A Hydrodynamic Simulation of Mineral Flotation. Part I- The

download A Hydrodynamic Simulation of Mineral Flotation. Part I- The

of 14

Transcript of A Hydrodynamic Simulation of Mineral Flotation. Part I- The

  • 8/19/2019 A Hydrodynamic Simulation of Mineral Flotation. Part I- The

    1/14

    E L S E V I E R P o w d e r T e c h no l o gy 8 3 1 99 5) 2 1 1- 2 24

    POWDER

    TE HNOLOGY

    A h y d r o d y n a m i c s i m u l a t io n o f m i n e r a l f l o t a t i o n . P a r t I: t h e

    n u m e r i c a l m o d e l

    K D a r c o v i c h

    Ins t i tu te for Env i ronm e nta l Re se arc h and Te chnology Nat io nal Re se arc h Coun c i l o f Canada Ot tawa Ont . KI A OR 6 Can ada

    Received 14 February 1994; revised 12 December 1994

    bs t rac t

    Minera l f l o t a t ion i s a p rocess wh ereby pa r t i cu la t e s conta in ing mine ra l be a r ing con s t i tuen t s p re fe ren t i a l ly adhe re to gas

    bubbles in a l i qu id medium. Thi s i s a way to sepa ra t e and upgrade ores o r o the r mine ra l ma t t e r . In o rde r t o s imula t e th i s

    un i t ope ra t ion hydrodynamica l ly , a t h ree -phas e sys t em for t he l iqu id phase and d i spe rsed so lids and bubbles must be employed .

    Addi t iona l s imula t ion fea tures a re the ce l l geomet ry , t he boundary condi t ions , d rag t e rms, va r i ab le v i scous e f fec t s , and the

    t rea tment o f t he adhes ion of pa r t i c l e s t o bubbles . Thi s pape r , t he f i r s t o f a se r i e s o f two, de t a i l s t he formula t ion of t he

    govern ing equa t ions , t he numer i ca l implementa t ion and shows some re su l t s fo r a two-d imensiona l , i ncompress ib l e case . The

    formulat ion and implementat ion are suff ic ient ly general and this simulat ion was appl ied to the f lota t ion of coal-oi l agglomerates

    as deta i led in Part I I of this ser ies.

    Ke y words :

    Flotation; Th ree-pha se flow; Turbulence; Finite-volume method; Interphase mass transfer

    1.

    I n t r o d u c t i o n

    M i n e r a l f l o t a t i o n i s a u n i t o p e r a t i o n w h e r e l a r g e

    t a n k s o r c e l l s c o n t a i n i n g p a r t i c l e - b e a r i n g s l u r r i e s a r e

    s u b j e c t e d t o t u r b u l e n t m i x in g w i t h g a s e o u s b u b b l e

    s t r e a m s t o p r o v i d e s u f f ic i en t c o n t a c ti n g b e t w e e n t h e

    d i s p e r s e d p h a s e s . F u n d a m e n t a l l y , m i n e r a l f l o t a t i o n i n -

    v o l v e s t h e c o l l is i o n a n d s u b s e q u e n t a t t a c h m e n t o f a

    p a r t i c le w i th a b u b b l e i n a n a q u e o u s m e d i u m . O f t e n ,

    t h i s o p e r a t i o n i n v o l v e s se l e c t iv e a d h e s i o n o f a m i n e r a l

    b e a r i n g p a r t i c l e r a t h e r t h a n a g a n g u e p a r t i c l e , s o i n

    e f f e c t t h e m i n e r a l c o n t e n t i s r e c o v e r e d i n a n e n r i c h e d

    s t a t e . T h i s e v e n t is h ig h l y i n f l u e n c e d b y t h e o v e r a l l

    h y d r o d y n a m i c s o f a ll t h r e e p h a s e s i n a f l o t a ti o n c e ll .

    I n a d d i t i o n t o t h e s u r f a c e c h e m i c a l f a c t o r s w h i c h e s-

    s e n t ia l ly i n f lu e n c e t h e p a r t i c l e - b u b b l e a t t a c h m e n t , h y d r o -

    d y n a m i c s s i m u l t a n e o u s l y a s s i s t i n d e t e r m i n i n g s u c h a n

    i n t e r a c t i o n , p o t e n t i a l l y g i v i n g r i s e t o a c o l l i s i o n , a t-

    t a c h m e n t a n d s u c c e ss f u l f l o ta t i o n .

    O f i n t e r e s t i n t h is s t u d y a r e h o w t h e p r e v a i l i n g

    h y d r o d y n a m i c s i n th i s t h r e e - p h a s e s y s t e m p r o d u c e t h e

    s u m o f i n t e r a c t i o n s w h i c h d e f i n e t h e e f f ic i en c y o f t h e

    u n i t o p e r a t i o n . S i n c e t h e f lo w p h e n o m e n a i n v o l v ed c a n

    b e c o m p l e x , r e s ol v in g t h e h y d r o d y n a m i c fo r c e s w o u l d

    ¢ NRCC No. 37582.

    Elsevier Science S A

    S S D I 0 0 3 2 - 5 9 1 0 ( 9 4 ) 0 2 9 5 9 - R

    p r o v i d e a b as i s f o r d e c o u p l i n g t h e s u r f a c e c h e m i c a l

    c o n t r i b u t i o n t o t h e k i n e t ic s o f m i n e r a l f l o t a ti o n .

    T h e r e h a s b e e n c o n s i d e r a b l e r e s e a r c h i n t h e p a s t

    o n t h e r o l e o f h y d r o d y n a m i c s in t h e e l e m e n t a r y

    b u b b l e - p a r t i c l e c o l l i s i o n i n f l o t a t i o n , a s w e l l a s t o

    c h a r a c t e r i z e t h e m a c r o s c o p i c b e h a v i o u r o f a f l o ta t io n

    c e ll . E a r l y w o r k b a s e d o n t h e i n it ia l m o d e l b y S u t h e r l a n d

    [ 1] f o c u s e d o n h o w a p a r t i c l e f o l l o w i n g a f l u i d s t r e a m l i n e

    a r o u n d a b u b b l e i n a p o t e n t i a l f lo w r e g im e c o u l d c o n t a c t

    t h e b u b b l e . L a t e r r e s e a r c h b y F l i n t a n d H o w a r t h [ 2] ,

    D e r j a g u i n e t a l. [3 ] , S c h u l z e a n d G o t t s c h a l k [ 4] , W e b e r

    [ 5] , W e b e r a n d P a d d o c k [ 6] a n d D o b b y a n d F i n c h [ 7]

    d e v e l o p e d h y d r o d y n a m i c c o ll is i o n m o d e l s w h e r e i n e r ti a l

    e f f e c t s f r o m t h e p a r t i c l e a n d f l o w r e g i m e s i n a n i n -

    t e r m e d i a t e r a n g e b e t w e e n S t o k e s a n d p o t e n t i a l f l o w

    w e r e c o n s i d e r e d . T h u s , t h e u n d e r s t a n d i n g o f h o w o n e

    b u b b l e i n t e r a c t s w i t h o n e p a r t i c l e h a d b e e n r e f i n e d .

    T h e o t h e r p r i n c i p a l m e t h o d t o m o d e l f l o t a t i o n , h a s

    b e e n t o a p p l y s o m e b a s i c h y d r o d y n a m i c - r e l a t e d t r e a t -

    m e n t t o s i m u l a t e t h e e n t i r e u n i t o p e r a t i o n o f a fl o t a ti o n

    c e ll . S e v e r a l p a p e r s o n t h is t o p i c h a v e b e e n s u m m a r i z e d

    i n a r e v i e w b y M a v r o s [ 8] . T y p i c a l l y s o m e m i x i n g p a t t e r n

    w a s a s s u m e d a n d a p p l i e d t o a r e s i d e n c e t i m e d i s tr i b u t i o n

    f o r k i n e ti c m o d e l s s c a l e d u p f r o m b u b b l e - p a r t i c l e i n -

    t e r a c t i o n a n a l y s e s . A c o m p a r a t i v e l y i n - d e p t h s t u d y b y

    D o b b y a n d F i n c h f o r c o l u m n f l o t a t i o n s y s t e m s [ 9 , 1 0 ] ,

  • 8/19/2019 A Hydrodynamic Simulation of Mineral Flotation. Part I- The

    2/14

    2 1 2

    K. Darcovich Powder Technology 83 1995) 211-224

    made use of experimental residence time measurements

    to model the unit under a modified plug flow regime,

    without any mechanically introduced turbulence. The

    particulate concentration was determined in the axial

    dimension only via regular differential equations using

    an axial dispersion coefficient to account for some

    turbulent action.

    The computational fluid dynamics (CFD) approach

    for the present work was adopted as a means to enable

    flotation to be modeled in an integrated sense. This

    work is part of an on-going project on the recovery

    and beneficiat ion of waste coal fines by oil agglomeration

    [11]. Part II of this series [12] describes in detail the

    surface chemical aspects of the project. The objective

    of this paper (Part I) is to detail the formulations for

    simulating the steady-state motion of the liquid, gas

    and solid phases in a continuous float cell, such that

    the contacting patterns can be resolved. That is, to

    provide a mechanistically based model of flotation, the

    necessary steps of collision and adhesion must be ac-

    counted for. By determining a three-phase flow field

    solution, a turbulence based collision model based on

    local relative velocities and dispersed phase concen-

    trations can be used to illuminate how the particulate

    surface properties lead to successful bubble-particle

    adhesion. Part II in this series will then apply this

    simulation to flotation recovery data for coal-oil ag-

    glomerates in order to demonst rate the surface chemical

    influence on bubble-particle adhesion in flotation. With

    a resolved flow field, the influence of the particulate

    surface properties can be decoupled from the hydro-

    dynamics of the system, which in previous studies, had

    to be considered simultaneously.

    2 M a t h e m a t i c a l m o d e l

    The general partial differential equations which gov-

    ern fluid transport were employed in this simulation.

    Modification of these equations from their basic forms

    was required to incorporate an interdependent multi-

    phase system.

    2 1 System va riables

    The system to be simulated in this project required

    the resolution of twelve different field variables. Since

    the simulation was modeled as incompressible and in

    two-dimensions, the field variables were the two di-

    rectional components of the liquid, gas and solid phase

    velocities, the pressure, two turbulence parameters, the

    gas and solid phase volume fractions and the extent

    of particle adhesion onto the bubbles of the gas phase.

    The present model allows for the distinct flow paths

    and local velocities of each of the three phases. The

    flow field solution produces a two-dimensional velocity

    vector field and a scalar field of all other variables.

    Each phase is treated as a continuum and they share

    the domain according to the local volume fractions.

    The dimensions of the interfaces between the liquid

    and dispersed phases are prescribed by the volume

    fraction of each dispersed phase subdivided into par-

    ticles or bubbles of each input diameter. The interfacial

    area thus determined reflects the multi-phase nature

    of the model.

    2 2 Governing equations

    The finite-volume formulation used in this work

    employed the basic mass and momentum transport

    equations with the turbulence features worked into

    them expressed as statistical averages of the random

    fluctuations. The turbulence in the flows is accounted

    for by the turbulent variables k and E, from the two-

    equation model developed by Launder and Spalding

    [13]. The problem is fully defined with the specification

    of boundary conditions.

    2 2 1 Transport equations

    The instantaneous properties of a flow are given by

    the mass and momentum conservation equations [14].

    The variables, u, p and P are respectively velocity,

    density and pressure. For brevity, the Einsteinian indicial

    notat ion is used, subscripts i, j and k referring to the

    spatial directions.

    ap

    Mass: ~ + (pu) j.j=0 (1)

    Momentum: a(pu)i + [(pu)jul].j = - P i + ~ij j (2)

    ~ t '

    Above, ~-~j is the shear stress tensor given by:

    2

    7 i j = ] . Z ( U i , j t - U j , i ) - - 3 ~ ' £ U k . k ~ i j ( 3 )

    Here, /x is the laminar viscosity of the fluid.

    2 3 Turbulence mo del

    Via dimensional analysis, two parameters are required

    to evaluate /z,. The k - E model [15] has proven to be

    a suitable method to model turbulent flows. The pa-

    rameters have a physical significance, and transport

    equations may be obtained for them in a straightforward

    manner. For high Reynolds number flows, the parameter

    e is defined as,

    Here, u; is the mean velocity fluctuation and e defines

    the dissipation rate of the turbulent kinetic energy.

  • 8/19/2019 A Hydrodynamic Simulation of Mineral Flotation. Part I- The

    3/14

    K . D a r c o v ic h P o w d e r T e c h n o l o g y8 3 1 9 9 5 ) 2 1 1 - 2 2 4 2 1 3

    From dimensional analysis, the relation between the

    turbulent viscosity/xt and the two turbu lence paramete rs

    is,

    C ~ , p ) k 2

    u

    = (4)

    E

    In Eq. (4), C~, is found empirically, and for high Reynolds

    numbers, has a value of about 0.09. Fr om these expres-

    sions, equations entirely analogous to Eqs. (1) and (2)

    can be written [16]. These equations rely on a density-

    weighted ensemble-averaged (DWEA) form for the

    field variables. That is, the field terms will be treated

    with a mean value, but a non-zero time-average for

    turbulent effects is included.

    2 .3 .1 . Tu rb u len t k in e t ic en erg y t ra n sp o r t eq u a t io n

    The variable k is solved for in the flow domain with

    its behaviour defined by a transport equation. The

    DWEA turbulence energy transport equation was de-

    rived by Watkins [17] by manipulating the momentum

    equation and making use of the relations between the

    fluctuating and mean flow variables. The form of the

    equation that is used in this work is,

    i ) P ) k + p ) t ~ i k - l I . ~ + I z t ) k . j )

    at ~r , J

    2

    = ] J , t( /, ~ i( /, ~ i, ~ - /,~ j , ) ) . i - ~ ( / ~ j [~ / , t/ ~ i , i [ - ( p ) k ] ) , j - ( p ) E

    5 )

    The nota tions (p) and fi~ refer to, respectively, an

    averaged value and a density-weighted ensemble-av-

    eraged value. In Eq. (5), irk is an empirical constant

    of value 1.0.

    2.3.2. T u r b u l e n c e e n e r g y d i s s i p a t i o n r a t e e q u a t i o n

    The ensemble-averaged energy dissipation equa-

    tion is given below, in terms of DWEA variables, as

    this form [17,18] is considered the most correct,

    of the available relevant formulations. It is written

    a s ,

    i ) p ) , ) _ b p ) / ~ j , _ L 1 ~ . k _ /. /, t) ,. .i )

    bt o-, J

    e { c [ t x t ~ t i , . i + d j ) )

    k 1 t i , i , j

    ~ ( / ~ j ( l / ' t / '~ i , ~ - P ) k ) ) , i ] - C 2 p ) e ]

    + C 3 p ) a ~ j . j 6 )

    The model constants, cr,, C1 , Cz and C3 are given in

    Table 1.

    T a b l e 1

    T u r b u l e n c e m o d e l c o n s t a n t s

    Co nst ant C~, CI ?2 K E ~r o- , Ca

    Va lu e 0 .0 9 1 . 4 4 1 . 9 2 0 .4 1 8 7 9 .7 9 3 1 .0 ~ 1 .0

    C 2 - C l ) C ~ 5

    T a b l e 2

    I n t e r p h a s e d r a g t e r m s f o r t h e m o m e n t u m e q u a t i o n s

    P h a s e s D r a g t e r m

    9 ~ G / .t ,L .

    l i q u i d - g a s F L G i = T

    [ U G i - - U lA )

    l i q u i d - s o li d F L si = B u u - - U s i )

    2 . 4 . T h r e e - p h a s e m o d e l

    2 .4 .1. G a s -p h a se eq u a t io n s

    Continuity: a o p o u o i ) . i = O (7)

    Momentum: aG pGUGiU~i-- p.GeffUGi.j) . j

    = - - o tGP, i + o tGPGgi+FGLi + a o 3 r i p c , U G , P-ceff)

    8 )

    Above, aG is the gas-phase volume fraction, and the

    term FGL is the interphase drag term for the gas phase

    in relation to the liquid phase [19,20]. The terms

    indicated by 9-~(pc, uG,/zG~fr) arise from the curvature

    of the coordinate system selected. For this work, a

    Cartesian system was used, and these terms drop out.

    The interphase drag terms are summarized in Table

    2. The effective viscosity term, /zceer is the sum of

    laminar and turbulent contributions to the viscosity. In

    this simulation,/zG, is not considered as the turbulence

    is restricted to the main transporting phase, which is

    the liquid.

    Based on assumptions made by Lai and Salcudean

    [19], the gas-phase momentum equations may be sim-

    plified. The gas phase is assumed to be dispersed in

    the liquid phase. Further, in typical mineral flotation

    applications, the presence of chemical frothers and

    conditioners causes the bubbles to act as rigid spheres

    [5]. The gas bubbles are also modeled as incompressible

    which is a simplifying assumption; in this way, a constant

    system volume may be obtained. Further, inherent

    instabilities such as oscillations at the free surface of

    the vessel are neglected. The bubbles are treated as

    having a constant given diamete r which therefore does

    not allow for coalescence. Naturally, bubble coalescence

    is a very real phenomena, but incorporating it into this

    model would introduce a great deal of complexity to

    a system which is a first step in flotation modeling by

    the solution of field equations. Coalescence would serve

    to increase the mean bubble size and reduce the number

  • 8/19/2019 A Hydrodynamic Simulation of Mineral Flotation. Part I- The

    4/14

    2 1 4 K . D a r c o v ic h / P o w d e r T e c h n o lo g y 8 3 1 9 9 5 ) 2 1 1 - 2 2 4

    d e n s i t y o f b u b b l e s t h e r e b y c o n t r i b u t i n g t o a l e s s e r

    f lo t a t ion recovery .

    D e s p i t e t h e s e s h o r t c o mi n g s , t h e s i mu l a t i o n c a n d e m-

    o n s t r a t e t h e b a s i c p h y s i c a l b e h a v i o u r o f t h e s y s t e m. I n

    a n y c a s e , s i mp l i f i c a t i o n s o f t h e p h y s i c a l g e o me t r y o f

    t h e f l o t a t i o n u n i t u s e d i n t h e s i mu l a t i o n a r e ma d e ,

    s u c h t h a t a n o v e r l y c o mp l e x a n d c o mp l e t e l y p h y s i c al l y

    c o r r e c t t r e a t m e n t o f t h e g a s- p h a s e b e h a v i o u r w o u l d b e

    s u p e r f l u o u s .

    I f t h e a c t i o n o f t h e l i q u i d p h a s e i s a s s u me d t o b e

    p r i ma r i l y r e s p o n s i b l e f o r t h e g a s - p h a s e t r a n s p o r t , t h e n

    o n l y t h e p r e s s u r e , d r a g a n d b u o y a n c y t e r m s a r e r e t a i n e d .

    In th i s way , the gas ve loc i t i es may be exp l i c i t l y

    d e t e r m i n e d f r o m t h e g a s v e l o c i t y t e r m i n t h e d r a g

    e x p r e ss i on . T h e r e s u l ti n g m o m e n t u m e q u a t i o n b e c o m e s ,

    0 =

    - - aoP ~+ aGpG gi+ F GL~+ aGSr~( pG, UG,

    /ZG.,,) (9)

    2.4.2. Liquid-phase equations

    Co ntinu i ty: (aLPLUL~). = 0 (10)

    M o m e n t u m :

    aL (pL ULjUL~ - /ZL~ffUL~. ). i

    = - -aLP .~+FL GI+FL si+aLSrI (PL, UL,

    /ZLaf) (11)

    A b o v e , a L i s t h e l i q u i d - p h a s e v o l u me f r a c t i o n . I n E q .

    ( 1 1 ) , t h e t e r m

    aLPLg~

    i s o mi t t e d s i n c e t h e e q u a t i o n

    m a k e s u s e o f a

    corrected

    p r e s s u r e P , w h e r e ,

    P ~ i - - P , i p l _ g i

    H e n c e , i t c a n b e s e e n t h a t u s i n g

    P

    i n s t e a d o f P t a k e s

    c a r e o f t hi s t e r m . T h e i n t e r p h a s e f r i c t i o n t e r ms a r e

    t h e s a me o n e s a s g i v e n i n T a b l e 2 . I t s h o u l d b e n o t e d

    t h a t i n g e n e r a l , w h e n a p h a s e 1 i n t e r a c t s w i t h a p h a s e

    2 in a j -d i rec t ion , i t can b e sa id ,

    F 1 2 = - F 2 1 j

    H e n c e , w i t h r e s p e c t t o e q u a t i o n s f o r o t h e r p h a s e s , t h e

    s i g n s a r e r e v e r s e d o n t h e i n t e r p h a s e d r a g t e r ms w h e n

    i n s e r t e d i n t o t h e l i q u i d - m o m e n t u m e q u a t i o n .

    2.4.3. Solid-phase equations

    Cont inu i ty :

    (aspsUs,),

    ~= 0 (12)

    M o m e n t u m :

    as(psUsjUs~).j

    = - o t s P i + a s P s g ~ + F s L i + a s S r s i ( P s , Us) (13)

    A b o v e , a s i s t h e s o l i d - p h a s e v o l u me f r a c t i o n . Fo r t h e

    so l id phase , t he v i scou s t e rm s wi ll be o f a neg l ig ib le

    ma g n i t u d e i n c o mp a r i s o n w i t h t h e i n e r t i a l t e r ms , a n d

    a r e t h u s d r o p p e d f r o m E q . ( 1 3 ) .

    2.4. 4. Interphase drag

    Ba s e d o n r e s u l t s f r o m So o [ 21 ] a n d L a i a n d S a l c u d e a n

    [ 1 9 ] , t h e l i q u i d - g a s a n d l i q u i d - s o l i d i n t e r p h a s e d r a g

    t e r ms a r e g i v e n i n T a b l e 2 . A l s o i n T a b l e 2 w e h a v e

    t h e c o e f f i c i e n t B f o r t h e l i q u i d - s o l i d i n t e r p h a s e d r a g

    c o e f f i c i e n t . T h i s t e r m i s b a s e d o n d e r i v a t i o n s b y E r g u n

    [22] , W en and Y u [23] and L yczkow sk i and W ang [20] .

    W e u s e s a n d ~s t o r e f e r t o n o r ma l i z e d ( g a s p h a s e

    exc luded ) l i qu id and so l id vo lu m e f rac t ions . Th i s ap -

    p r o x i ma t i o n i s ma d e a s i t i s a s s u me d t h a t t h e l i q u i d

    p h a s e i s r e s p o n s i b l e f o r t r a n s p o r t i n g t h e d i s p e r s e d

    p h a s e s , a n d t h a t g a s - s o l i d a n d s o l i d - s o l i d i n t e r a c t i o n s

    a r e n e g l e c t e d .

    O~L

    O~L --1- O~S

    A l s o ,

    a s

    ~ s - - - -

    Ot~L Ot~S

    A s s h o w n i n [ 2 0 ] , t w o c a s e s a r e c o n s i d e r e d f o r B . W e

    have ,

    P L l u L - - U s I I s

    for ~:s>0.2 (14)

    B = 150 ~ + 1.75 2rp

    I n d e n s e s l u rr i e s, t h e f l o w fi e ld d i s t u r b a n c e s a r o u n d

    s p h e r e s b e g i n t o o v e r l a p a n d h e n c e a s e p a r a t e e x p r e s s i o n

    i s n e e d e d f o r s u c h a c a s e . Fo r mo r e d i l u t e l i q u i d - s o l i d

    sys tems , a d i f fe ren t reg im e ex i s ts and i s mod ele d [20,23]

    a s ,

    B = 0 . 7 5 C D

    U26 slu -u I

    f o r ~ s < 0 . 2 ( 1 5 )

    rp

    Ro w e [ 2 4 ] r e l a t e d t h e d r a g c o e f f i c i e n t t o t h e Re y n o l d s

    n u m b e r b y ,

    t 24

    D = Re~ (1 + 0.15Re~ 687) for Res < 1000

    0.44 for

    Re s >~

    1000

    w h e r e ,

    R e s

    2~pL(U L-- US)rp

    I~L

    2.4.5. Multi-phase mass balance

    T h r o u g h o u t t h e f lo w d o m a i n , a c h e c k m u s t b e m a d e

    o n t h e s u m o f t h e v o l u me f r a c t i o n s o f t h e v a r i o u s

    phases . At a l l l oca t ions , t he fo l lowing cond i t ion mus t

    be sa t i s f i ed ,

    E a M = 1 ( 1 6)

    M

    Continuity of pha ses

    I n t h is s i mu l a t io n , t h e r e a r e t h r e e p h a s e s c o n s i d e r e d ,

    wa ter , bu bb l es o f vary ing par t i c l e load ing , and pa r t i c l es .

    E a c h p h a s e i s s u b j e c t t o a m o m e n t u m b a l a n c e w h i c h

    i s em ploy ed fo r the ca l cu la t ion o f it s respe c t ive ve loc i t i es ,

    w h i c h i n t u r n mu s t b e u s e d t o d e t e r mi n e l o c a l v o l u me

    f r a c t i o n s t o e n s u r e p r o p e r c o n t i n u i t y f o r e a c h p h a s e ,

  • 8/19/2019 A Hydrodynamic Simulation of Mineral Flotation. Part I- The

    5/14

    K . D a r c o vi c h / P o w d e r Te c h n o lo g y 8 3 1 9 9 5 ) 2 1 1 - 2 2 4 2 1 5

    and taken all together, to conserve an overall, multi-

    phase mass balance.

    Liquid phase

    As described by Lai [16], the ma in transpor t phase

    velocities are determined by solution of the momentum

    equation, and then the conservation of mass is ensured

    by coupling the velocity determination with a pressure

    correction, which diminishes with convergence. The

    volume fraction for the liquid phase is not explicitly

    calculated, rather it is simply calculated as the remaining

    volume fraction, once gas and solid phase volume

    fractions have been calculated. That is, the liquid volume

    fraction, aL is calculated as,

    aL = 1 - a c - as (17)

    If at any point in the numerical computation of the

    phase volume fractions, the local sum of them exceeds

    unity, then they are all simultaneously normalized fol-

    lowing,

    O/i

    ai = 3 (18)

    ~ a j

    j - 1

    Gas phase

    A local flux balance at all nodes in the grid is employed

    to determine the gas phase volume fraction at all points

    in the flow domain. This is based on an upwind scheme

    presented by Spalding [25].

    We can express the flux Gi, for the ith phase, as

    G=p./lul ,

    where A is the area of the face through

    which this flux takes place. A local flux balance for

    any phase can be written as,

    E a iG i = ~o t i G i + R i

    (19)

    C U T I N

    The term R~ refers to a mass generation or consumption

    in a finite-volume cell. The adhesion of particles to

    bubbles represents a mass transfer from the solid to

    gas phase. The derivation of this term is discussed in

    section 2.4.7. Any outgoing flux from a cell will represent

    the volume fraction oqtp in that cell. The incoming

    fluxes will contain the volume fract ions in the respective

    neighbouring cells. We can rewrite Eq. (19) in view of

    the upwind differencing scheme as,

    a~tP ~ Gi =

    ZoqG,+R~

    (20)

    O U T I N

    Now, we have a finite volume expression for o~ijpl which

    is the unknown volume fraction at the point P, or cell

    where this flux balance is applied.

    ~ a i G i - I- -R i

    IN

    °t IPl-

    ~ Gi

    C U T

    Substituting the above result into Eq. (16) gives,

    ~aGGG+RG ~aLGL

    N N

    + - - + a s = l (21)

    c o e L

    O U T O U T

    Rearranging gives,

    ~ G L ( ~ a G G ~ + R c ) + ~ G o ~_~C tLG L

    OUT OUT N

    Now, substituting

    (F.IN~aGG+RG)/aGtp

    for ~ouTGc

    on the right hand side of the above expression, then

    rearranging gives,

    22)

    Eq. (22) may be used in the finite volume scheme for

    solving the gas phase volume fraction, in an iterative

    fashion, using current values of aL and as to update

    aGtPl- Upon inspection, it may be seen that Eq. (22)

    is inherently stable, as it has been constructed to

    calculate values of aG~Pl which are between 0 and 1.

    Solid phase

    In a fashion analogous to the previous development

    for the gas phase, the mass balance for the solid phase

    was derived.

    2.4.6. T urbu lent collision mo del

    Successful mineral flotation depends on having suit-

    able hydrodynamic conditions, or mixing to bring the

    bubbles and particles into contact with one another,

    as well as the necessary particulate surface properties

    to create a lasting adhesion between these particles

    and bubbles.

    With a statistical approach to the collection of par-

    ticles by bubbles, the micro-kinetics of a flotation system

    may be expressed. This must be done in view of the

    prevailing hydrodynamics of the system [26], which can

    be either laminar or turbulent.

    Based on Abrahamson s model [27] for parti-

    cle-particle collisions in a turbulent fluid, Bischofberger

    and Schubert [28] derived the following expression for

    the number of collisions per unit volume per unit time

    ZpB, in a turbulent flotation system.

  • 8/19/2019 A Hydrodynamic Simulation of Mineral Flotation. Part I- The

    6/14

    216

    K. Darcovich / Powder Technology 83 1995) 211-224

    2 2 0.5

    Z p B = r , , n p n B d e a V p B + g~B) (23)

    H e r e , n p a n d n B a r e r e s p e c t i v e ly t h e n u m b e r c o n c e n -

    t r a t i o n o f p a r t i c le s a n d b u b b l e s . T h e t e r m d p B is d e f i n e d

    a s ,

    d p B = r p + r B

    T h e t e r m s V p a n d v B a r e g i v e n b y ,

    E4 /9 • d 7 /9 ~ [ A p ~ 2 /3

    vi =0 4~ ~ ]kP--LLJ

    A b o v e , A p = I P i - P L I , a n d VL i s t h e k in e m a t i c v i s c o s it y

    o f t h e l i q u i d p h a s e .

    T h e t e r m r , r e p r e s e n t s t h e a d h e s i o n a l p r o b ab i li t y

    p a r t o f t h e c o l l i s i o n e x p r e s s i o n . T h e m e c h a n i s t i c b a s i s

    o f r~ is r e l a t e d t o t h e s u r f a c e p r o p e r t i e s o f t h e s o l id

    p a r t i c l e s a n d i s d i s c u s s e d i n P a r t I I o f t h i s s e r i e s [ 1 2 ] .

    T h e r e a r e a n u m b e r o f l i m i t a t i o n s w h i c h a p p l y t o t h e

    u s e o f E q . ( 2 3 ).

    T h i s e q u a t i o n w a s d e r i v e d f r o m t h e S m o l u c h o w s k i

    e q u a t i o n w h i c h p r e d i c t e d t h e c o l l i s i o n r a t e o f t w o

    p a r t i c le s u n d e r s h e a r f l o w c o n d i t i o n s . T h e e q u a t i o n i s

    u s e d h e r e o n l y i n s o f a r as i t p r o v i d e s a b a s i c t r e n d f o r

    t h e c o l l i si o n r a t e o c c u r r i n g a t t h e e a c h n o d e i n t h e

    c e l l . I t d o e s n o t e x p l i c i t l y a c c o u n t f o r t h e v a r i o u s p h y s i c o -

    c h e m i c a l p r o c e s s e s a s s o c i a t e d w i t h t h e c o l l i s i o n s s u c h

    a s f i l m - t h i n n i n g a n d s u r f a c e d e f o r m a t i o n a n d b o u n c e .

    T h e t u r b u l e n c e m i x i n g l e n g t h l, o f t h e s y s t e m i s d e f i n e d

    as , l = 0 .025D~. W ith a 20 cm s lur ry in le t we hav e l =

    0 . 0 0 5 m , a n d t h e b u b b l e d i a m e t e r i s 0 . 0 0 2 m , t h e r e b y

    s a t is f y i n g t h e r e q u i r e m e n t t h a t l > d B f o r E q . ( 2 3 ) t o

    b e v a l i d . T h e B i s c h o f b e r g e r a n d S c h u b e r t m o d e l w a s

    s e l e c t e d f o r t h i s s i m u l a t i o n s i n c e i t c a n b e c o n v e n i e n t l y

    a p p l i e d t o a p o p u l a t i o n o f p a r t ic l e s a n d b u b b l e s , m a k i n g

    d i r e c t u s e o f t h e s i m u l a t i o n v a r i a b le s w h i c h h a v e b e e n

    c a l c u l a t e d t h r o u g h o u t t h e d o m a i n . T h e f l o t a t i o n c o l -

    l i s i o n m o d e l i s a p p l i e d t o t h e s i m u l a t i o n i n a f a s h i o n

    a n a l o g o u s t o h o w a d r o p c o l l i s i o n a n d c o a l e s c e n c e

    m o d e l w a s u s e d f o r s t u d y in g l i q u id s p r a y s [ 2 9,3 0 ]. I n

    t h e n u m e r i c a l s i m u l a t i o n , t h e d i s p e r s e d p h a s e s w e r e

    m o d e l e d w i t h t h e i r a v e r a g e d i a m e t e r s , s o t h e c o l l i s i o n

    r a t e s f r o m E q . ( 2 3 ) w e r e u s e d d i r e c t l y . N a tu r a l l y , i t i s

    a s im p l i f i c a ti o n t o u s e m e a n d i a m e t e r s r a t h e r t h a n t o

    p e r f o r m t h e s i m u l a t i o n a c co u n t i n g f o r th e b u b b l e a n d

    a g g l o m e r a t e s i z e d i s t r i b u t i o n s , b u t f o r t h e p u r p o s e s o f

    d e m o n s t r a t i n g t h e i n f l u e n c e o f t h e a g g l o m e r a t e s u r f a c e

    p r o p e r t i e s u n d e r p r e v a i l in g h y d r o d y n a m i c s o n o b s e r v e d

    f l o t a t i o n t re n d s , t h e p r e s e n t t r e a t m e n t i s s u f fi c ie n t . E q .

    ( 2 3 ) w a s f o u n d t o g i v e p l a u s i b l e r e s u l t s a n d e q u a l l y

    i m p o r t a n t l y , p r o v i d e d a m e a n s t o d e c o u p l e t h e c o l l i -

    s i o n a l a n d a t t a c h m e n t p r o b a b i l i ti e s i n v o l v e d in f l o t a ti o n .

    A n i m p r o v e d o r m o r e s o p h i s t i c a t e d c o ll i si o n m o d e l

    c o u l d b e v e r y e a s i l y s u b s t i t u t e d i n t o t h i s s i m u l a t i o n ,

    a n d t h e r e s u l t i n g f u n c t i o n a l r e l a t i o n s h i p s c o u l d b e

    r e s o l v e d i n t h e s a m e m a n n e r a s d o n e i n t h i s w o r k .

    2 . 4 . 7 . I n t e r p h a s e m a s s t r a n s f e r

    T h e c o n s e r v a t i o n o f t h e m a s s o f a p h a s e i s g o v e r n e d

    b y t h e t r a n s p o r t E q . ( 2 4 ). F o r t h i s w o r k , i t i s w r i t t e n

    in t e r ms o f t h e s o l i d p h a s e , a s t h i s i s u s e d a s t h e

    r e f e r e n c e p h a s e w h e r e m a t e r i a l i s l o s t t h r o u g h m a s s

    t r a n s f e r t o t h e g a s p h a s e . B e l o w f o s i s t h e d e n s i t y

    f r a c t i o n o f t h e s p e c i e s i n t h e p a r t i c u l a t e p h a s e w h i c h

    i s p a r t i c i p a t i n g i n t h e m a s s t r a n s f e r [ 3 1] . B y d e f in i t i o n ,

    f p s = 1 a t t h e s t a r t o f a n y i t e r a t i o n , a s t h e e n t i r e p a r -

    t i c u l a t e p h a s e i s c o n s id e r e d t o b e c o a l - - o i l a g g lo me r a t e s

    w h i c h a r e i n v o l v e d i n t h e m a s s t r a n s f e r .

    - - + ( f~suj +Js j ) . j Rs (24)

    at

    A b o v e , J sj i s t h e d i f f u s io n f lu x v e c to r f o r t h e s o l i d

    p h a s e , a n d R s i s t h e r a t e o f c o n s u m p t i o n o f t h e s o l id

    p h a s e , i n u n i t s o f k g / s. T h e t e r m J sj r e f e rs t o m o l e c u l a r

    d i f fu s i o n , a n d c a n b e n e g l e c t e d f o r t h i s s y s t e m w h i c h

    m o d e l s l a r g e d i s p e r s e d b o d i e s . S i n c e a s t e a d y - s t a t e

    s y s t e m is b e i n g s i m u l a t e d , t h e t i m e d e r iv a t iv e t e r m m a y

    a l s o b e d r o p p e d . T h u s E q . ( 2 4 ) s imp l i fi e s t o ,

    Rs =fpsuj.~ (25)

    T h e r a t e t e r m R s i s c a l c u l a t e d u s i n g t h e r a t e o f

    c o l l i s i o n t e r m z p B f r o m E q . ( 2 3 ) , w h ic h g iv e s a v a lu e

    in u n i t s o f [ c o l li s i o n s s - 1 m- 3 ] . T h u s ,

    R s = r ~ N e m M A x - - N e m ) Z K B VC E L Lm S (26)

    T h e r e a r e a n u m b e r o f a d d i t i o n a l f a c t o r s i n t h e a b o v e

    e x p r e s s io n f o r R s . T h e t e r m ,

    Np~MA×-Np~)

    e x p r e s s e s t h e f r a c t i o n o f t h e b u b b l e s u r f a c e w h ic h i s

    s t il l a v a i l a b l e t o c o n t a c t a p a r t i c l e . V C EL L s t h e v o lu me

    o f t h e l o c a l c e l l w h e r e t h i s c o l l i s i o n r a t e i s a p p l i e d ,

    a n d ms i s t h e m a s s o f o n e s o l i d p a r t i c l e .

    S o l u t i o n o f E q . ( 2 5 ) w il l p r o d u c e a n a r r a y o f u p d a t e d

    s o l id p h a s e d e n s i t y f r a c t i o n s f ~ s, w i t h v a l u e s b e t w e e n

    0 a n d 1 , w h i c h r e p r e s e n t s t h e f r a c t i o n o f t h e s o l i d

    p h a s e r e m a i n i n g a f t e r s o m e o f i t h a s t r a n s f e r r e d i n t o

    t h e g a s p h a s e u n d e r t h e p r e v a i li n g t r a n s p o r t c o n d i t i o n s .

    W e s e t ,

    R =fk~

    w h e r e R i i s t h e m a s s g e n e r a t i o n o r c o n s u m p t i o n t e r m

    f o r t h e i t h p h a s e , u s e d i n t h e e q u a t i o n s i n s e c t i o n 2 . 4 . 5

    w h i c h d e t e r m i n e t h e l o c a l v o l u m e f r a c t i o n s o f t h e

    d i s p e r s e d p h a s e s a c c o u n t i n g f o r t h e t r a n s p o r t c o n d i t i o n s

    w i t h s i m u l t a n e o u s m a s s t r a n s f e r .

    E f f e c t i v e m a s s t r a n s f e r

    T h e p r o b l e m b e i n g m o d e l e d i n t h i s w o r k i n v o l v e s

    t r a n s f e r o f m a s s f r o m t h e s o l i d p h a s e t o t h e g a s p h a s e .

    T h i s r e q u i r e s t h a t t h e e f fe c ti v e b u b b l e d i a m e t e r m u s t

    i n c r e a s e a s ma s s i s t r a n s f e r r e d . A n a v e r a g e b u b b l e s i z e

    c a n b e c o m p u t e d f o r e a c h c e l l i n t h e f l o w f i e l d . T o

  • 8/19/2019 A Hydrodynamic Simulation of Mineral Flotation. Part I- The

    7/14

    K. Darcovich / Powder Technology 83 1995) 211-224 2 1 7

    d o t h i s , w e e mp l o y t h e me t h o d o f Sp a l d i n g [ 2 5 ] k n o w n

    a s t h e

    shadow

    so lu t ion .

    T h e s h a d o w v o l u m e f r a c t io n &c , is t h e v o l u me f r a c t i o n

    t h e g a s p h a s e w o u l d h a v e p o s s e s s e d , a t e a c h n o d e , i f

    t h e i n t e r p h a s e m a s s t r a n s f e r h a d n o t t a k e n p l ac e . T h a t

    is , E q . ( 1 9 ) is e mp l o y e d w i t h o u t t h e R i te r m . H o w e v e r ,

    s in c e th e s e e q u a t i o n s r e p r e s e n t a c o n ti n u u m w h e r e t h e

    o u t g o i n g f l u x e s mu s t b a l a n c e t h o s e c o m i n g in , E q . ( 2 2 )

    i s mo d i f i e d t o th e f o r m b e l o w f o r d e t e r mi n i n g t h e

    s h a d o w v o l u me f r a c t i o n .

    , o P , o o o )

    27)

    T h e d i f f e r e n c e b e t w e e n a o a n d & c c a n b e a t t r i b u t e d

    t o d i a me t e r g r o w t h v i a ma s s t r a n s f e r . T h u s ,

    dB [ \ 113

    A b o v e , d s 0 is th e d i a m e t e r o f t h e b u b b l e i n t h e p a r t i c u l a r

    c e l l a t t h e s t a r t o f t h e i t e r a t i o n . Fu r t h e r , i t c a n b e

    d e d u c e d t h a t ,

    Vo - Voo

    MVpm (29)

    s

    s i n c e t h e g a i n i n g a s p h a s e v o l u me i s a t t h e e x p e n s e

    o f t h e s o l i d p h a s e . T h e t e r m V~ r e f e r s t o t h e v o l u m e

    o f o n e b o d y ( b u b b l e o r p a r t i c l e ) f r o m e i t h e r t h e g a s

    o r s o l i d p h a s e .

    Fina l ly , as wi l l be d i scussed in the nex t sec t ion , t he

    e x t e n t o f s o l i d a d h e s i o n t o b u b b l e s w a s c o n s t r a i n e d .

    T h u s , i t w a s a s s u me d t h a t t h e g a s - p h a s e s o l i d l o a d i n g

    a n d c o r r e s p o n d i n g d e n s i ty i n c r e a se w e r e s m a l l e n o u g h

    t o a l l o w t h e s i mp l i f i e d g a s p h a s e t r a n s p o r t e q u a t i o n

    (Eq . 9 ) to s t i l l app ly .

    2 4 8 Drag on a loaded bubble

    Bubble loading

    T h i s s i mu l a t i o n h a s i n c o r p o r a t e d a mo d i f i e d d r a g o n

    a b u b b l e w h i c h h a s p a r t i c l e s a d h e r i n g t o i t . T w o c o n -

    s t r a i n ts w e r e i m p l e m e n t e d t o c o n t r o l th e l e v e l o f p a r -

    t i c le s a d h e r i n g t o a s in g l e b u b b l e . T h e m a x i mu m b u b b l e

    l o a d i n g i s c a l c u l a t e d b y a s s u mi n g t h a t c i r c u l a r p r o j e c -

    t i o n s o f t h e a r e a s o f t h e p a r t i c l e s ma y o c c u p y th e

    s u r f a c e o f th e b u b b l e . T h e p a r t i c le s a r e m o d e l e d t o

    p a c k i n a t w o - d i me n s i o n a l h e x a g o n a l l a t t i c e , t h e r e b y

    c o v e r in g a m a x i m u m o f 9 0 .7 o f t h e b u b b l e ' s g e o -

    m e t r i c a l a r e a . T h e m a x i m u m n u m b e r o f p a rt ic l e s p e r

    bubble, NpmM,,×, i s thus ,

    NemM,,X = 0-907(r4~2B)

    30)

    A s e c o n d c o n s t r a i n t a r i s e s f r o m c o n s i d e r i n g t h e r e l -

    a t i v e f l u x e s o f t h e g a s a n d p a r t i c u l a t e p h a s e s i n t h e

    f l o a t c e ll . N u m e r i c a l i n s ta b i li t y c o u l d a r i s e i f t h e b u b b l e s

    b e c a m e t o o h e a v i ly l o a d e d a n d g a v e o u t l e t p a r t ic u l a t e

    f luxes g re a te r than the i r i n l e t f luxes . Assu min g a l l t he

    i n l e t g a s e x it s in t h e p r o d u c t s t r e a m ( n o t v i a t h e l i q u id

    e x it ) th e n t h e m a x i m u m n u m b e r o f p a r ti c le s p e r b u b b l e

    b e c o m e s ,

    gs PG Vo

    N~/BM.x = - - 31)

    gopsVs

    Ab ov e g i re fe rs to th e f lux o f the i th ph ase , and V~

    r e f e r s t o t h e v o l u me o f o n e d i s p e r s e d b o d y . I n p r a c t i c e ,

    i f a m ass - f lux ins t ab i l i t y a rose , NemM^x was rep la ced

    by N~,mM^x in the algori thm .

    Particle patches

    Pa r t i c l e s a r e mo d e l e d t o f o r m c o n c e n t r i c h e x a g o n s

    o n t h e b a c k s i d e o f mo v i n g b u b b l e s a s s h o w n i n F i g .

    1 . T h e s e h e x a g o n s a r e d e n o t e d a s l e v e l s , a n d t h e t o t a l

    num ber o f par t i c l es a t each l eve l , n i s,

    N I = I

    n

    N , = 1 + ~ ] 6 q - 1 ) ( 32 )

    j 2

    Particle patch drag model

    T h e p a r t i c l e p a t c h w a s t h e n a p p l i e d t o a mo d e l

    d e v e l o p e d b y Pe n d s e e t a l . [ 32 ], w h i c h w a s f o r d r a g

    f o r c e c a l c u l a t i o n s o f s p h e r i c a l c o l l e c t o r s w i th d e p o s i t e d

    par t i c l es in var iou s conf igura t ions . Fo r cases wi th severa l

    p a r t i c l e s a t t a c h e d , t h e h y d r o d y n a m i c i n t e r a c t i o n a m o n g

    t h e a t t a c h e d p a r t i c l e s mu s t b e c o n s i d e r e d .

    F o r o u r c a s e , w e m a k e t h e a s s u m p t i o n t h a t l o a d e d

    b u b b l e s t r a n s p o r t e d b y f a s t - mo v i n g w a t e r w i l l o r i e n t

    N : N i n t e r a c t i o n s

    . .. .. .. .. .. .. N : N 1 i n t e r a c t i o n s

    F i g . 1 . S c h e m a t i c p a r t i c l e p a t c h .

  • 8/19/2019 A Hydrodynamic Simulation of Mineral Flotation. Part I- The

    8/14

    2 1 8

    K. Dar cov ich / P ow der Techno logy 83 ( 1995) 211 - 224

    themselves with the particle patch at the rear of the

    bubble, in line with the velocity vector of the bubble.

    The drag effects are a function of the position of the

    particle relative to the bubble's line of motion, as well

    as the product of all the interaction terms from all the

    attached particles.

    Pendse et al. [32] give the following expression for

    a multi-particle interaction which augments the drag

    force.

    AF D .M j=A Fo .o f(PM ,.,, PM 2.,, PM2.2, ...PMN .j)

    (33)

    Above, AFD.~ represents the increment of the jth

    particle from the Mth level on the drag of a bubble

    carrying such a number of particles. This increment is

    normalized with respect to the drag of an unloaded

    bubble. The function

    ( P M , , a , P M 2 , , , P M 2 . 2 , . P M , ~ . i )

    rep-

    resents the interaction of all attached particles with

    each other. Thus, the overall change in drag for a

    loaded bubble o f N levels, with j particles a t this level,

    AFD[N:j], will be,

    N L

    ~FD [N. . jl=Fo. , , + ~ ~ AFo.~,

    (34)

    M = 2 i ~ l

    L = 16 (M - 1) for

    M < N

    where,

    t

    for

    M = N

    The interaction term for only two particles was given

    in a derivation by Happe l and Brenner [33]. The

    complete derivation of the expressions used to arrive

    at this loaded bubble drag modifier is given in [34].

    As an example, for a bubble of 2.0 mm diameter

    and a particle of 60/zm diameter, the calculated drag

    coefficients are illustrated in Fig. 2. These calculations

    agree with the basic results of Pendse et al. [32] which

    they only calculated for cases with one and two attached

    particles.

    2.4.9. Viscosity effects

    The presence of up to three phases in variable

    concentration throughout the flow domain necessitates

    a means for specifying a basic laminar viscosity in each

    2 . 0 m m B u b b l e 6 0 / ~ m P a r t i c l e s

    1 . 0 1 0

    1 . 0 0 8

    G

    1 . 0 0 e

    e

    c

    ¢ ~ 1 . 0 0 4

    CIt

    m

    a

    1 . 0 0 2

    1 . 0 0 @ ~

    2 4 e 8

    A t t a c h e d P a r t i c l e s

    F i g . 2. D r a g f o r c e c o e f f i c i e n t s v s. b u b b l e l o a d i n g .

    1

    cell. The viscosity of a slurry is known to increase with

    solids concentration. The presence of air tends to give

    a much re duced viscosity, along the lines of a weighted

    average of the slurry and air viscosities. Since the

    viscosity of air is about three orders of magni tude below

    that of water, its effect is neglected [35]. That is,

    / ' / TOTAL = (1 - aO)/XSLURRV

    A model was incorporated into the simulation to

    account for variations in the laminar viscosity arising

    from local conditions. The two effects considered were

    those of particle size and particle concentration. Data

    from Borghesani [36] was fitted with a multivariate

    linear response surface. The response function was

    reduced

    (or normalized) viscosity, which is the viscosity

    of the slurry, divided by the viscosity of the pure

    suspending liquid. Hence, this provides a local coef-

    ficient, k,,, for the laminar liquid viscosity which is used

    in the program.

    The analysis of the residuals showed an average error

    of about 8% over the entire range of the model, which

    extended from 0 to 40 v/o solids concentrations and

    particle diameters from 1 to 450/zm. A model of this

    nature was considered adequate to convey any trends

    associated with the rheological properties of the 3-

    phase system.

    3 N u m e r i c a l i m p l e m e n t a t i o n

    The solution of the discretized differential equations

    is done via a hybrid of central and upwind differencing

    in the spatial dimensions, thereby permitting accurate

    computation over an extended range of Reynolds and

    Peclet numbers. Each finite volume equation is solved

    sequentially, in an iterative manner. All of the previous

    equations which have been expressed as transport equa-

    tions have assumed a similar format. In fact, any of

    the transport variables may be represented by a gen-

    eralized transport variable, ~b. q5 can be interpreted as

    either a time-average or a density-weighted average.

    In any case, the form of the equations are all identical.

    The different averages need not be indicated, as tur-

    bulence parameters along with the mean flow variables

    account for the entire flow field description.

    In our general form, we have,

    a(p4,) + (pu, 4, - F,4,. ,). ,= S, (35)

    8t

    where F6 and 6 are coefficients respectively known

    as the effective exchange coefficient and volumetric

    source rate of the variable .~b.

    The computer code developed to implement this

    finite volume formulation is quite modular in structure,

    allowing simple specifications to dictate steady or un-

    steady, laminar or turbulent, compressible or incom-

  • 8/19/2019 A Hydrodynamic Simulation of Mineral Flotation. Part I- The

    9/14

    K. Darcovich / Powder Technology 83 1995) 211-224 2 1 9

    pressible, reacting or stable states as well as heat and

    mass transfer conditions. Grids defining the flow domain

    may be prescribed in either Cartesian or cylindrical

    coordinates.

    The formulations given above, as well as the numerical

    devices detailed below, were incorporated into a com-

    puter code known as MO-PrIASE (multiple, dispersed

    phases), which was based on previous I~MA and rOR-

    COM codes [16].

    3 1 The grid system

    The flow domain is divided into control volumes, or

    for this two-dimensional case, control regions, defined

    by the coordinate-based grid lines. Fig. 3 illustrates

    this finite volume grid system. Based on the method

    of Gosman and Ideriah [37], a staggered grid is used

    to enhance numerical stability. Scalar qualities are

    determined at the grid points, and the nodes for the

    velocities (or vector quantities in general) are displaced

    in their respective directions to the mid-point of the

    scalar nodes along the grid lines. Scalar control regions

    are centered about the point P as indicated in Fig. 3,

    while the momentum control regions are centered about

    the points U and V for the respective velocity direction.

    This particular grid arrangement is well suited for

    imposing accurate boundary conditions since the mid-

    point locations for vector variables coincide with those

    of the normal velocity components, and thus prescribed

    boundary values and/or fluxes need not be modified.

    3 2 Discretization proced ure

    The differential equations which govern the physics

    of the flow are integrated over the volume of the flow

    domain. The entire domain is partitioned into cells

    delimited by the grid, and the unknown quantities are

    taken to be constant within each cell, with this mean

    value assigned to the node point.

    P V g r i d l i n e U g r i d l i n e

    ~ / /U

    c e l l b o u n d a r y

    - i i

    i l l i

    i i :

    c e b o u n r y

    P , V c e l l bound ry

    c o n t r o l v o l u m e f o r n o d e

    P U c e l l b o u n d a r y

    g r i d l i n e

    P U c e l l b o u n d a r y

    V c e l l b o u n d a r y

    r i d l i n e

    V c e l l b o u n d a r y

    F i g . 3 . T h e f i n i t e - v o l u m e c o n t r o l r e g i o n f o r a t w o - d i m e n s i o n a l C a r t e -

    s i a n s y s t e m .

    The general transport equation (Eq. (35)), can be

    written for the generalized variable, ~b, over one cell

    volume, Vc, with a time step of &. We can thus write,

    d-- (P4')dV+ f (Ou '4'-r*4 3nidA= S*

    (36)

    Vc A c Vc

    Above, nl is the unit outward normal from the control

    surface, Ac. The upwind differencing technique is then

    applied to this integral form of the transport equation

    to produce a system of linear equations for the field

    variables at each node in the domain. The details of

    such procedures are given explicitly in [16].

    3 3 Equ ation solution algorithm

    Beginning with the initial values for all the field

    variables, the governing equations are solved in sequence

    until the convergence criteria are satisfied. These are

    referred to as the outer iterations.

    Each linear equation, which is formulated over the

    domain for each variable, is solved by an inner iteration,

    an efficient scheme for treating a large matrix.

    3 3 1 Nu mer ical solution procedure

    The matrix which is assembled for each field variable

    equation is solved by a block iteration technique. This

    procedure sweeps across planes defined by coordinate

    index. A tri-diagonal matrix form is assembled locally

    as in the Gauss-Seidel method. This matrix can be

    solved implicitly. Details are given in [16]. The plane

    is solved grid line by grid line, and is repeated in

    alternating directions towards convergence. Since this

    is the inner iteration, full convergence is not required,

    as coupled variables are being simultaneously modified.

    The outer iterations ensure full final convergence, so

    usually no more than three inner sweeps are performed

    for each variable.

    3 3 2 Execu tion sequence

    As seen, the governing finite difference equations

    are coupled and non-linear, thereby requiring an it-

    erative method of solution. In each outer iteration, the

    equations are individually solved with inner iterations

    in a sequential fashion, adjusting each variable by its

    own equation, while holding others constant. The steps

    comprising the numerical algorithm are itemized below.

    (i) The fields of all variables were initialized either

    by guess or calculation.

    (ii) The liquid phase momentu m equation was solved.

    (iii) The pressure equation was solved, and pressure

    corrections (to ensure mass balance) were applied to

    liquid velocity field.

    (iv) The turbulence parameters were determined.

    (v) Gas-phase momentum equation was solved, and

    gas volume fractions were calculated.

  • 8/19/2019 A Hydrodynamic Simulation of Mineral Flotation. Part I- The

    10/14

    2 2 0

    K. Darcovich / Powde r Technology 83 1995) 211- 224

    ( vi ) S o l i d - p h a s e m o m e n t u m e q u a t i o n w a s s o lv e d , a n d

    s o li d v o l u m e f r a ct i o n s a n d s h a d o w s o li d v o l u m e f ra c t i o n

    w e r e c a l c u l a t e d .

    ( v ii ) T h e e x t e n t o f s o l id s c o n v e r s i o n w a s c a l c u l a t e d

    a n d u s e d t o u p d a t e t h e g a s a n d s o li d v o l u m e f r a c t i o n s

    a n d t h e g a s p h a s e s o l i d s l o a d i n g a n d n e t d i a m e t e r .

    ( v ii i) S t e p s 2 t h r o u g h 7 w e r e r e p e a t e d u n t i l th e

    c o n v e r g e n c e c r i t e r i a w e r e s a t i s f i e d .

    3 . 3 . 3 . C o n v e r g e n c e c r i t e r i a

    T h e r e s i d u a l s o u r c e s o f e a c h f i n i t e v o l u m e e q u a t i o n

    f o r e a c h v a r i a b le w e r e c o m p a r e d t o a r e f e r e n c e t o l e r a n c e

    t o a s se s s t h e c o n v e r g e n c e o f e a c h e q u a t i o n . T h i s r e f -

    e r e n c e t o l e r a n c e R , , R E F, i s s e l e c t e d a s t h e i n l e t f lu x

    o f th e d e p e n d e n t v a r i a b l e ¢ . T h i s c o n v e r g e n c e c r it e r i o n

    i n d i c a t e s h o w w e l l t h e c u r r e n t v a l u e s o f ¢ s o l v e t h e

    e q u a t i o n i n q u e s t i o n , r a t h e r t h a n h o w m u c h t h e v a l u e s

    o f ~b h a v e c h a n g e d o v e r s u c c e ss i v e i t e r a t io n s .

    R e f e r r i n g t o E q . 3 5 , w h i c h i s t h e g e n e r a l i z e d f i n i t e

    v o l u m e e q u a t i o n , t h e l o c a l r e s id u a l f o r t h e ¢ e q u a t i o n

    f o r t h e i t h i t e r a t i o n i s d e f i n e d a s ,

    0 p ~ ) + p U i ~ - - F ~ b ~ , i ) , i - - S ~ b 3 7 )

    R = a t

    I t c a n b e s e e n t h a t w h e n t h e s o l u t i o n i s o b t a i n e d , R ,

    g o e s t o z e r o . C o n v e r g e n c e i s c o n s i d e r e d s a t i s f a c t o r y i f

    t h e s u m o f th e n o r m a l i z e d a b s o l u t e r e s i d u a l s h a s f a ll e n

    b e l o w a s p e c i f i e d v a l u e A , i n t h i s c a s e s e l e c t e d a s 1 0 - 1 .

    T h a t i s f o r e a c h ¢ e q u a t i o n ,

    E EIR , l , . J l l < XR, , ~ (38)

    i j

    3 .4 . B o u n d a r y c o n d i t io n s a n d s im u l a t i o n i n p u ts

    F o r t h e f l o t a t i o n s i m u l a t i o n t h e b o u n d a r y c o n d i t i o n s

    a r e s h o w n i n F i g . 4 . T h e c e l l i s m o d e l e d a f t e r a

    c o m m e r c i a l c e ll m a d e b y M i n p r o o f M i ss is s au g a , C a n a d a

    a n d h a n d l e s a s o li d s th r o u g h p u t o f 4 .3 2 t o n n e s / d a y a n d

    a n a i r r a t e o f 1 . 5 m 3 / m i n . I t s d i m e n s i o n s a r e g i v e n i n

    T a b l e 3 . T h e t o p f a c e o f t h e f l o a t c el l is c o n s i d e r e d

    f la t a n d o p e n t o t h e a t m o s p h e r e . A z e r o r e d u c e d

    p r e s s u r e is im p o s e d h e r e a l o n g w i th t h e c o n d i t io n t h a t

    t h e g a s p h a s e m a y e x i t i n t h e v e r t i c a l d i r e c t i o n , w h i l e

    U L a n d U s w e r e s e t t o z e r o .

    T u r b u l e n c e c o n d i t i o n s a t in l e ts w e r e m o d e l e d a f t e r

    e q u a t i o n s g i v e n i n [ 1 6 ] . C o n c r e t e l y ,

    I = 0 . 0 0 5 l = 0 . 0 2 5 D i

    kl.5

    k = I u 2 e =

    l

    A b o v e , I is t h e t u r b u l e n c e i n t e n s i t y , a n d l i s t h e t u r -

    b u l e n c e m i x i n g l e n g t h , g iv e n i n t e r m s o f t h e i n l e t

    d i a m e t e r D i .

    O v j = 0 . 0 u L = 0 . 0 , u ~ = 0 . 0 , O u ~ = 0 . 0

    0y 0x

    U ~ , v j = 0 . 0

    o n a l l w a l l s

    v ~ = 0 . 0 5

    v s = 0 . 0 . 5

    a s = 0 . 1 0

    = u G = 0 . 0 5

    v c = 0 . 5 0

    F ig . 4 . B o u n d a r y c o n d i t i o n s fo r t h e M D - P H A S E f l o t at i o n s i m u l a t io n .

    T a b l e 3

    F l o a t c e l l d i m e n s i o n s

    P a r a m e t e r S i z e

    W i d t h 1 . 4 2 m

    H e i g h t 1 . 6 m

    S p a r g e r w i d t h 5 2 . 7 c m

    S l u r r y i n le t d i a m e t e r 2 0 c m

    W e i r d r o p 5 - 1 5 c m

    T a b l e 4

    P h y s i c a l p r o p e r t i e s o f th e t h r e e p h a s e s

    P h a s e D e n s i t y V i s c o si t y D i a m e t e r

    L i q u i d 9 9 7 . 1 8 . 9 4 × 1 0 - 4 N/A a

    G a s 1 . 2 1 . 4 2 × 1 0 - 6 2 . 5 m m

    S o l i d 1 2 0 0 . 0 N / A ~ 2 0 - 6 0 / ~m

    N/A n o t a p p l i c a b l e .

    T h e r e a r e s o m e a d d i t i o n al b o u n d a r y t r e a t m e n t s w h i c h

    a r e i n c l u d e d i n t h e f o r m u l a t i o n t o p r o d u c e m o r e s t a b le

    n u m e r i c a l b e h a v i o u r . T h e s e a r e d i s c u s s e d b y L a i a n d

    S a l c u d e a n [ 1 9 ] .

    T h e t h r e e p h a s e s i n t h i s s i m u l a t i o n w e r e i n p u t t h e

    p h y s i c a l p r o p e r t i e s l i s t e d i n T a b l e 4 . T h e u n i t s a r e

    b a s e d i n t h e m k s s y s t e m .

    T h e g r i d u s e d f o r t h e s i m u l a t i o n i s s h o w n i n F i g . 5 .

    T h e r e g i o n s o f h i g h s w i r l o r w h e r e s t r e a m s m i x h a v e

    m o r e g r i d l in e s to e n h a n c e t h e r e s o l u t i o n . G r i d s e n s it i v it y

    w a s n o t i n v e s t i g a t e d i n t h i s w o r k . T h e i n h e r e n t e r r o r

    a n d l i m i t a t io n s o f t h i s s im u l a t i o n ( i e, s i m u l a t i o n i n 2 D

    r a t h e r t h a n 3 D , w i t h s i m p l i f i e d g e o m e t r y ) r e n d e r t h e

    r e s u l ts u s e f u l i n t h e s e n s e o f h o w t h e y i l l u m i n a t e t h e

    s i m u l t a n e o u s i n t e r p l a y o f t h e v a r i o u s f l o t a t io n m e c h -

    a n is m s . T h e p r e s e n t s i m u la t io n w o u l d n e e d t o b e r u n

    i n t h r e e d i m e n s i o n s f o r a c t u a l e n g i n e e r i n g d e s i g n w o r k .

  • 8/19/2019 A Hydrodynamic Simulation of Mineral Flotation. Part I- The

    11/14

    K . D a r c o v i c h / owder Technology 8 3 1 9 9 5 ) 2 1 1 - 2 2 4 221

    F i g . 5 . F i n i te v o l u m e g r i d u s e d f o r f lo t a t i o n c e l l.

    I : : : : : : : : : : :

    ~ - ~ ' ~ - - ~ ~ :~

    • r

    t ~ t / ¢ t / t I / I [

    t i t ~ t y ~ / l , ' / t l

    ~

    F i g . 6 . T h r e e - p h a s e f l o t a ti o n v e l o c i t y a n d p r e s s u r e f i e ld s . dp= 43 .6

    p m a n d r~,=0.20.)

    4 . R es u l t s

    A d a ta s e t fo r th e s tu d y o f th e f l o ta t i o n p a ra meters

    w a s co n s tru c ted b y ru n n i n g th e th ree -p h a s e s i mu l a t i o n

    fo r a co mb i n a t i o n o f p a r t i c l e d i a meters a n d v a l u es fo r

    th e a t ta ch m en t e f f i c ien cy , r , , w h i ch w a s i n tro d u ced i n

    E q . (2 6 ) . T h i s d a ta s e t w a s th en u s ed to d ed u ce a

    re l a t i o n b e tw een th e p ro p er t i e s o f th e f l o a ted ma ter i a l

    a n d i t s r eco v ery . T h e s u r fa ce ch emi ca l a s p ec t o f th i s

    project i s deta i led in Part I I o f th i s paper .

    R u n - t i me co n tro l w a s a ch i ev ed b y ru n n i n g a l l th ree

    p h a s es a t o n ce , b u t w i th th e f req u en cy o f i t e ra t i o n fo r

    th e d i s p ers ed p h a s es red u ced u n t i l a s ta b l e b a s i c f l o w

    fie ld pattern based on l iquid transport was es tabl i shed.

    T h e f req u en cy o f i t e ra t i o n fo r th e d i s p ers ed p h a s es

    was gradual ly increased unt i l a ra t io o f 1 :1 was s table ,

    a n d co n v erg en ce co u l d b e a ch i ev ed .

    F i g s. 6 -8 s h o w a fu l l th ree -p h a s e f l o ta t i o n f l o w f ie l d

    s i mu l a t i o n re s u l t . T h i s ca s e h a d d p = 4 3 .6 / ~ m co rre -

    s p o n d i n g to a n co a l -o i l a g g l o mera te ma d e w i th 2 w t .

    o i l and the a ttachm ent ef f ic iency , ra = 0 .20 . The pressure

    f i e l d s h o w n i n F i g . 6 s h o w s th e d y n a mi c p res s u re .

    For the example i l lus trated in these f igures , the f lux

    o f s o l i d s a cco mp a n y i n g th e g a s p h a s e f ro m th e to p ex i t

    was 0 .447 kg /s , g iv ing a f lo ta t ion recovery for th is case

    o f 3 7 . 2 .

    For the o ther cases run, the graphica l output i s very

    s i mi l a r . T h e s a me b a s i c t ren d s a re fo l l o w ed . W h a t ca n

    be not iced i s s l ight s treaml ine di f ferences for heav ier

    p a r t i cl e s. T w o ca s e s a re s h o w n i n F i g s. 9 a n d 1 0. A n o th e r

    feature ev ident in F igs . 9 and 10 i s that for the 60 / .~m

    case , the s treaml ines travel a t the top o f the ce l l in

    th e y -d i rec t i o n a s th ey ex i t o v er th e w e i r . T h e i r g rea ter

    s e t t l i n g t en d en cy d o es n o t en a b l e th e f l u x i n th i s ca s e

    to t ra n sp o r t th em u p o v er th e w e i r a s w i th th e 2 0 / ~ m

    part ic les . A s tronger c ircula t ion i s es tabl i shed in the

    top h a l f o f the ce l l to create a current o f suff ic ient

    f lux to carry the unf loated so l ids out over the weir .

    Add i t iona l ly , F igs . 11 and 12 sho w s treaml ines ca l -

    cu l a ted fo r b u b b l e d i a m eters o f 2 .5 a n d 1 .0 mm re -

    s p ec t iv e l y. T h e p a r t i c le d i a m eter i n th i s ca s e i s 6 0 / ~ m .

    T h e g rea ter b u o y an cy fo rce o n th e l arg er b u b b l e s ren d ers

    them less subject to the trajectory dev ia t ions brought

    about by the s lurry motion.

    g a s f r a c t i o n

    K e Y TO C O N T O U R V A L U e 8

    0 . 6 0 0

    0 4 0 0

    0 8 0 0

    O.JO0

    0 1 0 0 0

    0.0000

    p a r t i c l e f r a c t i o n

    E l Y ? 0 C O N T O U R V A L U B I

    0 8 0 0

    0 1 | 0

    o o s o o

    o o 8 0 o

    O.OlO00

    0 . 0 0 0 0 0

    o o e t o o

    b u b b l e l o a d

    I C gY T O C O N T O U R V A L U E S

    0 0 0 0

    4 0 0 0

    0 0 0 0

    0 0 0 0

    1 ooo

    o . s e o

    Q

    I

    \ \

    \ J

    / /

    F i g . 7 . T h r e e - p h a s e f l o t a ti o n c o n c e n t r a t i o n a n d m a s s t r a n s f e r c o n t o u r s . d p = 4 3 . 6 ~ m a n d r a = 0 . 2 0 . )

    _o

    e~

    .Q

  • 8/19/2019 A Hydrodynamic Simulation of Mineral Flotation. Part I- The

    12/14

    2 2 2 K. Darcovich / Powder Technology 83 1995) 211-224

    F i g. 8. T h r e e - p h a s e f l o t at i o n t u r b u l e n c e c o n t o u r s. d p = 4 3 .6 ~ m a n d

    r o = 0 . 20 . )

    F i g . 1 1 . B u b b l e s t r e a m l i n e , d B = 2 . 5 m m .

    F i g . 9 . P a r t i c l e s t r e a m l i n e , dp=20 ixm.

    F i g . 1 0 . P a r t i c l e s t r e a m l i n e , dp=60 lzm.

    4 1 In t eg r a t e d f l o t a t io n mo d e l

    T h e C F D w o r k c a r r i e d o u t a s p a r t o f t hi s p r o j e c t

    e n a b l e d a n i n t e g r a t e d s t u d y o f m i n e r a l r e c o v e r y by

    f l o t a ti o n t o b e a c h i e v e d . T h a t i s t h e o u t p u t f r o m t h e

    u n i t o p e r a t i o n w a s d e t e r m i n e d a s a s u m o f a ll l o c a l

    m a s s t r a n s f e r o c c u r r i n g t h r o u g h o u t t h e d o m a i n . I n t h is

    w a y t h e e f f e c t s w h i c h w e r e o f a s p e ci f ic a l ly h y d r o -

    d y n a m i c n a t u r e s u c h a s d i s p e r s e d p h a s e d i a m e t e r s a n d

    d e n s i t i e s t h e p r e v a i l in g fl o w p a t t e r n s a n d l o c a l t u r -

    b u l e n c e a c c o u n t e d f o r t h e c o l l i s i o n s l e a d i n g t o p o s s i b l e

    F i g . 1 2 . B u b b l e s t r e a m l i n e , d B = 1 .0 m m .

    s u b s e q u e n t m i n e r a l c o l le c t i o n . T h u s t h i s p r o v i d e d a

    m e a n s t o d e c o u p l e s u r f a c e c h e m i c a l e f f e c ts w h i c h w e r e

    r e s p o n s i b l e f o r t h e a d h e s i o n o f t h e p a r t i c l e s t o th e

    b u b b l e s o n c e a c o l l i s i o n h a d t a k e n p l a c e . T h i s i s f u l l y

    d i s c u s s e d i n P a r t I I o f t h i s p a p e r .

    5 C o n c l u s i o n s

    A t w o - d i m e n s i o n a l f in i te v o l u m e c o d e f o r t h r e e -p h a s e

    f lo w w a s f o r m u l a t e d a n d i m p l e m e n t e d t o s i m u l a te t h e

    p r o c e s s o f m i n e r a l f l o ta t io n . T h i s m o d e l i n c o r p o r a t e d

    a t u r b u l e n t b u b b l e - p a r t i c l e c o l l i s i o n m o d e l g i v in g r i s e

    t o i n t e r p h a s e m a s s t r a n s f e r w h i c h d e f i n e d t h e f l o t a t i o n

    p r o c e s s r e c o v e r y . T h e s e e f f e c t s w e r e s u c c e s s f u ll y c o u p l e d

    w i t h t h e m a s s b a l a n c e e q u a t i o n s f o r e a c h p h a s e . A l s o

    i n c l u d e d w e r e t h r e e - p h a s e r h e o l o g i c al e f f ec t s a n d a

    m o d i f i e d d r a g c o e f f i c ie n t f o r t h e g a s p h a s e w h e n s m a l l

    s o l i d p a r t i c l e s a d h e r e t o b u b b l e s u r f a c e s .

    T h e n o v e l u se o f a C F D f l o ta t i o n m o d e l p r o v i d e d

    a n i n t e g r a t e d s i m u l a t i o n a l lo w i n g r e c o v e r y p r e d i c t i o n s

    o n f u n d a m e n t a l m a t e r i a l p r o p e r t ie s a n d u s i n g a m i c r o -

    f l o t a t i o n c o l l is i o n m o d e l i n a m a c r o s c o p i c h y d r o d y n a m i c

  • 8/19/2019 A Hydrodynamic Simulation of Mineral Flotation. Part I- The

    13/14

    K. Darcovich / Powder Technology 83 1995) 211-22 4 223

    context where all local variables are prescribed. This

    ensured soundness of results and an adaptability to

    various behaviour regimes. The present simulation has

    been shown to be suitable for making a parametric

    study of flotation. Part II of this series makes use of

    resolved hydrodynamics to illuminate attachment phe-

    nomena for coal-oil agglomerate flotation.

    The flow model itself is in a generalized form, so

    the basic framework is in place to convert to three

    dimensions. In three dimensions, the full effects of cell

    geometries come into resolution, and as such, the cell

    configuration and the turbulence parameters would be

    highly useful for actual engineering design work.

    S ~

    u i

    l) B

    l )p

    Vc

    V ~

    Vo

    V ~

    s

    Z p B

    ubscripts

    volumetric source rate

    time

    velocity

    bubble turbulent collision velocity

    particle turbulent collision velocity

    finite difference cell volume

    volume of local cell

    volume of one bubble

    volume of one bubble at start of iteration

    volume of one particle

    collisions per unit volume per unit time

    6 L i s t o f s y m b o l s

    A

    B

    C o

    C,

    C 1 C 2 C 3

    dB

    d B o

    dp

    deB

    D i

    E

    3ri

    Gi

    I

    j ~

    k

    k,

    1

    m s

    n i

    nB

    n p

    Npm

    P

    P

    rB

    rp

    ra

    R t

    R i

    R,b

    R,[,, Jl

    R ~ b R E F

    Re

    Res

    area of cell face for flux

    coefficient for liquid-solid drag

    drag coefficient

    k-E model constant

    k--E model constants

    bubble diameter

    bubble diameter at start of iteration

    particle diameter

    rp+ra

    inlet diameter

    turbulence model wall velocity constant

    dispersed phase-liquid interphase drag term

    curvature related source terms

    flux of ith phase

    turbulence intensity

    diffusion flux vector for Jth phase

    turbulence kinetic energy

    laminar slurry viscosity coefficient

    turbulence length scale

    mass of one solid particle

    unit outward normal

    number concentration of bubbles

    number concentration of particles

    bubble loading, particles per bubble

    maximum bubble loading under mass-flux

    constraint

    pressure

    finite-volume node point

    bubble radius

    particle radius

    attachment efficiency

    rate of flotation

    mass generation or consumption of ith

    phase

    residual for ~b equation

    local nodal residual for 4)

    reference residual for 4 equation

    Reynolds number

    particle Reynolds number

    G , L , S

    i , j , k

    [p]

    t

    gas, liquid or solid phase

    tensor spatial indices

    finite volume node point

    turbulent quantity

    Superscripts

    I

    m

    mean turbulent fluctuation

    density-weighted ensemble-averaged

    shadow volume fraction quantity

    Greek letters

    li

    AFD

    ~ k F D 0

    E

    r~

    / (

    A

    /z

    /d,eff

    VL

    P

    Ap

    (rk

    r~j

    ith phase volume fraction

    increment on drag due to jth particle in

    Mth level

    overall change in drag for a loaded bubble

    of N levels, with j particles

    bubble drag increase due to one adhering

    particle

    turbulence energy dissipation

    effective exchange coefficient

    turbulence kinetic energy

    convergence coefficient

    laminar viscosity

    effective viscosity, composed of sum of lam-

    inar and turbulent contributions

    kinematic viscosity of the liquid phase

    normalized liquid and solid phase volume

    fractions

    density

    Ip -pLI

    k - e

    model constant

    k - e

    model constant

    shear stress tensor

    generalized transport variable

    e f e r e n c e s

    [1] K.L . Su the r lan d , J. Phys. Chem., 52 (1948) 394.

    [2 ] L .R . F l in t and W.J . How ar th , Chem. Eng. Sci., 26 (1971) 1155.

  • 8/19/2019 A Hydrodynamic Simulation of Mineral Flotation. Part I- The

    14/14

    224 IC Darc ov ic h / Pow de r Te c hnology 83 1995) 211-2 24

    [3] B .V . De r ja g uin , S.S . Du khin a nd N .N . Rule v , Surf . Collo id Sci. ,

    1 3 (1984) 71 .

    [4] H . J . Sc hulz e a nd G . Got t s c ha lk , in J . La skowski ( e d . ) , Mine ral

    Processing, 13th Int . M inera l Processing Congr. , Par t A, Warsaw,

    June 4-9, 1979, Else vie r , Am s te rda m , 1981, pp . 63-85 .

    [5] M.E . W e be r , Z Separ. Proc. Tech., 2 (1981) 29.

    [ 6] M . E . W e b e r a n d D . P a d d o c k , Z Collo id Inter face Sci ., 9 4 (1983)

    328.

    [ 7] G . S . D o b b y a n d J . A . F in c h , Int . J . Miner al Process . , 21 (1987)

    241.

    [8] P . Ma vros , in P . M a vros a nd K .A . Ma t i s (e ds . ) , Innov at ions in

    Flotat ion Technology , Kluwe r , Dordre c ht , 1992, pp . 211-234.

    [ 9] G . S . D o h b y a n d J .A . F i n c h , Chem. Eng. Sc i . , 40 (1985) 1061.

    [ 10 ] G . S . D o b h y a n d J . A . F i n c h , CIM Bul l . , 79 (1986) 89 .

    [ 11 ] C . E . C a p e s , in J . W . L e o n a r d a n d B . C . H a r d i n g e ( e d s . ), C o a l

    Preparation, P a r t 4 , S M E / A I M E , L i t f l e t o n , C O , 5 t h e d n . , 1 9 9 1 ,

    pp. 1020--1041.

    [12] K . Da rc o vic h a nd C .E . Ca pe s , Po wd er TechnoL, 83, (1995) 225.

    [ 13 ] B . E . L a u n d e r a n d D . B . S p a l d in g , Comp. Me th . Appl . Me c h.

    Eng., 3 (1974) 269 .

    [ 14 ] R . B . B i r d , W . E . S t e w a r t a n d E . N . L i g h f f o o t , Transport Phe-

    n o m e n a , Wile y , Ne w York , 1960.

    [ 15 ] B . E . L a u n d e r a n d D . B . S p a l d i n g , M a t h e m a t i c a l M o d e l s o f T u r -

    bulence, A c a d e m i c P r e s s , L o n d o n , 1 9 7 2 .

    [ 16 ] K . Y . M . L a i, T U R C O M : a c o m p u t e r c o d e f o r t h e c al c u l a t i o n

    o f t r a n s i e n t , m u l t i - d i m e n s i o n a l , t u r b u l e n t , m u l t i - c o m p o n e n t

    c he m ic a l ly r e a c t ive f lu id flows. Pa r t I : tu rb ule n t , i so the rm a l

    a nd inc om pre s s ib le flow , NR CC N o. 27632, TR-GD-O11, O t t a w a ,

    Ca na da , 1987.

    [17] A.P . W atk ins , Ph .D . The s is , I m p e r i a l C o l l e g e , L o n d o n U n i v e r s i t y ,

    UK, (1977) .

    [18] W.P . Jone s , Pre dic t ion Me thods or Turbule nt F lows , V o n K a r m a n

    I n s t i t u t e f o r F l u i d D y n a m i c s , R h o d e S a i n t G e n 6 s e , B e l g i u m ,

    1979.

    [19] K .Y .M. La i a nd M. Sa lc ud e a n , Comp. Fluids , 15 (1987) 281 .

    [20] R .W . Lyc zkowski a n d C .S . W a ng, Po wd er Technol. , 69 (1992)

    285.

    [21] S.L. Soo, F l u i d D y n a m i c s o f M u l t i p h a s e S y s t e m s , Bla i sda le ,

    Wa l tha m , M_A, 1967.

    [22] S . Ergu n, Chem. Eng. Prog. , 48 (1952) 89 .

    [ 23 ] C . Y . W e n a n d Y .H . Y u , Chem. Eng. Prog. Syrup. Ser . , 62 (1966)

    100.

    [24] P .N . Row e , Trans. Ins t . Chem. Eng. , 39 (1961) 175.

    [ 25 ] D . B . S p a l d i n g , i n R . V i c h n e v e s k y a n d R . S . S t e p l e m a n ( e d s . ) ,

    Adv anc e s in Co mpute r Me th ods for Par t ia l D i f f e re nt ia l Equat ion s

    / V , O f fi c e o f N a v a l R e s e a r c h , B e t h e s d a , M D , 1 9 81 , 1 9 p p .

    [ 26 ] T . I n o u e , M . N o n a k a a n d T . I m a i z u m i , A d v a n c e s i n M i n e r a l

    Processing: A Half-C entur y of Progress in Applicatio n o f Theory

    to Practice, SME, L i t t l e ton , CO, 1986, Ch. 12 , pp . 209-228.

    [ 27 ] J . A b r a h a m s o n , Chem. Eng. Sc i . , 30 (1975) 1371.

    [ 28 ] C . B i s c h o f b e r g e r a n d H . S c h u b e r t , Neu e Bergbautechnik , 10

    (1980) 58 .

    [29] J .P . Ash e im , J .E . K i rwa n a nd J .E . Pe te r s , J . Propulsion, 4 (1988)

    391.

    [ 30 ] A . A . A m s d e n , P . J . O R o u r k e a n d T . D . B u t l e r , K I V A - I I : a

    c o m p u t e r p r o g r a m f o r c h e m i c a l l y r e a c t i v e f l o w s w i t h s p r a y s ,

    R e p o r t L A - 1 1 5 6 0 - M S , L o s A l a m o s N a t i o n a l L a b o r a t o r y , 1 9 8 9 .

    [ 31 ] K . Y . M . L a i , T U R C O M : a c o m p u t e r c o d e f o r t h e c a l cu l a t i o n

    o f t r a n s i e n t , m u l t i - d i m e n s i o n a l , t u r b u l e n t , m u l t i - c o m p o n e n t

    c he m ic a l ly r e a c t ive f lu id flows. P a r t I I : c om pre s s ib le a nd c orn-

    bus t ing f low , NR CC N o. 29287, TR-GD-O12, O t t a w a , C a n a d a ,

    1988.

    [ 32 ] H . P e n d s e , C . T i e n a n d R . M . T u r i a n , A I C h E J . , 27 (1981) 364.

    [33] J . H a p p e l a n d H . B r e n n e r , L o w R e y n o l d s N u m b e r H y d ro d y n a m ie s ,

    L e y d e o n , N o o r d h o f f , G r o n i n g e n , 2 n d e d n . , 1 9 73 .

    [34] K . Da rc ov ic h , Ph.D. Thesis, U n i v e r s i t y o f O t t a w a , ( 1 9 9 3 ).

    [ 35 ] K . Y . M . L a i a n d M . S a l c u d e a n , Num. He at Trans l . , 14 (1988)

    97.

    [ 36 ] A . F . B o r g h e s a n i , i n N . P . C b e r e m i s i n o f f ( e d . ) , Enc y c lope dia o f

    F lu id Me c hanic s , V o l . 7 , G u l f P u b l i s h i n g , H o u s t o n , T X , 1 9 8 8 ,

    Ch. 4 , pp . 89-134.

    [ 37 ] A . D . G o s m a n a n d F .D . K . I d e r i a h , T e a c h - 2 E : a g e n e r a l c o m p u t e r

    p r o g r a m m e o f t w o - d i m e n s i o n a l t u r b u l e n t r e c i r c u l a t i n g f l o w s ,

    Interna l Rep. , I m p e r i a l C o l l e g e, U n i v e r s i t y o f L o n d o n , U K , 1 9 76 .