineathttp://www.ncbi.nlm.nih.gov/pubmed/20093471.

Blake,E.S.,Gibney,E.J.,Landsea,C.(2011)Thedeadliest,costliest,andmostintenseUnitedStatestropicalcyclonesfrom1851to2010(andotherfrequentlyrequestedhurricanefacts).NOAA/NationalWeatherService,NationalCentersforEnvironmentalPrediction,NationalHurricaneCenter,Washington,DC.

Page 22: A Method to Estimate Climate-Critical Construction ...

Page 20

Blodget,H,Wile,R.,(2012)Hey,itwillonlycost$7BilliontobuildastormsurgebarrierforNewYork--Whaddyasay?,BusinessInsider.

Cheong,S.M.(2011)PolicysolutionsintheUS.ClimaticChange,106,57-70,ISSN0165-0009.

ChineseEmbassy(EmbassyofthePeople'sRepublicofChinaintheUnitedStatesofAmerica),(2014)SomeFactsabouttheThreeGorgesProject.http://www.china-embassy.org/eng/zt/sxgc/t36512.htm

Dircke,P.T.M.,Jongeling,T.H.G.,Jansen,P.L.M.,(2012)AnOverviewandcomparisonofnavigablestormsurgebarriers,in:UnitedStatesSocietyonDams(USSD)(Ed.),InnovativeDamandLeveeDesignandConstructionforSustainableWaterManagement,NewOrleans,LA.http://ussdams.com/proceedings/2012Proc/65.pdf

Elsner,J.B.,Kossin,J.P.,Jagger,T.H.(2008)Theincreasingintensityofthestrongesttropicalcyclones.Nature,455,92-95,ISSN0028-0836.

Emanuel,K.(2005)Increasingdestructivenessoftropicalcyclonesoverthepast30years.Nature,436,686-688,ISSN0028-0836.

EQECATInc.,(2012)Post-landfalllossestimates-HurricaneSandy-Nov.1,2012(InsuredLosses:$10-20Billion;TotalEconomicDamage:$30-50Billion).

Esteban,M.,Mikami,T.,Shibayama,T.,Takagi,H.,Jonkman,S.N.,vanLedden,M.(2014)ClimatechangeadaptationinTokyoBay:Thecaseforastormsurgebarrier.CoastalEngineeringProceedings,1,35,ISSN2156-1028.

Fu,E.,Newell,D.,Becker,A.,Schwegler,B.,Fischer,M.(2013)IsAdaptationSustainable?AMethodtoEstimateClimate-CriticalConstructionResourceCapacity.ConstructionInnovation:Information,Process,Management,13,202-216,ISSN1471-4175.

Goda,Y.(2000)Randomseasanddesignofmaritimestructures.WorldScientificPubCoInc.

Goss,R.(1990)Economicpoliciesandseaports:Theeconomicfunctionsofseaports†.MaritimePolicyandManagement,17,207-219,ISSN0308-8839.

Hanson,S.,Nicholls,R.,Ranger,N.,Hallegatte,S.,Corfee-Morlot,J.,Herweijer,C.,Chateau,J.(2010)Aglobalrankingofportcitieswithhighexposuretoclimateextremes.ClimaticChange,104,89-111,DOI10.1007/s10584-010-9977-4,ISSN0165-00091573-1480.

Haveman,J.D.,Shatz,H.J.(2006)Protectingthenation'sseaports:Balancingsecurityandcost.DOI1-58213-120-1,ISSN1582131201,Onlineathttp://www.ppic.org/content/pubs/report/r_606jhr.pdf.

Hinkel,J.,Vuuren,D.P.,Nicholls,R.J.,Klein,R.J.T.(2012)Theeffectsofadaptationandmitigationoncoastalfloodimpactsduringthe21stcentury.AnapplicationoftheDIVAandIMAGEmodels.ClimaticChange,117,783-794,DOI10.1007/s10584-012-0564-8,ISSN0165-00091573-1480.

Horton,B.P.,Rahmstorf,S.,Engelhart,S.E.,Kemp,A.C.(2014)Expertassessmentofsea-levelrisebyAD2100andAD2300.QuaternaryScienceReviews,84,1-6,DOI10.1016/j.quascirev.2013.11.002,ISSN02773791.

IPCC(IntergovernmentalPanelonClimateChange),(2012)Managingtherisksofextremeeventsanddisasterstoadvanceclimatechangeadaptation.SpecialreportoftheIntergovernmentalPanelonClimateChange,in:Field,C.B.,Barros,V.,Stocker,T.F.,Qin,D.,Dokken,D.J.,Ebi,K.L.,Mastrandrea,M.D.,Mach,K.J.,Plattner,G.-K.,Allen,S.K.,Tignor,M.,Midgley,P.M.(Eds.),SREX,Cambridge,UK,andNewYork,NY,USA.

Page 23: A Method to Estimate Climate-Critical Construction ...

Page 21

IPCC(IntergovernmentalPanelonClimateChange),(2014)ClimateChange2014:Impacts,Adaptation,andVulnerability.PartA:GlobalandSectoralAspects.ContributionofWorkingGroupIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange,in:Field,C.B.,V.R.Barros,D.J.Dokken,K.J.Mach,M.D.Mastrandrea,T.E.Bilir,,M.Chatterjee,K.L.E.,Y.O.Estrada,R.C.Genova,B.Girma,E.S.Kissel,A.N.Levy,,S.MacCracken,P.R.M.,andL.L.White(Eds.),Cambridge,UnitedKingdomandNewYork,USA,p.1132.

J.Dronkers,J.T.E.G.,L.W.Butler,J.J.Carey,,J.Campbell,E.J.,C.McKenzie,R.Misdorp,N.Quin,K.L.Ries,P.C.Schroder,J.R.,Spradley,J.G.T.,L.Vallianos,andJ.vonDadelszen,(1990)STRATEGIESFORADAPTIONTOSEALEVELRISE,ReportoftheIPCCCoastalZoneManagementSubgroup:IntergovernmentalPanelonClimateChange.IntergovernmentalPanelonClimateChange,Geneva.http://papers.risingsea.net/federal_reports/IPCC-1990-adaption-to-sea-level-rise.pdf

Jonkeren,O.,Rietveld,P.,vanOmmeren,J.,teLinde,A.(2013)ClimatechangeandeconomicconsequencesforinlandwaterwaytransportinEurope.RegionalEnvironmentalChange,1-13,DOI10.1007/S10113-013-0441-7,ISSN1436-3798.

Jonkman,S.N.,Hillen,M.M.,Nicholls,R.J.,Kanning,W.,vanLedden,M.(2013)CostsofAdaptingCoastalDefencestoSea-LevelRise—NewEstimatesandTheirImplications.JournalofCoastalResearch,290,1212-1226,DOI10.2112/jcoastres-d-12-00230.1,ISSN0749-02081551-5036.

Kates,R.W.,Travis,W.R.,Wilbanks,T.J.(2012)Transformationaladaptationwhenincrementaladaptationstoclimatechangeareinsufficient.ProceedingsoftheNationalAcademyofSciences,109,7156-7161,ISSN0027-8424.

Kosmatka,S.H.,Kerkhoff,B.,Panarese,W.C.(2011)DesignandControlofConcreteMixtures.PortlandCementAssociation,ISSN0893122726.

Lonsdale,K.G.,Downing,T.E.,Nicholls,R.J.,Parker,D.,Vafeidis,A.T.,Dawson,R.,Hall,J.(2008)Plausibleresponsestothethreatofrapidsea-levelriseintheThamesEstuary.ClimaticChange,91,145-169,DOI10.1007/S10584-008-9483-0,ISSN0165-0009.

Losada,M.,Benedicto,M.(2005)TargetDesignLevelsforMaritimeStructures.JournalofWaterway,Port,Coastal,andOceanEngineering,131,171.

Mimura,N.,Yasuhara,K.,Kawagoe,S.,Yokoki,H.,Kazama,S.(2011)DamagefromtheGreatEastJapanEarthquakeandTsunami-aquickreport.MitigationandAdaptationStrategiesforGlobalChange,16,803-818,ISSN1381-2386.

MSPA(MississippiStatePortAuthority)(2007)GulfportMasterPlanUpdate2007-FinalReport.

Muis,S.,Verlaan,M.,Winsemius,H.C.,Aerts,J.C.,Ward,P.J.(2016)Aglobalreanalysisofstormsurgesandextremesealevels.NatCommun,7,11969,DOI10.1038/ncomms11969,ISSN2041-1723(Electronic)2041-1723(Linking),Onlineathttp://www.ncbi.nlm.nih.gov/pubmed/27346549.

Neumann,J.,Hudgens,D.,Herter,J.,Martinich,J.(2011)Theeconomicsofadaptationalongdevelopedcoastlines.WileyInterdisciplinaryReviews:ClimateChange,2,89-98,ISSN1757-7799.

NGIA(NationalGeospatial-IntelligenceAgency),(2014)WorldPortIndex,23rdEdition,Springfield,Virginia,USA.http://msi.nga.mil/MSISiteContent/StaticFiles/NAV_PUBS/WPI/Pub150bk.pdf

Nicholls,R.J.,Brown,S.B.,Hanson,S.,Hinkel,J.(2010)EconomicsofCoastalZoneAdaptationtoClimateChange.WorldBankDiscussionPapers,10,InternationalBankforReconstructionandDevelopment/WorldBank,,Onlineathttp://eprints.soton.ac.uk/id/eprint/202135.

Page 24: A Method to Estimate Climate-Critical Construction ...

Page 22

Nordpil,2009,Worlddatabaseoflargeurbanareas,1950-2050,AccessedJuly15,2014,Onlineathttp://nordpil.com/go/resources/world-database-of-large-cities/.

NRC(NationalResearchCouncil)(2010)America'sClimateChoices:AdaptingtotheImpactsofClimateChange,Washington,DC.

PANYNJ(PortAuthorityofNewYorkandNewJersey)(2012)PressRelease(183-2012).

Parris,A.,Bromirsji,P.,Burkett,V.,Cayan,D.,Culver,M.,Hall,J.,Horton,R.,,Knuuti,K.,Moss,R.,Obeysekera,J.,Sallenger,A.H.,Weiss,J.(2012)GlobalSealevelRiseScenariosfortheUSNationalClimateAssessment..NOAATechnicalReport,NationalOceanicandAtmosphericAdministration,37.

Peduzzi,P.(2014)Sand,rarerthanonethinks.EnvironmentalDevelopment,11,208-218,DOI10.1016/j.envdev.2014.04.001,ISSN22114645.

PEER(JointLegislativeCommitteeonPerformanceEvaluationandExpenditureReview),(2006)TheImpactofHurricaneKatrinaonMississippi’sCommercialPublicPortsandOpportunitiesforExpansionofthePorts.MississippiLegislature,Jackson,MS.http://www.peer.state.ms.us/

PuertosdelEstado(2002)RecommendationsforMaritimeStructures:Generalproceduresandrequirmentsinthedesignofharborandmaritimestructures.

Pullen,T.,Allsop,N.W.H.,Bruce,T.,Kortenhaus,A.,Schuttrumpf,H.,Meer,J.W.v.d.,(2007a)EurOtop:WaveOvertoppingofSeaDefencesandRelatedStructures:AssessmentManual.http://www.overtopping-manual.com/

Pullen,T.,Kortenhaus,A.,Allsop,N.W.H.,Bruce,T.,Schuttrumpf,H.,(2007b)EurOtop-WaveOvertoppingofSeaDefencesandRelatedStructures:AssessmentManual.EAEnvironmentAgency,UK.ENWExpertiseNetwerkWaterkeren,NL.KFKIKuratoriumfürForschungimKüsteningenieurwesen,DE.

Rahmstorf,S.(2010)Anewviewonsealevelrise.NatureReportsClimateChange,44-45.

Reeve,D.,(2010)OntheImpactsofClimateChangeforPortDesign,26thInternationalConferenceforSeaports&MaritimeTransport"IntegrationForaBetterFuture".

Simpson,R.D.,Toman,M.A.,Ayres,R.U.(2005)Scarcityandgrowthrevisited:naturalresourcesandtheenvironmentinthenewmillennium.ResourcesfortheFuture.

TCRP(TransitCooperativeResearchProgram),(2010)EstimatingSoftCostsforMajorPublicTransportationFixedGuidewayProjects.http://www.tcrponline.org/PDFDocuments/tcrp_rpt_138.pdf

Tebaldi,C.,Strauss,B.H.,Zervas,C.E.(2012)ModellingsealevelriseimpactsonstormsurgesalongUScoasts.EnvironmentalResearchLetters,7,014032,ISSN1748-9326.

Thoresen,C.A.(2003)Portdesigner'shandbook:recommendationsandguidelines.ThomasTelfordServicesLtd.

USACE(UnitedStatesArmyCorpsofEngineering),(2012)HurricaneandStormDamageRiskReductionSystemDesignGuidelines.http://www.mvn.usace.army.mil/Portals/56/docs/engineering/HurrGuide/EntireDocument.pdf

USACE(UnitedStatesArmyCorpsofEngineering),(2013)IHNC-LakeBorgneSurgeBarrier.http://www.mvn.usace.army.mil/Portals/56/docs/PAO/FactSheets/IHNC-LakeBorgneSurgeBarrier.pdf

Page 25: A Method to Estimate Climate-Critical Construction ...

Page 23

USACE(UnitedStatesArmyCorpsofEngineers),(2000)PlanningGuidanceNotebook.ER1105-2-100.U.S.ArmyCorpsofEngineers,Washington,DC20314-1000.http://planning.usace.army.mil/toolbox/library/ERs/entire.pdf

USACE(UnitedStatesArmyCorpsofEngineers),(2008)PartV-Chapter5-NavigationProjects,EngineeringandDesign:CoastalEngineeringManual.

USCCSP(UnitedStatesClimateChangeScienceProgram),(2008)ImpactsofClimateChangeandVariabilityonTransportationSystemsandInfrastructure:GulfCoastStudy,PhaseI,in:Savonis,M.,Burkett,V.R.,Potter,J.(Eds.),AReportbytheU.S.ClimateChangeScienceProgramandtheSubcommitteeonGlobalChangeResearch,Washington,DC.http://www.climatescience.gov/Library/sap/sap4-7/final-report/

USGS(UnitedStatesGeologicalSurvey),2004,ShuttleRadarTopographyMission,30ArcSecondscenes.

Vafeidis,A.T.,Nicholls,R.J.,McFadden,L.,Tol,R.S.J.,Hinkel,J.,Spencer,T.,Grashoff,P.S.,Boot,G.,Klein,R.J.T.(2008)ANewGlobalCoastalDatabaseforImpactandVulnerabilityAnalysistoSea-LevelRise.JournalofCoastalResearch,244,917-924,DOI10.2112/06-0725.1,ISSN0749-02081551-5036.

Vellinga,P.,Katsman,C.,Sterl,A.,Beersma,J.,Hazeleger,W.,Church,J.,Kopp,R.,Kroon,D.,Oppenheimer,M.,Plag,H.(2008)Exploringhigh-endclimatechangescenariosforfloodprotectionoftheNetherlands.KNMIandWageningenUR(Alterra,EarthSystemScienceandClimateChangeGroup).

Vermeer,M.,Rahmstorf,S.(2009)Globalsealevellinkedtoglobaltemperature.ProceedingsoftheNationalAcademyofSciences,106,21-27.

VonStorch,H.,Gönnert,G.,Meine,M.(2008)Stormsurges—AnoptionforHamburg,Germany,tomitigateexpectedfutureaggravationofrisk.EnvironmentalScience&Policy,11,735-742,ISSN1462-9011.

WashingtonOfficeofFinancialManagement(OEM),(2015)GuidelinesforDeterminingArchitect/EngineerFeesforPublicWorksBuildingProjects,in:WashingtonOfficeofFinancialManagement(OEM)(Ed.),Seattle,Washington.http://www.ofm.wa.gov/budget/instructions/capinst/aeguidelines.pdf

WorldBank,(2010)TheCoststoDevelopingCountriesofAdaptingtoClimateChange:NewMethodsandEstimates,GlobalReportoftheEconomicsofAdaptationtoClimateChangeStudy.TheWorldBankGroup,Washington,DC.