A Grand Challenge for CMOS Scaling: Alternate Gate...

85
A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics Robert M. Wallace Department of Materials Science University of North Texas [email protected] www.mtsc.unt.edu

Transcript of A Grand Challenge for CMOS Scaling: Alternate Gate...

Page 1: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

A Grand Challenge for CMOS Scaling:Alternate Gate Dielectrics

Robert M. WallaceDepartment of Materials Science

University of North [email protected]

Page 2: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

2© 2002 R.M.Wallace

So where is UNT?

Page 3: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

3© 2002 R.M.Wallace

Outline• Performance expectations

– “New” Materials– SIA Roadmap

• Materials Considerations for Gate Dielectrics– Barrier Height and Permittivity– Thermodynamics and Stability– Dielectric Film Morphology and Structure– Gate Material Compatibility– Deposition Method– Reliability

• Future Directions

Page 4: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

4© 2002 R.M.Wallace

CMOS Periodic Table1970’s

IA IIA IIIB IVB VB VIB VIIB VIII Ib IIb IIIA IVA VA VIA VIIA VIIIA

H He

Li Be B C N O F Ne

Na Mg Al Si P S Cl Ar

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

Fr Ra Ac

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Lu

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lw Lw

Page 5: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

5© 2002 R.M.Wallace

CMOS Periodic Table1980’s

IA IIA IIIB IVB VB VIB VIIB VIII Ib IIb IIIA IVA VA VIA VIIA VIIIA

H He

Li Be B C N O F Ne

Na Mg Al Si P S Cl Ar

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

Fr Ra Ac

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Lu

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lw Lw

Page 6: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

6© 2002 R.M.Wallace

Periodic Table for ULSIIA IIA IIIB IVB VB VIB VIIB VIII Ib IIb IIIA IVA VA VIA VIIA VIIIA

H He

Li Be B C N O F Ne

Na Mg Al Si P S Cl Ar

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

Fr Ra Ac

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Lu

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lw Lw

Page 7: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

7© 2002 R.M.Wallace

Explosion of New Materials!

From Semiconductor International, Feb. 2001; Tegal

Page 8: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

8© 2002 R.M.Wallace

The Devices

A: Gate StackB: Source/Drain – ExtensionC: IsolationD: Channel

E: WellsF: Capacitor G: Si Starting MaterialH: Contact

Typical Chip Cross Section

Global

Intermediate

Local

Passivation

Low-k Dielectric

Etch Stop

Diffusion Barrier

Cu conductor with barrier

Pre-metal dielectric

W plug contact

Wire

Via

• Increasing complexity/functionality• Low cost• New materials required• Time to Market Shorter

Performance Expectations: CMOS Scaling

After ’99 SIA Roadmap

Page 9: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

9© 2002 R.M.Wallace

Complementary Metal Oxide Semiconductor (CMOS) Technology

p substrate

n+ n+ p+ p+

nFET pFET

n tub

gate dielectric

gate electrode

Page 10: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

10© 2002 R.M.Wallace

Current CMOS Gate Stack Strategies

Gate

Si

Upper interfaceGate DielectricLower interfaceChannel Layer

• Gate Materials– Poly-Si– Poly-SiGe – Metals/ Metal-Oxides, Nitrides

• Upper interface– Nitrided Oxides

• Gate Dielectric – Ultrathin Oxides– Plasma Oxynitrides– NO Stack, JVD Nitrides, N implants– Stable High-κ material ?

• Lower Interface– SiO2

– Nitrided Oxides

• Conventional CMOS ⇒ RTA to ~1050°C• Replacement Gate CMOS ⇒ T << 1050°C

Page 11: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

11© 2002 R.M.Wallace

Semiconductor Industry Association 1997-2001 Roadmap

Firs t Year of IC Production 1999 2001 2003 2006 2009 20121997

Gate die lectric

Gate e lectrode

Sidewall spacer

THERMAL/THIN FILMSSilicon oxide

Dual dopedpoly with s ilic ide

Alternate gate

SiOxNy

Selective Tl s ilic ide

Alternates idewall material

high κ

SiOxNy

2001

Research Required Under Development Pre-Production

Page 12: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

12© 2002 R.M.Wallace

Semiconductor Industry Association 1997 Roadmap• 2001 IRTS: Tox scaling aggressive

Tox = (εox/εdiel)Tdiel

Table 22 Thermal/Thin Films Gate Etch and Doping Technology RequirementsYear of First

Product ShipmentTechnologyGeneration

1997250 nm

1999180 nm

2001150 nm

2003130 nm

2006100 nm

200970 nm

201250 nm

Equivalent oxidethickness Tox(nm)

4–5 3–4 2–3 2–3 1.5–2 < 1.5 < 1.0

Thickness control(% 3σ)

± 4 ± 4 ± 4 ± 4–6 ± 4–8 ± 4–8 ± 4–8

Sidewall spacerthickness (nm)

100–200 72–144 60–120 52–104 20–40 7.5–15 5–10

= 2001

Page 13: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

13© 2002 R.M.Wallace

Semiconductor Industry Association 1999 Roadmap 2001

Page 14: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

14© 2002 R.M.Wallace

Summary of Published Results - TI

Papers of our work at TI• Hf-silicates: Wilk and Wallace, Appl. Phys. Lett. 74, 2854 (1999).• Zr-silicates: Wilk and Wallace, Appl. Phys. Lett. 76, 112 (2000). • Summary: Wilk, Wallace and Anthony, J. Appl. Phys. 87,484 (2000).

• Demonstrated tox < 18 Å with Hf6Si31O65 (κ ~ 11) directly on Si

• Demonstrated J ~ 1 x 10-6 A/cm2 @ 1 V with HfSixOy, ZrSixOy

• Hf and Zr silicate films investigated are amorphous, homogeneousand stable directly on Si up to at least 1050°C

• Since our first publication on silicates (May 99), numerous confirmations• UT-Austin (CVD, PVD), NC-State (PVD)• Evolving very fast!

• See the review in J. Appl. Phys. 89 (2001) 5243.

Page 15: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

15© 2002 R.M.Wallace

Stability of Silicates on Si: Si cap

Si(100)

a-Si

HfSixOy

(a)

30 Å

As-Depositedtop Si at 25ºC

Si(100)

HfSixOy

(b)poly-Si

30 Å

After AnnealN2/1050ºC/20 sec

Wilk, Wallace and Anthony, JAP 87, 484 (2000)

Page 16: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

16© 2002 R.M.Wallace

“New” Materials: Previous Work on HfO2 and ZrO2

• CVD growth of HfO2 and ZrO2 performed• DRAM Capacitor dielectric focus (relatively thick films)• Al, Mo and poly-Si electrodes were used• Large hysteresis observed ⇒ mobile ion transport (Oxygen well known)• Crystalline phases always observed ⇒ enhanced leakage• Surface preparation methods resulted in native oxides• Dit ~ 1x1012/cm2

1. M. Balog, M. Schieber, S. Patai and M. Michman, J. Cryst. Growth 17, 298 (1972)2. M. Balog, M. Schieber, M. Michman and S. Patai, Thin Solid Films 41, 247 (1977)3. M. Balog, M. Schieber, M. Michman and S. Patai, Thin Solid Films 47, 109 (1977)4. M. Balog, M. Schieber, M. Michman and S. Patai, J. Elec. Chem. Soc. 126, 1203 (1979)5. J. Shappir, A. Anis and I. Pinsky, IEEE Trans. Electron Dev. ED-33, 442 (1986)

Page 17: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

17© 2002 R.M.Wallace

High-κ Materials Research Trend“New” Materials

2001: 22000: 21999: 31998: 41997: 0

TiO

2/Ta

2O5

Ta-M

-O

Al2

O3

HfO

2/H

f-Si-O

ZrO

2/Zr

-Si-O

Hf/Z

r-Al-O

Hf/Z

r-Si-A

l-O

Lant

hani

des

19971998

19992000

20010

2

4

6

8

10

12

14

# of studies

IEDM

+ V

LSI

Page 18: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

18© 2002 R.M.Wallace

Recent HfSiO(N) Patents

Page 19: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

19© 2002 R.M.Wallace

High-κ IP (Mainly Integration)

20022001

20001999Transistor

Capacitor0

1020

30

40

50

60

70

US

Pate

nts

High-k Patent Activity“New” Materials2002: 2 2001: 62000: 41999: 1 ?

Page 20: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

20© 2002 R.M.Wallace

Transistor Figure of MeritStage Delay

Time

Vol

tage

τClock

τDelay

ICV

ICV

ICdVdt

dtdVCCV

dtdI

dtdQCVQ

dddelay ==⇒=⇒

==≡⇒

=

max

)(

τ

gatepn

FOMτττ ++

≡ 2 ,

τ is a measure of the the pull-up and pull down delay for NMOS and PMOSτgate « τn or τp

Page 21: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

21© 2002 R.M.Wallace

Transistor Figure of MeritStage Delay and Fanout

in out

Vdd

Vs

Inverter stage NAND gate Logic Fanout

[Hz] ~2

11 CVI

IIVC

FOM

pd

nd

ddTOT

+

ssors)microprocefor 3~( Fanout""

ctinterconne local junction escapacitanc parasitic

+=+==

+=+=

F

CCC

CWCFLCFCC

ijp

pinvgpgateTOT

Page 22: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

22© 2002 R.M.Wallace

Transistor Figure of MeritDependence on tox

maximum. has

~~

:0 and 0Let (d)

~1

~

:0 and 0Let (c)

~~

:0 and 0Let (b)

ith constant w~

:0 and 0Let (a)

2

00

,

0

,

0

,0

,0

FOMt

DBtAtC

vRW

tW

tCFL

vV

VVVVC

IFOM

RC

FOMt

tBA

C

tvWRFL

vV

VVVVFC

IFOM

RC

FOMt

BtAC

WtC

FL

vV

VVVVC

IFOM

RC

tFLv

VVVV

VFCIFOM

RC

ox

oxox

satsoxoxp

g

sat

dd

satDtGS

ddtot

d

sp

ox

oxox

satsg

sat

dd

satDtGS

ddgate

d

sp

ox

oxoxp

g

sat

dd

satDtGS

ddtot

d

sp

ox

g

sat

dd

satDtGS

ddgate

d

sp

⇒↓⇒

++

+

+

−−=⇒

≠≠

⇒↓↓⇒

+

+

−−=⇒

≠=

⇒↑↓⇒

++

−−=⇒

=≠

⇒−−

=⇒

==

αεεαεε

αεε

αεε

tox

FOM

(a)

No parasitics

(b)

Parasitic Capacitance only

(c)

Parasitic Resistance only

(d)

Parasitics included

Page 23: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

23© 2002 R.M.Wallace

Gate Oxide “Thinning”

Device scale shrinking ⇒ device area decreasing

For transistors: ID ~ Cox(VG - Vth)2

Where: Cox = (εoxA) / tox; εox= κεo; κ = dielectric constant

But: VG – Vth limited for scaled devices and T ≥ 20°C

⇒ decrease tox or increase ⇒ Improve ID ⇒ Maximize Cox κ

Decrease tox ⇒ gate oxide thinning

⇒ Increase Direct Tunneling (leakage)

⇒ Defect sensitivity and reliability

Page 24: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

24© 2002 R.M.Wallace

Direct Tunneling: Leakage

Tunneling through SiO2

• |VOX| < ΦM : Direct TunnelingVOX

Vgate ΦSiO

δΦM : Metal/SiOX barrier height

ΦSiO: SiOx/Si barrier height

VOX: Voltage drop across SiOx

δ : Band Bending voltage drop

Vgate : applied gate voltage

VB

CB

e-VOX

Thinning

• |VOX| > ΦM : F-N TunnelingMetal SiO2 Si

ΦM

Page 25: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

25© 2002 R.M.Wallace

Gate Oxide Thinning: Leakage Current

Tunneling Leakage Current at Applied Gate Voltages

Gate Voltage (V)

0 1 2 3 4 5 6 7 810-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Assumes 0.1 cm2 (or less) total gate area

50 W

100 mW

Gat

e C

urre

nt D

ensi

ty (A

/cm

2 )

Standby Power C

onsumption (W

)

Oxide Thicknessh5.6 nmg 3.5 nm53.0 nm62.5 nm

IBM (1995), Hu (1994)

Page 26: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

26© 2002 R.M.Wallace

Recent studies: Scaled SiO2 Planar Transistor

Timp et al., IEDM Tech. Dig., p. 55 (1999).

Page 27: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

27© 2002 R.M.Wallace

Gate Oxide Thinning: Leakage Current and Drive Current

See: Timp et al., IEDM Tech. Dig. (1997)

Page 28: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

28© 2002 R.M.Wallace

Gate Oxide Thinning: Leakage Current and high-κ dielectrics

Gate Voltage (V)0 1 2 3 4 5 6 7 8

10 mW

Gat

e C

urre

nt D

ensi

ty (A

/cm

2 )Standby Pow

er Consum

ption (W)

High-κ withtox = 15 Å

15 Å oxide

1 µW

Assumes 0.1 cm2 (or less) total gate area

10 -110 010 110 210 3

10 -2

10 -3

10 -4

10 -5

10 -6

10 -7

10 -210 -110 010 110 2

10 -3

10 -4

10 -5

10 -6

10 -7

10 -8

Page 29: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

29© 2002 R.M.Wallace

High-κ Leakage Current Reductionleakage current

15 Å SiO2

Gate (poly-Si)

Si Well

e-e-

source drain

Vapp

channel

high low 50 Å High-κ

Si Well

e-

e-

source drain

Gate (poly-Si)Vapp

channel

High-κ film ⇒ thicker gate dielectric

⇒ lower leakage with same performance

Page 30: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

30© 2002 R.M.Wallace

Device scale shrinking ⇒ device area decreasingFor transistors: ID ~ Cox(VG - Vth)2

Where: Cox = (εoxA) / tox; εox= κεo; κ = dielectric constant⇒ Improve ID ⇒ Maximize Cox ⇒ decrease tox or increase κ

Gate Oxide “Thinning”

• Increased Leakage⇒ Option for microprocessors⇒ Not for low power (portable) applications

⇒ Increase εox ⇒ replace SiO2 with new material⇒Increase physical thickness for low power applications⇒Increase performance for microprocessors

• Decrease tox ⇒ gate oxide thinning⇒ Increase Direct Tunneling (leakage)⇒ Defect sensitivity and reliability

• Alternatives: New device designs

How to decide which High-κ material is best?

Page 31: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

31© 2002 R.M.Wallace

Gate Oxide Thinning: Ultimate Limits?

• Total capacitance limited by• Gate-Electrode• Dielectric• Inversion

• Limit of tox ~ 0.5nm predicted

See: Momose, et al., Trans. Elect. Dev. 43 (1996)1233H.Iwai in Proc. Electrochem. Society, Vol. 2000-2 (2000) 3

Page 32: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

32© 2002 R.M.Wallace

Outline

• Performance expectations

• Materials Considerations for Gate Dielectrics

• Future Directions

Page 33: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

33© 2002 R.M.Wallace

Materials Considerations for Gate Dielectrics

• Barrier Height and Permittivity

• Thermodynamics and Stability

• Dielectric Film Morphology and Structure

• Interface Quality

• Gate Material Compatibility

• Deposition Method

• Reliability

Page 34: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

34© 2002 R.M.Wallace

Frequency dependence of εCMOS

ElectronicIonic

Page 35: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

35© 2002 R.M.Wallace

High-κ Stack vs. Single Layertox = tSiO + (εox/εdiel)tdiel

Si

SiO2

30 Å (κ = 25)

5 Å (κ = 3.9)

metal gate

(1)tox(1) = 10 Å

Si

SiO2

poly-Si gate

40 Å (κ = 16)

(2)tox(2) = 10 Å

High-κLayer

InterfacialLayer(SiO2)

• tphys(1)< tphys(2) = 40 Å ⇒ lower tunneling current• More interface traps for (1)?• Moderate increase in dielectric constant for (2)• Stable single layer ⇒ retains poly-Si compatibility

Page 36: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

36© 2002 R.M.Wallace

Leakage Current: ε vs. EG (and ∆EC)Tunneling through Dielectrics

ΦM

Gate Dielectric Si

∆ΕC

ΕCΕF

ε

EG

• J ~ exp (-∆EC)• Assume that ∆EC~EG• Want high ∆EC, tradeoff with ε

Page 37: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

37© 2002 R.M.Wallace

Gate Dielectric Properties: Barrier Height and Permittivity

Material Dielectric Band Gap ∆Ec (eV)Constant (κ) Eg (eV) to Si

SiO2 3.9 8.9 3.2Si3N4 7 4.75 2.4Al2O3 8.5 - 11 6.95 - 8.8 2.08Y2O3 15 5.6 2.3CeO2 26 5.5 (a)Ta2O5 26 4.5 0.3La2O3 27-30 4 2.3TiO2 80 3.5 1.2HfO2 22 - 24 5.7 1.13 - 1.5ZrO2 25 5.5-5.7 1.5

HfSixOy 6.4-12 ~6 1.5ZrSixOy 8 - 12 4.4 0.8 - 1.5

(a) no value reported

Robertson, J.V.S.T. B18 (2000) 1785

-6

-4

-2

0

2

4

6

Ener

gy (e

V)SiO2

4.4

3.5

1.1

2.4

1.8

0.3

3.0

-0.1

2.3

Si3N4Ta2O5

BaTiO3

BaZrO3

ZrO2

Al2O3

Y2O3 ZrSiO

4.9

2.82.3

2.6 3.4

1.51.5

3.43.3

1.4

3.4

0.8

Si HfO2

-6

-4

-2

0

2

4

6

Ener

gy (e

V)SiO2

4.4

3.5

1.1

2.4

1.8

0.3

3.0

-0.1

2.3

Si3N4Ta2O5

BaTiO3

BaZrO3

ZrO2

Al2O3

Y2O3 ZrSiO

4.9

2.82.3

2.6 3.4

1.51.5

3.43.3

1.4

3.4

0.8

Si HfO2

(b) corrected

(b)44

• Dielectric Constant κ ~ 1/EG ⇒ 1/∆EC

• For T≥20°C applications, ∆EC ≥ 1 eV

Page 38: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

38© 2002 R.M.Wallace

Recent Results: Photoelectron Spectroscopy

Thin film vs. bulk measurements

Miyazaki, JVST B19 (2002) 2212, from PSCI 2001Hiroshima University

Page 39: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

39© 2002 R.M.Wallace

Electron transport - TheoryNC STATE UNIVERSITY

Tox = 2 nmκSiO2 = 3.9κSiOxNy = 5.7κSi3N4 = 7.5κD1= 25κD2 = 30

Single LayerandHigh-κ Stack

• Single layer and stack reduces tunneling current• Barriers introduced by stack approach• Injection polarity dependence

Vogel, et al., IEEE Trans. Elec. Dev. 45, 1350 (1998).

Page 40: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

40© 2002 R.M.Wallace

NC STATE UNIVERSITY

High-κ Stack (theory)

Tox = 2 nmκSiO2 = 3.9κD1= 25

• Barriers introduced by stack approach• Injection polarity dependence• Increase in voltage ⇒ barrier changes

Vogel, et al., IEEE Trans. Elec. Dev. 45, 1350 (1998).

Page 41: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

41© 2002 R.M.Wallace

Materials Considerations

• Barrier Height and Permittivity• Thermodynamics and Stability• Dielectric Film Morphology and Structure• Interface Quality• Gate Material Compatibility• Deposition Method• Reliability

Page 42: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

42© 2002 R.M.Wallace

Gate Dielectric Properties:Thermodynamics and Stability

Material Dielectric Band Gap ∆Ec (eV) ∆HF

Constant (κ) Eg (eV) to Si (eV/O atom)SiO2 3.9 8.9 3.2 -4.68Si3N4 7 4.75 2.4 -------Al2O3 8.5 - 11 6.95 - 8.8 2.08 -5.76Y2O3 15 5.6 2.3 -4.93CeO2 26 5.5 (a) -5.02Ta2O5 26 4.5 0.3 -2.09La2O3 27-30 4 2.3TiO2 80 3.5 1.2 -4.86HfO2 22 - 24 5.7 1.13 - 1.5 -5.77ZrO2 25 5.5-5.7 1.5 -5.66

HfSixOy 6.4-12 ~6 1.5 -5.24ZrSixOy 8 - 12 4.4 0.8 - 1.5 -5.21

(a) no value reported

• Al, Hf, Zr and La oxides/silicates• Moderate-κ for Al-oxides and silicates• Predicted to be thermodynamically stable on Si

Page 43: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

43© 2002 R.M.Wallace

After Beyers, J. Appl. Phys. 56, 147 (1984)and Wang and Mayer, J. Appl. Phys. 64, 4711 (1988)

Thermodynamic Stability of Silicates (700 - 900ºC)

Ta SiTaSi2Ta2Si

SiO2

O

Ta2O5

Chatterjee et al, ‘99 IEDM, p. 777

gate

Ta2O5

Si 50 Å

Taylor et al., JACS 121, 5220 (’99)

Ti SiTiSi2Ti5Si3 TiSi

TiO2 SiO2

O

Ti2O3TiO

TiO2

Si 50 Å

gate

Wilk et al., JAP 87, 484 (‘00)

Zr SiZrSi2Zr2Si ZrSi

ZrO2

O

SiO2ZrSiO4

Si(100)

Hf-Si-O

gate

40 Å

Page 44: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

44© 2002 R.M.Wallace

La vs. Hf silicates: stability

• XRD analysis for onset of crystallization

• Increased SiO2preserves amorphicity

• La: >70% SiO2• Hf: >80% SiO2• After 1000C (4 min)

– La-silicate: κ~14 – Hf-silicate: κ~10

NC STATE UNIVERSITY

A. Kingon, et al., Nature 406 (2000) 1032

Page 45: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

45© 2002 R.M.Wallace

IBMLa-Silicates

SiO2

La2Si2O7

• PVD of 2nm LaOx/2.3 nm SiO2 + 5×10-3 Torr O2 @ 850 C

• SiO2 layer limits capacitance, but promotes superior Dit

• VFB > 1200 mV• La-silicate: κ~30 (ignoring

SiO2 layer)

Copel, et al., APL 78 (2001) 1607

Page 46: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

46© 2002 R.M.Wallace

NC STATE UNIVERSITY

Al2O3 Gate Dielectrics: PVD• Interface reaction kinetics results in silicate formation

Si

AlSixOy

Al2O3

See: Klein, et. al, Appl. Phys. Lett. 75 (1999) 4001.

Page 47: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

47© 2002 R.M.Wallace

Stability: Reactions at Interfaces

37 A

As deposited

RTA N2 180s

1100 oC N2 F/A

UNT - unpublished• Sub-oxide formation at interfaces• Crystallization

Y Kim, et al., IEDM 2001 (Int’l Sematech, ASM)

Page 48: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

48© 2002 R.M.Wallace

Thermal stability studies: Motivation

Critical regions for impurity diffusion in MOS transistors

12

3

4Gate Dielectric

3

1. Channel: mobility degradation and therefore impact electrical performance

2. Gate: Silicide formation

3. Source and Drain: enhanced leakage

4. Sidewalls: compromised isolation

Impurity concentration (cm-3)

Drift mobility of Si at 300 K *

* From S. M. Sze Physics ofSemiconductors devices (1981)

Page 49: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

49© 2002 R.M.Wallace

Hf and Zr stability studies:Sample preparation flow diagram

Silicon waferHF-last

H H H H H H H H H H

H-terminated surface

PVD, CVD

~ 5 nm dielectric film

Anneals:6min N2

1100-700 C or 1050 RTA

30-180s

≤ 3.2 nm MSixOy [M] ~ 0

H-terminated Si surface + remnant Zr or Hf

ToF SIMSXPSRBSSEMHRTEM

Characterization

49% HF 20s

Zr/Hf incorporationin Si: diffusion length

Page 50: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

50© 2002 R.M.Wallace

“Knock-on” study: sputter crater technique comparison

Silicon substrate

Pre-cleaning700 eV O2 1s

Sputter crater formationwith 700 eV O2

Single crater ToFSIMS Setup

Single-crater sputter technique

• Single-crater sputtering acquisition induces more “knock-on” effects Depth profile distortion

•Every high energy (12 keV) Ga probe cycle produces more “knock-on”

Probe Beam12 KeV Ga+ (35o)

Page 51: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

51© 2002 R.M.Wallace

“Knock-on” study: sputter crater technique comparison

Multi-crater ToFSIMS

Multi-crater sputter technique

• Independent crater formation with different crater depths (≤20nm) reduces this knock-on effect

• Only 1 Ga probe cycle per crater reduced “knock-on”

Silicon substrate

Pre-cleaning700 eV O2 1s

Sputter crater formationwith 700 eV O2Probe Beam

12 KeV Ga+ (35o)

Craters

Page 52: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

52© 2002 R.M.Wallace

InterdiffusionMulticrater ToFSIMS depth profiling

Depth (nm)

0 5 10 15 20

Hf c

once

ntra

tion

(at/c

m3 )

1e+16

1e+17

1e+18

As deposited 30 s

As deposited30 s180 s

Crater

Reg. Sputt.

180 s

Hf-silicate + 1050 C, N2(APL 79 (2001) 4192)

Depth (nm)0 5 10 15 20 25

Zr c

once

ntra

tion

(at/c

m3 )

1015

1016

1017

1018

1019

1020As dep/etched1000 oC 1100 oC

108

109

1010

1011

1012

1013

2

LD

RTA 180 sRTA 90 sRTA 30 s

Zr-silicate + 1050 C, N2(APL 79 (2001) 2958)

Zr c

once

ntra

tion

(at/c

m)

• Care must be taken in depth profile measurements• Zr interdiffusion observed• For DLTS, see Lemke, Phys. Sol. St 122 (1990) 617

Page 53: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

53© 2002 R.M.Wallace

Materials Considerations

• Barrier Height and Permittivity• Thermodynamics and Stability• Dielectric Film Morphology and Structure• Interface Quality• Gate Material Compatibility• Deposition Method• Reliability

Page 54: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

54© 2002 R.M.Wallace

Crystalline vs. Amorphous Gate DielectricPoly-Si

Gate Dielectric

Poly-SiO2interface

SiO2-Si interface

Si Substrate

Poly-crystalline Amorphous

• Robust, thermal SiO2 the benchmark• Avoids orientation/grain size dependence of polarizibility• Avoids enhanced leakage or diffusion through grain boundaries• New single crystal dielectrics require Epitaxial approach

AmorphousAdvantages

Page 55: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

55© 2002 R.M.Wallace

Gate Dielectric Properties:Dielectric Film Morphology

(a) no value reported

Material Dielectric Band Gap ∆Ec (eV) ∆HF CrystalConstant (κ) Eg (eV) to Si (eV/O atom) Structure(s)

SiO2 3.9 8.9 3.2 -4.68 amorphousSi3N4 7 4.75 2.4 ------- amorphousAl2O3 8.5 - 11 6.95 - 8.8 2.08 -5.76 amorphousY2O3 15 5.6 2.3 -4.93 cubicCeO2 26 5.5 (a) -5.02 cubicTa2O5 26 4.5 0.3 -2.09 orthorhombicLa2O3 27-30 4 2.3 hexagonal, cubicTiO2 80 3.5 1.2 -4.86 tetrag. (rutile, anatase)*HfO2 22 - 24 5.7 1.13 - 1.5 -5.77 mono., tetrag., cubic*ZrO2 25 5.5-5.7 1.5 -5.66 mono., tetrag., cubic*

HfSixOy 6.4-12 ~6 1.5 -5.24 amorphousZrSixOy 8 - 12 4.4 0.8 - 1.5 -5.21 amorphous

• Thermal budget considerations to avoid nanocrystal formation• Conventional CMOS process flow vs. Replacement Gate process

Page 56: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

56© 2002 R.M.Wallace

Sharp

ZrO2:Al Gate Dielectrics: PVD

See: Ma, et. al, IEDM Symp. Tech. Dig., (1999).

Page 57: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

57© 2002 R.M.Wallace

Dopant Penetration

B Penetration upon RTA

Suppression from N incorporation

Al2O3

Park, et al. APL 77 (2000) 2207 (Hyundai)

Page 58: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

58© 2002 R.M.Wallace

Onishi, et al, VLSI (2001) UTHfO2

Dopant PenetrationZrO2

Koyama, et al, IEDM (2001)Toshiba

B Penetration upon RTA

Suppression from N incorporation

Page 59: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

59© 2002 R.M.Wallace

Enhanced Leakage and Grain Boundaries?• Well known effect for Ta2O5

• see Oerhlein, et al. JAP 55 (1984) 3715• see Nishioka, et al., IEEE TED 34 (1987) 1957

From Zhu, et al., IEDM 2001 (Yale, JPC, IBM)

Page 60: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

60© 2002 R.M.WallaceGusev, et al., IEDM 2001 (IBM)Buchanan, et al. IEDM 2000 (IBM)

Enhanced Leakage and Grain Boundaries?

Page 61: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

61© 2002 R.M.Wallace

Materials Considerations

• Barrier Height and Permittivity• Thermodynamics and Stability• Dielectric Film Morphology and Structure• Interface Quality• Gate Material Compatibility• Deposition Method• Reliability

Page 62: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

62© 2002 R.M.Wallace

The Benchmark: Amorphous SiO2(and current results for high-k materials)

• Interface State Density: Dit<5×1010/cm2 (>1011)• Flatband Voltage Shift: ∆VFB<20 mV (>300 mV)• Hysteresis: δVFB<20 mV (>20 mV)• Hard Breakdown: EBD>10MV/cm• C-V Dispersion: none• Leakage (Tunneling) Current: <10-4A/cm2@VDD

Page 63: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

63© 2002 R.M.Wallace

Fixed Charge in High-κ dielectrics• Positive fixed charge frequently observed in dielectrics• Al-based dielectrics exhibit negative fixed charge

Ideal C-V

Ideal C-V

V

V0 +_

VFB

VFB

+Qf

-Qf

C

High frequency C-V

EV

EC

EF

EI

Vacuum Level

EF

qΦM qΦB

metal dielectric p-type semiconductor

Eg

qΨB

Page 64: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

64© 2002 R.M.Wallace

Controlling flatband shiftsIBM

Gusev, et al., IEDM 2001 (IBM)

• Nitridation of interface to control VFB shifts• Tradeoff with capacitance

Page 65: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

65© 2002 R.M.Wallace

Charge Trapping

Gusev, et al., IEDM 2001 (IBM)

Page 66: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

66© 2002 R.M.Wallace

Mobility and Soft Phonons:Fundamental Limitation?

• High-k materials have highly polarizable bonds • Coupling to soft surface-optical phonons• Coupling strength proportional to:

0

10 2

1 1 ;SOs ox s ox

s oxSO TO

s ox

ωε ε ε ε

ε εω ωε ε

∞ ∞ ∞

∞ ∞

− + +

+= +

h

• Some screening of phonons possible by using thin SiO2 interfacial layers

See Fischetti, et al., JAP 90 (2001) 4587 (IBM)

Page 67: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

67© 2002 R.M.Wallace

Materials Considerations

• Barrier Height and Permittivity• Thermodynamics and Stability• Dielectric Film Morphology and Structure• Interface Quality• Gate Material Compatibility• Deposition Method• Reliability

Page 68: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

68© 2002 R.M.Wallace

Metal Gate Issues

vacuum

Ec

Ev

1.1 eV

ΦM TiN

n Vt

p Vt

Single Midgap Metal

Si Ec

Ev

ΦMΦM Pt

1.1 eV

Dual Metals

SiAl

n Vt

p Vt

• Metals eliminate poly depletion and B penetration• Midgap metals have Vt ~ 0.5 eV - too high (VDD ⇒ 1 V)• Dual metals achieve low Vt - processing?• Near term dielectrics must be compatible with poly-Si(Ge)• Near term dielectrics must also be compatible with metals

Page 69: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

69© 2002 R.M.Wallace

Metal Gates?

• Poly-Si predicted to be phased out beyond 70nm node– Poly-Si properties (Work function Φ) controlled by implantation doping– But Poly-Si depletion ⇒ effective increase in tox

– Channel autodoping by outdiffusion of poly-Si (B) dopants

• Dual Metal Gates– Compatible with any alternative gate dielectric– Replacement Gate Process Flow: a possibility?– Cost?– For NMOS: EF~EC

– For PMOS: EF ~EV

Page 70: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

70© 2002 R.M.Wallace

Metal Gates and Work FunctionH. Matsuhashi and S. Nishikawa Jpn. J. Appl. Phys. Vol 33 p. 1293 (1994).

S. M. Sze, “Physics of Semiconductor Devices” p. 397 (1981).

WN

MoN

p+ poly-Si

n+ poly-Si

TaN

TiN

TaN

WN

TiNWNMoN

MoN

Ta

Ti

W

Ta

Mo

Mo

W

Ti

TaTiNW

Wor

k Fu

nctio

n (e

V)

Mo

3.8

4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

As Deposited After 400C After 800CTexas Instruments

Page 71: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

71© 2002 R.M.Wallace

Metal Implantation and AlloysN Implantation of MoLu, et al., IEDM 2000;

Ranade, et al.MRS 2000(UC Berkeley)

Ru-Ta AlloysZhong, et al., IEDM (2001) (NCState)

Page 72: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

72© 2002 R.M.Wallace

Materials Considerations

• Barrier Height and Permittivity• Thermodynamics and Stability• Dielectric Film Morphology and Structure• Interface Quality• Gate Material Compatibility• Deposition Method• Reliability

Page 73: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

73© 2002 R.M.Wallace

Deposition Methods• Physical Vapor Deposition (PVD)

– Sputtering, evaporation, ablation, etc.– Convenient for materials screening– Appears to provide superior results– Planar, Line-of-sight process, damage– Not likely to be used in ULSI gate process

• Chemical Vapor Deposition (CVD)– Common in ULSI processing– Potential for thin layers by self-limiting growth (ALD) – Requires control of precursor chemistries– Throughput for ALD?

• Epitaxial Methods (MBE, etc.)– Permits single crystal, high-k dielectric systems– Requires submonolayer control– Poor throughput by ULSI standards– UHV Tools and Maintenance Costs

Page 74: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

74© 2002 R.M.Wallace

Atomic Layer Deposition

• Superb thickness control and uniformity

• Growth rate linear with # cycles

• Highly conformal CVD process

• Proven for large area display technology

• Manufacturable for CMOS throughput?

• Restricted to binary oxides?

• Precursors for high-κ metals not certain

Page 75: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

75© 2002 R.M.Wallace

IBM

Al2O3 Gate Dielectrics: ALCVD

See: Gusev, et. al, Appl. Phys. Lett. 76 (2000) 176.

Page 76: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

76© 2002 R.M.Wallace

IBM

ZrO2 Gate Dielectrics: ALCVD

• Initial oxide layer good ZrO2

• No initial oxide poor ZrO2

See: Copel, et. al, Appl. Phys. Lett. 76 (2000)

Page 77: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

77© 2002 R.M.Wallace

SrTiO3 Gate Dielectrics: MBEMotorola

See: Eisenbeiser, et. al, Appl. Phys. Lett. 76 (2000) 1324.

Excellent Results• tox of ~0.8 nm for a film 11 nm thick• Dit ~6.4×1010/cm2 eVLimitations• Requires UHV for deposition• Anti-phase boundary concerns• Low throughput• High-κ Perovskites require metal gate

Page 78: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

78© 2002 R.M.Wallace

Singapore

Y-stabilized ZrO2

• Laser MBE grown• Commensurate

interface with some misfit dislocations

• Tox=1.46 nm, κ~16

Wang, et al., APL 78 (2001) 1604

Page 79: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

79© 2002 R.M.Wallace

Materials Considerations

• Barrier Height and Permittivity• Thermodynamics and Stability• Dielectric Film Morphology and Structure• Interface Quality• Gate Material Compatibility• Deposition Method• Reliability

Page 80: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

80© 2002 R.M.Wallace

Reliability

• Requires established materials system• Voltage acceleration nuances for SiO2 only

recently understood • Requires proper area scaling• Requires statistical significance• Expectation: equivalent to SiO2 or better.

Page 81: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

81© 2002 R.M.Wallace

Desirable Advanced Gate Dielectric PropertiesPhysical Properties

• κ ~ 15 - 60

• Conduction Band Offset: ∆EC ~ 1 eV(high band gap)

• Thermally stable next to Si

• Remain amorphous during processing

• Form high-quality interface with Si

• Block Boron Penetration

Electrical Properties

• tox < 10 Å

• J < 10-4 A/cm2 @ VDD

• Dit < 5 x 1010 cm-2

• VFB & hyster. < 20 mV

• no C-V dispersion

Page 82: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

82© 2002 R.M.Wallace

Outline

• Performance expectations

• Materials Considerations for Gate Dielectrics

• Future Directions

Page 83: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

83© 2002 R.M.Wallace

Future Directions

• Narrowing near term gate dielectric solutions based on scientific understanding

• Extensive reliability studies of materials• Cross correlations of materials properties and electrical

measurements• Explore applications to other device technologies• New device designs and the associated materials issues• Research required on long term solutions for tox<0.5nm

Page 84: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

84© 2002 R.M.Wallace

Summarylow κ!• SiO2 has only one disadvantage:

• High-κ has only one advantage: high κ!

• Follow “materials considerations” to arrive at best high-κ choice

• Interface quality most crucial property• Must make transistors as true test

Page 85: A Grand Challenge for CMOS Scaling: Alternate Gate Dielectricsnanosioe.ee.ntu.edu.tw/download/Others/High-K/05.pdf · A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

85© 2002 R.M.Wallace

AcknowledgementsUniversity of North Texas (www.mtsc.unt.edu) • Manuel Quevedo-Lopez - Grad Student• Dr. Swarnagowri Addepalli - Postdoc• Prof. Bruce Gnade• Prof. Mohammed ElBounani

Texas Instruments• Dr. Luigi Colombo• Dr. Mark Visokay• Dr. Antonio Rotondaro

• Agere Systems: Glen D. Wilk

• Semiconductor Research Corporation• Texas Advanced Technology Program• DARPA