A first order conservation law formulation for fast solid...

41
Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions A first order conservation law formulation for fast solid dynamics in OpenFOAM Jibran Haider a , Antonio J. Gil a , Javier Bonet a , Chun Hean Lee a , Antonio Huerta b a Zienkiewicz Centre for Computational Engineering (ZC 2 E) College of Engineering, Swansea University, UK b Laboratory of Computational Methods and Numerical Analysis (LaCáN) Polytechnic University of Catalonia, Spain ACME 2015 23 rd conference on Computational Mechanics, UK Solids & Structures 5 Jibran Haider (ACME 2015, Swansea University, UK) 10 th April 2015

Transcript of A first order conservation law formulation for fast solid...

Page 1: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

A first order conservation law formulation for fastsolid dynamics in OpenFOAM

Jibran Haider a, Antonio J. Gil a, Javier Bonet a, Chun Hean Lee a, Antonio Huerta b

a Zienkiewicz Centre for Computational Engineering (ZC2E)College of Engineering, Swansea University, UK

b Laboratory of Computational Methods and Numerical Analysis (LaCáN)Polytechnic University of Catalonia, Spain

ACME 201523rd conference on Computational Mechanics, UK

Solids & Structures 5

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 2: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Outline

1 IntroductionMotivationOpenFOAM

2 Reversible elastodynamicsGoverning equations

3 Numerical techniqueSpace-time discretisationContact fluxInvolution

4 Numerical resultsMesh convergence2D results3D results

5 Conclusions

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 3: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Outline

1 IntroductionMotivationOpenFOAM

2 Reversible elastodynamicsGoverning equations

3 Numerical techniqueSpace-time discretisationContact fluxInvolution

4 Numerical resultsMesh convergence2D results3D results

5 Conclusions

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 4: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Introduction

Motivation

• Fast solid dynamics

• Large strain deformation

• Shock propagation

• Impact mechanics

• Solid dynamics formulations

Displacementbased

formulations

Mixedformulation

• Incompressibility × X• Performance in

bending problems × X• Shock capturing

ability × X• Convergence of

stresses/strains × X• Conservation of

angular momentum X -

0 0.5 1

0

0.5

1

1.5

X-Coordinate

Y-C

oord

inate

t=0.03s

-1

-0.5

0

0.5

1x 10

7

-0.5 0 0.5 1 1.5

0

0.5

1

1.5

X-Coordinate

Y-C

oord

inate

t=0.0006s

-5

0

5x 10

9

FEM

0 0.5 1

0

0.5

1

1.5

X-Coordinate

Y-C

oord

inate

t=0.03s

-1

-0.5

0

0.5

1x 10

7

-0.5 0 0.5 1 1.5

0

0.5

1

1.5

X-Coordinate

Y-C

oord

inate

t=0.0006s

-5

0

5x 10

9

FVM

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 5: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Introduction

Motivation

• Fast solid dynamics

• Large strain deformation

• Shock propagation

• Impact mechanics

• Solid dynamics formulations

Displacementbased

formulations

Mixedformulation

• Incompressibility × X• Performance in

bending problems × X• Shock capturing

ability × X• Convergence of

stresses/strains × X• Conservation of

angular momentum X -

0 0.5 1

0

0.5

1

1.5

X-Coordinate

Y-C

oord

inate

t=0.03s

-1

-0.5

0

0.5

1x 10

7

-0.5 0 0.5 1 1.5

0

0.5

1

1.5

X-Coordinate

Y-C

oord

inate

t=0.0006s

-5

0

5x 10

9

FEM

0 0.5 1

0

0.5

1

1.5

X-Coordinate

Y-C

oord

inate

t=0.03s

-1

-0.5

0

0.5

1x 10

7

-0.5 0 0.5 1 1.5

0

0.5

1

1.5

X-Coordinate

Y-C

oord

inate

t=0.0006s

-5

0

5x 10

9

FVM

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 6: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Introduction

OpenFOAM

• An open source CFD software package in C++

• Based on Cell Centered Finite Volume Method

• Limited functionality for solid dynamics

v = 500 m/s

(0.5, 0.5, 0.5)

(−0.5,−0.5,−0.5)

Tensile rubber cube

Existing solid solver in OpenFOAM

× Linear elastic material

× Small strain deformation

Mixed Formulation in OpenFOAM

X Hyper elastic material

X Large strain deformation

[Animation - 3D]

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 7: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Introduction

OpenFOAM

• An open source CFD software package in C++

• Based on Cell Centered Finite Volume Method

• Limited functionality for solid dynamics

v = 500 m/s

(0.5, 0.5, 0.5)

(−0.5,−0.5,−0.5)

Tensile rubber cube

Existing solid solver in OpenFOAM

× Linear elastic material

× Small strain deformation

Mixed Formulation in OpenFOAM

X Hyper elastic material

X Large strain deformation

[Animation - 3D]

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 8: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Introduction

OpenFOAM

• An open source CFD software package in C++

• Based on Cell Centered Finite Volume Method

• Limited functionality for solid dynamics

v = 500 m/s

(0.5, 0.5, 0.5)

(−0.5,−0.5,−0.5)

Tensile rubber cube

Existing solid solver in OpenFOAM

× Linear elastic material

× Small strain deformation

Mixed Formulation in OpenFOAM

X Hyper elastic material

X Large strain deformation

[Animation - 3D]

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 9: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Introduction

OpenFOAM

• An open source CFD software package in C++

• Based on Cell Centered Finite Volume Method

• Limited functionality for solid dynamics

v = 500 m/s

(0.5, 0.5, 0.5)

(−0.5,−0.5,−0.5)

Tensile rubber cube

Existing solid solver in OpenFOAM

× Linear elastic material

× Small strain deformation

Mixed Formulation in OpenFOAM

X Hyper elastic material

X Large strain deformation

[Animation - 3D]

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 10: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Outline

1 IntroductionMotivationOpenFOAM

2 Reversible elastodynamicsGoverning equations

3 Numerical techniqueSpace-time discretisationContact fluxInvolution

4 Numerical resultsMesh convergence2D results3D results

5 Conclusions

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 11: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Governing equations

First order conservation formulation

• Conservation of linear momentum:∂ρ0v∂t−∇0 · P(F) = ρ0b

• Conservation of deformation gradient:∂F∂t−∇0 · (v⊗ I) = 0

• Conservation of energy:∂E∂t−∇0 ·

(PT v− Q

)= s

• Or in standard form:

∂U∂t

+∇0 ·F(U) = S

A constitutive model is needed to complete the coupled system A first order hyperbolic system similar to the one in CFD Our aim is to develop low order numerical schemes for Total Lagrangian fast solid dynamics

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 12: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Governing equations

First order conservation formulation

• Conservation of linear momentum:∂ρ0v∂t−∇0 · P(F) = ρ0b

• Conservation of deformation gradient:∂F∂t−∇0 · (v⊗ I) = 0

• Conservation of energy:∂E∂t−∇0 ·

(PT v− Q

)= s

• Or in standard form:

∂U∂t

+∇0 ·F(U) = S

A constitutive model is needed to complete the coupled system A first order hyperbolic system similar to the one in CFD Our aim is to develop low order numerical schemes for Total Lagrangian fast solid dynamics

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 13: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Governing equations

First order conservation formulation

• Conservation of linear momentum:∂ρ0v∂t−∇0 · P(F) = ρ0b

• Conservation of deformation gradient:∂F∂t−∇0 · (v⊗ I) = 0

• Conservation of energy:∂E∂t−∇0 ·

(PT v− Q

)= s

• Or in standard form:

∂U∂t

+∇0 ·F(U) = S

A constitutive model is needed to complete the coupled system A first order hyperbolic system similar to the one in CFD Our aim is to develop low order numerical schemes for Total Lagrangian fast solid dynamics

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 14: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Governing equations

First order conservation formulation

• Conservation of linear momentum:∂ρ0v∂t−∇0 · P(F) = ρ0b

• Conservation of deformation gradient:∂F∂t−∇0 · (v⊗ I) = 0

• Conservation of energy:∂E∂t−∇0 ·

(PT v− Q

)= s

• Or in standard form:

∂U∂t

+∇0 ·F(U) = S

A constitutive model is needed to complete the coupled system A first order hyperbolic system similar to the one in CFD Our aim is to develop low order numerical schemes for Total Lagrangian fast solid dynamics

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 15: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Governing equations

First order conservation formulation

• Conservation of linear momentum:∂ρ0v∂t−∇0 · P(F) = ρ0b

• Conservation of deformation gradient:∂F∂t−∇0 · (v⊗ I) = 0

• Conservation of energy:∂E∂t−∇0 ·

(PT v− Q

)= s

• Or in standard form:

∂U∂t

+∇0 ·F(U) = S

A constitutive model is needed to complete the coupled system A first order hyperbolic system similar to the one in CFD Our aim is to develop low order numerical schemes for Total Lagrangian fast solid dynamics

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 16: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Outline

1 IntroductionMotivationOpenFOAM

2 Reversible elastodynamicsGoverning equations

3 Numerical techniqueSpace-time discretisationContact fluxInvolution

4 Numerical resultsMesh convergence2D results3D results

5 Conclusions

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 17: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Finite Volume Methodology

Space-time discretisation

• The conservation laws are spatially semi-discretised by astandard Cell Centered Finite Volume Method(CCFVM):

dU e

dt= −

1Ve

∑f∈e

[FCN ]f Af

• An explicit 2 step Total Variation DiminishingRunge-Kutta (TVD-RK) time integrator is utilised:

U∗n+1 = Un + ∆t Un

U∗n+2 = U∗n+1 + ∆t U∗n+1

Un+1 =12

(Un + U∗n+2

)with stability constraint:

∆t = αCFLhmin

Up,max

e

Ve

Af

[FCN ]f

Just one Gauss point per face!

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 18: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Finite Volume Methodology

Space-time discretisation

• The conservation laws are spatially semi-discretised by astandard Cell Centered Finite Volume Method(CCFVM):

dU e

dt= −

1Ve

∑f∈e

[FCN ]f Af

• An explicit 2 step Total Variation DiminishingRunge-Kutta (TVD-RK) time integrator is utilised:

U∗n+1 = Un + ∆t Un

U∗n+2 = U∗n+1 + ∆t U∗n+1

Un+1 =12

(Un + U∗n+2

)with stability constraint:

∆t = αCFLhmin

Up,max

e

Ve

Af

[FCN ]f

Just one Gauss point per face!

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 19: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Riemann Solver

Generalised Riemann Solver

• Rankine-Hugoniot relation:

U J ρ0v K = −J P KN

U J F K = −J v K⊗ N

U J E K = −J PT v K · N

where JU K = U+c − U

−c

• Linear reconstruction procedure to enhance thespatial discretisation:

U+,−c = Ue + Ge · (Xc − Xe)

where the local gradient operator is defined as:

Ge =

[∑α∈e

νeα ⊗ νeα

]−1 ∑α∈e

(Uα − Ue

deα

)νeα

() Time

, ,

()

, ,

,

Time = 0

= = −

= = −

,

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 20: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Riemann Solver

Generalised Riemann Solver

• Rankine-Hugoniot relation:

U J ρ0v K = −J P KN

U J F K = −J v K⊗ N

U J E K = −J PT v K · N

where JU K = U+c − U

−c

• Linear reconstruction procedure to enhance thespatial discretisation:

U+,−c = Ue + Ge · (Xc − Xe)

where the local gradient operator is defined as:

Ge =

[∑α∈e

νeα ⊗ νeα

]−1 ∑α∈e

(Uα − Ue

deα

)νeα

() Time

, ,

()

, ,

,

Time = 0

= = −

= = −

,

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 21: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Riemann Solver

Generalised Riemann Solver

• Rankine-Hugoniot relation:

U J ρ0v K = −J P KN

U J F K = −J v K⊗ N

U J E K = −J PT v K · N

where JU K = U+c − U

−c

• Linear reconstruction procedure to enhance thespatial discretisation:

U+,−c = Ue + Ge · (Xc − Xe)

where the local gradient operator is defined as:

Ge =

[∑α∈e

νeα ⊗ νeα

]−1 ∑α∈e

(Uα − Ue

deα

)νeα

() Time

, ,

()

, ,

,

Time = 0

= = −

= = −

,

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 22: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Riemann Solver

Contact flux

• Contact flux at an interface:

FCN(U+,U−) =

−tC−vC ⊗ N−tC · vC

• Contact values for a homogeneous body(Up = U−p = U+

p , Us = U−s = U+s ):

vC =12

[v− + v+

]︸ ︷︷ ︸

unstable flux

+1

2ρ0

[1

Up(n ⊗ n) +

1Us

(I − n ⊗ n)] [

P+ − P−]

N︸ ︷︷ ︸stabilising term

tC =12

[P− + P+

]N︸ ︷︷ ︸

unstable flux

+ρ0

2[Up(n ⊗ n) + Us(I − n ⊗ n)] [v+ − v−]︸ ︷︷ ︸

stabilising term

v+ = 0, U+p = U+

s = ∞

v−(t)

v+n = 0, U+p = ∞, U+

s = 0

v−(t)

v+t = 0, U+p = 0, U+

s = ∞

v−(t)

U+p = U+

s = 0

v−(t)

t

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 23: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Riemann Solver

Contact flux

• Contact flux at an interface:

FCN(U+,U−) =

−tC−vC ⊗ N−tC · vC

• Contact values for a homogeneous body(Up = U−p = U+

p , Us = U−s = U+s ):

vC =12

[v− + v+

]︸ ︷︷ ︸

unstable flux

+1

2ρ0

[1

Up(n ⊗ n) +

1Us

(I − n ⊗ n)] [

P+ − P−]

N︸ ︷︷ ︸stabilising term

tC =12

[P− + P+

]N︸ ︷︷ ︸

unstable flux

+ρ0

2[Up(n ⊗ n) + Us(I − n ⊗ n)] [v+ − v−]︸ ︷︷ ︸

stabilising term

v+ = 0, U+p = U+

s = ∞

v−(t)

v+n = 0, U+p = ∞, U+

s = 0

v−(t)

v+t = 0, U+p = 0, U+

s = ∞

v−(t)

U+p = U+

s = 0

v−(t)

t

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 24: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Involution

Local constraint preserving scheme• Compatibility condition

[ Torrilhon(2005), Lee-Gil-Bonet(2013) ]:

∇0 × F = 0

• An adapted curl-free updated scheme:

dFe

dt=∑a∈e

[va ⊗∇0Na]

• Bilinear shape functions:

Na =18

(1 + ξξa)(1 + ηηa)(1 + µµa)

• Nodal velocity:

va = vRe + G(vC

) · (Xa − Xe)

where:

vRe =

1∑f∈e

dfe

∑f∈e

[dfevC

f

]; dfe = |XC − Xe|

G(vC) =

∑f∈e

νfe ⊗ νfe

−1 ∑f∈e

vCf − vR

e

dfe

νfe

∆X

∆Y

ve

1

2

3

vC

vaG (vC )

1 = Linear reconstruction + Riemann solver

2 = Velocity gradient (Least square minimisation)

3 = Interpolation/Extrapolation to nodes

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 25: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Involution

Local constraint preserving scheme• Compatibility condition

[ Torrilhon(2005), Lee-Gil-Bonet(2013) ]:

∇0 × F = 0

• An adapted curl-free updated scheme:

dFe

dt=∑a∈e

[va ⊗∇0Na]

• Bilinear shape functions:

Na =18

(1 + ξξa)(1 + ηηa)(1 + µµa)

• Nodal velocity:

va = vRe + G(vC

) · (Xa − Xe)

where:

vRe =

1∑f∈e

dfe

∑f∈e

[dfevC

f

]; dfe = |XC − Xe|

G(vC) =

∑f∈e

νfe ⊗ νfe

−1 ∑f∈e

vCf − vR

e

dfe

νfe

∆X

∆Y

ve

1

2

3

vC

vaG (vC )

1 = Linear reconstruction + Riemann solver

2 = Velocity gradient (Least square minimisation)

3 = Interpolation/Extrapolation to nodes

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 26: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Involution

Local constraint preserving scheme• Compatibility condition

[ Torrilhon(2005), Lee-Gil-Bonet(2013) ]:

∇0 × F = 0

• An adapted curl-free updated scheme:

dFe

dt=∑a∈e

[va ⊗∇0Na]

• Bilinear shape functions:

Na =18

(1 + ξξa)(1 + ηηa)(1 + µµa)

• Nodal velocity:

va = vRe + G(vC

) · (Xa − Xe)

where:

vRe =

1∑f∈e

dfe

∑f∈e

[dfevC

f

]; dfe = |XC − Xe|

G(vC) =

∑f∈e

νfe ⊗ νfe

−1 ∑f∈e

vCf − vR

e

dfe

νfe

∆X

∆Y

ve

1

2

3

vC

vaG (vC )

1 = Linear reconstruction + Riemann solver

2 = Velocity gradient (Least square minimisation)

3 = Interpolation/Extrapolation to nodes

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 27: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Involution

Local constraint preserving scheme• Compatibility condition

[ Torrilhon(2005), Lee-Gil-Bonet(2013) ]:

∇0 × F = 0

• An adapted curl-free updated scheme:

dFe

dt=∑a∈e

[va ⊗∇0Na]

• Bilinear shape functions:

Na =18

(1 + ξξa)(1 + ηηa)(1 + µµa)

• Nodal velocity:

va = vRe + G(vC

) · (Xa − Xe)

where:

vRe =

1∑f∈e

dfe

∑f∈e

[dfevC

f

]; dfe = |XC − Xe|

G(vC) =

∑f∈e

νfe ⊗ νfe

−1 ∑f∈e

vCf − vR

e

dfe

νfe

∆X

∆Y

ve

1

2

3

vC

vaG (vC )

1 = Linear reconstruction + Riemann solver

2 = Velocity gradient (Least square minimisation)

3 = Interpolation/Extrapolation to nodes

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 28: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Involution

Local constraint preserving scheme• Compatibility condition

[ Torrilhon(2005), Lee-Gil-Bonet(2013) ]:

∇0 × F = 0

• An adapted curl-free updated scheme:

dFe

dt=∑a∈e

[va ⊗∇0Na]

• Bilinear shape functions:

Na =18

(1 + ξξa)(1 + ηηa)(1 + µµa)

• Nodal velocity:

va = vRe + G(vC

) · (Xa − Xe)

where:

vRe =

1∑f∈e

dfe

∑f∈e

[dfevC

f

]; dfe = |XC − Xe|

G(vC) =

∑f∈e

νfe ⊗ νfe

−1 ∑f∈e

vCf − vR

e

dfe

νfe

∆X

∆Y

ve

1

2

3

vC

vaG (vC )

1 = Linear reconstruction + Riemann solver

2 = Velocity gradient (Least square minimisation)

3 = Interpolation/Extrapolation to nodes

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 29: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Outline

1 IntroductionMotivationOpenFOAM

2 Reversible elastodynamicsGoverning equations

3 Numerical techniqueSpace-time discretisationContact fluxInvolution

4 Numerical resultsMesh convergence2D results3D results

5 Conclusions

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 30: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

1D Cable

Smooth Sinusoidal Loading: 1D mesh convergenceProblem description: Linear elastic material, ρ0 = 1 kg/m3, E = 1 GPa, ν = 0.3 αCFL = 0.5,

P(t) = 1× 10−3 [sin ((πt)/20− π/2) + 1] N

L = 10m

x

P (t)

10−2 10−1 10010−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Grid Size (m)

Err

or

Contact Velocity at t = 34.4757 sec

L1 norm error (Forward Euler, 1st Order)

L2 norm error (Forward Euler, 1st Order)

L1 norm error (2−Step RK, 2nd Order)

L2 norm error (2−step RK, 2nd Order)

Slope = 1Slope = 2

10−2 10−1 10010−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Grid Size (m)

Err

or

Contact Stress at t = 34.4757 sec

L1 norm error (Forward Euler, 1st Order)

L2 norm error (Forward Euler, 1st Order)

L1 norm error (2−Step RK, 2nd Order)

L2 norm error (2−step RK, 2nd Order)

Slope = 1Slope = 2

X 1D convergence analysis by means of the L1 & L2 norm has been carried out at t ≈ 34.5 sX Demonstrates the expected accuracy of the available schemes for all variables

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 31: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

1D Cable

Smooth Sinusoidal Loading: 1D mesh convergenceProblem description: Linear elastic material, ρ0 = 1 kg/m3, E = 1 GPa, ν = 0.3 αCFL = 0.5,

P(t) = 1× 10−3 [sin ((πt)/20− π/2) + 1] N

L = 10m

x

P (t)

10−2 10−1 10010−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Grid Size (m)

Err

or

Contact Velocity at t = 34.4757 sec

L1 norm error (Forward Euler, 1st Order)

L2 norm error (Forward Euler, 1st Order)

L1 norm error (2−Step RK, 2nd Order)

L2 norm error (2−step RK, 2nd Order)

Slope = 1Slope = 2

10−2 10−1 10010−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Grid Size (m)

Err

or

Contact Stress at t = 34.4757 sec

L1 norm error (Forward Euler, 1st Order)

L2 norm error (Forward Euler, 1st Order)

L1 norm error (2−Step RK, 2nd Order)

L2 norm error (2−step RK, 2nd Order)

Slope = 1Slope = 2

X 1D convergence analysis by means of the L1 & L2 norm has been carried out at t ≈ 34.5 sX Demonstrates the expected accuracy of the available schemes for all variables

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 32: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

2D Spinning Plate

Spinning Plate

Problem description: Unit side plate, nearly incompressible hyperelastic Neo-Hookean material,ρ0 = 1100 kg/m3, E = 17 MPa, ν = 0.45,Discretisation = 20×20 cells, ∆t = 1× 10−4s, αCFL = 0.5, ω0 = 105 rad/s

x

y

ω0

1 m

0 0.05 0.1 0.15 0.2−500

0

500

1000

1500

2000

Time (sec)

Mom

entu

m (

N.m

.s;k

g.m

.s−1

)

Linear momentum xLinear momentum yLinear momentum zAngular momentum

X Demonstrates the conservation of angular momentum

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 33: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

2D Spinning Plate

Spinning Plate

Problem description: Unit side plate, nearly incompressible hyperelastic Neo-Hookean material,ρ0 = 1100 kg/m3, E = 17 MPa, ν = 0.45,Discretisation = 20×20 cells, ∆t = 1× 10−4s, αCFL = 0.5, ω0 = 105 rad/s

x

y

ω0

1 m

0 0.05 0.1 0.15 0.2−500

0

500

1000

1500

2000

Time (sec)

Mom

entu

m (

N.m

.s;k

g.m

.s−1

)

Linear momentum xLinear momentum yLinear momentum zAngular momentum

X Demonstrates the conservation of angular momentum

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 34: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

3D Bending Column

Bending dominated scenarioProblem description: Nearly incompressible hyperelastic Neo-Hookean material, ρ0 = 1100 kg/m3,

E = 17 MPa, ν = 0.45, αCFL = 0.3, V = 10 m/s

x

y

z

1m1m

L = 6m

v0 = [V y/L, 0, 0]T

[Animation - 3D]

X The formulation eliminates the bending difficulty

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 35: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

3D Bending Column

Bending dominated scenarioProblem description: Nearly incompressible hyperelastic Neo-Hookean material, ρ0 = 1100 kg/m3,

E = 17 MPa, ν = 0.45, αCFL = 0.3, V = 10 m/s

x

y

z

1m1m

L = 6m

v0 = [V y/L, 0, 0]T

[Animation - 3D]

X The formulation eliminates the bending difficulty

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 36: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

3D Twisting Column

Highly non-linear problem

Problem description: Nearly incompressible hyperelastic Neo-Hookean material, ρ0 = 1100 kg/m3,E = 17 MPa, ν = 0.45, αCFL = 0.3, Ω = 105 rad/s

x

y

z

L

ω0 = [0,Ωsin(πy/2L), 0]T

(−0.5, 0,−0.5)

(0.5, 6, 0.5)

[Animation - 3D]

X Demonstrates the robustness of the numerical scheme

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 37: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

3D Twisting Column

Highly non-linear problem

Problem description: Nearly incompressible hyperelastic Neo-Hookean material, ρ0 = 1100 kg/m3,E = 17 MPa, ν = 0.45, αCFL = 0.3, Ω = 105 rad/s

x

y

z

L

ω0 = [0,Ωsin(πy/2L), 0]T

(−0.5, 0,−0.5)

(0.5, 6, 0.5)

[Animation - 3D]

X Demonstrates the robustness of the numerical scheme

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 38: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Outline

1 IntroductionMotivationOpenFOAM

2 Reversible elastodynamicsGoverning equations

3 Numerical techniqueSpace-time discretisationContact fluxInvolution

4 Numerical resultsMesh convergence2D results3D results

5 Conclusions

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 39: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Conclusions and further research

Conclusions• An upwind first order conservation law formulation based on the finite volume method, has been

presented for fast solid dynamic simulations within the OpenFOAM environment

• Linear elements can be used without usual volumetric and bending difficulties

• Velocities (or displacements) and stresses (or strains) display the same rate of convergence

On-going work• Introduction of an additional conservation law for the Jacobian of the deformation gradient

• Introduction of a plasticity model

References· C. H. Lee, A. J. Gil and J. Bonet. Development of a cell centred upwind finite volume algorithm for a new

conservation law formulation in structural dynamics, Computers and Structures 118 (2013) 13-38.

· M. Aguirre, A. J. Gil, J. Bonet and A. Arranz Carreño. A vertex centred Finite Volume Jameson-Schmidt-Turkel (JST)algorithm for a mixed conservation formulation in solid dynamics, Journal of Computational Physics, 259 (2014)672-699.

· A. J. Gil, C. H. Lee, J. Bonet and M. Aguirre. A stabilised Petrov-Galerkin formulation for linear tetrahedral elementsin compressible, nearly incompressible and truly incompressible fast dynamics, Computer Methods in AppliedMechanics and Engineering, 279 (2014) 659-690

· J. Bonet, A. J. Gil, C. H. Lee, M. Aguirre and R. Ortigosa. A first order hyperbolic framework for large straincomputational solid dynamics: Part 1 Total Lagrangian Isothermal Elasticity, 283 (2015) 689-732.

· J. Haider, A. J. Gil, J. Bonet and C. H. Lee. A first order conservation law formulation for fast solid dynamics inOpenFOAM, Journal of Computational Physics, In preparation

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 40: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

Conclusions and further research

Conclusions• An upwind first order conservation law formulation based on the finite volume method, has been

presented for fast solid dynamic simulations within the OpenFOAM environment

• Linear elements can be used without usual volumetric and bending difficulties

• Velocities (or displacements) and stresses (or strains) display the same rate of convergence

On-going work• Introduction of an additional conservation law for the Jacobian of the deformation gradient

• Introduction of a plasticity model

References· C. H. Lee, A. J. Gil and J. Bonet. Development of a cell centred upwind finite volume algorithm for a new

conservation law formulation in structural dynamics, Computers and Structures 118 (2013) 13-38.

· M. Aguirre, A. J. Gil, J. Bonet and A. Arranz Carreño. A vertex centred Finite Volume Jameson-Schmidt-Turkel (JST)algorithm for a mixed conservation formulation in solid dynamics, Journal of Computational Physics, 259 (2014)672-699.

· A. J. Gil, C. H. Lee, J. Bonet and M. Aguirre. A stabilised Petrov-Galerkin formulation for linear tetrahedral elementsin compressible, nearly incompressible and truly incompressible fast dynamics, Computer Methods in AppliedMechanics and Engineering, 279 (2014) 659-690

· J. Bonet, A. J. Gil, C. H. Lee, M. Aguirre and R. Ortigosa. A first order hyperbolic framework for large straincomputational solid dynamics: Part 1 Total Lagrangian Isothermal Elasticity, 283 (2015) 689-732.

· J. Haider, A. J. Gil, J. Bonet and C. H. Lee. A first order conservation law formulation for fast solid dynamics inOpenFOAM, Journal of Computational Physics, In preparation

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015

Page 41: A first order conservation law formulation for fast solid ...jibranhaider.weebly.com/uploads/1/6/8/3/16830764/[2015-jibran-acme... · OpenFOAM An open source CFD software package

Outline Introduction Reversible elastodynamics Numerical technique Numerical results Conclusions

THANK YOU

Jibran Haider (ACME 2015, Swansea University, UK) 10th April 2015