A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between...

168
(sn_/“me- ___.,,,,,, ..... _........... __________....... _............. ____...,,,,,,,., (er.@ls. iwmi =lkKmmqw~) ‘.ti)>’ \ O.‘$ ‘1 ] :“, -,p ) )t’,.) j-1, (^ . . . . . . . . . ..1......!......................~..~~..... ~,“..............‘“’ q*q ( I>\. ) ? I*,,-.; F ( \A-) . . . . . . . . . . . . . . . . . . . . . a . . . . . . . . . .._.... (%Fl.vl%. &-%A& J$&ler) &;rAJ .$Y -A L&c, . . ..__.__....... (ser.~~.a~~~ ?lAw;alu)

Transcript of A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between...

Page 1: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

(sn_/“me-___.,,,,,,....._...........__________......._.............____...,,,,,,,.,(er.@ls. iwmi =lkKmmqw~)

‘.ti)>’\ O.‘$ ‘1 ] ’ :“, -,p ) )t’,.) j-1, (^. . . . . . . . . ..1......!....“..................~..~~..... ~,“..............‘“’

q*q (I>\. ) ? I*,,-.; F( \A-). . . . . . . . . . . . . . . . . . . . .a. . . . . . . . . .._....(%Fl.vl%. &-%A& J$&ler)&;rAJ .$Y -A L&c,

. . ..__.__.......

(ser.~~.a~~~ ?lAw;alu)

Page 2: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,
Page 3: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,
Page 4: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

Thesis Title

Thesis Credits

Candidate

Supervisors

Degree of Study

Department

Academic Year

Strategy for Spring Onion Batch Drying

12

Mr. Manit Sukjindasatean

Prof. Dr. Somchart Soponronnarit

Mr.Somkiat Prachayawarakorn

Master of Engineering

Food Engineering

1 9 9 3

Abstract

The objective of this research was to investigate appropriate strategies for

spring onion fixed-bed drying. The criteria to be considered in this study were

specific energy consumption, drying time and quality of spring onion. This research

consists of studies of physical properties of spring onion variables which affect

drying rate and the development of mathematical model for strategies of spring

onion drying.

The experimental results of physical properties of spring onion showed that

specific heat of spring onion varied linearly with moisture content and the modified

Halsey’s (Iglesias & Chirife(l51) equation could predict the moisture equilbrium fairly

well for the temperature from 38 oC to 74 OC and the relative humidity of air

from 10 % to 90 % The drying rate of the spring onion was mainly controlled by

internal diffusion. The temperature and velocity of air were the most important

factors which affected the drying rate. Page’s model could predict fairly well as

compared to the experimental results.

Simulated results obtained from the mathematical model indicated that

appropriate strategy for spring onion drying should be as follows: for the frist stage,

Page 5: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

air temperature of 80 OC!, specific air flow rate of 33.9 m3/min-kg dry matter and

drying time of 0.5 h, for the second stage, specific air flow rate of 13.5 m3/min-kg

dry matter, the same temperature and drying time and for the final stage(stage 3)

specific air flow rate of 6.8 m3/min-kg dry matter,drying temperature of 72 OC.

Keywords : Drying parameters / Spring onion drying / Mathematical model /

Energy consumption / Drying strategies

Page 6: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,
Page 7: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

4

4

6

a

9

1 1

1 1

12

12

12

13

16

Page 8: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

24

24

24

24

24

25

25

25

25

25

25

26

29

29

29

29

30

32

32

35

37

59

59

60

6 1

Page 9: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

6 3

6 6

6 8

8 4

9 5

101

1 0 3

1 0 5

1 0 7

Page 10: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

5.1

5.2

l-l

2-l

3-l

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

38

3 9

6 4

67

6 9

7 0

71

7 2

7 3

7 4

7 5

7 6

7 7

7 8

Page 11: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

79

80

81

82

83

85

86

87

88

89

90

91

92

93

94

Page 12: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

2 .1 Relationship between moisture content and drying time

2.2 A typical drying-rate curve

3.1 Control volume of thin layer

3.2 Control volume

4 . 1 D r y e r

4.2 Chopper

5.1 Relationship between specific heat of spring onion and

moisture content

5.2 Isomoisture curves of spring onion at 38 OC

5.3 Isomoisture curves of spring onion at 50 OC

5 .4 Isomoisture curves of spring onion at 62 oC

5.5 Isomoisture curves of spring onion at 74 OC

5.6 Effect of air temperature on drying rate of spring onion at

a superficial velocity of 0.2 m/s

5.7 Effect of air temperature on drying rate of spring onion at

a superficial velocity of 0.5 m/s

5.8 Effect of air temperature on drying rate of spring onion at

a superficial velocity of 0.8 m/s

5.9 Effect of superficial velocity on drying rate of spring onion

at temperature about 43 OC

5.10 Effect of superficial velocity on drying rate of spring onion

at temperature about 52 OC

5.11 Effect of superficial velocity on drying rate of spring onion

at temperature about 63 OC

5.12 Effect of superficial velocity on drying rate of spring onion

at temperature about 72 OC

5

5

1 6

2 3

2 7

2 8

4 0

4 1

4 1

4 2

4 2

4 3

4 3

4 4

4 4

4 5

4 5

4 6

Page 13: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

5.13 Effect of superficial velocity on drying rate of spring onion

at temperature about 84 OC

5.14a Comparison between simulated and experimental moisture content

of spring onion at different height, test no.1

5.14b Comparison between simulated and experimental average moisture

content of spring onion, test no.1

5.15a Comparison between simulated and experimental moisture content

of spring onion at different height, test no.2

5.15b Comparison between simulated and experimental average moisture

content of spring onion, test no.2

5.16a Comparison between simulated and experimental moisture content

of spring onion at different height, test no.3

5.16b Comparison between simulated and experimental average moisture

content of spring onion, test no.3

5.17a Comparison between simulated and experimental moisture content

of spring onion at different height, test no.4

5.17b Comparison between simulated and experimental average moisture

content of spring onion, test no.4

5.18a Comparison between simulated and experimental moisture content

of spring onion at different height, test no.5

5.18b Comparison between simulated and experimental average moisture

content of spring onion, test no.5

5.19a Comparison between simulated and experimental moisture content

of spring onion at different height, test no.6

5.19b Comparison between simulated and experimental average moisture

4 6

4 7

4 7

4 8

4 8

4 9

4 9

5 0

5 0

51

51

5 2

5 2

content of spring onion, test no.6

Page 14: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

I

pi

520a Comparison between simulated and experimental moisture content

of spring onion at different height, test no.7

5.20b Comparison between simulated and experimental average moisture

content of spring onion, test no.7

5.21 Comparison between simulated and experimental average moisture

content of spring onion, test no.8

5.22 Comparison between simulated and experimental average moisture

content of spring onion, test no.9

5.23 Comparison between simulated and experimental average moisture

content of spring onion, test no.10

5.24 Effect of specific air flow rate in stage 2 and air temperature

in stage 3 on energy consumption and drying time

5.25 Effect of specific air flow rate in stage 1 and 2 on

energy consumption and drying time

5.26 Effect of relative humidity and temperature of ambient air on

energy consumption and drying time

l - l Evolution of temperature and relative humidity of ambient air

and bed-inlet air, test no. 1

1 - 2 Evolution of temperature and relative humidity of ambient air

and bed-inlet air, test no. 2

1 - 3 Evolution of temperature and relative humidity of ambient air

and bed-inlet air, test no. 3

1 - 4 Evolution of temperature and relative humidity of ambient air

and bed-inlet air, test no. 4

l-5 Evolution of temperature and relative humidity of ambient air

and bed-inlet air, test no. 5

1 - 6 Evolution of temperature and relative humidity of ambient air

and bed-inlet air, test no. 6

VT21

5 3

5 3

5 4

5 4

5 5

5 6

5 7

5 8

9 6

9 6

9 7

9 7

9 8

9 8

Page 15: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

I4fil

9 9l-7 Evolution of temperature and relative humidity of ambient air

and bed-inlet air, test no. 7

1 - 8 Evolution of temperature and relative humidity of ambient air 9 9

and bed-inlet air, test no. 8

1 - 9 Evolution of temperature and relative humidity of ambient air 1 0 0

and bed-inlet air, test no. 9

l-10 Evolution of temperature and relative humidity of ambient air

and bed-inlet air, test no. 10

2-l Detail of experimental dryer

3-l Flow Chart of Soponronnarit Model [12]

1 0 0

1 0 4

1 0 6

Page 16: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

A =

c =

D =

d =

db =

dx =

hfg =

G =

cl, =

K =

k =

L =

M =

MR =

m II

N =

P =

cl =

R =

RH =

T =

t =

u =

vu =

V II

w =

Page 17: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

wm

WS

wb

X

a

abs

db

eq

f

in

Pw

V

wb

Page 18: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,
Page 19: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,
Page 20: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

3

Page 21: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,
Page 22: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

5

TIME (h)

Fig. 2.1 Relationship between moisture content and drying time

E‘ falling , constantcv<

rate - - - - - -----__

)e\*

FREE MOISTURE (kg water/kg dry solid)

Fig. 2.2 A typical drying-rate curve

Page 23: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

6

2.2 ~~ni%~UL~3Ii~wnw~ (Theoretical Drying Equation)

m = -AD Z/C% (2.1)

Page 24: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,
Page 25: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

~IM%J infinite cylinder !,$uIA~%I

m = .5(4/&xp(-qJ2 14))n=l

(2.6)

2.3 tW~l~~~LL~~~~W~~~ (Semi-Theoretical Drying Equation)

MR = 8/ ~r~exp(-D(t/2x)~) (2.7)

dlnD/dT = A/RT2 (2.8)

dM/dt = -K(M-Meq) (2.9)

Page 26: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

MR = exp(-Kt) (2.10)

K = A exp(-B/Tabs) (2.11)

MR = exp (-Kt) (2.12)

1 Flu

K = 0.01138 + 0.03299 RH0.85g + 21.9514 exp (-2407.98/T) + .0021077v

2.4 ~~n13~~bb~~9inwanl~~~a~~ (Empirical Drying Equation)

Page 27: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

10

MR = exp(-KtN) (2.13)

t=b&~~b~ua K = 0.0466 - 0.0114 RH2

N = 0.402 + 0.00728 T RH

ua3h&l~ K = 0.0333 + 0.0003 T

N = 0.3744 + 0.00916 T RH

MR = exp (-Kt0.76) (2.14)

Ivlilu

K = - 0.661422087 + 0.018479T + 0.7222827RH - 9 x 10-5T2 - 0.014758 T RH

MR = exp (-KtN) (2.15)

K = exp (7.53093 - 7.52771RH + 0.44859v2 + 5,3540211n(RH)

+ 1.2719211n(v) - 0.29792 T RH - 6.79225 RH v -1.048963-04 T2 v2

+ 7.99807 v RH2 + 3.23764 x 1O-3 RH T2)

N = -1.82767 + 2.250163 x lo-3T2+ 6.04474RH - 2.77503RH2

- 1.141791nRH - 0.0124 T RH

Page 28: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

11

1 -RH = exp( -CT Meqn) (2.16)

i=Q.mi%aas Chung bb~z Pfost [9]

RH = exp[(-a/T) exp(-bMeq)] (2.17)

M eq = (-ln(l-RH)/F(T+G))liE (2.18)

1 mu G = 190.62 + 10.632T

F = 0.08855 - 0.002414T + 0.0000224T2

E = 1.8033 - 0.00728T

Page 29: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

12

In RH = (-5135,0307/R T) exp (-0.0605 Meq) (2.19)

WLI~%SY?J~~ Henderson [8]

l-RH = exp (-2.1083x10-4 T(100Meq)0.8383) (2.20)

C = 1.025 + 5.220 M (2.21)

p = 1306 + 234M (2.22)

Page 30: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

13

VV = 0.001997 + 0.0012 M (2.23)

CaTo+Wo(hfg+C,To)+RCp, 0 = CaTbd+Wbd(hfg+C”Tbd)+RCp,Tbd (2.24)

Meq = f 0, 4) (2.25)

Page 31: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

14

(MmMeq)i(Min-Meq) = exp (-KtN) (2.26)

Mf = (M - dM,&(l - d) (2.27)

d = -KNAtt(N-1)

wf - Wbd = (Mbd - Mf)R (2.28)

C,Tbd+Wbd(hfg+C,Tbd)+RCpwTbd = C,Tf+Wf(hfS+C,Tf)+RCpwTf (2.29)

Page 32: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

15

C,T,+W,(hfg+C,T,)+RCp,T, = C,Tf+Wf(hfg+C,Tf)+RCpwTf (2.30)

Mf = M, - (Wf - W, )/R (2.31)

VV = f (M) (2.37)

Page 33: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

“7

W T C C0’ f’ a’ v

x + AX

W. 7, Sa ,C ”

Fig. 3.1 Control volume of thin layer

Page 34: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

17

~,To+Wo(hfg+~vTo)+R~p, 8 = C,Tbd+Wbd(hfg+CvTbd)+RCpwTbd (3.1)

M eq = (exp(l.844056-O.O1548Tbd)/-ln(RH))(l/l,36116) (3.2)

b&

(M-Meq)/(Min-Meq) = exp (-KtN)

K = exp(-4.67879-tO.073218 T-0.19866/v-O.OOq24 T2 )

(3.3)

N = exp(0.014273-0.01268 T+0.05006/v+0.000053 T2 )

~l~~~~~~~~~~nl~ (3.8) a$ELU?J t LLCC~%W&l Finite Differences $h-OJ.kMl

~alaJ~~~~s~~wo~~~~~~~~~a1 At

Mf = (M - dMeq)/(l - d) (3.4)

Page 35: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

18

%WJid d = -KNAtt(N-1)

wf - Wbd = (Mbd - Mf)R (3.5)

C,Tbd+wbd(hfg+C,Tbd)+RCpwTbd = C,Tf+Wf(hfS+C,Tf)+RCpVVTf (3.6)

C,T,+W,(hfg+C,T,)+RCp,T, = C,Tf+Wf(hfg+C,Tf)+RCpwTf (3.7)

Mf = M, - (Wf - W, J/R (3.8)

Page 36: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

19

VV = 0.025505 + 0.004812 M - 0.00034227 M2 + 9.47x1O-6 M3 (3.9)

maCaT + maW2(hfg + C,T2) - maCaT - maWl(hfg+CvTl) = Ql+W, (3.10)

ma(Ca+ WlC”) (T2 - Tl) = Ql+W, (3.11)

Page 37: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

20

m&,+ WlC,) (T2 - Tl) = W, (3.12)

W, = @(ma/p,/ qf) (3.13)

Wm = Ws/qm (3.14)

APg,/L=150(1- E)~,uv/ (q$d,)2(t)3 +1.75(1- &+v2 / (&,d,)(t)3 (3.15)

Page 38: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

21

APg, /L= 150(1- E)‘,Dv/ (4,d,)z(t)3 , Rep < 20 (3.16)

hpg,/ L = 1.75( l- &+v2 / (&,d,)( E)’ , Rep > 1000 (3.17)

Page 39: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

22

ma&T3 + maW3(hfg + C,T3) - maCaT - maW2(hfg+C,T2) = Q+Q2 (3.22)

m,(C,+ WC,) (T3 - T2) = 0 (3.23)

Page 40: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

23

Page 41: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,
Page 42: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

25

Page 43: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

26

Page 44: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

27

Page 45: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

Fig. 4.2 Chopper

Page 46: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

M eq = (ln(1 -RH)/-aT)(l/b) (5.2)

Page 47: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

30

Chung-Pfost 191

M eq = (-l/b)ln(Tln(RH)/-a) ( 5 . 3 )

Modified Halsey (Iglesias & Chirife [15] )

Meq = (expja-bT)/-ln(RH))(l/d) ( 5 . 4 )

M eq = (ln(l-RH)/-0.0215734T)(1/1.2708) , r2 = 0.78 ( 5 . 5 )

Chung-Pfost [9] Wfl8Wlls$ (5.3)k%Wl7T~d~

Meq = (-1/5,48689)ln(Tln(RH)/-567.0792) , r2 = 0.75 (5.6)

Modified Halsey (Iglesias & Chirife [15]) w~EW~II~~ (5.4) ~%WK&I<

M aq = (exp(1.844056-0,01548T)/-ln(RH))(l/l.36116) ,r2 = 0.94 (5.7)

Page 48: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

31

Exponential Model $bWhQdnlS

MR = exp(-Kt) (5.8)

kaz Page’s Model =$hEIElG~ni~

MR = exp(-KtN) (5.9)

N = exp(0.014273-0 01268*T+0.05006/v+0.000053*T2) ,r2 = 0.948 (5.11)

Page 49: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

32

Page 50: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

33

Page 51: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

34

VV = 0.025505 + 0.004812 M - 0.00034227 M2 + 9.47*10m6 M3 , r2 = 0.96 (5.12)

Page 52: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

3 5

Page 53: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

36

Page 54: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

37

Page 55: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

”m-!

d

6

7

8

**

9

*x

1 0

**

* w

qrun@

COG)

7 3

7 2

7 2

6 6

7 8

61

7 8

6 3

7 2

6 2

6 7

6 7

80

80

75

71

71

6 6

in4Tillh a1 a

&5ini-ilna

51LWl.-mJ

aimpI

(m3/min-kg

dry matter)

"mJ&

L %I&4

(%wb)

sim’

11.1

15.2

29.5

22.2

26.8

94.6

94.6

95.1

94.9

94.6

8 . 5

10.1

5.5

9.3

8.9

20.6 94.6 1 1 . 1

24.0 95.0 10.7

4.00

3.50

4.00

4.00

1.50

2.00

1.50

1.50

1.50

2.00

1.85

1.15

0.50

0.50

1.85

0.50

0.50

2.00

-* 7nmn 3 n-u: rh 1 na:: 1 Simulation

31.3

10.4

28.1

21.1

7.0

27.3

19.3

5 . 8

94.6 13.9

94.1

94.3

6.6

12.3

rexP

2

7.5*

10.5

9.4

8.3

8.9'

sim -P em exrl

0.10 0.23

0.12 0.19

0.26 0.22

0.20 0.24

0.17 0.22

s,m

6.63

6.85

14.94

8.96

7.96

8.30

7.85

15.92

9.40

8.97

sim

6 . 8 9

7 . 1 6

15.62

9.48

8.40

8.90

8.36

16.55

10.01

9.55

9.1* 0.1 4 0 . 1 8 7.94 8.64 8.30 9.1 1

6.8 0.19 0.21 8.91 9.10 9.40 9.66

10.0 0.27 0.1 1 8.82 9.34 9.52 9.69

6.9* 0.1 3

0.12

0.08 6.35 5.84 6.56

7.2 0.1 1

5.50

5.05 6.20 5.36 6.49

2 Experiment

(MJ/kg-H20 evap.)

wa’~wainGi Wt%Jltbll;lJ~ij

(MJ/kg- H20 evap.) (MJ/kgH20 evap.)

Wco

Page 56: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

mlnl=i~~sndlLwlYLl09

oifmI.sa~ad 1

(m3/min-kg dry matter)

SlUKL&JFl

33.9

30.5

27.1

23.7

33.9 23.7 13.5

7.89 7.00 6.1 7

2.55 2.60 2.70

5 1 . 6 0 5 3 . 3 0 56.70

7.63 6.74 5.96

2.60 2.65 2.80

5 4 . 3 0 5 6 . 1 0 59.60

7.42 6.53 5.75

2.70 2.75 2.90

5 7 . 4 0 5 9 . 2 0 62.90

7.27 6.38 5.60

2.85 2.90 3.05

61 .OO 62.90 66.60

WW

Page 57: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

40

-model +K experiment

0 10 20 30 40 50 60 70 80 90 100

Moisture content (% wb)

Fig. 5.1 Relationship between specific heat of spring onionand moisture content

Page 58: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

4 1

Ea 0.8E8

$ 0.67l.-

EE 0.43.-ii.-=$0.2

W

00 1 0 2 0 30 40 5 0 60 7 0 80 90 100

% Relative humidity

Fig. 5.2 lsomoisture curves of spring onion at 38’C

m experiment - Modified Halsey

- - Chung & Pfost - -Henderson

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 90 1 0 0

% Relative humidity

Fig. 5.3 lsomoisture curves of spring onion at 50 5

Page 59: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

42

; 0.43‘L12. -=$0.2

W

00 10 20 30 40 50 60 70 80 90 100

% Relative humidity

Fig. 5.4 lsomoisture curves of spring onion at 62 C

, 1 / m experiment -Modified Halsey 1

229

5 0.8E8

f 0.6z.-

E

- - Chung & Pfost --Henderson

0 lo 20 30 40 50 60 70 80 90 100

% Relative humidity

Fig. 5.5 lsopoisture curves of spring onion at 74’C

Page 60: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

43

1.2

1

go.8

0‘Gz 0.6

552 0.4

0.2

0

-Temp 43.9OC + Temp 53.9OC * Temp 64.5OC

+ Temp 71.4’C * Temp 85.5’C

0 20 40 60 80 100 120 140 160 180

Time (min)

Fig. 5.6 Effect of air temperature on drying rate of spring onionat a superficial velocity of 0.2 m/s

1.2

l-

go.8 -

0‘G2 0.6-23zg 0.4 -

-Temp 43.0°C f Temp 53.0 “C * Temp 63.8 “C

++ Temp 73.0°C *Temp 84.2’C

0 20 40 60 80 100 120 140 160 180

Time (min)

Fig. 5.7 Effect of air temperature on drying rate of spring onion

at a superficial velocity of 0.5 m/s

Page 61: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

44

1.2---Temp 43.8’C f Temp 52.6’C * Temp 62.5 “C

++ Temp 72.7’C * Temp 84.1 ‘C

0 20 40 60 80 100 120 140 160 180 200

Time (min)

Fig. 5.8 Effect of air temperature on drying rate of spring onionat a superficial velocity of 0.8 m/s

1.2+-v 0.2 m/s,Temp 43.9 “C + v 0.5 m/s,Temp 42.9OC

*v 0.8 m/s,Temp 43.8 “C

0 20 40 60 80 100 120 140 160 180 200

Time (min)

Fig. 5.9 Effect of superficial velocity on drying rate of spring onionat temperature about 43’C

Page 62: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

4 5

0 . 2

0

I I-v 0.2 m/s,Temp 54.O’C +v 0.5 m/s,Temp 53.0°C

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

Time (min)

Fig. 5.10 Effect of superficial velocity on drying rate of spring onionat temperature about 52%

1.2+v 0.2 m/s,Temp 64.5’C +v 0.5 m/s,Temp 63.8OC

1

SO.8

0‘G

; 0.6

35g 0.4

A

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

Time (min)

Fig. 5.11 Effect of superficial velocity on drying rate of spring onionat temperature about 63%

Page 63: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

46

1.2 --“v 0.2 m/s,Temp 71.3OC i-v 0.5 m/s,Temp 73.0 “C

*v 0.8 m/s,Temp 72.7’C

go.8

0.2

0 k0 20 40 60 80 100 120 140 160 180

Time (min)

Fig. 5.12 Effect of superficial velorzity on drying rate of spring onionat temperature about 72 C

1.2..-=-v 0.2 m/s,Temp 85.5’C +v 0.5 m/s,Temp 84.2 "C

*v 0.8 m/s,Temp 84.1 “C

40 10 20 30 40 50 60 70 80 90 100110120130

Time (min)

Fig. 5.13 Effect of superficial velocity on drying rate of spring onionat temperature about 84’C

Page 64: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

47

a

-simulation *experimentini

0 10 20 30 40 50 60 70 80 90

Moisture content (% wb)

Fig. 5.14a Comparison between simulated and experimentalmoisture content of spring onion at differentheight, test no.1

- simulation m experiment

0 30 60 90 120 150 180 210 240

Time (min)

Fig. 5.14b Comparison between simulated and experimentalaverage moisture content of spring onion,test no.1

Page 65: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

48

10- simulation * experiment

V,

initial

a

2?6sz 210 min. -% 4

2

!

0 10 20 30 40 50 60 70 80 90 100

Moisture content (% wb)

Fig. 5.15a Comparison between simulated and experimentalmoisture content of spring onion at differentheight, test no.2

-simulation +K experiment

0 30 60 90 120 150 180 210

Time (min)

Fig. 5.15b Comparison between simulated and experimentalaverage moisture content of spring onion,test no.2

Page 66: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

49

o -

- simulation * experimentini

0 10 20 30 40 50 60 70 80 90 100

Moisture content (“% wb)

Fig. 5.16a Comparison between simulated and experimentalmoisture content of spring onion at differentheight, test no.3

90

80

10

0 30 60 90 120 150 180 210 240

Time (min)

Fig. 5.16b Comparison between simulated and experimentalaverage moisture content of spring onion,test no.3

Page 67: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

50

10

8

-simulation * experimentini

0 10 20 30 40 50 60 70 80 90

Moisture content (% wb)

3%

ta

Fig. 5.17a Comparison between simulated and experimentalmoisture content of spring onion at differentheight, test no.4

I

- simulation x experiment- simulation x experiment

60 --

50--

40 -~-

30 -.-

0 30 60 90 120 150 180 210 240

Time (min)

Fig. 5.17b Comparison between simulated and experimentalaverage moisture content of spring onion,test no.4

Page 68: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

51

10

a

-simulation *experimentinii

>c

210 min x

/../

90 mi

30 min

0 10 20 30 40 50 60 70 80 90

Moisture conten @ wb)

Fig. 5.1aa Comparison between simulated and experimentalmoisture content of spring onion at differentheight, test no.5

-simulation m experiment

80zi-

-I3 70 -8

30 30 60 90 120 150 180 210

Time (min)

Fig. 5.18b Comparison between simulated and experimentalaverage moisture content of spring onion,test no.5

Page 69: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

52

-simulation * experimentinit

180 min

I+0 10 20 30 40 50 60 70 80 90

Moisture content @ wb)

Fig. 5.19a Comparison between simulated and experimentalmoisture conten of spring onion at differentheight, test no.6

- simulation m experiment- simulation m experiment

0 30 60 90 120 150 180

Time (min)

Fig. 5.19b Comparison between simulated and experimentalaverage moisture content of spring onion, test no.6

Page 70: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

53

110 ~-

8-r

- simulation * experiment

\,

initial

%

0 10 20 30 40 50 60 70 80 90 100

Moisture content (% wb)

Fig. 5.20a Comparison between simulated and experimentalmoisture content of spring onion at differentheight, test no.7

-I60 90 120 150 180 210

Time (min)

Fig. 5.20b Comparison between simulated and experimentalaverage moisture content of spring onion,test no.7

Page 71: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

54

0 30 60 90 120 150 180

Time (min)

Fig. 5.21 Comparison between simulated and experimentalaverage moisture content of spring onion,test no.8

100

90

i% 40

g 30a

20

10

060 90 120 150

Time (min)

Fig. 5.22 Comparison between simulated and experimentalaverage moisture content of spring onion,test no.9

Page 72: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

55

- simulation m experiment

60 -c ,\

0 30 60 90 120 150 180

Time (min)

Fig. 5.23 Comparison between simulated and experimental

average moisture content of spring onion,test no.10

Page 73: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

56

h

$10t

XGs233.9 %s223.8 +-Gs213.6 105 t

I I I / I I/ 0

57 59 6 1 63 65 67 69 7 1

Air temp. (“C) in stage 3

Fig.5.24 Effect of specific air flow rate in stage 2 and air temperature instage 3 on energy consumption and drying time[Air temperature in stage 1 = 8,0°C, 0.5 hAir temperature in stage 2 = 80 C, 0.5 hSpecific air flow rate in stage 1 = 33.9 m A 3/min-kg dry matterSpecific air flow rate in stage 3 = 6.8 m”3/min-kg dry matterGs2 = Specific air flow rate in stage 2, m ^3/min-kg dry matter]

Page 74: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

57

-u-Gs133.9 tGs130.5 yIc Gs127.1

I

10-II- Gs123.7

4- energy 8

t i m e Pb

I I I I I I I I I ( 0

13 15 17 19 21 23 25 27 29 31 33

Specific air flow rate in stage 2 (m” 3/min-kg dry matter)

Fig. 5.25 Effect of specific air flow rate in stage 1 and stage 2 on energyconsumption and drying time,

[Air temperature in stage 1 = 80°C ,0.5 h

Air temperature in stage 2 = 80°C ,0.5 h

Air temperature in stage 3 = 72’CG S. = specific air flow rate in stage 1, m ^3/min-kg dry matter

Specific air flow rate in stage 3 = 6.8 m”3/min-kg dry matter]

Page 75: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

58

- Temp 30 ‘C i- Temp 35 “C * Temp 40 ‘C

energy

1 I I I I I I I +3 5 4 0 45 5 0 5 5 6 0 6 5 7 0 7 5 8 0

Relative humidity (%)

Fig. 5.26 Effect of relative humidity and temperature of ambient airon energy consumption and drying time

1 0

8

Page 76: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,
Page 77: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

60

Page 78: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

4. Chiang, W.C. and Peterson, J.N., 1985, “Thin Layer Air Drying of French Fried

Pototoes,” Journal of Food Technology, Vol. 20, No. 1, pp. 67-78.

5. Hutchison, D. and Otten, L., 1983, “Thin-layer Air Drying of Soybeans and

White Beans,” Journal of Food Technology, Vol. 18, No. 4, pp. 507-522.

8. Henderson, S.M., 1952, “A Basic Concept of Equilibium,” Agricultural

Engineering, Vol. 33, No. 1, pp. 29-31.

Page 79: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

62

9 Chung, D.S. and Pfost, H.P., 1967, “Adsorption and Desorption of Water Vapor

by Cereal Grains and Their Products,” Transactions of the ASAE, Vol. 10,

No. 4, pp. 549-557.

12. Soponronnarit, S., 1988, “Energy Model of Grain Drying System,” The ASEAN

Journal of Science Technology for Development, Vol. 5, No. 2, pp. 43-68.

13. Kunii, D., 1969, Fluidization Engineering, New York, John Wiley and Sons,

pp. 66-70.

15. Iglesias, H.A. and Chirife, J., 1976, “Prediction of Effect of Temperature on

Water Sorption Isotherms of Food Materials,” Journal of Food Technology,

Vol. 11, No. 1, pp. 109-116.

Page 80: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,
Page 81: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

64

G&(% wb)

93.79

92.69

92.30

91.24

90.60

89.08

86.61

85.75

83.93

80.42

78.32

65.44

53.33

53.18

43.81

40.17

25.61

18.20

10.75

GlVGil

t%A~au

&A

(9)

30.88

30.42

25.84

28.15

31.60

27.83

22.07

28.41

28.23

20.18

25.79

20.97

12.15

7.66

10.69

20.85

6.11

8.36

5.63

97.71

97.71

97.71

97.71

97.71

97.71

97.71

97.71

97.71

97.71

97.71

97.71

97.71

97.71

97.71

97.71

97.71

97.71

97.71

icp4@GYuvlaBJ

i%J

(“cl31.9

31.3

29.6

29.8

32.0

30.0

29.8

29.8

29.8

31.8

29.8

32.2

31.7

32.0

31.8

32.8

31.8

31.8

32.2

75.4

69.9

71.8

69.8

74.5

70.2

73.3

72.5

71.2

71.0

73.8

71.1

70.6

73.4

72.4

71.5

70.0

71.4

71.1

FpuMqzLkwGihai

(“cl31.9

31.3

29.6

29.8

32.0

30.0

29.8

29.8

29.8

31.8

29.8

32.2

31.7

32.0

31.8

32.8

31.8

31.8

32.2

pbM@J WJlLJ%~

wxJqa xilbWl~

(“cl (kJ/kg-OC)

57.8 4.083

54.9 3.555

55.5 4.086

54.6 3.512

57.4 3.909

54.5 3.962

57.6 3.587

55.8 3.903

55.0 3.936

57.0 3.737

57.6 3.355

57.7 3.010

58.3 3.073

61.3 2.236

60.3 2.045

58.2 2.991

59.0 2.231

60.0 1.623

60.2 1.063

Page 82: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

65

-m,C,(t,-t,)-m,C,(t,-t,)c, = -----------------------------------------

m,(t,-t,)

Page 83: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

611flw~tban Y. fn%M~awvn desorption isotherm YEKJG%AMEIFI.J&-I

Page 84: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

6 7

@1319~ 2- 1 fll%I’lGlJ1ACNMl desorption isotherm “UCI~~P~M~D%J&J

1 %db

Page 85: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,
Page 86: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

6 9

b-291

(pblfq

0 70.44 12.02 1 .oooo

10 53.41 8.87 0.7355

20 42.02 6.77 0.5587

30 33.30 5.15 0.4233

4 0 27.71 4.12 0.3365

50 23.78 3.39 0.2755

60 20.82 2.85 0.2295

7 0 18.41 2.40 0.1921

80 16.56 2.06 0.1634

90 15.04 1.78 0.1398

100 13.78 1.55 0.1202

110 12.70 1.35 0.1034

120 11.76 1.17 0.0888

130 10.99 1.03 0.0769

140 10.31 0.91 0.0663

150 9.73 0.79 0.0573

160 9.22 0.70 0.0494

170 8.83 0.63 0.0433

180 8.44 0.56 0.0373

190 8.12 0.50 0.0323

YizzFw

Page 87: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

7 0

LTIAI

(Ulf!) (nh)

0 7 1 . 8 0

10 5 0 . 0 5

2 0 3 6 . 5 4

3 0 2 8 . 5 9

4 0 2 3 . 4 5

5 0 1 9 . 8 9

6 0 1 7 . 3 3

7 0 1 5 . 3 4

8 0 1 3 . 7 5

9 0 1 2 . 4 9

1 0 0 1 1 . 3 5

1 1 0 1 0 . 4 5

1 2 0 9 . 6 9

1 3 0 9 . 0 6

1 4 0 8 . 4 9

1 5 0 8 . 0 3

1 6 0 7 . 6 2

1 7 0 7 . 2 9

1 8 0 6 . 9 8

,ivii%u7h.ms~u~o~~~ 4.5 1 n%

--.iKK(db)

14.92 1 .oooo

10.10 0 . 6 7 4 2

7 . 1 0 0 . 4 7 1 9

5 . 3 4 0 . 3 5 2 9

4 . 2 0 0 . 2 7 5 9

3 . 4 1 0 . 2 2 2 6

2 . 8 4 0 . 1 8 4 3

2 . 4 0 0 . 1 5 4 5

2 . 0 5 0 . 1 3 0 6

1 . 7 7 0 . 1 1 1 8

1 . 5 2 0 . 0 9 4 7

1 . 3 2 0 . 0 8 1 2

1 . 1 5 0 . 0 6 9 8

1 . 0 1 0 . 0 6 0 4

0 . 8 8 0 . 0 5 1 9

0 . 7 8 0 . 0 4 5 0

0 . 6 9 0 . 0 3 8 9

0 . 6 2 0 . 0 3 3 9

0 . 5 5 0 . 0 2 9 3

WJlaJLbia~~ia~ 0 . 5 bzJGl%/%di

Page 88: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

7 1

bTJk71

(pblfi)

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

1 6 0

1 7 0

1 8 0

1 9 0

2 0 0

2 1 0

-iiizL-(W

1 2 . 5 5

7 . 9 1

5 . 3 2

3 . 8 0

2 . 9 1

2 . 3 4

1 . 9 3

1 . 6 2

1 . 2 0

1 . 0 4

0 . 9 2

0 . 8 5

0 . 8 0

0 . 7 1

0 . 6 3

0 . 5 7

0 . 5 1

0 . 4 7

0 . 4 3

0 . 4 0

0 . 3 7

0 . 3 5

tii~Pb”nUPs”sYa~~uMaaJ~~ 5 . 2 8 n?i +T-m~biaaa&~ 0 . 8 aa.m/%di

~sracsa?ans-a~i&lr~~~ini~~~~~~~~~a~~ 3 1 .I0 OC

qsrav\s?Dn9-anlira~~n~lnl~~~a~~~~~a~~ 2 6 . 3 2 OC

km.J~u~~w”wi~aJiauLa~~ 3 5 . 5 7 % nala~<~auqa 0 . 1 1 0 3 d b

Exponential Model r2 = 0.85, Page’s Model r2 = 0.98

7 1 . 5 4

4 7 . 0 2

3 3 . 3 5

2 5 . 3 3

2 0 . 6 3

1 7 . 6 3

1 5 . 4 7

1 3 . 8 4

1 1 . 6 1

1 0 . 7 7

1 0 . 1 2

9 . 7 7

9 . 4 8

9 . 0 3

8 . 6 1

8 . 2 8

7 . 9 9

7 . 7 6

7 . 5 5

7 . 3 6

7 . 2 2

7 . 1 0

1 .oooo

0 . 6 2 6 6

0 . 4 1 8 5

0 . 2 9 6 4

0 . 2 2 4 8

0 . 1 7 9 1

0 . 1 4 6 2

0 . 1 2 1 4

0 . 0 8 7 5

0 . 0 7 4 7

0 . 0 6 4 8

0 . 0 5 9 4

0 . 0 5 5 0

0 . 0 4 8 2

0 . 0 4 1 8

0 . 0 3 6 8

0 . 0 3 2 3

0 . 0 2 8 8

0 . 0 2 5 6

0 . 0 2 2 7

0 . 0 2 0 6

0 . 0 1 8 8

Page 89: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

72

2 Yb2k71 sa"iPshYuP90ahT~ KllWPA &l$lL+-J~~~laJ"IIu

(Ulwd) (n%) w

0 71.33 11.60 1 .oooo

10 46.00 7.13 0.61 17

20 31.68 4.60 0.3922

30 23.55 3.1 6 0.2676

40 18.46 2.26 0.1 896

50 15.15 1.68 0.1389

60 12.76 1.25 0.1022

70 1 1.04 0.95 0.0759

80 9.80 0.73 0.0569

90 8.88 0.57 0.0428

100 8.23 0.45 0.0328

110 7.70 0.36 0.0247

120 7.38 0.30 0.0198

130 7.12 0.26 0.01 58

140 6.92 0.22 0.0127

150 6.81 0.20 0.01 10

160 6.69 0.1 8 0.0092

170 6.62 0.17 0.008 1

180 6.54 0.1 6 0.0069

190 6.47 0.14 0.0058'ytiimhnU&am&mm%..I 5.66 n?u nalaJLia~aJ~a~ 0.2 baJFl$/%41~

~slaessl~n4-a~~-~~~~~~n~~~~~"~~~~a~~ 32.2 1 OC

~~~pans-a~7~a~~nolnl~~~~~~~~~a~~ 27.1 5 OC

na~a.~~~a~lw"wfaa~iou~a~u 22.55 % vrm.~&wa~~n 0.0753 db

Exponential Model r2 = 0.94, Page's Model r2 = 0.99

Page 90: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

73

0 71.78 14.64 1 .oooo

10 39.22 7.54 0.51 27

20 24.89 4.42 0.2983

30 17.94 2.91 0.1943

40 13.91 2.03 0.1 340

50 1 1.45 1.49 0.0972

60 9.59 1.09 0.0694

70 8.48 0.85 0.0527

80 7.61 0.66 0.0397

90 6.97 0.52 0.0302

100 6.52 0.42 0.0234

110 6.23 0.36 0.0191

120 5.99 0.30 0.0155

130 5.83 0.27 0.0131

140 5.71 0.24 0.01 13

150 5.61 0.22 0.0098

160 5.54 0.21 0.0088

170 5.54 0.21 0.0088

180 5.49 0.20 0.0080

Page 91: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

7 4

b291

(lnfi) (n%)

0 7 1 . 9 3

1 0 3 7 . 1 2

2 0 2 3 . 7 3

3 0 1 7 . 2 1

4 0 1 3 . 2 6

5 0 1 0 . 8 0

6 0 9 . 0 6

7 0 8 . 0 8

8 0 7 . 2 2

9 0 6 . 7 8

1 0 0 6 . 4 3

1 1 0 6 . 1 5

1 2 0 5 . 9 6

1 3 0 5 . 8 0

1 4 0 5 . 6 8

1 5 0 5 . 5 7

1 6 0 5 . 5 2

1 7 0 5 . 4 2

1 8 0 5 . 3 4

1 9 0 5 . 3 0

2 0 0 5 . 2 4

2 1 0 5 . 2 1

m%bb&Sumh~Oa.& 4 . 5 8 n?u

P,naw5u

(db)

1 4 . 7 1 1 .oooo

7 . 1 0 0 . 4 8 0 4

4 . 1 8 0 . 2 8 0 5

2 . 7 6 0 . 1 8 3 2

1 . 8 9 0 . 1 2 4 3

1 . 3 6 0 . 0 8 7 5

0 . 9 8 0 . 0 6 1 6

0 . 7 6 0 . 0 4 6 9

0 . 5 8 0 . 0 3 4 1

0 . 4 8 0 . 0 2 7 5

0 . 4 0 0 . 0 2 2 3

0 . 3 4 0 . 0 1 8 1

0 . 3 0 0 . 0 1 5 3

0 . 2 7 0 . 0 1 2 9

0 . 2 4 0 . 0 1 1 1

0 . 2 2 0 . 0 0 9 5

0 . 2 0 0 . 0 0 8 7

0 . 1 8 0 . 0 0 7 2

0 . 1 6 0 . 0 0 6 0

0 . 1 6 0 . 0 0 5 5

0 . 1 4 0 . 0 0 4 6

0 . 1 4 0.004 1

Page 92: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

7 5

b2fll

(u14)

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

1 6 0

1 7 0

1 8 0

1 9 0

7 1 . 2 4 1 3 . 5 4 1 .oooo

4 1 . 7 6 7 . 5 2 0 . 5 5 3 8

2 7 . 1 7 4 . 5 5 0 . 3 3 3 0

2 0 . 0 1 3 . 0 8 0 . 2 2 4 6

1 5 . 8 7 2 . 2 4 0 . 1 6 1 9

1 2 . 7 7 1 . 6 1 0 . 1 1 5 0

1 0 . 6 1 1 . 1 6 0 . 0 8 2 3

9 . 1 2 0 . 8 6 0 . 0 5 9 8

8 . 0 5 0 . 6 4 0 . 0 4 3 6

7 . 3 2 0 . 4 9 0 . 0 3 2 5

6 . 8 2 0 . 3 9 0 . 0 2 5 0

6 . 5 1 0 . 3 3 0 . 0 2 0 3

6 . 2 5 0 . 2 7 0 . 0 1 6 3

6 . 0 3 0 . 2 3 0.0 1 30

5 . 9 2 0 . 2 1 0 . 0 1 1 3

5 . 8 3 0 . 1 9 0 . 0 1 0 0

5 . 7 6 0 . 1 7 0 . 0 0 8 9

5 . 6 9 0 . 1 6 0 . 0 0 7 9

5 . 6 4 0 . 1 5 0.007 1

5 . 6 0 0 . 1 4 0 . 0 0 6 5

Page 93: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

76

LTIAI

(Ulfl) (r-Ku)

0 71.85 14.03

10 30.23 5.32

20 18.29 2.83

30 13.11 1.74

40 10.27 1.15

50 8.30 0.74

60 7.10 0.48

70 6.40 0.34

80 5.98 0.25

90 5.72 0.20

100 5.59 0.17

110 5.46 0.14

120 5.39 0.13

130 5.36 0.12

140 5.34 0.12

150 5.31 0.1 1

160 5.30 0.1 1

170 5.29 0.1 1

180 5.34 0.12

m.h=&m.&kviaa.J&J 4.78 f& nalaJLiaiNJiou 0.5 RJGl%/^aUlw"

1 .oooo

0.3769

0.1982

0.1207

0.0782

0.0487

0.0307

0.0202

0.0 140

0.0101

0.0081

0.0062

0.005 1

0.0047

0.0044

0.0039

0.0038

0.0036

0.0044

Page 94: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

77

(db)

baai

(palwd) (n%)

0 72.06 14.66

10 29.74 5.46

20 17.95 2.90

30 12.82 1.78

40 9.86 1.14

50 8.08 0.75

60 6.93 0.50

70 6.24 0.35

80 5.79 0.25

90 5.49 0.19

100 5.35 0.1 6

110 5.23 0.13

120 5.19 0.12

130 5.1 6 0.12

140 5.1 6 0.12

150 5.13 0.1 1

160 5.1 1 0.1 1

170 5.1 1 0.1 1

180 5.1 1 0.1 1

190 5.07 0.10

lpspa"nbb&rum&uP4Ou& 4.60 n%J mai~biaa.aim 0.8 ~JGITI%~~~~~

1 .oooo

0.3702

0.1948

0.1 184

0.0744

0.0479

0.0308

0.0205

0.0138

0.0094

0.0073

0.0055

0.0049

0.0045

0.0045

0.0040

0.0037

0.0037

0.0037

0.003 1

qsra99s?0nska~7-lben~lnl~~~~"~~~ladu 25.98 OC

+-m&GuK~iaa&t4m~u 13.92 % nala.&muqa 0.0557 db

Exponential Model r2 = 0.72, Page's Model r2 = 0.97

Page 95: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

78

L-J31

(tei) (n-G)

0 72.95 14.62

10 35.95 6.69

20 22.12 3.73

30 14.81 2.17

40 10.66 1.28

50 8.35 0.78

60 7.01 0.50

70 6.16 0.31

80 5.72 0.22

90 5.51 0.17

100 5.41 0.15

110 5.29 0.13

120 5.21 0.1 1

130 5.18 0.10

140 5.17 0.10

150 5.15 0.10

160 5.15 0.10

170 5.14 0.10

180 5.14 0.10

190 5.15 0.10

v~nab94"suos&&~tm& 4.67 nyaJ K-JlaJLiaa~~a~ 0.2 baJFl%/%nfi

1 .oooo

0.4564

0.2532

0.1458

0.0848

0.0509

0.0312

0.0187

0.0122

0.009 1

0.0077

0.0059

0.0047

0.0043

0.0041

0.0038

0.0038

0.0037

0.0037

0.0038

Page 96: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

79

Lam

(usi)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

71.24 11.41 1 .oooo

27.42 3.77 0.3284

18.1 1 2.15 0.1857

12.88 1.24 0.1056

9.56 0.66 0.0547

8.26 0.43 0.0348

7.44 0.29 0.0222

7.00 0.21 0.0154

6.77 0.17 0.01 19

6.56 0.14 0.0087

6.43 0.12 0.0067

6.36 0.10 0.0056

6.32 0.10 0.0050

6.34 0.10 0.0053

6.33 0.10 0.0052

6.29 0.09 0.0046

6.29 0.09 0.0046

6.23 0.08 0.0036

6.29 0.09 0.0046

-iziG-w

Page 97: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

80

7iEzL-W)

b-2~1

(Ul~) (nh)

0 72.14 15.62

10 26.66 5.14

20 15.27 2.51

30 10.32 1.37

40 7.67 0.76

50 6.18 0.42

60 5.41 0.24

70 4.99 0.14

80 4.87 0.12

90 4.88 0.12

100 4.82 0.1 1

110 4.79 0.10

120 4.80 0.10

130 4.80 0.10

140 4.81 0.10

150 4.81 0.10

160 4.81 0.10

170 4.81 0.10

180 4.81 0.10

mh~hwmh4oaG~ 4.34 7% w-m~~hw%u 0.8 n~'~s/%r~fi

1 .oooo

0.3273

0.1588

0.0856

0.0464

0.0244

0.0 130

0.0068

0.0050

0.005 1

0.0042

0.0038

0.0039

0.0039

0.0039

0.0039

0.0039

0.0039

0.0039

Page 98: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

81

L-Jfll

(I&)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

70.73 17.66 1 .oooo

26.61 6.02 0.3397

12.85 2.39 0.1338

7.59 1 .oo 0.0550

5.33 0.40 0.02 12

4.54 0.19 0.0094

4.26 0.12 0.0052

4.16 0.09 0.0037

4.1 8 0.10 0.0040

4.1 6 0.09 0.0037

4.12 0.08 0.003 1

4.1 1 0.08 0.0030

4.13 0.08 0.0033

4.13 0.08 0.0033

--iGzr(db)

Page 99: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

8 2

L--JiTl

(Wlf?)

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

7 0 . 4 5 15.81 1 .oooo

2 0 . 4 9 3 . 8 9 0 . 2 4 4 4

1 0 . 2 6 1 . 4 4 0 . 0 8 9 7

6 . 2 8 0 . 4 9 0 . 0 2 9 5

4 . 9 8 0 . 1 8 0 . 0 0 9 9

4 . 6 9 0.1 1 0 . 0 0 5 5

4 . 5 9 0 . 0 9 0 . 0 0 4 0

4 . 5 9 0 . 0 9 0 . 0 0 4 0

4 . 6 5 0 . 1 0 0 . 0 0 4 9

4 . 5 8 0 . 0 9 0 . 0 0 3 8

4 . 5 7 0 . 0 9 0 . 0 0 3 7

4 . 6 2 0 . 1 0 0 . 0 0 4 4

4 . 5 7 0 . 0 9 0 . 0 0 3 7

4 . 5 9 0 . 0 9 0 . 0 0 4 0

--iKzFw

Page 100: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

a3

b--JEil

(l.blfi)

0

10

20

30

40

50

60

70

80

90

100

110

70.91 16.37 1 .oooo

19.53 3.78 0.2296

9.49 1.32 0.0791

5.98 0.46 0.0265

4.88 0.19 0.0 100

4.55 0.1 1 0.005 1

4.50 0.10 0.0043

4.48 0.09 0.0040

4.49 0.10 0.0042

4.52 0.10 0.0046

4.48 0.09 0.0040

4.50 0.10 0.0043

--iGiG-w

Page 101: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,
Page 102: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

L-JWI

(d)

0

2 0

6 0

9 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

2 2 0

2 4 0

(cm)/(% wb)

l/94.63 5/94.63 g/94.63

l/56.1 2 3/72.18 5/79.97 6.05/85.02 7 0 . 8 3 6.1 3 2 8 . 3

2 . 8 0 1 4 . 0 0 . 0 2 9

l/20.01 3/23.50 4.25/44.99 4 2 . 0 5 4 . 5

4 . 5

4 . 5

2 3 8 . 3

‘l/8.31 3/l 0.25 4.25/l 1 .I 8 1 2 . 4 0

l/8.01 3/8.65 4.2518.65 7 . 5 4

--iii&-K&&l

(% wb)

9 4 . 6 3

2 . 9 3 1 4 . 0 0 . 0 3 0

2 . 9 3 1 4 . 0 0 . 0 2 4

2 . 8 3 1 0 . 0 0 . 0 2 0

2 . 8 3 1 0 . 0 0 . 0 2 4

2 . 7 0 8 . 0 0 . 0 2 4

2 . 8 0 7 . 0 0 . 0 2 3

(Ib/in2) (kg/s)

3 2 8 . 3

3 2 3 . 4

c

Page 103: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

a 6

Page 104: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

2 Y 'yL2i31 ~a7%1~5~7n~iuiii9n~~~/~~l~~~ KllWLlU Fl-llUJqCJsJ nsx~Y&h FrmGhra ~J%~imyboth fv-m&uau

KAJ Yoil53Ju

(u14) (cm)/(% wb) (% wb) (cm) (Amp.) (Ib/in2) (kg/s) (N/m2)

0 l/95.1 1 5195.1 1 9195.1 1 9 5 . 1 1 1 0 . 0 3 6 7 . 5

2 0 2 . 9 6 2 8 . 0 0 . 0 5 2

4 0 2 . 9 0 2 6 . 5 0 . 0 5 3

5 0 2 . 7 6 2 2 . 5 0 . 0 4 9

6 0 l/40.03 3 1 5 9 . 0 7 5 1 6 8 . 9 8 5 8 . 0 5 6 . 0 3 5 7 . 7

7 0 2 . 5 3 18.5 0 . 0 4 7

1 0 0 2 . 7 6 2 2 . 5 0 . 0 5 0

1 2 0 1 /I 0.07 3/23.03 4.5/32.98 2 2 . 9 0 5.0 2 4 7 . 9

1 5 0 2 . 7 3 2 5 . 0 0 . 0 4 4

1 8 0 l/8.30 3/l 0 . 4 0 4.5110.94 9 . 5 0 4 . 8 3 4 3 . 0

1 9 0 2 . 6 0 17.5 0 . 0 4 6

2 3 0 2 . 4 0 21 .o 0 . 0 4 8

2 4 0 l/8.00 3/l 0 . 4 6 4.4110.46 9 . 4 4 4 . 8 3 4 3 . 0. .

nalu&bml 3 9 1 v

Page 105: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

L-JiV

(Ulfi)

0

20

30

50

60

70

90

110

120

140

160

180

190

210

240

‘I /94.89 5/94.89 g/94.89

l/83.05 3/91.45 5/94.07 6.9/94.07

l/56.07 3/71.98 5/80.00 6.05/84.98

1 /lg.97 3/23.50 4.25/45.00

l/8.30 3/l 0.25 4.25/l 1 .I 8

l/8.00 3/8.65 4.25/8.65

iG%LLa&l

(% wb)

94.89

(Amp.) (Ib/in2) (kg/s)10.0 352.8

2.83 0.023

91.11 7.8

2.90

13.0

13.5

13.5

12.0

11.0

11.0

11.0

9.0

11.0

0.030

76.26 6.1

347.9

343.0

2.73

2.83

2.86

0.030

0.030

0.030

30.43 4.5 333.2

2.66

2.83

0.028

0.028

9.50 4.5 333.2

2.80

2.80

0.025

0.030

8.36 4.5 333.2

Page 106: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

1

b2i31

(wfi)

0

2 0

3 0

5 0

7 0

9 0

1 1 0

1 4 0

1 6 0

1 8 0

2 1 0

2 4 0

(cm)/(% wb)

l/94.62 5/94.62 g/94.62

l/61.97 3/83.01 5/83.01 7/83.01

1 /I 9.07 3/36.97 4.5/36.97 3 1 . 0 7 5 . 0 2 4 3 . 0

l/8.32 3/l 0.07 4.5/l 3.84

l/8.00 3/9.65 4.519.63

iGx4m&l

(% wb)

9 4 . 6 2 1 0 . 0 3 6 7 . 5

2 . 9 6 3 5 . 0 0 . 0 5 3

8 0 . 8 4 8 . 0 3 5 7 . 7

1 0 . 0 0

8 . 9 8

5.0

5 . 0

2 . 8 0 3 2 . 5 0 . 0 4 9

2 . 6 0 3 6 . 0 0 . 0 5 4

2 . 5 0

2 . 5 3

2 . 8 0

4 . 0

4 . 0

3 . 0

3 . 0

0 . 0 1 5

0 . 0 1 6

0 . 0 1 7

2 . 6 0 0 . 0 1 7

(b/in2) (kg/s)

3 4 3 . 0

3 4 3 . 0

Page 107: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

90

Page 108: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

2%d ‘y

b-JAI ~ai81~58in~ilPaii9n~~~/~~l~~~ WJldl4 R-d13Jtp%J nxkabJ?h naiaJ$u~no ¶h.Jl~~Otil tT-na.J~usaaJ

La& %cwmJsJ

@I$ (cm)/(% wb) (% wb) (cm) (Amp.) (lb/in*) (kg/s) ( N / m * )

0 l/95.06 5/95.06 g/95.06 9 5 . 0 6 1 0 . 0 3 6 2 . 6

2 0 2 . 8 6 2 5 . 0 0 . 0 6 2

3 0 l/82.97 3/93.03 5/94.00 7.5/94.00 9 2 . 4 5 9 . 0 3 5 7 . 7

4 0 2 . 8 0 1 8 . 0 0 . 0 5 3

5 0 3 . 0 3 1 6 . 0 0 . 0 4 9

6 0 l/82.00 3/90.03 5/90.03 6.7190.03 8 5 . 3 2 7 . 4 3 5 2 . 8

8 0 2 . 7 3 1 7 . 0 0 . 0 5 1

9 0 l/20.50 3/67.00 4.25/67.00 5 3 . 3 9 4 . 5 3 4 3 . 0

1 1 0 2 . 8 0 3.0 0 . 0 1 4

1 5 0 l/7.29 3/l 2.00 4.25/l 6.43 1 0 . 5 0 4.5 2 3 3 . 2

1 6 0 2 . 9 0 3 . 0 0 . 0 1 7

2 0 0 2 . 7 0 3 . 0 0 . 0 1 7

2 4 0 l/6.00 3/7.42 4.2517.42 6 . 7 9 4 . 5 3 3 3 . 2

Page 109: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

92

Page 110: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

P, ‘y ‘y

L-JLV ~aiugsein~ii?u~i9n=~~/~~i~~~ Fr-mJ% nala.Jg~'au n9tbbabGh mia.Ghmo d~a.l1~~0~1 KW.lKU~~~

l.a&l YOSTdJEI

(lnfi) (cm)/(% wb) (% wb) (cm) (Amp.) (lb/in*) (kg/s) (N/m*)

0 94.09 10.0 362.6

20 2.43 25.0 0.055

30 67.54 7.5 357.7

40 2.20 26.0 0.050

50 2.20 25.0 0.050

60 42.37 5.7 352.8

80 2.40 22.5 0.045

90 27.1 1 11.0 343.0

130 2.33 24.0 0.047

150 8.50 11.0 233.2

160 2.30 10.0 0.035

170 6.92 11.0 333.2. .

Page 111: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

1

x x ‘yb--JAI ~aiU~~o7n~iPbdiJnOEI"/nalU"IIU Fl-2lX.J"IIlA Fl-JlaJ~T-JXJ nxk~M?i mia.G.mo d%mdaG7 wm.Gh~au

d&l "UOSS~EIEI

(wf!) (cm)/(% wb) (% wb) (cm) (Amp. > (Ib/in2) (kg/s) (N/m2)

0 94.28 10.0 368.8

10 2.83 13.0 0.023

20 2.83 13.0 0.023

30 79.01 9.5 359.9

40 2.90 13.5 0.030

50 2.90 13.5 0.030

60 58.85 7.0 343.0

70 2.73 13.5 0.030

90 43.03 13.0 333.2

100 2.66 11.0 0.028

140 2.83 11.0 0.028

150 9.50 13.0 333.2

170 2.80 9.0 0.025

180 7.19 13.0 333.2

Page 112: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

c

Page 113: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

96

100

t

x ambient air temp. + ambient re la t ive humidi ty

I

100

s bed- inlet a i r temp. 8 bed- in le t re la t ive humidi ty

80

20 20

0 1 I I / / I I I

0 30 60 90 120 150 180 210 240

Time (min)

Fig. l-1 Evolution of temperature and relative humidity ofambient air and bed-inlet air, test no.1

100

t

* ambient air temp. + ambient re la t ive humidi ty

t

100+ bed- inlet a i r temp. 8 bed- in le t re la t ive humidi ty

80

P- 60

E-F 40

c3

80

60 Icc8

40

20 20

0 I I 1 I I I , I I ( 00 30 60 90 120 150 180 210

Time (min)

Fig. 1-2 Evolution of temperature and relative humidity ofambient air and bed-inlet air. test no.2

Page 114: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

97

100# ambient air temp. + ambient re lat ive humidi ty

100+ bed- inlet a i r temp. -s bed- in le t re la t ive humidi ty

80 80

P- 60 60 Ia8

40

20 20

0 00 30 60 90 120 150 180 210 240

Time (min)

Fig, l-3 Evolution of temperature and relative humidity ofambient air and bed-inlet air, test no.3

100* ambient air temp. + ambient re la t ive humidi ty

+ bed- inlet a i r temp. +-bed- in le t re la t ive humidi ty

100

80

0 40 80 120 160 200 240

Time (min)

Fig. l-4 Evolution of temperature and relative humidity ofambient air and bed-inlet air, test no.4

Page 115: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

98

100

t

* ambient air temp. + ambient re lat ive humidi ty 100+ bed- inlet a i r temp. -E- bed- in le t re la t ive humidi ty

80 80

3v 60 60 Icc8

40

I I20 20

0 00 30 60 90 120 150 180 210

Time (min)

Fig. 1-5 Evolution of temperature and relative humidity ofambient air and bed-inlet air, test no.5

I100

t

x ambient air temp. + ambient re lat ive humidi ty 100m bed- inlet a i r temp. -a- bed- in le t re la t ive humidi ty

t

80 - -80

20 20

I I I I/ I0 30 60 90 120 150 180

Time (min)

Fig. l-6 Evolution of temperature and relative humidity ofambient air and bed-inlet air, test no.6

Page 116: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

99

* ambient a i r temp. + ambient re lat ive humidi ty100 100

x bet - in le t a i r temp. -+ bed- in let re lat ive humidi ty

80 80

oo^- 60 60 I

ii-[r8

F 40 40

20 20

I I / I I I/ I0 30 60 90 120 150 180 210

Time (min)

Fig. 1-7 Evolution of temperature and relative humidity ofambient air and bed-inlet air, test no.7

100t

xambient air temp. + ambient re lat ive humidi ty

t

100$j( bed- in le t a i r temp. -R-bed- in le t re lat ive humidity

t8080 80

oo-̂ 60 60 2F 8

F 40 40

20 20

I I I / I II I 1

0 20 40 60 80 100 120 140 160 180

Time (min)

Fig.l-8 Evolution of temperature and relative humidity ofambient air and bed-inlet air, test no.8

Page 117: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

100

100

t

* a m b i e n t a i r t e m p . + ambient re lat ive humidi ty

t

100m bet- in let a i r temp. -s- bed- in le t re la t ive humidi ty

“: 6 0 - - --60 Icc8

0 00 20 40 60 80 100 120 140 160

Time (min)

Fig. l-9 Evolution of temperature and relative humidity ofambient air and bed-inlet air, test no.9

Jc ambient air temp. + ambient re la t ive humidi ty

100 bed- inlet a i r temp. + bed- in le t re la t ive humidi ty 100

80

-40

20 20

0 00 20 40 60 80 100 120 140, 160 180

Time (min)

Fig. l-10 Evolution of temperature and relative humidity ofambient air and bed-inlet air, test no.10

Page 118: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,
Page 119: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

102

(w-d) * 100

Page 120: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,
Page 121: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

104

d.5il.L

Page 122: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,
Page 123: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

106

SIMULATION FLOW CHART

humldltycontrol

Inputweather

parameters

\, contlneousventllatlon

\I

heat untilR H = x,

\III RH < x2

\/

\ GOSUBmoist air properties

GOSUBdry matter

IOSS

/ I

II not

print p o w e r requwmentpressure drope n e r g y consumption

e t c

,I If dry matter loss 3 x3 % oraverage moisture content<xq%wb

11 computing dryingt ime >, set total

Fig.3-1 Flow Chart of Soponronnarit Model[l2]

Page 124: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,
Page 125: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

108

DECLARE SUB VTIDM ()

DECLARE SUB adjust (code, pointer%, pmin, pmax)

DECLARE SUB display (pointer%, pmin, pmax, sp%, ep%, yl %, st$())

DECLARE SUB about ()

DECLARE SUB presskey ()

DECLARE SUB initial ()

DECLARE SUB printmenu ()

DECLARE SUB SIMULATE ()

DECLARE SUB writeresults ()

DECLARE SUB printresults ()

DECLARE SUB displayresult ()

DECLARE SUB outputdata ()

DECLARE SUB calmean ()

DECLARE SUB Cinp (TTT, RRR, bed)

DECLARE SUB layer ()

DECLARE SUB drymatter ()

DECLARE SUB dryrate ()

DECLARE FUNCTION MequiX (TEQI, REQ!)

DECLARE SUB condense (TBI, WB!)

DECLARE FUNCTION BT# ()

D E C L A R E F U N C T I O N CGRAIN~ (MM! )

DECLARE FUNCTION vvx (MM!)

D E C L A R E F U N C T I O N Pvs# (TTI)

DECLARE FUNCTION RHu# (TTI, WWI)

DECLARE SUB clearline (sp%, ep%, py%, TXT5, foreground%, background%)

DECLARE SUB displaytext (sp%, ep%, dp%, py%, disp5, TXT5, foreground%, background%)

DECLARE SUB windw (x2%, yl%, x2%, y2%, foreground%, background%, shadow)

DECLARE SUB checkerr (x2%, yl%, miss)

DECLARE SUB checkscreen ()

DECLARE SUB setconstant ()

DECLARE SUB menu ()

DECLARE SUB clrscr (x2%, yl%, x2%, y2%, foreground%, background%, disp5)

DECLARE SUB selectgrain ()

DECLARE SUB selecttype ()

DECLARE SUB subprint ()

DECLARE SUB drystrat ()

DECLARE SUB respirate ()

DECLARE SUB howresultshow ()

DECLARE SUB inletair (state%)

DECLARE SUB bedstate ()

DECLARE SUB inlet ()

DECLARE SUB MAINPROG ()

DECLARE SUB style1 ()

DECLARE SUB style2 ()

DECLARE SUB style3 ()

DECLARE SUB Vinp (vcheck)

DECLARE FUNCTION GetNumX (Row%, Cal%, maxlen%, minvall, maxvall)

DECLARE FUNCTION gettext (x2%, yl%, maxlen)

Page 126: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

109

‘global variable

DIM SHARED head.fore%, head.back%, dispdore%, disp.back%, box.fore%, box.back%

DIM SHARED choice.fore%, choice.back%, inp.fore%, inp.back%, fore.back%, back.back%

DIM SHARED gt$(5), dt$(4), dstrat5(3), reseff5(2), msg5(5)

DIM SHARED gselect%, tselect%, strat%, IFHEAT%, hrs%

DIM SHARED main$( 1 TO 8)

DIM SHARED WEATH5, GRAIN5, RES5, wdrive5, gdrive$, rdrive$, Rshow5

DIM SHARED TG(0 TO 1, 0 TO 500), MG(0 TO 1, 0 TO 500)

DIM SHARED JIDM(0 TO 500), IIDM(0 TO 500), DML(0 TO 500), WDM(0 TO 500)

DIM SHARED TRM(0 TO 500), X(0 TO 500), TRTG(0 TO 500), TRWO(0 TO 500)

DIM SHARED writefile

DIM SHARED AMCI, AGOI, AMC, AGO, cc, CO, CPW, CN

DIM SHARED DX, DIA, dt, dt2, dryt, DY, DDML

DIM SHARED EF, EH, FT, GV, GA, HI, HOUR

DIM SHARED II, ina, ind, INW%, ING%, chklp%, choose%

DIM SHARED J, JIDM, LENG, MG, MF, Meq, N, NH, NOL, PG, PB, PEtotal, PACDML

DIM SHARED Ql, Q2, Q4, Q5, Q6, R, RA, REQ, RF, SF, SMC, SGO

DIM SHARED tfp, TA, TG, TH, TNOL. TF, TIM, TIDM, TEQ, TO, T4, TJM, TJDM, tend, TREAD, tprint, tVTlDM

DIM SHARED U4, U8, US, U6, hfp, VOL, VEL, WO, WF, WID, xx, YN, errcheck, Rshow

‘global constant

CONST false = 0, true = 1

CONST CA = 1.009, CV = 1.88, DA = 1 .l’Air property

CONST A = .001889, C = .7101, D = .0274, E = 31.63

‘Initial value

msg5(1) = ’ -select Enter -Change option F6 -Start simulation FIO -QUIT’

msg5(2) = CHR5(24) + ’ ’ + CHR5(25) + ‘-change Enter-select’

msg$(3) = CHR5(24) + ” + CHR5(25) + ’ -select data Enter -change FlO -continue”

main$(l) = ‘Paddy ‘: main$(2) = ‘C”: main5(3) = ‘MISSCELLANEOUS DATA”

main5(4) = “C’: main5(5) = “DEEP ‘: main5(6) = ‘I’

main$(7) = ” D “: main5(8) = “C”

writefile = 0

‘BEGIN

c h e c k s c r e e n

setconstant

m e n u

about

MAINPROG

COLOR 7, 0: CLS

PRINT “KMITT: Grain Drying Simulation”

SYSTEM

E N D

fileerr:

BEEP: errcheck = ERR

checkerr 28, 20, ERR

RESUME NEXT

SUB about

windw 19, 8, 60, 21, box.fore%, box.back%, true

Page 127: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

110

COLOR choicelore%, choice.back%

LOCATE 9, 20: PRINT ’ GRAIN DRYING SIMULATION ’

LOCATE 10, 20: PRINT ” 9999999999999999999999999999999 .

LOCATE 11, 20: PRINT ” A TEMPERATURE EQUILIBRIUM MODEL ’

LOCATE 12, 20: PRINT ’ ( FOR PADDY ) ”

LOCATE 13, 20: PRINT ” Written and developed at ”

LOCATE 14, 20: PRINT ” King Mongkut’s Institute of Technology ”

LOCATE 15, 20: PRINT ’ Thonburi

LOCATE 16, 20: PRINT ’ by Dr. SSoponronnarit ’

LOCATE 17, 20: PRINT * and Mr. S.Chinsakolthanakorn,Aug 1986 ”

LOCATE 18, 20: PRINT ’ ( FOR VARIOUS GRAINS AND DRYER TYPES ) ”

LOCATE 19, 20: PRINT ’ by Dr. SSoponronnarit ”

LOCATE 20, 20: PRINT ” and Mr. A.Nathakaranakule ,Oct 1991 ’

displaytext 1, 80, 2, 25, ” “, “Press any key to start’, head.fore%, head.back%

presskey

clrscr 19, 8, 61, 22, dispdore%, disp.back%, CHR$(l 76)

displaytext 1, 80, 1, 25, ’ ‘, ’ ” + CHR$(27) + CHR$(24) + CHR5(26) + CHR$(25) + msg$(l), head.fore%,

head.back%

E N D S U B

SUB adjust (code, pointer%, pmin, pmax)

IF code = 72 THEN

pointer% = pointer% - 1

IF pointer% < pmin THEN

pointer% = pmax

E N D I F

ELSE

pointer% = pointer% + 1

IF pointer% > pmax THEN

pointer% = pmin

E N D I F

E N D I F

E N D S U B

SUB bedstate

IF tselectk 0 1 THEN

ING% = 1: main5(8) = “C”

ELSE

inletair ING%

SELECT CASE ING%

CASE 1: main$(8) = “C’

CASE 2: main5(8) = ‘V’

END SELECT

E N D I F

SELECT CASE ING%

CASE 1: Cinp TG, MG, true: MG = MG / 100

CASE 2: Vinp 2

END SELECT

IF ERR o 0 THEN

Page 128: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

111

ING% = 1: main$(8) = “C’

E N D I F

clrscr 27, 10, 55, 16, dispdore%, disp.back%, CHR$(l 76)

E N D S U B

FUNCTION BTX

‘temp rised by fan

SELECT CASE gselect%

CASE 1: SF = 1.5: Ql = 36.7787: Q2 = 1 .1699

PG = SF * HI * Ql * (GV * HI) A Q2

CASE 2: SF = 1.5: Ql = 173.33: Q2 = 3200

PG = SF * ((Ql + Q2 * ((GV / 60) * HI)) * HI)

CASE 3: SF = 2.6: Ql = 1517.244873#: 02 = .a00238

PG = SF * Ql * (GV * HI / 60) A Q2

CASE 4, 5: SF = 272.6554

PG = SF * (GV * AMC) n .034378

END SELECT

IF gselect% = 4 OR gselect% = 5 THEN

PB = (GV * TIDM ’ PG) / (60 * Q4) / 1000

GA = (HI * GV * DA * 60 * TIDM) / VOL

ELSE

IF tselect% = 2 THEN

PB=(GV*WID*HI*LENG*PG)/(60*Q4)/1000

ELSE

PB=(GV*VOL*PG)/(60’Q4)/1000

E N D I F

GA = HI * GV * DA * 60

E N D I F

IF dryt = 0 THEN

PBtotal = PB

ELSE

IF GV = GV THEN

PB = PB

ELSE

PBl =PB*dt2

dt2 = 0

E N D I F

PBtotal = (PBl + PB * dt2) / dryt

E N D I F

IF tselect% = 2 THEN

BTX = PB / (WID * HI * LENG * GA / HI / 3600) / (CA + WO * CV)

ELSE

BTX = PB / (VOL * GA / HI / 3600) / (CA + WO * CV)

E N D I F

E N D F U N C T I O N

SUB calmean

AMC = SMC / TNOL: AMC = INT((AMC / (1 + AMC)) * 10000 + .5) / 100

AGO = SGO / TNOL: AGO = INT(AG0 * 100 + S) / 100:

Page 129: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

112

PACDML = (100 - TJDM / TIDM * 100): PACDML = INT(PACDML * 10000 + 5) / 10000

xx = INT(xx * 10000 + .5) / 10000

TJM = INT(((100 * TJDM) / (100 - AMC)) * 100 + .5) / 100

TIM = INT(((100 * TIDM) / (100 - AMCI)) * 100 + .5) / 100

IF &elect% = 2 THEN

TIM = TIM * TNOL: TJM = TJM * TNOL

E N D I F

E N D S U B

FUNCTION CGRAINX (MM)

‘SPECIFIC HEAT OF GRAIN 1

SELECT CASE gselectk

CASE 1 : CGRAIN# = 1.269 + 3.488 * MM / (1 + MM) ‘paddy

CASE 2: CGRAINX = 1.565 + 2.8 * MM 1 (1 + MM) ‘corn

CASE 3: CGRAINX = 1 .I 54795 + .02691 8 * MM ‘soybean

CASE 4. 5: CGRAINX = 1 .I 03961 + .0305244# * MM / (1 + MM) ‘spring onion

END SELECT

E N D F U N C T I O N

SUB checkerr (x2%. yl%, miss)

SELECT CASE miss

CASE 24: er5 = “Device time out”

CASE 25: er5 = “Device fault”

CASE 27: er5 = ‘Out of paper’

CASE 5 1 : er5 = ‘Internal error’

CASE 52: er5 = ‘Bad file name or number’

CASE 53: er$ = ‘File not found’

CASE 54: er5 = “Bad file mode’

CASE 55: er$ = “File already open”

CASE 57: er5 = ‘Device I/O error”

CASE 58: er$ = “File already exist’

CASE 61 : er5 = “Disk full”

CASE 62: er5 = “Input past end of file”

CASE 64: er$ = ‘Bad file name’

CASE 67: er$ = ‘Too many files’

CASE 68: er$ = ‘Device unavailable’

CASE 70: er$ = “Permission denied”

CASE 71 : er$ = ‘Disk not ready’

CASE 72: er$ = ‘Disk-media error’

CASE 75: er$ = “Path/File access error’

CASE 76: er5 = ‘Path not found”

END SELECT

displaytext 1, 80, 1, 25, ’ “, er5 + ” : Press a key”, head.fore%, head.back%

presskey

displaytext 1, 80, 1, 25, ” ‘, ” ” + CHR$(27) + CHR5(24) + CHR$(26) + CHR$(25) + msg$(l), head.fore%,

h e a d . b a c k %

E N D S U B

SUB checkscreen

Page 130: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

113

DEF SEG = 0: currentmode = PEEK(&H449)

IF currentmode o 7 THEN

head.fore% = 14: head.back% = 6: disp.fore% = 3: disp.back% = 1

box.fore% = 1 : box.back% = 7: choice.fore% = 14: choice.back% = 5

inp.fore% = 4: inp.back% = 9: fore.back% = 8: back.back% = 8

ELSE

head.fore% = 0: head.back% = 7: disp.fore% = 7: disp.back% = 0

box.fore% = 7: box.back% = 0: choice.fore% = 0: choice.back% = 7

inp.fore% = 0: inputback = 7: fore.back% = 7: back.back% = 0

E N D I F

K E Y O F F

FOR count% = 1 TO 10: KEY count%, ““: NEXT count%

CLS

END SUB

SUB Cinp (TTT, RRR, bed)

displaytext 1, 80, 1, 25, ’ ‘, msg5(3), headfore%, head.back%

clrscr 1 8, 18, 60, 21, disp.fore%, disp.back%, ” ’

windw 18, 18, 60, 21, box.fore%, box.back%, true

miny% = 19: maxy% = 20: mininp% = 1: maxinp% = 2

minx% = 20: ~1% = 19: x2% = 48

COLOR disp.fore%, disp.back%

IF bed <> true THEN

LOCATE yl%, minx%

PRINT ’ Amblent temperature : dC”:yl%=yl%+l

ELSE

LOCATE ~196, minx%

PRINT “Initial grain temperature :

E N D I F

dC”: yl % = ~1% + 1

IF bed <a true THEN

LOCATE y 1 %, minx%

PRINT “Ambient relat ive humidity :

ELSE

% n

LOCATE yl%, minx%

PRINT “Initial moisture content :

E N D I F

%wb”

IF RRR < 1 THEN RRR = RRR * 100

DIM dat( 1 TO 2)

dat(1) = TTT: dat(2) = RRR: ~1% = miny%: num% = mininp%

FOR num% = 1 TO maxinp%

LOCATE yl%, x2%: COLOR disp.fore%, disp.back%

PRINT USING “#X#.##‘; dat(num%); : ~1% = ~1% + 1

NEXT num%

num% = 1: ~1% = 19

LOCATE yl%, x2%: COLOR choice.fore%, choice.back%: PRINT USING “##X.Xx”; dat(num%)

done = false

WHILE done = false

in5 = INKEY

dis = LEN(in5)

Page 131: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

114

SELECT CASE dis

CASE 1: GOSUS Cascii

CASE 2: GOSUS Cscan

END SELECT

W E N D

TTT = dat(1): RRR = dat(2)

clrscr 17. 18, 61, 22, disp.fore%, disp.back%, CHR$(l 76)

displaytext 1, 80, 1, 25, ” “, ” ” + CHR$(27) + CHR5(24) + CHR$(26) + CHR5(25) + msg$(l), head.fore%,

head.back%

GOT0 15

Cascii:

ascii = ASC(LEFT$(in$, 1))

IF ascii = 13 THEN

IF num% = 1 THEN

dat(num%) = GetNum#(yl%, x2%, 5, -30, 100)

ELSE

dat(num%) = GetNumX(yl%, x2%, 5, 0, 100)

E N D I F

E N D I F

LOCATE yl%, x2%; COLOR choicedore%, choice.back%: PRINT USING “#X#.XX”; dat(num%)

R E T U R N

C s c a n :

scan = ASC(RIGHT$(in$, 1))

LOCATE yl%, x2%: COLOR disp.fore%, disp.back%: PRINT USING ‘#X#.##“; dat(num%)

SELECT CASE scan

CASE 68: done = true

CASE 72: num% = num% - 1: ~1% = ~1% - 1

IF num% < mininp% THEN

num% = maxinp%: yl% = maxy%

E N D I F

CASE80:num%=num%+l:yl%=yl%+1

IF num% ) maxinp% THEN

num% = mininp%: yl% = miny%

E N D I F

END SELECT

LOCATE yl%, x2%: COLOR choice,fore%, choice.back%: PRINT USING “##X.##‘; dat(num%)

R E T U R N

15 END SUB

SUB clearline (sp%, ep%, py%, disp5, foreground%, background%)

tl = ep% - sp%: COLOR foreground%, background%: LOCATE py%, sp%, 0

FOR count% = 1 TO tl + 1: PRINT disp5; : NEXT count%

E N D S U B

SUB cfrscr (xl %, yl%, x2%, y2%, foreground%, background%, disp5)

COLOR foreground%, background%

FOR XCOUNT = xl % TO x2%

FOR YCOUNT = ~1% TO ~2%

LOCATE YCOUNT, XCOUNT, 0: PRINT disp5:

Page 132: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

115

NEXT YCOUNT

NEXT XCOUNT

E N D S U B

SUB condense (TB, WB)

TF = 25: done = false

CZ = CA * TB + (2502.3 + CV * TB) * WB + R * CPW * TB

WHILE done = false

TT = TF + 273.16

WF = .62198 * PVS((TF)) / (101.325 - PVS((TF)))

Zl = CZ - GA * TF - WF * (2502.3 + CV * TF) - R * CPW * TF

DPVS = PVS((TF)) * (7511.52 / (TT n 2) + 2.399897E-02 - (2 * .000011654551#) * (TT) - (3 *

.000000012810336#)*(TT”2)+(4*2.0998405D-11)*(TT”3)-(12.150799#)/(TT))

DWF = .62198 * DPVS * 101.325 / (101.325 - PVS((TF))) “2

22 = -CA - 2502.3 * DWF - cv * (TF * DWF + WF) - R * cpwTN=TF-Zl /Z2

IF ABS(TN - TF) > ,001 THEN

TF = TN

ELSE

done = true

E N D I F

W E N D

TF = TN

WF = (CZ - CA * TF - R * CPW * TF) / (2502.3 + CV * TF)

MF = MF - (WF - WB) / R

E N D S U B

SUB display (pointer%, pmin, pmax, sp%, ep%, yl %, st$())

FOR count% = pmin TO pmax

foreground% = disp.fore%: background% = disp.back%

IF count% = pointer% THEN

foreground% = choicedore%: background% = choice.back%

E N D I F

displaytext sp%, ep%, 2, yl %, ’ ‘, st$(count%), foreground%, background%

Yl% = Yl% + 1

NEXT count%

E N D S U B

SUB displayresult

displaytext I, 80, 2, 25, * “, * Display results”, head.fore%, head.back%

x=0

FOR N = 1 TO TNOL

X = X + X(N): X(N) = X

NEXT N

COLOR disp.fore%, dlsp.back%

IF tselect% = 2 THEN

LOCATE 2, 7: PRINT USING ‘##.#X”; dryt * VEL

E N D I F

cc = 0

Page 133: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

116

VIEW PRINT 7 TO 20

FOR N = U4TOTNOLSTEPU4

cc = cc + u4

PRINT USING ’ ##.X#X XXX.# X#.#X’; X(N); INT(TG(0, N) * 100 + .5) / 100; INT(MG(0, N) / (1 +

MG(0, N)) * 10000 + .5) / 100

NEXT N

IF cc o TNOL THEN

N = TNOL

PRINT USING ” #I#.### ##X.X ##.Xx’: X(N); INT(TG(0, N) * 100 + .5) / 100; INT(MG(0, N) / (1 +

MG(0, N)) * 10000 + .5) / 100

E N D I F

V I E W P R I N T

subprint

LOCATE 5, 66: PRINT USING ‘#####.##‘; dryt

LOCATE 6, 66: PRINT USING ‘###X#.##‘; AMCI

LOCATE 7, 66: PRINT USING “#R%%%.X#“; AGOI

LOCATE 8, 64: PRINT USING “#######.#X”; TIM

LOCATE 9, 66: PRINT USING “####X.X%‘; AMC

LOCATE 10, 66: PRINT USING “X####.##‘; AGO

LOCATE 11, 64: PRINT USING ‘###XXXX.X#‘; TJM

LOCATE 12, 66: PRINT USING “#X###.##“; PACDML

IF tselect% ) 2 THEN FT = HI / VEL

LOCATE 13, 66: PRINT USING ‘X#XX#.##‘: FT

LOCATE 14, 66: PRINT USING ‘####X.XX’; PBtotal / Q5

IF tselect% = 2 THEN VOL = WID * HI * LENG

LOCATE 15, 66: PRINT USING ‘#####.##‘; GA / HI * VOL / 3600 * CA * TH / 06

LOCATE 16, 66: PRINT USING ‘#####.##” GA / HI * VOL / 3600 * CA * T4 / Q6

LOCATE 17, 66: PRINT USING ‘###X#.X#“; EF * 3600 / 1000 / Q5

LOCATE 18, 66: PRINT USING ‘#X##X.XX”; EH / Q6

LOCATE 19, 66: PRINT USING “#X###.#X’; BTX

LOCATE 20, 66: PRINT USING “XXXX#.R%‘; TH

LOCATE 21, 66: PRINT USING ‘####X.X%‘; T4

LOCATE 22, 66: PRINT USING ‘#XXX#.X#” PG

IF Rshow = 1 THEN

displaytext 1, 80, 2, 25, ’ ‘, “Press any key”, head.fore%, head.back%

presskey

E N D I F

displaytext 1, 80, 2, 25, ” ‘, ‘Simulating’, head.fore%, head.back%

E N D S U B

SUB displaytext (sp%, ep%, dp%, py%. disp$, TXT$, foreground%, background%)

tl = ep% - sp%: clearline sp%. ep%, py%, disp$, foreground%, background%

SELECT CASE dp%

CASE 1: dp% = sp% ‘left

CASE 2: dp% = sp% + INT((tl - LEN(TXT$)) / 2) ‘center

CASE 3: dp% = spa + (tl - LEN(TXT5)) + 1 ‘right

END SELECT

LOCATE py%, dp%, 0: COLOR foreground%, background%: PRINT TXT5;

E N D S U B

Page 134: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

117

SUB drymatter

SELECT CASE gselect%

CASE I : TG = (TG(O, J) + TG( I, J)) I 2: MG = (MG(O, J) + MG(I , J)) I 2

X = EXP(D * (TG * 1.8 - 28)) * EXP(E * (MG / (1 + MG) - .14))

IF II > 1 THEN

Y = TRM(J) /X

T=(Y/A)“(l /C)*lOOO

MM = ,103 * (EXP(455 / (MG(1, J) * 100) n 1.53) - 8.44999E-03 * 100 * MG(1, J) + 1.588)

T = T + d t

ELSE

T = dt

E N D I F

TRM(J)=A*(T/lOOO)“C*X

DDML = 1 - EXP(-TRM(J)) ‘paddy

CASE 2: DDML = 0 ‘corn

CASE 3: DDML = 0 ‘soybean

CASE 4, 5: DDML = 0 ‘spring onion

END SELECT

IF IFHEAT% o 1 THEN DDML = 0

JIDM(J) = JIDM - JIDM * DDML

DML(J) = IIDM(J) - JIDM(J)

IIDM(J) = JIDM(J)

TJDM = TJDM + JIDM(J)

E N D S U B

SUB dryrate

SELECT CASE gselect%

CASE 1: AA = .02958 - .44565 * REQ + .01215 * TEQ

BB=.13365+1.93653*REQ-1.77431 *REQ”2+9.468001E-03’TEQ

cc=-AA*BB*dt*dryt”(BB-1)

MF = (MG(O, J) - cc * Meq) / (1 - cc) ‘paddy

CASE 2: RO = DIA / 2: PI = 3.141592654X

DD = .I 432 * EXP(-4496.241 / (TEQ + 273.16))

PI = DD / RO A 2: P2 = PI n 2 * DD * dryt / RO n 2

DIF = -6 * PI * (EXP(-P2) + EXP(-4 * P2) + EXP(-9 * P2))

MF = MG(0, J) + (MG - Meq) * DIF * dt ‘corn

CASE 3: TABS = TEQ + 273.16: MO = MG * 100

PP = -480.4213 + 4.516 * TABS - .0141579 * TABS n 2 + 1.4807E-05 * TABS * 3

QQ = .I 3266 - .01228 * MO + .00144 * TABS + 6.9E-08 * MO * TABS A 2

DIF = -(PP * QQ) * dt * dryt n (QQ - 1)

MF = (MG(0, J) - DIF * Meq) / (1 - DIF) ‘soybean

CASE 4, 5: V = (GV * TIDM * HI / VOL) / 60

drytl = dryt * 60

dtl = dt * 60

NN=EXP(.014273-.01268*TEQ+.050006/V+.000053X*TEQA2)

KK=EXP(-4.67879+.073281 ‘TEQ-.19866/V-.00024*TEQ”2)

cc = -KK * NN * dtl * drytl n (NN - 1)

MF = (MG(0, J) - cc * Meq) / (1 - cc) ‘spring onion

Page 135: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

118

END SELECT

E N D S U B

SUB drystrat

DIM strat$(Z)

IF tselect% <> 1 THEN

YN = 1: CN = 1: main5(2) = “C”

ELSE

displaytext 1, 80, 1, 25, ’ “, msg$(2), head.fore%, head.back%

strat$(O) = “Continuous aeration”

strat$( 1 ) = “On-Off fan [select RH]”

strat5(2) = “Relative humidity control”

sp% = 25: ep% = 55

trmin = 0: trmax = 2: asciicode = 0: scancode = 0

clrscr 23, 9, 57, 16, dispdore%, disp.back%, ’ ’

windw 23, 9, 57, 16, box.fore%, box.back%, true

displaytext spa, ep%, 2, 10, ’ * , ‘GRAIN DRYING STRATEGIES”, disp,fore%, disp.back%

display (strat%), (trmin), (trmax), sp%, ep%, 12, strat$()

WHILE asciicode o 13

K$ = INKEY5: I = LEN(K$)

IF I = 2 THEN

scancode = ASC(RIGHT$(K$, 1))

IF (scancode = 72) OR (scancode = 80) THEN

adjust (scancode), strat%, (trmin), (trmax)

display (strat%), (trmin), (trmax). sp%, ep%, 12. strat$()

E N D I F

ELSE

IF I = 1 THEN

asciicode = ASC(LEFT$(K$, 1))

E N D I F

E N D I F

W E N D

SELECT CASE strat%

CASE 0: main5(2) = “C”: YN = 1: CN = 1

CASE 1: main5(2) = “0’: YN = 2

CASE 2: main5(2) = “R”: YN = 3

END SELECT

IF YN o 1 THEN

clrscr 26, 19, 55, 21, dispdore%, disp.back%, ’ ’

windw 26, 19, 55, 21, box.fore%, box.back%, true

COLOR disp.fore%, disp.back%: LOCATE 20, 28

PRINT “Require RH setpoint : 46’

COLOR choice.fore%, choice.back%

RL = GetNum#(PO, 49, 4, 0, 100)

CN=RL/lOO

clrscr 26, 19, 56, 22, dispdore%, disp.back%, CHR$(l 76)

E N D I F

clrscr 23, 9, 58, 17, disp.fore%, disp.back%, CHR$(l 76)

Page 136: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

119

displaytext 1, 80, 1, 25, ’ “, ” ’ + CHR$(27) + CHR5(24) + CHR5(26) + CHR5(25) + msg$(l), head.fore%,

head.back%

E N D I F

E N D S U B

DEFINT A-Z

FUNCTION GetNum# (Row, Col, maxlen, minval!, maxval!)

DIM done

LOCATE 25, 1 : COLOR choice.fore%, choice.back%

PRINT USING ‘Enter number - RANGE ###.##X to XX#.## and Enter”; minval!; maxval!;

Result5 = “”

done = false

WHILE INKEY <> “: WEND ‘Clear keyboard butler

DO WHILE done = false

IF LEN(Result5) > maxlen THEN

DO WHILE LEN(Result5) > maxlen

Result$ = LEFT$(Result$. LEN(Result$) - 1)

LOOP

E N D I F

LOCATE Row, Col: PRINT Result$; CHR5(95); SPACE$(maxlen - LEN(Result5));

Kbd$ = INKEY

SELECT CASE Kbd$

CASE “0’ TO “9”

Result5 = Result5 + Kbd5

CASE “.“, “-”

IF INSTR(Result5, “.‘) = 0 THEN

Result$ = Result$ + Kbd$

E N D I F

CASE CHR5( 13)

IF VAL(Result5) > maxvall OR VAL(Result5) < minvall THEN

Result5 = ”

ELSE

done = true

E N D I F

CASE CHR$( 8)

IF LEN(Result5) > 0 THEN

Result5 = LEFT$(Result$, LEN(Result5) - 1 )

E N D I F

CASE ELSE

IF LEN(Kbd5) > 0 THEN

BEEP

E N D I F

END SELECT

LOOP

LOCATE Row, Col

PRINT Result$;

GetNum# = VAL(Result5)

COLOR head.fore%, head.back%: LOCATE 25, 1

FOR MM% = 1 TO 60: PRINT” ‘; : NEXT MM%

Page 137: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

120

LOCATE 25, 1: PRINT msg5(3);

E N D F U N C T I O N

DEFSNG A-Z

FUNCTION gettext$ (x2%, yl%, maxlen)

LOCATE yl C, x2%: F$ = “”

done = l&e

D O

I$ = INPUT$(l)

I = ASC(I5)

SELECT CASE I

CASE 46, 48 TO 56, 65 TO 90, 92, 97 TO 122

F$ = F5 + I5

CASE 13: done = true

CASE 6

IF F5 o ” THEN F5 = LEFT$(F$, LEN(F5) - 1)

CASE ELSE

BEEP

END SELECT

F5 = UCASE$(F$)

LOCATE yl%, x2%: FOR MM% = 1 TO maxlen: PRINT ” ‘; : NEXT MM%

LOCATE yl%, x2%: PRINT F5

LOOP UNTIL LEN(F$) = maxlen OR done = true

gettext = F5

E N D F U N C T I O N

SUB howresultshow

DIM hrs5(5), dp5(4), oldms%

done = false

displaytext 1, 80, 1, 25, ” “, msg5(3), headdore%, head.back%

hrs$(l) = Rshow5

dp$( 1 ) = “Display & Print’

dp5(2) = “Display & Save”

dp$(3) = “Display & Print & Save”

dp5(4) = “Display only’

GOSUB showchoice

spa/ = 28: ep% = 51

hrsmin = 1 : hrsmax = 5: asciicode = 0: scancode = 0

clrscr 26, 9, 53, 15, disp.fore%, disp.back%, ’ ’

windw 26, 9, 53, 15, box.fore%, box.back%, true

display (hrs%), (hrsmin), (hrsmax), sp%, ep%, IO, hrs5()

WHILE don = false

K5 = INKEY

I = LEN(K5)

SELECT CASE I

CASE 1: GOSUB chkascii

CASE 2:

GOSUB chkscan

END SELECT

Page 138: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

121

W E N D

GOSUB adjdisp

clrscr 26, 9, 54. 16, disp.fore%, disp.back%, CHR$(l 76)

displaytext 1, 80, 1, 25, ’ “, ’ ’ + CHR5(27) + CHRs(24) + CHR5(26) + CHR5(25) + msg$(l), headdore%,

head.back%

GOT0 18

showchoice:

FOR cc% = 2 TO 5

IF cc% = hrs% THEN

oldms% = hrs%: hrs$(cc%) = dp$(cc% - 1) + ” + CHR$(2)

ELSE

hrs$(cc%) = dp$(cc% - 1)

E N D I F

NEXT cc%

R E T U R N

adjdisp:

IF Rshow = 1 THEN

SELECT CASE choose%

CASE 2: ina = 1: ind = 2: main$(7) = ’ D&P -I’

CASE 3: ina = 2: ind = 1: main$(7) = ’ D&S -I’: Vinp 3

IF errcheck <> 0 THEN

ina = 2: ind = 2: main$(7) = ’ D -I’: hrs% = 5: choose% = 5

GOSUB showchoice

E N D I F

CASE 4: ina = 1: ind = 1: main$(7) = “D&P&S -I’: Vinp 3

IF errcheck 0 0 THEN

ina = 1: ind = 2: main$(7) = ’ D&P -I”: hrs% = 2: choose% = 2

GOSUB showchoice

E N D I F

CASE 5: ina = 2: ind = 2: main$(7) = ” D -I’

END SELECT

ELSE

SELECT CASE choose%

CASE 2: ina = 1: ind = 2: main$(7) = ’ D&P -C’

CASE 3: ina = 2: ind = 1: main$(7) = ’ D&S -C’: Vinp 3

IF errcheck o 0 THEN

ina = 2: ind = 2: main$(7) = ” D -C’: hrs% = 5: choose% = 5

GOSUB showchoice

E N D I F

CASE 4: ina = 1: ind = 1: main$(7) = “D&P&S -C’: Vinp 3

IF errcheck o 0 THEN

ina = 1: ind = 2: main$(7) = ” D&P -C’: hrs% = 2: choose% = 2

GOSUB showchoice

E N D I F

CASE 5: ina = 2: ind = 2: main5(7) = ” D -C”

END SELECT

E N D I F

R E T U R N

chkascii:

Page 139: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

122

ascti = ASC(LEFT$(K$, 1))

IF ascii = 13 THEN

SELECT CASE hrs%

CASE 1:

SELECT CASE Rshow

CASE 1: Rshow = 2: hrs$( 1) = ‘Continuous Results”: Rshow5 = hrs$( 1)

CASE 2: Rshow = 1 : hrs$(l) = ‘Intermittent Results”: Rshow$ = hrs$(l)

END SELECT

CASE2TO5:

choose% = hrs%

hrs$(oldms%) = dp$(oldms% - 1)

oldms% = hrs%

hrs$(oldms%) = dp$(oldms% - 1) + ” ” + CHR$(P)

END SELECT

GOSUB adjdisp

E N D I F

display (hrs%), (hrsmin), (hrsmax), sp%, ep%, 10, hrs$()

R E T U R N

chkscan:

scancode = ASC(RIGHT$(K$, 1))

SELECT CASE scancode

CASE 72, 80:

adjust (scancode), hrs%, (hrsmin), (hrsmax)

display (hrs%), (hrsmin), (hrsmax), sp%, ep%, 10, hrs%()

CASE 68: don = true

END SELECT

R E T U R N

18 END SUB

SUB initial

ON ERROR GOT0 fileerr

U2 = 0: FT = 0: EH = 0: T4 = 0

‘Cal number of grain layers

dryt = 0: TREAD = 0: tprint = hip / VEL

IFMG.lTHENMG=MG/lOO

IFRA>lTHENRA=RA/lOO

TNOL = HI / DX

IF ING% = 1 THEN

FOR I = 1 TO HI / DX

TG(0, I) = TG: MG(0, I) = (MG / (1 - MG))

NEXT I

ELSE

IF HI / DX / CO >= 1 THEN

MM = INT(HI / DX / CO): NN = (HI / DX) MOD CO

22 = MM * CO

FOR J = 1 TO ZZ STEP MM

INPUT #I, yl , y2: y2 = y2 / 100: y2 = y2 / (1 - y2)

IF errcheck o 0 THEN EXIT SUB

IC = -1

Page 140: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

123

FORKK= 1 TOMM

IC = IC + 1

TG(0, J + IC) = yl: MG(0, J + IC) = y2

NEXT KK

NEXT J

IF NN <> 0 THEN

J = MM * CO: IC = 0

FOR KK = 1 TO NN

IC = IC + 1

TG(0, J + IC) = TG(0, J): MG(0, J + IC) = MG(0, J)

NEXT KK

E N D I F

ELSE

FORI = 1 TOCO

INPUT #l, TG(0, I), MG(0, I): MG(0, I) = MG(0, I) / 100

IF errcheck o 0 THEN EXIT SUB

MG(0, I) = MG(0, I) / (1 - MG(0, I))

NEXT I

J - O

FOR I = 1 TO HI / DX: SG = 0: SM = 0

FORII=HI/DX/COTO1STEPHI/DX/CO

J = J + 1: SM = SM + MG(0, J): SG = SG + TG(0, J)

NEXT II

TG(0, I) = SG * HI / DX / CO: MG(0, I) = SM * HI / DX / CO

NEXT I

E N D I F

C L O S E # 1

E N D I F

U6 = 0: SMC = 0: SGO = 0

FOR K = 1 TO HI / DX

X(K) = DX: WDM(K) = DX / VV((MG(0, K)))

U6 = U6 + VOL / HI * DX / VV((MG(0, K)))

SMC = SMC + MG(0, K)

SGO = SGO + TG(0, K)

NEXT K

AMCI = SMC I (HI I DX): AMCI = INT(AMCI / (AMCI + 1) * i 0000 + .5) I i 00

AGOI = SGO / (HI / DX): AGOI = INT(AGOI * 100 + .5) / 100

TIDM = U6

JIDM = TIDM / HI * DX

E N D S U B

SUB inlet

inletair INW%

SELECT CASE INW%

CASE 1 : main5(4) = “C”: Cinp TA, RA, false: RA = RA / 100

CASE 2: main5(4) = “V’: Vinp 1

END SELECT

IF ERR <> 0 THEN

INW% = 1: main$(4) = ‘C’

Page 141: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

124

E N D I F

clrscr 27, 10, 55, 16, dispdore%, disp.back%, CHR$(l 76)

E N D S U B

SUB inletair (state%)

displaytext 1, 80, 1, 25, ’ ‘, msg5(2), head.fore%, head.back%

DIM inair$(2)

inair$( 1 ) = ‘Input constant variable’

inair5(2) = “input from file”

sp% = 29: ep% = 52

airmin = 1 : airmax = 2: asciicode = 0: scancode = 0

clrscr 27, 10, 54, 15, disp.iore%, disp.back%. ” ”

windw 27, IO, 54, 15, box.fore%, box.back%, true

display (state%), (airmin), (airmax), sp%, ep%, 12, inair$()

WHILE asciicode <> 13

K$ = INKEY

I = LEN(K$)

IF I = 2 THEN

scancode = ASC(RIGHT$(K$, 1))

IF (scancode = 72) OR (scancode = 80) THEN

adjust (scancode), state%, (airmin), (airmax)

display (state%), (airmin), (airmax), sp%, ep%, 12, inair$()

E N D I F

ELSE

IF I = 1 THEN

asciicode = ASC(LEFT$(K$. 1))

E N D I F

E N D I F

W E N D

displaytext 1, 80, 1, 25, ’ ‘, ’ ’ + CHR5(27) + CHR$(24) + CHR5(26) + CHR$(25) + msg$(l), head.fore%,

h e a d . b a c k %

E N D S U B

SUB layer

FOR J = 1 TO NOL

IF tselect% o 1 OR (tselect% = 1 AND RO < CN) THEN

CPW = CGRAINX((MG(0, J))) ‘cal specific heat

R = WDM(J) / GA / dt

TEQ = ((CA + CV * WO) * TO + (CPW * R * TG(0, J))) / (CA + CV * WO + CPW * R)

REQ = RHu#((TEQ), (WO))

IF REQ > 1 THEN

TB = TEQ: WB = WO: MF = MG(0, J)

condense TB, WB

MG(0, J) = MF: TEQ = TF: WO = WF: REQ = ,999

ELSE

IF REQ ) ,999 THEN

REQ = ,999

E N D I F

E N D I F

Page 142: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

125

Meq = Mequl#((TEQ), (REQ))

dryrate

WF = (MG(~, J) - MF) * R + wo

TF = ((CA + CV * WO) * TEQ - (WF - WO) * 2502.3 + CPW * R * TEQ) / (CA + CV * WF + R ’ CPW)

RF = RHu#((TF), (WF))

IF RF > 1 THEN

TB = TF: WB = WF

condense TB, WB

E N D I F

IF chklp% = 1 THEN

TRTG(J + 1) = TF: TRWO(J + 1) = WF

E N D I F

TG(1, J) = TF: MG(1, J) = MF

TO = TF: WO = WF

ELSE

TG( I, J) = TG(0, J): MG(1, J) = MG(0, J)

E N D I F

IF tselect% = 1 THEN

drymatter

IF IFHEAT% = 1 THEN

H20 = DML(J) * .6: MG(1, J) = MG( 1, J) + (H20 / JIDM(J))

CR = CGRAIN#((MG( 1, J)))

GR = DML(J) * 15778 / ((JIDM(J) * MG(l/ J) + JIDM(J)) * CR)

TG( 1, J) = TG( 1, J) + GR

E N D I F

X(J) = WDM(J) * VV((MG(1, J)))

ELSE

X(J) = DX: TJDM = TJDM + JIDM

E N D I F

TG(0, J) = TG(1, J): MG(0, J) = MG( 1, J)

SMC = SMC + MG( 1, J): SGO = SGO + TG( 1, J): xx = xx + X(J)

NEXT J

E N D S U B

SUB MAINPROG

DIM hor( 1 TO 4), vert( 1 TO 2), index

her(1) = 16: hor(2) = 44: hor(3) = 55: hor(4) = 77

vert( 1) = 3: vert(2) = 4

minhor = 1 : maxhor = 4: minvert = 1 : maxvert = 2

don = false

GOSUB displaychoice

shor = 1 : svert = 1 : index = 1 : COLOR choicedore%, choice.back%:

LOCATE vert(svert), hor(shor): PRINT main$(index)

WHILE don = false

K5 = INKEY$

I = LEN(K$)

SELECT CASE I

CASE 1 : GOSUB checkascii

CASE 2: GOSUB checkscan

Page 143: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

126

END SELECT

IF tselect% o 1 THEN

IF index o 2 THEN

main$(2) = ‘C’: YN = 1: CN = 1

COLOR dispdore%, disp.back%: LOCATE vert( l), hor(2): PRINT main5(2)

E N D I F

IF index 0 6 THEN

main$(b) = “N”: IFHEAT% = 2

COLOR disp,fore%, disp.back%: LOCATE vert(2), hor(2): PRINT main5(6)

E N D I F

IF index 0 8 THEN

main$(8) = “C”: ING% = 1

COLOR disp,fore%, disp.back%: LOCATE vert(2), hor(4): PRINT main$(8)

E N D I F

E N D I F

COLOR choicelore%, choice.back%

: LOCATE vert(svert), hor(shor)

PRINT main$(index)

W E N D

GOT0 11

checkascii:

ascii = ASC(LEFT$(K$, 1))

IF ascii = 13 THEN

SELECT CASE index

CASE 1 : selectgrain

CASE 5: selecttype

CASE 2: drystrat

CASE 6: respirate

CASE 3: SELECT CASE tselect%

CASE 1 : style1

CASE 2: style2

CASE 3. 4: style3

END SELECT

CASE 7: howresultshow

CASE 4: inlet

CASE 8: bedstate

END SELECT

E N D I F

R E T U R N

checkscan:

COLOR dispfore%, disp.back%

GOSUB checkpos

LOCATE vert(svert), hor(shor)

PRINT main$(index)

scan = ASC(RIGHT$(K$, 1))

SELECT CASE scan

CASE 64: oldvert = svert: oldhor = shor

SIMULATE

Page 144: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

127

‘setconstantGOSUB displaychoice

svert = oldvert: shor = oldhor

CASE 68: don = true

CASE 72: svert = svert - 1

IF svert < minvert THEN svert = maxvert

CASE 80: svert = svert + 1

IF sver t ) maxvert THEN svert = minvert

CASE 75: shor = shor - 1

IF shor ( minhor THEN shor = maxhor

CASE 77: shor = shor + 1

IF shor > maxhor THEN shor = minhor

END SELECT

GOSUB calindex

COLOR dispdore%, disp.back%

GOSUB checkpos

COLOR choice.fore%, choice.back%: LOCATE vert(svert), hor(shor)

PRINT main$(index)

R E T U R N

c h e c k p o s :

SELECT CASE index

CASE 3: hor(3) = 46

CASE 7: hor(3) = 55: LOCATE vert(svert), hor(shor): PRINT STRING$(S, ” “)

END SELECT

calindex:

IF svert = 1 THEN

index = shor

ELSE

index = maxhor + shor

E N D I F

R E T U R N

displaychoice:

FOR svert = 1 TO maxvert

FOR shor = 1 TO maxhor

GOSUB calindex

IF index = 3 THEN hor(3) = 46 ELSE hor(3) = 55

COLOR disp,fore%, disp.back%: LOCATE vert(svert), hor(shor)

PRINT main$(index);

NEXT shor

NEXT svert

R E T U R N

11 END SUB

SUB menu

COLOR dlspdore%, disp.back%: CLS

displaytext 1, 80, 1, 1, ” “, “KMITT : GRAIN DRYING SIMULATION (Version 2.0)“, headdore%, head.back%

windw 1, 2, 80, 24, box.fore%, box.back%, false

COLOR dlspdore%, disp.back%

LOCATE 3, 3: PRINT “GRAIN TYPE : *

Page 145: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

128

LOCATE 4, 3: PRINT ‘DRYER TYPE : ”

LOCATE 3, 24: PRINT “DRYING STRATEGIES : ’

LOCATE 4, 24: PRINT “RESPIRATION EFFECT: ”

LOCATE 3, 46: PRINT “MISSCELLANEOUS DATA”

LOCATE 4, 46: PRINT “RESULT : ”

LOCATE 3, 66: PRINT ‘INLET AIR : ”

LOCATE 4, 66: PRINT “BED STATE : ’

displaytext 2, 79, 2, 6, CHR$(l 96), ” OPTION “, box.iore%, box.back%

clrscr 2, 7, 79, 23, disp.iore%, disp.back%, CHR$(l 76)

displaytext I, 80, 1, 25, ” ‘, ’ ’ + CHR5(27) + CHR5(24) + CHR5(26) + CHR5(25) + msg$(l), head.fore%,

head.back%

E N D S U B

FUNCTION Mequi# (TT, RR)

SELECT CASE gselect% ‘I -paddy,2-corn,3-soybean,4,5-spring onion

CASE 1: Mequi# = 1 / 100 * (LOG(l - RR) / (-7.870001E-06 * (1.8 * TT + 491.7))) n (1 / 2.008)

CASE 2: MequiX = 1 / 100 * (LOG(l - RR) / (-3.074E-05 * (1.8 * TT + 491.7))) “(1 / 1.8156)

CASE 3: Ml = -21065.05952X

M2 = 8.314 * (TT + 273.16) * LOG(RR)

Mequi# = 1 / 100 *(Ml /M2) “(I / 1.2511)

CASE 4, 5: Mequi# = (EXP(1.8436 - .01518 * (TT + 273.16)) / -LOG(RR)) (̂I / 1.36116)

END SELECT

E N D F U N C T I O N

SUB outputdata

displayresult

IF ina = 1 THEN printresults

IF ind = 1 THEN writeresults

E N D S U B

SUB presskey

WHILE INKEYS = “: WEND

E N D S U B

SUB printmenu

clrscr I, 2, 80, 24, disp.iore%, disp.back%, ’ ”

windw I, 3, 30, 6, box.fore%, box.back%, false

IF tselect% = 2 THEN

displaytext I, 29. 1, 2, ’ ‘, ‘Depth m from top of dryer ’ , dispdore%, disp.back%

ELSE

IF tselect% = 1 OR tselect% = 4 THEN

displaytext 1, 29, 2, 2, ’ ‘, ‘Bottom of dryer”, dispdore%, disp.back%

ELSE

displaytext 1, 29, 2, 2, ’ ‘, ‘Top of dryer”, dispfore%, disp.back%

E N D I F

E N D I F

IF tselect% = 2 THEN

displaytext 2, 28, 1, 4, ” ‘, “Length Temperature Moisture’, disp.fore%, disp.back%

ELSE

Page 146: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

129

IF tselect% = 1 OR tselectk = 4 THEN

displaytext 2, 28, 1, 4, ” ‘, ‘Height Temperature Moisture”, disp.lore%, disp.back%

ELSE

displaytext 2, 28, 1, 4, ” ‘, ” Depth Temperature Moisture”, disp.fore%, disp.back%

E N D I F

E N D I F

displaytext 2, 28, 1, 5, ’ “, ’ (m) (G’C) (%wb) “, disp.fore%, disp.back%

SELECT CASE tselect%

CASE 1:

stl = 24: st2 = 178

CASE 2:

stl = 27: st2 = 25

CASE 3:

stl = 25: st2 = 25

CASE 4:

stl = 24: st2 = 25

END SELECT

windw 1, 2 1 , 30, 23, box.fore%, box.back%, false

displaytext 2, 29, 2, 22, ” ‘, “Air flow ’ + CHR$(stl) + ’ ’ + CHR$(st2) + ’ Grain flow”, disp.iore%, disp.back%

subprint

displaytext 1, 80, 2, 25, ’ “, ’ Simulating”, headdore%, head.back%

E N D S U B

SUB printresults

displaytext 1, 80, 2, 25, ’ “, ” Printing’, head.fore%, head.back%

IF dryt = 0 THEN

SELECT CASE tselect%

CASE 1: LPRINT ’ *** Results of Deep Bed Dryer ***’

CASE 2: LPRINT ’ *** Results of Cross Flow Dryer ***”

CASE 3: LPRINT ” *** Results of Concurrent flow Dryer ***”

CASE 4: LPRINT ” *** Results of Counter flow Dryer ***”

END SELECT

E N D I F

IF tselect% = 2 THEN

LPRINT USING ’ Drying t imes : ####.## hr . “ ; dry t

LPRINT USING ” Depth : ###.## m from the top of dryer”; dryt * VEL

ELSE

LPRINT USING ” Drying t imes : ####.## hr . “ ; dry t

IF tselect% = 1 OR tselect% = 4 THEN

LPRINT TAB(29); “BOTTOM OF DRYER”

ELSE

LPRINT TAE(30); “TOP OF DRYER”

E N D I F

E N D I F

LPRINTTAB(~~);‘========.====:========-=......E.=============================”

IF tselect% = 2 THEN

LPRINT TAB(10); ‘LENGTH (m) TEMPERATURE (C) MOISTURE (%wb) % DML ”

ELSE

IF tselect% = 1 OR tselect% = 4 THEN

Page 147: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

130

LPRINT TAB( 10); “HEIGHT (m) TEMPERATURE (C) MOISTURE (%wb) % DML ”

ELSE

LPRINT TAB( 10); ’ DEPTH (m) TEMPERATURE (C) MOISTURE (%wb) % DML ’

E N D I F

E N D I F

LPRINT TAB( 12); USING ‘#X.#XX ###.# XX.## “; X(N); TG(0, N); INT(MG(0, N) / (1 + MG(0,

N))*10000+.5)/100

NEXT N

IF cc <) TNOL THEN

N = TNOL

cc = 0

FOR N = U4 TO TNOL STEP U4

cc = cc + u4

LPRINT TAB( 12); USING ‘X#.#X X##.# X#.## “; X(N); TG(0, N); INT(MG(0, N) / (1 + MG(0, N))

*10000+.5)/100

E N D I F

L P R I N T

LPRINT TAB( 12); USING “XX.X# ##X.X #X.## #.XxX’; xx; AGO; AMC; PACDML

LPRINTTAB(lO);“=====================================================”

SELECT CASE &elect%

CASE 1 : stl $ = ‘Upward”: st2$ = “Zero”

CASE 2: stl $ = “Leftward”: st2$ = “Downward”

CASE 3: stl 5 = ‘Downward”: st2$ = ‘Downward’

CASE 4: stl $ = “Upward’: st2$ = ‘Downward”

END SELECT

LPRINT TAB( 10); stl $; ’ air flow ‘; st25; ’ Grain flow’

L P R I N T

IF (tselect% = 2 AND dryt < tend) OR (tselect% = 1 AND (AMC > U8 OR PACDML < US)) THEN

LPRINT TAB( 12); USING ‘Energy for Ian #####.Xx MJ”; EF * 3600 / 1000 / Q5

LPRINT TAB( 12); USING “Energy for heater #####.Xx MJ”; EH / Q6

LPRINT : LPRINT

E N D I F

IF fNT(dryt * loo + .5) I 100 >= tend OR (AMC < u8 OR PACDML > U9) OR tselect% > 2 THEN

LPRINT TAB(23); “SUMMARY DRYING VALUES”

LPRINT TAB(g); USING “Total time ####.## hrs”: dryt

LPRINT TAB(S): USING “Initial moisture content ##.xX %wb”; AMCI

LPRINT TAB(g); USING ’ average temperature ##.## C”; AGOI

LPRINT TAB(S); USING ’ total mass XXX##.## kg”; TIM

LPRINT TAB(S); USING “Present moisture content ##.## %wb”; AMC

LPRINT TAB(S); USING ’ average temperature ##.Xx C”; AGO

LPRINT TAB(S); USING ” total mass #X###.## kg”; TJM

LPRINT TAB(S); USING “Total dry matter loss ###.## %“: PACDML

LPRINT TAB(S); USING “Time of fan operation ###X.Xx hrs”; F T

LPRINT TAB(S); USING “Power for fan #XX.## kW”; PBtotal / Cl5

LPRINT TAB(S); USING ‘Power for constant heating ###.## kW”; GA / HI * VOL / 3600 * CA * TH / Q6

LPRINT TAB(S); USING ‘Power for max temp rise by RHC ###.Xx kW”; GA / HI * VOL / 3600 * CA * T4 / Q6

LPRINT TAB(S); USING “Energy for fan X####.## MJ”; EF * 3600 / 1000 / Q5

LPRINT TAB(S); USING ‘Energy for heater #####.Xx MJ”; EH / Q6

Page 148: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

131

LPRINT TAB(S); USING ‘Temperature rise by fan ##X.## C’; ST#

LPRINT TAB(Q); USING “Temp rise by constant heating ##X.## C’; TH

LPRINT TAB(Q); USING ‘Max temp rise by RHC ###.## C”; T 4

LPRINT TAB(Q); USING ‘Total pressure X####.## Pa’; PG

LPRINT : LPRINT : LPRINT

E N D I F

displaytext 1, 80, 2, 25, ’ ‘, ‘Press any key’, head.fore%, head.back%

E N D S U B

FUNCTION PVSX (TT)

TT = TT + 273.16

PVS# = EXP(-7511.52 / TT + 89.63121 + 2.399897E-02 ‘TT-.000011654551#*(TT”2)-

.000000012810336# * (TT n 3) + 2.0998405D-11 * (TT n 4) - 12.150799# * LOG(TT))

E N D F U N C T I O N

SUB respirate

IF tselect% <> 1 THEN

IFHEAT% = 2: main5(6) = “N”

ELSE

DIM resp$(2)

displaytext 1, 80, 1, 25, ’ ‘, msg5(2), head.fore%, head.back%

resp$( 1 ) = “Include”

resp5(2) = ‘Not include’

sp% = 35: ep% = 46

resmin = 1 : resmax = 2: asciicode = 0: scancode = 0

clrscr 33, 10, 48, 15, disp.fore%, disp.back%, ’ ’

win& 33, 10, 48, 15, box.fore%. box.back%, true

display (IFHEAT%), (resmin), (resmax), sp%, ep%, 12, resp5()

WHILE asciicode (t 13

K$ = INKEY

I = LEN(K5)

IF I = 2 THEN

scancode = ASC(RIGHT$(K$, 1))

IF (scancode = 72) OR (scancode = 80) THEN

adjust (scancode), IFHEAT%, (resmin), (resmax)

display (IFHEAT%), (resmin), (resmax), sp%, ep%, 12, resp$()

E N D I F

ELSE

IF I = 1 THEN

asciicode = ASC(LEFT$(K$, 1))

E N D I F

E N D I F

W E N D

clrscr 33, 10, 49, 16. dispfore%, disp.back%, CHR5(1 76)

SELECT CASE IFHEAT%

CASE 1: main5(6) = ‘I’

CASE 2: main5(6) = “N’

END SELECT

Page 149: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

132

displaytext I, 80, I, 25, ’ ‘, ’ ’ + CHR5(27) + CHR5(24) + CHR5(26) + CHR5(25) + msg$(l), headdore%,

head.back%

E N D I F

END SUB

FUNCTION RHuX (TT, WW)

RHUX = ww * I 01.325 I (PVSX((TT)) * (.62198 + ww))E N D F U N C T I O N

SUB selectgrain

DIM graintype5(5)

displaytext 1, 80, I, 25, ” “, msg$(2), head.lore%, head.back%

graintype$( 1) = ‘Paddy’

graintype5(2) = ‘Corn’

graintype5(3) = ‘Soybean”

graintype$(4) = ‘Spring Onion (c)”

graintype$(5) = “Spring Onion (v)”

sp% = 34: ep% = 48: dp% = 1

gmin = 1 : gmax = 5: asciicode = 0: scancode = 0

clrscr 32, IO, 50. 18, disp.iore%, disp.back%, ’ ’

windw 32, 10, 50, 18, box.fore%, box.back%, true

display (gselect%), (gmin), (gmax), sp%, ep%, 12, gt$()

WHILE asciicode 0 13

K5 = INKEY

I = LEN(K5)

IF I = 2 THEN

scancode = ASC(RIGHT$(K$, 1))

IF (scancode = 72) OR (scancode = 80) THEN

adjust (scancode), gselect%, (gmin), (gmax)

display (gselect%), (gmin), (gmax), sp%, ep%, 12, gt$()

E N D I F

ELSE

IF I = 1 THEN

asciicode = ASC(LEFT$(K$, 1))

E N D I F

E N D I F

W E N D

clrscr 32, IO, 51, 19, disp.fore%, disp.back%, CHR$(l 76)

SELECT CASE gselect%

CASE 1: main$(l ) = ‘Paddy ”

CASE 2: main$(l) = ‘Corn ’

CASE 3: main$( 1) = “Soybean’

CASE 4: main$( 1) = “Onion(c)”

CASE 5: main$( 1) = “Onion(v)”

END SELECT

displaytext 1, 80, 1, 25, ” ‘, ” ” + CHR$(27) + CHR5(24) + CHR$(26) + CHR5(25) + msg$(l), headdore%,

h e a d . b a c k %

E N D S U B

Page 150: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

133

SUB selecttype

DIM dryertype5(4)

displaytext 1, 80. 1, 25, ’ ‘, msg5(2), head.lore%, head.back%

dryertype$( 1) = ‘DEEP DED DRYER’

dryertype$(2) = “CROSS FLOW DRYER”

dryertype5(3) = “CONCURRENT FLOW DRYER”

dryertype5(4) = “COUNTER FLOW DRYER”

sp% = 28: ep% = 51: dp% = 1

tmin = 1: tmax = 4: asciicode = 0: scancode = 0

clrscr 26, 9, 53, 16, disp.fore%, disp.back%, ” ”

windw 26, 9, 53, 16, box.iore%, box.back%, true

display (&elect%), (tmin), (tmax), sp%, ep%, 1 1, dryertype$()

WHILE asciicode o 13

K$ = INKEY

I = LEN(K$)

IF I = 2 THEN

scancode = ASC(RIGHT$(K$, 1))

IF (scancode = 72) OR (scancode = 80) THEN

adjust (scancode), tselect%, (tmin), (tmax)

display (tselect%), (tmin), (tmax), sp%, ep%, 11, dryertype

E N D I F

ELSE

IF I = 1 THEN

asciicode = ASC(LEFT$(K$, 1))

E N D I F

E N D I F

W E N D

clrscr 26, 9, 54, 17, dispfore%. disp.back%, CHR$(l 76)

SELECT CASE tselect%

CASE 1: maln$(5) = “DEEP ”

CASE 2: main5(5) = “CROSS ’

CASE 3: main$(5) = “CONCURR”

CASE 4: main$(5) = “COUNTER”

END SELECT

displaytext 1, 80, 1, 25, ” “, ” ” + CHR5(27) + CHR5(24) + CHR5(26) + CHR5(25) + msg$(l), head.fore%,

head.back%

E N D S U B

SUB setconstant

gt%(l) = “Paddy”: gt5(2) = ‘Corn”: gt5(3) = “Soybean”: gt$(4) = “Onion(c)“: gt5(5) = “Onion(v)”

dt$( 1) = “DEEP’: dt5(2) = “CROSS’: dt5(3) = ‘CONCURR”: dt5(4) = “COUNTER”

dstrat$( 1) = “Continuous aeration”

dstrat5(2) = “On-off fan <select RH>”

dstrat5(3) = “Relative humidity control’

reseff$( 1 ) = “Include’: reseii5(2) = “Not include’

gselect% = 1 : tselect% = 1 : strat% = 0: IFHEAT% = 2: hrs% = 5: INWI = 1 : ING% = 1

HI = .I : VOL = .2928: DX = .0025: DIA = ,008: HOUR = 6: dt = .05: NH = .I 6667: GV = 15.20125

CO = 1 : U8 = 10: UQ = .5: tip = 1: hfp = .l : TH = 0: U4 = hip / DX

LENG = 1: VEL = ,I : DY = .l: WID = 1: hfp = ,l

Page 151: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

134

TA = 30: RA = 70: TG = 25: MG = 95: TIDM = 1: AMC = 20: xx = .1

CN = 1: YN = 1: Rshow = 1: choose% = 5: hrs% = 5:

‘Ql ,Q2:const ,SF:saity factor , Q4:fan eff ic iency,

‘~25: motor eiliciency, Q6:heater efficiency

Q4 = .5: Q5 = ,721 Q6 = 1

main$( 1) = “Paddy ‘: main$(2) = ‘C’: main5(3) = “MISSCELLANEOUS DATA’

main5(4) = ‘C’: main5(5) = ‘DEEP “: main$(6) = “N’

main$(7) = ” D -I ‘: main5(8) = ‘C’: Rshow$ = ‘Intermittent Results”

writefile = 0

ina = 2: ind = 2

E N D S U B

SUB SIMULATE

ON ERROR GOT0 fileerr

initial

printmenu

SELECT CASE tselect%

CASE 1: tend = HOUR

CASE 2: tend = LENG / VEL

CASE 3, 4: tend = HI / VEL

END SELECT

NOL = 0: dryt = 0: tprint = 0: TREAD = 0: II = 0: N = 0

SMC = 0: SGO = 0: PACDML = 0: xx = 0: TJDM = TIDM

FOR ZI% = 1 TO TNOL

SMC = SMC + MG(0, Zl%)

SGO = SGO + TG(0, ZI%)

xx = xx + X(ZI%)

IIDM(ZI%) = JIDM

NEXT ZI%

calmean

outputdata

tprint = tprint + tip

D O

U2 = U2 + 1: dryt = dryt + INT(dt * 100 + ,5) / 100: II = II + 1

dt2 = dt2 + dt

IF INW% <> 1 THEN

IF dryt )= TREAD THEN

IF gselect% = 5 THEN

INPUT X2, TA, RA, GV, TH

ELSE

INPUT #2, TA, RA

E N D I F

IF errcheck <> 0 THEN

EXIT SUB

E N D I F

RA=RA/lOO

TREAD = TREAD + NH

E N D I F

E N D I F

Page 152: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

135

WO = .62198 * PVS#((TA)) * RA / (101.325 - PVS#((TA)) * RA)

TO =TA+BTX +TH

RO = WO * 101.325 / (PVSX((T0)) * (.62198 + WO))

SELECT CASE YN

C A S E 1

IF RO <= CN THEN

T2 = TH: FT = FT + dt

EF = EF + dt * PB

EH=EH+VOL*(GA/HI)*dt*CA*T2/l000

E N D I F

CASE ELSE

FT = FT + dt

IF RO > CN THEN

RO = CN

PS = WO * 101.325 / RO / (.62189 + WO)

TF = 25: done = false

DO WHILE done = false

TT = TF + 273.16

Fl =EXP(-7511.52/TT+89.63121 +2,399897E-02*TT-.000011654551#*(TT”

.000000012810336# * (TT n 3) + 2,0998405D-11 * (TT n 4) - 12.150799# * LOG(TT)) - PS

F2=PS*(7511.52/(TT”2)+2.399897E-02-(2*1.165451E-05)*TT-(3*

.000000012810336#)*(TT”2)+(4*2.0998405D-11)*(TT”3)-(12.150799#)/(TT))

TN = TF - Fl / F2

IF ABS(TN - TF) > ,001 THEN

TF = TN

E L S E

done = true

E N D I F

LOOP

TO = TN

T2 = TO -TA - BT#

T3 = T2 - TH

IF T3 a T4 THEN T4 = T3

ELSE

T2 = TH

E N D I F

EH=EH+VOL*(GA/HI)*dt*CA*T2/1000

END SELECT

TJDM = 0: PACDML = 0: SMC = 0: SGO = 0: xx = 0

SELECT CASE tselect%

CASE 1, 2: NOL = TNOL

layl?r

CASE 3: dryt = 0

EH = 0

EH=EH+VOL*(GA/HI)*tend*CA*T2/1000

FOR LP = 1 TO TNOL

IF INW% o 1 THEN

IF dryt >= TREAD THEN

INPUT X2, TA, RA

Page 153: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

136

IF errcheck o 0 THEN

EXIT SUB

E N D I F

RA=RA/lOO

TREAD = TREAD + NH

E N D I F

E N D I F

WO = .62198 * PVS#((TA)) * RA / (101.325 - PVS#((TA)) * RA)

TO =TA+BT# +TH

RO = WO * 101.325 / (PVS#((TO)) * (.62198 + WO))

TJDM = 0: SMC = 0: SGO = 0: PACDML = 0

dryt = dryt + dt: NOL = LP

layer

TO = TA+ STX +TH

FOR KK = 1 TO NOL

MG(0, KK + 1) = MG( 1, KK): TG(0, KK + 1) = TG( 1, KK)

NEXT KK

MG(0, 1) = MG / (1 - MG): TG(0, 1) = TO

NEXT LP

CASE 4: FOR chklp% = 1 TO 2

dryt = 0

IF chklp% = 2 THEN initial

EH=EH+VOL*(GA/HI)*tend*CA*T2/1000

FOR LP = 1 TO TNOL

IF INW% o 1 THEN

IF dryt >= TREAD THEN

INPUT #2, TA, RA

IF errcheck 0 0 THEN

EXIT SUB

E N D I F

RA=RA/lOO

TREAD = TREAD + NH

E N D I F

E N D I F

WO = .62198 * PVS#((TA)) * RA / (101.325 - PVS#((TA)) * RA)

IF chklp% = 2 THEN

TO = TRTG(TNOL - LP + 1)

WO = TRWO(TNOL - LP + 1)

E L S E

TO =TA + EITX +TH

TRTG(l) = TO: TRWO(l) = WO

E N D I F

RO = WO * 101.325 / (PVS#((TO)) ’ (.62198 + WO))

TJDM = 0: SMC = 0: SGO = 0: PACDML = 0

dryt = dryt + dt: NOL = LP:

l a y e r

FOR KK = 1 TO NOL

MG(0, KK) = MG(1, KK): TG(0, KK) = TG(1, KK)

NEXT KK

Page 154: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

137

MG(0, LP + 1) = MG / (1 - MG): TG(0, LP + 1) = TG

NEXT LP

NEXT chklp%

END SELECT

calmean

adjdryt = INT(dryt * 100 + .5) / 100

SELECT CASE tselect%

CASE 1:

IF AMC > U8 AND PACDML < US THEN

IF adjdryt >= tprint OR adjdryt >= tend THEN

outputdata

tpr in t = tp r in t + t fp

E N D I F

ELSE

outputdata

dryt = tend

E N D I F

CASE 2:

IF dryt q LENG / VEL THEN

IF dry t >= tpr int THEN

outputdata

tprint = tprint + hfp / VEL

E N D I F

E L S E

outputdata

dryt = tend

E N D I F

CASE 3, 4:

outputdata

dryt = tend

END SELECT

IF gselect% = 5 THEN

IF dryt >= tVTlDM THEN

VTIDM

tVTlDM = tend + NH

EF = EF * 3

EH = EH * 3

E N D I F

E N D I F

LOOP UNTIL INT(dryt * 100 + .5) / 100 )= tend

CLOSE

displaytext 1, 80, 1, 25, ” “. ’ Press any key to continue”, head.fore%, head.back%

presskey

E N D S U B

SUB style1

DIM inp$( 14)

displaytext 1, 80, 1, 25, ” “, msg$(3), headdore%, head.back%

maxinp% = 1 1: maxy% = 18

Page 155: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

138

IF gselect% = 2 THEN

maxinp% = maxinp% + 1: maxy% = maxy% + 1

E N D I F

IF INW% = 2 THEN

maxinp% = maxinp% + 1: maxy% = maxy% + 1

E N D I F

IF ING% = 2 THEN

maxinp% = maxinp% + 1: maxy% = maxyk + 1

E N D I F

clrscr 2, 7, 78, maxy% + 2, disp.fore%, disp.back%. ’ ’

windw 2, 7, 78, maxy% + 2, box.fore%, box.back%, false

COLOR dispdore%, disp.back%

x2% = 51: minx% = 4

mininp% = 1: miny% = 8: yl% = 8

LOCATE yl%, minx%

PRINT ‘Height of rough grain”

LOCATE yl %, 65: PRINT “m”: ~1% = ~1% + 1

LOCATE yl%, minx%

PRINT ‘Volume of rough grain’

LOCATE yl %, 65: PRINT “m”3”: ~1% = ~1% + 1

LOCATE yl%, minx%

PRINT “Thickness of thin layer’

LOCATE yl%, 65: PRINT ‘m’: ~1% = ~1% + 1

IF gselectk = 2 THEN

LOCATE yl%, minx%

PRINT “DifU Energy for heater MJ Iu”;=yl%+l

LOCATE ~146, 65: PRINT ‘m’: ~1% = ~1% + 1

E N D I F

LOCATE yl%, minx%

PRINT “Drying t ime”

LOCATE yl%, 65: PRINT ‘hr’: ~1% = ~1% + 1

LOCATE yl %, minx%

PRINT ‘Calculation time interval’

LOCATE yl%, 65: PRINT ‘hr’: ~1% = ~1% + 1

IF INW% = 2 THEN

LOCATE ~146, minx%

PRINT “Interval of weather data”

LOCATE yl%, 65: PRINT ‘hr.: ~1% = ~1% + 1

E N D I F

IF gselect% <> 5 THEN

LOCATE yl%, minx%

PRINT ‘Air flow rate”

IF gselect% = 4 THEN

LOCATE yl %, 65: PRINT ‘m”3/min-kg(dry)‘: ~1% = ~1% + 1

ELSE

LOCATE yl%, 65: PRINT ‘m”3/min-m”3’: ~1% = ~1% + 1

E N D I F

ELSE

LOCATE yl %, minx%

Page 156: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

139

PRINT “Time at add batch”

LOCATE yl %, 65: PRINT ‘hr”: ~1% = ~1% + 1

E N D I F

IF ING% = 2 THEN

LOCATE yl%, minx%

PRINT “Number of layer for initial grain data”: ~1% = yl % + 1

ELSE

co = 1

E N D I F

LOCATE yl%, minx%

PRINT “Desired average final moisture content”

LOCATE yl%, 65: PRINT “%wb”: ~1% = ~1% + 1

LOCATE yl%, minx%

PRINT “Maximum total dry matter loss”

LOCATE yl%, 65: PRINT “46’: ~1% = ~1% + 1

LOCATE ~1%. minx%

PRINT “Printing time interval’

LOCATE yl %, 65: PRINT “hr”: ~1% = ~1% + 1

LOCATE yl%, minx%

PRINT “Thickness of grain layer for printing result”

LOCATE yl%, 65: PRINT “m’: ~1% = ~1% + 1

LOCATE yl%, minx%

PRINT “Temperature rised by heater’

LOCATE yl %, 65: PRINT “dC”: ~1% = ~1% + 1

LOCATE yl %, minx%: COLOR choicedore%, choice.back%

PRINT USING ‘Temperature rised by fan X#.#### dC’; BTX

DIM dat(maxinp%)

num% = 1

dat(num%) = HI: inp$(num%) = “HI”: num% = num% + 1

dat(num%) = VOL: inp$(num%) = “VOL’: num% = num% + 1

dat(num%) = DX: inp$(num%) = “DX”: num% = num% + 1

IF gselect% = 2 THEN

dat(num%) = DIA: inp$(num%) = “DIA”: num% = num% + 1

E N D I F

dat(num%) = HOUR: inp$(num%) = “HOUR”: num% = num% + 1

dat(num%) = dt: inp$(num%) = ‘DT’: num% = num% + 1

IF INW% = 2 THEN

dat(num%) = NH: inp$(num%) = “NH”: num% = num% + 1

E N D I F

IF gselect% o 5 THEN

dat(num%) = GV: inp$(num%) = “GV”: num% = num% + 1

ELSE

dat(num%) = tVTIDM: inp$(num%) = YVTIDM”: num% = num% + 1

E N D I F

IF ING% = 2 THEN

dat(num%) = CO: inp$(num%) = “CO”: num% = num% + 1

E N D I F

dat(num%) = U8: inp$(num%) = “UE”: numk = num% + 1

dat(num%) = US: inp$(num%) = “US’: num% = num% + 1

Page 157: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

140

dat(num%) = tfp: inp$(num%) = “tfp’: num% = num% + 1

dat(num%) = hfp: inp$(num%) = “U6”: num% = num% + 1

dat(num%) = TH: inp$(num%) = “TH”

yi%=aFOR num% = 1 TO maxinps

LOCATE yl %, x2%, 1 : COLOR disp.fore%, disp.back%

PRINT USING “XX###.#####“; dat(num%); : ~1% = ~1% + 1

NEXT num%

num% = 1: ~1% = 8

LOCATE yl%, x2%: COLOR choice,fore%, choice.back%

PRINT USING ‘##XX#.#####“; dat(num%)

done = false

WHILE done = false

in$ = INKEY

dis = LEN(in5)

SELECT CASE dis

CASE 1: GOSUB ascii

CASE 2: GOSUB scan

END SELECT

W E N D

GOSUB TRAN

clrscr 2, 7, 79, maxy% + 2, disp.fore%, disp.back%, CHR5( 176)

displaytext I, 80, 1, 25, ” “, ” ’ + CHR5(27) + CHR5(24) + CHR5(26) + CHR5(25) + msg$(l), head.iore%,

head.back%

GOT0 12

ascii:

ascii = ASC(LEFT$(in$, 1))

IF ascii = 13 THEN

SELECT CASE inp$(num%)

CASE “HI”: dat(num%) = GetNumX(yl%, x2%, 10, ,005, 100)

CASE “VOL”: dat(num%) = GetNumX(y1 o/o, x2%, 10, .OOOl, 100000)

CASE “DX”: dat(num%) = GetNumX(y1 %, x2%, 10, .OOOl, 10)

CASE “DIA’: dat(num%) = GetNum#(yl%, x2%, 10, ,003, ,015)

CASE “HOUR”: dat(num%) = GetNum#(yl%, x2%, 10, .Ol , 4000)

CASE “DT’: dat(num%) = GetNumX(y1 %, x2%, 10, .Ol, 5)

CASE “NH”: dat(num%) = GetNum#(yl %, x2%, 10, .Ol , 5)

CASE “GV”: dat(num%) = GetNum#(yl%, x2%, 10, .Ol , 100)

CASE ‘tVTIDM’: dat(num%) = GetNum#(yl%, x2%, 10, .I, 10)

CASE “CO’: dat(num%) = GetNumX(y1 %, x2%, 10, 1, 20)

CASE “U8”: dat(num%) = GetNum#(yl%, x2%, 10, 1, 30)

CASE “U9”: dat(num%) = GetNum#(yl %, x2%, 10, .Ol, 5)

CASE “tfp’: dat(num%) = GetNumX(y1 %, x2%, 10, .Ol, 100)

CASE “U6”: dat(num%) = GetNum#(yl%, x2%, 10, .Ol , 5)

CASE “TH’: dat(num%) = GetNum#(yl%, x2%, 10, .Ol, 140)

END SELECT

E N D I F

LOCATE yl %, x2%: COLOR choice.fore%, choice.back%

PRINT USING “#####.#####“: dat(num%)

GOSUB TRAN

Page 158: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

141

clearline 4, 76, me.xy% + I, ’ ‘, dispdore%, disp.back%

LOCATE maxy% + I, minx%: COLOR choice.fore%, choice.back%

PRINT USING ‘Temperature rised by fan R#.%### dC”; BT#

R E T U R N

s c a n :

scan = ASC(RIGHT$(in$, 1))

LOCATE yl %, x2%: COLOR dispdoresb, disp.back%

PRINT USING “#####.##XX#“; dat(num%)

SELECT CASE scan

CASE 68: done = true

CASE 72: num% = num% - 1: ~1% = ~1% - 1

IF num% ( mininp% THEN

num% = maxinp%: yl% = maxy%

E N D I F

CASE 80: num% = num% + 1: ~1% = ~1% + 1

IF num% ) maxinp% THEN

num% = mininp%: ~1% = miny%

E N D I F

END SELECT

LOCATE yl 2, x2%: COLOR choicedore%, choice.back%

PRINT USING ‘#XXX#.####%‘; dat(num%)

GOSUB TRAN

clearline 4, 76, maxy% + 1, ’ “, disp.fore%, disp.back%

LOCATE maxy% + 1, minx%: COLOR choice.fore%, choice.back%

PRINT USING ‘Temperature rised by fan ##.#### dC’; BT#

R E T U R N

T R A N :

oldnum% = num%: num% = 1

HI = dat(num%): num% = num% + 1

VOL = dat(num%): num% = num% + 1

DX = dat(num%): num% = num% + 1

IF gselect% = 2 THEN

DIA = dat(num%): num% = num% + 1

E N D I F

HOUR = dat(num%): num% = num% + 1

dt = dat(num%): num% = num% + 1

IF INW% = 2 THEN

NH = dat(num%): num% = num% + 1

E N D I F

IF gselect% o 5 THEN

GV = dat(num%): num% = num% + 1

ELSE

tVTlDM = dat(num%): num% = num% + 1

E N D I F

IF ING% = 2 THEN

CO = dat(num%): num% = num% + 1

E N D I F

U8 = dat(num%): num% = num% + 1

U9 = dat(num%): num% = num% + 1

Page 159: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

142

tfp = dat(num%): num% = num% + 1

hfp = dat(num%): num% = num% + 1: U4 = hfp / DX

TH = dat(num%)

num% = oldnum%

R E T U R N

12 END SUB

S U B s t y l e 2

DIM inp$( 12)

displaytext I, 80, 1, 25, ” ‘, msg5(3), head.fore%, head.back%

maxinp% = 10: maxy% = 18

IF gselect% = 2 THEN

maxinp% = maxinp% + 1 : maxy% = maxy% + 1

E N D I F

IF INW% = 2 THEN

maxinp% = maxinp% + 1: maxy% = maxy% + 1

E N D I F

clrscr 2, 8, 78, maxy% + 2, disp.fore%, disp.back%, ” ”

windw 2, 8, 78, maxy% + 2, box.fore%, box.back%, false

COLOR disp.fore%, disp.back%

x2% = 51: minx% = 4

mininp% = 1: miny% = 9: ~1% = 9

LOCATE yl%, minx%

PRINT “Height of rough grain’

LOCATE yl %, 65: PRINT “m”: ~1% = ~1% + 1

LOCATE yl%, minx%

PRINT “Velocity of grain’

LOCATE yl%, 65: PRINT “m/h”: ~1% = ~1% + 1

LOCATE yl%, minx%

PRINT “Thickness of thin layer along vertical direction’

LOCATE yl%, 65: PRINT “m”: ~1% = ~1% + 1

LOCATE yl %, minx%

PRINT “Width of dryer [ face to hot air ] ’

LOCATE yl%, 65: PRINT “m”: ~1% = ~1% + 1

LOCATE yl%, minx%

PRINT ‘Length of dryer [along hot air flow direction]”

LOCATE yl %, 65: PRINT “m”: ~1% = ~1% + 1

LOCATE yl %, minx%

PRINT ‘Thickness of thin layer along air flow direct.’

LOCATE yl %, 65: PRINT “m”: ~1% = ~1% + 1

IF gselect% = 2 THEN

LOCATE ~1%. minx%

PRINT “Diameter of grain”

LOCATE yl%, 65: PRINT ‘m’: ~1% = ~1% + 1

E N D I F

LOCATE yl%, minx%

PRINT “Air flow rate’

LOCATE yl %, 65: PRINT “m”3/min-m”3”: ~1% = ~1% + 1

co = 1

Page 160: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

143

IF INW% = 2 THEN

LOCATE yl%, minx%

PRINT “Interval of weather data”: yl % = ~1% + 1

E N D I F

LOCATE yl%, minx%

PRINT ‘Height interval for printing result”

LOCATE ~1%. 65: PRINT “m’: ~1% = ~1% + 1

LOCATE yl%, minx%

PRINT ‘Length interval for printing result”

LOCATE yl%, 65: PRINT “m’: ~1% = ~1% + 1

LOCATE yl %, minx%

PRINT “Temperature rised by heater’

LOCATE yl%, 65: PRINT “dC”: ~1% = ~1% + 1

LOCATE yl %, minx%: COLOR choice.fore%, choice.back%

PRINT USING “Temperature rised by fan #X.##X# dC”; BTX

DIM dat(maxinp%)

num% = 1

dat(num%) = LENG: inp$(num%) = “LENG’: num% = num% + 1

dat(num%) = VEL: inp$(num%) = “VEL”: num% = num% + 1

dat(num%) = DY: inp$(num%) = “DY”: num% = num% + 1

dat(num%) = WID: inp$(num%) = “WID”: num% = num% + 1

dat(num%) = HI: inp$(num%) = ‘HI”: num% = num% + 1

dat(num%) = DX: inp$(num%) = ‘DX”: num% = num% + 1

IF gselect% = 2 THEN

dat(num%) = DIA: inp$(num%) = “DIA’: num% = num% + 1

E N D I F

dat(num%) = GV: inp$(num%) = ‘GV”: num% = num% + 1

IF INW% = 2 THEN

dat(num%) = NH: inp$(num%) = “NH’: num% = num% + 1

E N D I F

dat(num%) = hfp: inp$(num%) = ‘HFP”: num% = num% + 1

dat(num%) = hfp: inp$(num%) = “U6’: num% = num% + 1

dat(num%) = TH: inp$(num%) = “TH’

yl%=9

FOR num% = 1 TO maxinp%

LOCATE yl %, x2%: COLOR disp.fore%, disp.back%

PRINT USING “#####.#XXXX’: dat(num%); : yl % = ~1% + 1

NEXT num%

num% = 1: ~1% = 9

LOCATE yl %, x2%: COLOR choice.fore%, choice.back%

PRINT USING “####X.X####‘; dat(num%)

done = false

WHILE done = false

in5 = INKEY

dis = LEN(in5)

SELECT CASE dis

CASE 1 : GOSUB asciil

CASE 2: GOSUB scan1

END SELECT

Page 161: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

144

W E N D

GOSUB tranl

clrscr 2, 8, 79, maxy% + 3, disp.fore%, disp.back%. CHR$( 1 76)

displaytext 1, 80, 1, 25, ’ ‘, ’ ’ + CHR$(27) + CHR$(24) + CHR$(26) + CHR5(25) + msg$(l), head.fore%,

head.back%

GOT0 13

ascii 1 :

ascii = ASC(LEFT$(in$, 1))

IF ascii = 13 THEN

SELECT CASE inp$(num%)

CASE “LENG”: dat(num%) = GetNumX(yl%, x2%, 10, .Ol, 100)

CASE “VEL’: dat(num%) = GetNumX(y1 %, x2%, 10, 0, 100)

CASE ‘DY’: dat(num%) = GetNumX(y1 %, x2%. 10, .OOOl, 10)

CASE “WID’: dat(num%) = GetNumX(y1 %, x2%, 10, .Ol, 50)

CASE “HI”: dat(num%) = GetNum#(yl%, x2%, 10, .Ol , 100)

CASE “DX”: dat(num%) = GetNum#(yl%, x2%, 10. ,001, 10)

CASE “DIA’: dat(num%) = GetNum#(yl%, x2%, 10, .003, ,015)

CASE ‘GV’: dat(num%) = GetNumX(y1 %, x2%, 10, .Ol, 100)

CASE ‘NH’: dat(num%) = GetNumX(y1 %, x2%, 10, .Ol, 5)

CASE “HFP”: dat(num%) = GetNumX(yl%, x2%, 10, .Ol, 5)

CASE “U6”: dat(num%) = GetNum#(yl%. x2%, IO. .Ol , 5)

CASE “TH’: dat(num%) = GetNum#(yl%, x2%, 10, 0, 140)

END SELECT

E N D I F

LOCATE yl %, x2%: COLOR choicefore%, choice.back%

PRINT USING “##XXX.#####‘; dat(num%)

GOSUB tran 1

clearline 4, 76, maxy% + 1, ’ ‘, dispfore%, disp.back%

LOCATE maxy% + 1, minx%: COLOR choice.fore%, choice.back%

PRINT USING “Temperature rised by fan ##.#### dC’: BT#

R E T U R N

scan 1 :

scan = ASC(RIGHT$(in$, 1))

LOCATE yl %, x2%: COLOR disp.fore%, disp.back%

PRINT USING ‘###X#.#####‘; dat(num%)

SELECT CASE scan

CASE 68: done = true

CASE 72: num% = num% - 1: ~1% = ~1% - 1

IF num% < mininp% THEN

num% = maxinp%: yl% = maxy%

E N D I F

CASE 80: num% = num% + 1: ~1% = ~1% + 1

IF num% > maxinp% THEN

num% = mininp%: ~1% = miny%

E N D I F

END SELECT

LOCATE yl%, x2%: COLOR choice.fore%, choice.back%

PRINT USING ‘###XX.#####“; dat(num%)

GOSUB tranl

Page 162: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

145

clearline 4, 76, maxy% + 1, ” ‘, dispdore%, disp.back%

LOCATE maxy% + 1, minx%: COLOR choice.fore%, choice.back%

PRINT USING “Temperature rised by fan XX.X### dC’; STX

R E T U R N

tran 1 :

oldnum% = num%: num% = 1

LENG = dat(num%): num% = num% + 1

VEL = dat(num%): num% = num% + 1

DY = dat(num%): num% = num% + 1

WID = dat(num%): num% = num% + 1

HI = dat(num%): num% = num% + 1

DX = dat(num%): num% = num% + 1

IF gselect% = 2 THEN

DIA = dat(num%): num% = num% + 1

E N D I F

GV = dat(num%): num% = num% + 1

IF INW% = 2 THEN

NH = dat(num%): num% = num% + 1

E N D I F

hfp = dat(num%): num% = num% + 1

hfp = dat(num%): num% = num% + 1: U4 = hfp / DX

TH = dat(num%)

IF VEL = 0 THEN VEL = .l

VOL = WID * HI * DY: dt = DY / VEL

num% = oldnum%

R E T U R N

13 END SUB

S U B s t y l e 3

DIM inp5(9)

displaytext 1, 80, 1, 25, ’ ‘, msg$(3), head,fore%, head.back%

maxmp% = 7: maxy% = 16

IF gselect% = 2 THEN

maxinpa = maxinpk + 1: maxy% = maxys + 1

E N D I F

IF INW% = 2 THEN

maxinp% = maxinpc + 1: maxy% = maxys + 1

E N D I F

clrscr 2, 9, 78, maxy% + 2, disp.fore%, disp.back%, * ’

windw 2, 9, 78, maxy% + 2, box.fore%, box.back%, false

COLOR dispdore%, disp.back%

x2% = 5 1: minx% = 3

mininp% = 1 : miny% = 10: yl% = 10

LOCATE yl%, minx%

PRINT ‘Height of rough grain”

LOCATE ~1%. 65: PRINT ‘m”: ~1% = ~1% + 1

LOCATE ~1%. minx%

PRINT “Volume of grain”

LOCATE ~1%. 65: PRINT “m&3”: ~1% = ~1% + 1

Page 163: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

146

LOCATE yl%, minx%

PRINT ‘Velocity of grain ”

LOCATE yl %, 65: PRINT “m/h’: ~1% = ~1% + 1

LOCATE yl%, minx%

PRINT “Thickness of thin layer’

LOCATE yl%, 65: PRINT ‘m’: ~1% = ~1% + 1

IF gselecta = 2 THEN

LOCATE yl%, minx%

PRINT “Diameter of grain”

LOCATE yl%, 65: PRINT ‘m’: ~1% = ~1% + 1

E N D I F

LOCATE yl%, minx%

PRINT “Air ilow rate”

LOCATE yl%, 65: PRINT ‘mA3/min-m”3”: ~1% = ~1% + 1

co = 1

IF INW% = 2 THEN

LOCATE yl%, minx%

PRINT “Interval of weather data’

LOCATE yl %, 65: PRINT “hr”: ~1% = ~1% + 1

E N D I F

LOCATE yl %, minx%

PRINT ‘Thickness of thin layer for printing result”

LOCATE yl %, 65: PRINT “m”: ~1% = ~1% + 1

LOCATE yl%, minx%

PRINT “Temperature rised by heater”

LOCATE yl%, 65: PRINT “dC’: ~1% = ~1% + 1

LOCATE yl %, minx%: COLOR choice.fore%, choice.back%

PRINT USING ‘Temperature rised by fan ##.#### dC’; ST#

DIM dat(maxinp%)

num% = 1

dat(num%) = HI: inp$(num%) = “HI’: num% = num% + 1

dat(num%) = VOL: inp$(num%) = ‘VOL”: num% = num% + 1

dat(num%) = VEL: inp$(num%) = ‘VEL”: num% = num% + 1

dat(num%) = DX: inp$(num%) = “DX”: num% = num% + 1

IF gselect% = 2 THEN

dat(num%) = DIA: inp$(num%) = “DIA’: num% = num% + 1

E N D I F

dat(num%) = GV: inp$(num%) = “GV”: num% = num% + 1

IF INW% = 2 THEN

dat(num%) = NH: inp$(num%) = “NH’: num% = num% + 1

E N D I F

dat(num%) = hfp: inp$(num%) = “U6”: num% = num% + 1

dat(num%) = TH: inp$(num%) = “TH’

Yl% = 10

FOR num% = 1 TO maxinp%

LOCATE yl %, x2%, 1 : COLOR dispdore%, disp.back%:

PRINT USING ‘#####.#####‘; dat(num%); : ~1% = ~1% + 1

NEXT num%

num% = 1: yl% = 10

Page 164: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

147

LOCATE yl%, x2%: COLOR choicelore%, choice.back%

PRINT USING “#X###.#####“; dat(num%)

done = lalse

WHILE done = false

in$ = INKEY

dis = LEN(in$)

SELECT CASE dis

CASE 1: GOSUS ascii2

CASE 2: GOSUS scan2

END SELECT

W E N D

GOSUB tran3

clrscr 2, 9, 79, maxy% + 3, disp,fore%, disp.back%, CHR$(l 76)

displaytext 1, 80, 1, 25, ” “, ” ” + CHR5(27) + CHR5(24) + CHR5(26) + CHR5(25) + msg$(l), headdore%,

head.back%

GOT0 14

ascii2:

ascii = ASC(LEFT$(in$, 1))

IF ascii = 13 THEN

SELECT CASE inp$(num%)

CASE “HI’: dat(num%) = GetNumX(y1 %, x2%, 10, .I, 100)

CASE ‘VOL.: dat(num%) = GetNumX(yl%, x2%, 10, .OOOl , 100000)

CASE “VEL”: dat(num%) = GetNum#(yl %, x2%, 10, .OOOl, 100)

CASE “DX”: dat(num%) = GetNum#(yl 46, x2%. 10, .OOOl, 10)

CASE “DIA”: dat(num%) = GetNumX(y1 %, x2%, 10, ,003, ,015)

CASE “GV”: dat(num%) = GetNum#(yl%, x2%, 10, ,001, 100)

CASE “NH’: dat(num%) = GetNum#(yl k, x2%, 10, .Ol, 5)

CASE ‘U6’: dat(num%) = GetNumX(y1 %, x2%. 10, .Ol, 10)

CASE ‘TH”: dat(num%) = GetNum#(yl%, x2%, 10, 0, 140)

END SELECT

E N D I F

LOCATE yl%, x2%: COLOR choice.fore%, choice.back%

PRINT USING “##XX#.X##XX”; dat(num%)

GOSUS tran3

clearline 4, 76, maxy% + 1, ’ ‘, disp,fore%, disp.back%

LOCATE maxyk + 1, minx%: COLOR choice.fore%, choice.back%

PRINT USING “Temperature rised by Ian ##.X### dC”; ST#

R E T U R N

scan2:

scan = ASC(RIGHT$(in$, 1))

LOCATE yl %, x2%: COLOR disp.fore%, disp.back%

PRINT USING “#####.#####“; dat(num%)

SELECT CASE scan

CASE 68: done = true

CASE 72: num% = num% - 1: ~1% = ~1% - 1

IF num% < mininp% THEN

num% = maxinp%: ~1% = maxy%

E N D I F

CASE80:num%=num%+1:yl%=yl%+l

Page 165: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

148

IF num% > maxinp% THEN

num% = mininps: yl% = miny%

E N D I F

END SELECT

LOCATE yl %, x2%: COLOR choice.fore%, choice.back%

PRINT USING “#####.#####“; dat(num%)

GOSUB tran3

clearfine 4, 76, maxy% + 1, ’ ‘, dispdore%, disp.back%

LOCATE maxy% + 1, minx%: COLOR choice.fore%, choice.back%

PRINT USING ‘Temperature rised by fan XX.##X# dC”; BT#

R E T U R N

tran3:

oldnumc = num%: num% = 1

HI = dat(num%): num% = num% + 1

VOL = dat(num%): num% = num% + 1

VEL = dat(num%): num% = num% + 1

DX = dat(num%): num% = num% + 1

IF gselect% = 2 THEN

DIA = dat(num%): num% = num% + 1

E N D I F

GV = dat(num%): num% = num% + 1

IF INW% = 2 THEN

NH = dat(num%): num% = num% + 1

E N D I F

hfp = dat(num%): num% = num% + 1: U4 = hfp / DX

TH = dat(num%)

IF VEL = 0 THEN VEL = .l

dt = DX / VEL

num% = oldnum%

R E T U R N

14 END SUB

SUB subprint

L O C ATE 3,31: PRiNTPaaaaaaaaaaaaaaaaaa~~aaaaaaaaaaaaaaaaaa~~~~aaaaa~,;

LOCATE 4, 31: PRINT ’ 111 SUMMARY DRYING VALUES N”;

LOCATE 5. 31: PRINT ’ Iu Total time hrs T!A*;

LOCATE 6, 31 : PRINT ” N Initial moisture content : %wb N”;

LOCATE 7, 31: PRINT ” tu average temperature : dC fur;

LOCATE 8, 31: PRINT ” 1u total mass kg N’;

LOCATE 9, 31 : PRINT ” 1u Present moisture content : %wb N”;

LOCATE 10, 3 1: PRINT ” Iw average temperature : dC N”;

LOCATE 11, 31: PRINT ” fU total mass : kg Iw”;

LOCATE 12, 3 1: PRINT ’ Iu Total dry matter loss : % Iu’;

LOCATE 13, 31 : PRINT ’ Iw Time of fan operation hrs N”;

LOCATE 14, 3 1: PRINT ” ft& Power for fan kW 1u”:

LOCATE 15, 3 1 : PRINT ” Cu Power for constant heating : kW Iu”;

LOCATE 16, 31: PRINT ’ Iu Power for max temp rise by RHC: kW N”;

LOCATE 17, 3 1: PRINT ” Iw Energy for fan MJ IM”;

LOCATE 1 8, 31 : PRINT ” Iu Energy for heater MJ Iu’;

Page 166: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

149

LOCATE 19, 31 : PRINT ” fU Temperature rise by fan : dC l-l&,;

LOCATE 20, 31: PRINT ’ Iu Temp rise by constant heating : dC Iw”;

LOCATE 21, 31: PRINT ’ Iw Max temp rise by RHC : dC fu”;

LOCATE 22, 31 : PRINT ” Iw Total pressure Pa lu”;

LOCATE 23,31:PRlNT Paaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa~":

E N D S U B

SUB Vinp (vcheck)

ON ERROR GOT0 fileerr

displaytext 1, 80, 1, 25, ” “, ” type \ after Path of DRIVE : A:\data\“, head.fore%, head.back%

clrscr 16, 18, 62, 21, dispdore%, disp.back%, ’ ”

windw 16, 18, 62, 21, box.fore%, box.back%, true

minx = 18: yl% = 19: x2% = 47

LOCATE yl%, minx: COLOR disp.fore%, disp.back%

SELECT CASE vcheck

CASE 1 : PRINT “Weather data in DRIVE [Path]:’

CASE 2: PRINT ‘Grain data in DRIVE [Path] :”

CASE 3: PRINT ‘Result data in DRIVE [Path] :’

END SELECT

clearline x2%, 61, yl %, ” “, choice,fore%, choice.back%

F$ = gettext$(x2%, yl%, 14)

SELECT CASE vcheck

CASE 1: wdrive$ = F5

CASE 2: gdrive5 = F5

CASE 3: rdrive5 = F$

END SELECT

x2%=41:yl%=yl%+l

LOCATE yl %, minx: COLOR dispfore%, disp.back%

SELECT CASE vcheck

CASE 1 : PRINT “Weather data fi lename : .DAT”

CASE 2: PRINT “Grain data filename : .DAT”

CASE 3: PRINT “Result data filename : .DAT’

END SELECT

clearline x2%, 48, yl %, ” “, choiceJore%, choice.back%

F5 = gettext$(x2%, ~1%. 8)

SELECT CASE vcheck

CASE 1: WEATH5 = F$ + “.DAT”: OPEN ‘I”, #2, wdrive5 + WEATH5

CASE 2: GRAIN5 = F5 + ‘.DAT”: OPEN ‘I’, #I, gdrive$ + GRAIN5

CASE 3: RES5 = F5 + “.DAT’: OPEN “O”, #3, rdrive5 + RES5

END SELECT

IF errcheck o 0 THEN

SELECT CASE vcheck

CASE 1: INW% = 1: main5(4) = “C”

CASE 2: ING% = 1: main$(E) = “C”

CASE 3:

IF ina = 1 THEN

ind = 2: main5(7) = ” D&P ’

E L S E

ind = 2: main5(7) = ” D ’

Page 167: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

150

E N D I F

END SELECT

E N D I F

clrscr 16, 18, 63, 22, disp.fore%, disp.back%, CHR5( 1 76)

displaytext 1, 80, 1, 25, ” “, ” ” + CHR$(27) + CHR5(24) + CHR$(26) + CHR5(25) + msg$(l), head.fore%,

head.back%

E N D S U B

SUB VTIDM

N = O

FOR J = 1 TO NOL

N=N+l

MG( 1, N) = MG(0, J)

WDM(N) = WDM(J)

U = U + VOL / HI * WDM(J)

N=N+l

MG(1, N) = MG(0, J)

WDM(N) = WDM(J)

U = U + VOL / HI * WDM(J)

N=N+l

MG(1, N) = MG(0, J)

WDM(N) = WDM(J)

U = U + VOL / HI * WDM(J)

TNOL = N

NEXT J

TIDM = U

FOR J = 1 TO TNOL

MG(0, J) = MG(1, J)

TG(0, J) = TA

NEXT J

E N D S U B

FUNCTION VV# (MM)

SELECT CASE gselect% ‘grain density 1 -paddy,2-corn,3-soybean,4,5-spring onion

CASE 1: VVX = .001997 + .0012 * MM

CASE 2: VVX = .0014854008# + l.l4899E-05 * MM

CASE 3: VVX = .0013816424# + 1,38932E-05 * MM

CASE 4, 5: VV# = .025505# + .004812X * MM - .00034227# * MM h 2 + 9.470000000000001 D-06 * MM h

3

END SELECT

E N D F U N C T I O N

SUB wlndw (xl %, yl %, x2%, y2%, foreground%, background%, shadow)

COLOR foreground%, background%: LOCATE yl%, xl %, 0: PRINT CHR$(POl);

FOR count% = xl % + 1 TO x2% - 1: PRINT CHR$(205); : NEXT count%: PRINT CHR$(187)

‘top

FOR count% = ~1% + 1 TO ~2% - 1: LOCATE count%, xl 2, 0: PRINT CHR$( 186): NEXT count%

‘lef t

FOR count% = ~1% + 1 TO ~2% - 1: LOCATE count%, x2%, 0: PRINT CHR$(186): NEXT count%

Page 168: A-). . . . . . .. (%Fl.vl%. &-%A& J$&ler) for ThaiScience/Article/3...I pi 520a Comparison between simulated and experimental moisture content of spring onion at different height,

151

‘right

LOCATE ~246, xl 46, 0: PRINT CHR$(POO);

FOR count% = xl % + 1 TO x2% - 1: PRINT CHR$(205); : NEXT count%: PRINT CHR$( 188);

‘bottom

IF shadow = true THEN

COLOR fore.back%, back.back%

FOR count% = ~1% + 1 TO ~2% + 1: LOCATE count%, x2% + 1, 0: PRINT CHR$(176): NEXT count%

‘right shadow

LOCATEy2%+1,xl%+l,O

FOR count% = xl % + 1 TO x2%: PRINT CHR$( 176); : NEXT count%

‘bottom shadow

E N D I F

E N D S U B

SUB writeresults

displaytext 1, 80, 2, 25, ” “, ” Saving’, headdore%, head.back%

writetile = writefile + 1

IF tselect% = 2 THEN

WRITE X3, dryt * VEL

ELSE

WRITE 83, dryt

E N D I F

FOR N = U4TOTNOLSTEPU4

WRITE #3, INT(X(N) * 100 + .5) / 100, INT(TG(0, N) * 100 + .5) / 100, INT(MG(0, N) / (1 + MG(0, N)) *

10000+.5)/100

NEXT N

IF (tselect% = 2 AND INT(dryt * 100 + .5) / 100 < tend) OR (tselect% = 1 AND (AMC ) U8 OR PACDML < U9))

T H E N

WRITE #3, EF * 3.6 / Q5

WRITE #3, EH / Cl6

E N D I F

IF INT(dryt * 100 + ,5) / 100 >= tend OR (AMC < U8 OR PACDML > U9) OR tselect% > 2 THEN

WRITE X3, dryt

WRITE #3, AMCI, AGOI, TIM

WRITE #3, AMC, AGO, TJM

WRITE #3, PACDML, FT, INT((PEtotal / Q5) * 100 + .5) / 100

WRITE #3, INT((GA / HI * VOL / 3600 *CA*TH/Q6)*100+.5)/100,INT((GA/HI*VOL/3600*CA*

T4/Q6)*100+.5)/100,INT((FT*PS*3600/1000/Q5)*100+.5)/100

WRITE #3, INT((EH / Q6) * 100 + .5) / 100, INT(STX * 100 + .5) / 100, TH

WRITE X3, INT(T4 * 100 + .5) / 100, INT(PG * 100 + .5) / 100

OPEN “0’, #4, rdrive$ + “checkres”

WRITE #4, writefile

CLOSE #4

E N D I F

displaytext 1, 80, 2, 25, ” “, ” Simulating”, headdore%, head.back%

E N D S U B