A Critical Review of Cerrently Pore Pressure Methods

download A Critical Review of Cerrently Pore Pressure Methods

of 62

Transcript of A Critical Review of Cerrently Pore Pressure Methods

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    1/176

     

       

         

     

     

     

       

     

     

     

     

    •  

    •  

    •  

    http://htt//etheses.dur.ac.uk/policies/http://%20http//etheses.dur.ac.uk/4090/http://etheses.dur.ac.uk/4090/http://www.dur.ac.uk/

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    2/176

     

     

     

     

    http://etheses.dur.ac.uk/

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    3/176

    A

     critical

     review of

     currently

     available pore

    pressure

     methods

     and their input

    parameters.

    Glaciations and compaction of North Sea

    sediments.

    A

      copyright of this

      thesis

      rests

    with the author. No quotation

    from it should be published

    without his  prior  written

      consent

    and information derived from it

    should be acknowledged.

    By

    Carl Fredrik Gyllenhammar

    0

     NOV

      2003

    This

     thesis

     was submitted as the

      fu l f i lmen t

     of the requirements for the

    degree

     o f

     Doctor

     of Philosophy

    Car l

      l-redrik

      Gyl lenhammar

    i

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    4/176

    Abstract

    Historically

      pore

      pressure

      evaluation in exploration

      areas

      was based on

      empirical

    relationships  between  d r i l l i n g  parameters,

      wireline

      logs and the mud weight.

    Examples include Eaton's Ratio and the Hottman & Johnson Methods,

      which

      were

    based on data

      from

      the  G u l f  of

     Mexico.

      These methods are not readily transported to

    other

      areas,

      such as the  North  Sea Basin, where the sediments are  different  in

    character and where

     burial

     and temperature histories are

     distinctly different.

    Data  f r o m

      several offshore

     North

      Sea

      wells,

      w i t h

      high quality wireline

      and associated

    data have been analysed to determine the most appropriate method to estimate pore

    pressure

      in mudrocks. The data have led to an understanding of the key parameters

    for

     successful pore

     pressure

      estimation. The most

     effective

     method is shown to be the

    Equivalent

      Depth

     Method,

      but

      only

     where

      disequilibrium

     compaction is the source of

    the overpressure in the mudrocks.

    Core samples

      f r o m

      576

      Br i t i s h

      Geological Survey sites in the offshore area  o f the

    B r i t i s h

     Islands were compared  w i t h

      >

     10,000 porosities collected

     f r o m

     the

     deep oceans

    (DSDP/ODP  sites), which show that the porosities in the shallow section in the  North

    Sea are anomalously low. The shallow section of the

      North

      Sea includes large

    volumes  of Pleistocene-Recent sediments deposited as  glacial  and  inter-glacial

    deposits. Frequency analysis

      (Cyclolog)

     of the

      wireline

      data covering this

      interval

      in

    several

      North

      Sea  wells  revealed a pattern in the relative featureless

      original

      data.

    Comparison  w i t h

      the

      global

      signature fo r oxygen isotopes for the

      same

     time period

    suggests

      that there have been ten cycles of ice

      sheet  b u i l d

      up

      (Glacial

      period)

    followed

      by

      melting

      (Interglacial

      period)

      during

      the last one

      m i l l i o n

      years.

      Glacial

    deposits

      from

      10

      individual

      glacial  cycles have therefore been

      identified

      in several

    exploration wells  in the  North  Sea. Implications of

     loading/unloading

      o f ice for the

    migration

     and trapping o f hydrocarbons in the

     North

     Sea Basin are

      assessed.

    Carl

      Fredrik  Gvi l en h a m m a r

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    5/176

    Acknowledgements

    First I must thank my supervisor, Richard Swarbrick ( D i c k ) . I met  Dick f i rs t  time in

    December  1995 in London. It was the

      f i r s t

     GeoPOP meeting I attended representing

    Norske Conoco. When a year later I expressed interest in doing a PhD at the

    university of Durham, his enthusiasm, despite my age, made what was

      laying ahead

    possible. My w i f e M a r i t  and I  l e f t our jobs late 1998, we sold our house  in Stavanger

    and moved to Durham w i t h our two children,

     Elen-Martine

     and Fredrik.

    A t the university I found Dic k' s continues support and interest i n my subject as  w e l l

    as the requirement to deliver regular reports to GeoPOP an

     assurance

     for continued

    progress.  N e i l

      Goulty

     was never fa r away to discuss any  d i f f i c u l t equation. Both  his

    and Dick' s enthusiasm for my "ice theory" made this thesis what it is. I had also help

    f r o m

     Fred Wollard's

     long

     experience  w i t h using principle  component analysis. The

    last year in Durham I was  lucky to share an office

     w i t h

      M a r t i n Traugott. He shared his

    long

     experience in pore

     pressure

     predic tion as  w e l l as his own developed software

    PresGraf  w i t h  me.

    M y  thanks also  goes to Norske Conoco, in particularly James Middleton. They

    supplied

      the  w e l l data I used as  w e l l  as providing financial support fo r the project.

    Thanks go to all

     those  f r o m

     GeoPOP who were there to help and exchange ideas,

    Toby, Paul, Daniel, Neville, Gareth Yardley, Andy  A p l in  and Yunlai Yang.

    Finally many thanks to my new colleges at BP, for their support during the last year,

    Nigel  Last, Mark Alberty  and  M i k e McLean.

    Call Freclrik  Gyl ienhamrnur

    iii

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    6/176

    Table of Contents

    Abstract ii

    Acknowledgements ii i

    Table of Contents iv

    List of Tables vi

    Lis t of Figures

    v

    i i

    Declaration  x i

    Chapter  1  Introduction 1

    1.1  Background 2

    1.2 Data 3

    1 3  Introduction 7

    1.4

      Pressure,

     the basic concepts  11

    1.5  Aims and layout of thesis  14

    Chapter 2  Pore Pressure Evaluation Concepts and definitions

      16

    2.1  Def in i t i on  17

    2.1.1  Mudrock porosity  18

    2.1.2  Different porosity evaluation equations  18

    2.1.3

      Normal compaction curve and trend lines 23

    2.1.3.1

      Athy-type re lationship

      24

    2.1.3.2  Soil mechanics relationship 25

    2.1.3.3  A t hy

     - Soil mechanics: how are they

     different

      25

    2.1.4

      Vertical versus

     mean

     effective stress

      28

    2.2

      Pore Pressure

     Calculation Methods 29

    2.2.1  Vertical

     Methods 30

    2.2.1.1 Equivalent depth method 30

    2.2.1.2

      Harrold

     method 32

    2.2.1.3  Exp l i c i t

     method using the

     resistivity

     log 33

    2.2.2

      Horizontal

     methods 35

    2.2.2.1 Eaton Method 35

    2.2.2.2 The pore

     pressure

     calculation program; PresGraf 37

    2.2.2.2.1

      PresGraf

     normal

     compaction trend 37

    2.2.3 Seismic 40

    2.2.4 ShaleQuant 41

    2.2.5 Principle Component Analysis 41

    2.3

      Dr i l l ing parameters

      46

    2.3.1 Real time

     data

      48

    2.3.2 D'exponent 48

    2.3.3 Torque 54

    2.3.4 Hydraulics 55

    2.3.5 Bit type and wear 55

    2.3.6 Lagged data  56

    2.3.6.1 Gas 56

    2.3.6.2 Cuttings and Cavings 58

    2.3.6.3  Mud temperature in and out 58

    2.3.6.4 Mud

     resistivity

      in and out 58

    2.3.7 Mud chemistry and mud-formation chemical reactions 59

    Chapter 3 Comparison of

     different

     pore

     pressure

     methods using a North Sea  wel l  60

    3.1 Introduction 61

    3.2

      Pore pressure

     evaluation of

     w e l l

      1/6-7 in the

     North

     Sea, Norwegian sector 61

    3.2.1  Pore

     pressure

     evaluation while  dr i l l ing

      (wellsite)

      62

    3.2.2 The Post-well analysis  •  63

    3.2.2.1 Tertiary 67

    3.2.2.2 Chalk 67

    Carl

      Fredrik  GvHenhainmar  iv

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    7/176

    3.2.2.3

      Jurassic

      67

    3.3 Normal Compaction in the North Sea 69

    3.3.1  Palaeocene and Lower Eocene  75

    3.3.2 Normal compaction  f r o m resistivity data  76

    3.4 Wireline log

     pore

     pressure calculation 78

    3.5 Comparing the North Sea

      w i th

      the

      G u l f

     of Mexico Basin 86

    3.6

      Vimto#land#2

      88

    3.7

      Summary

     and  conclusions  93

    Chapter

     4 The impact of the Glaciation on the Normal compaction in the North Sea 96

    4.1

      Introduction 97

    4.2 Glacial history 99

    4.2.1

      The

     Neogene

     -

      Pleistogene sedimentary succession

      102

    4.3

      Ti l l s

      103

    4.4 Mudrock

     porosities 104

    4.5 Oxygen

      isotope

     data

      106

    4.6 Time series frequency

     analysis

     (CycloLog)  108

    4.7 Ice loading and

     pore pressure  112

    4.8 Subglacial  water  f l o w

      .....118

    4.8.1 Resistivity log response  121

    4.9 Hydrocarbon migration 122

    4.10

      Erosion of the  Scandinavia during

     Quaternary

      123

    4.11

      Conclusions 124

    References:  126

    Appendix 1

      136

    Appendix 2

      145

    Appendix 3

      155

    Carl

      Fiednk

      Gvll enliamma '

    v

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    8/176

    L i s t of Tables

    Table 2-1 Eigenanalysis of the correlation matr ix 42

    Table 2-2 A

      l ist

     of

     measurements

     that can be

     used

      to interpret the

      shale

     pore

      pressure.

    47

    Table 2-3 Eigenanalysis of the correlation matr ix 52

    Table 4-1 BGS sits and exploration wells  105

    Table 4-2 The  f l o w rates  are calculated assuming hydrostatic

     pressure

     in the aquifer

    underlying

      the aquitard  120

    Curl l-reclrik

      Gy l l en h a m m a r  v i

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    9/176

    L i s t of Figures

    Figure 1.1 The wireline log plot of w e l l  1/6-7

      f r o m

     seabed to 2000m 4

    Figure 1.2 The wireline log plot of

     w e l l

      1/6-7

      f r o m

      1900 to 4000m 5

    Figure

     1 3

     The wireline log plot o f

     w e l l

      1/6-7

      f r o m

     3000

      m

      to

     4995

      m

      (TD) 6

    Figure

      1.4

      Schematic of

     wireline

     logging. The

      lithological

     column to the right is a

    schematic o f a pressure probe (RFT) being

     used

     to measure the pore pressure in

    permeable sandstone

      9

    Figure 1.5

      Pressure

     plotted

     against

     depth in a

      fictional  w e l l .

      The effective

     stress

     is

    equal to the overburden  pressure minus the pore pressure and the

     overpressure

      is

    equal to the pore pressure minus the hydrostatic pressure  12

    Figure 1.6 The Figure to the right shows how a pressure

     versus

     depth plot

      ( l e f t ,

     Figure

    1.5)

     becomes

     presented

     as

     pressure

     gradient

      versus

     depth  14

    Figure 2.1

     a,b,c,d.  la

     porosity variation as a function of sonic velocity. B, porosity

    versus

     bulk density. C, the sensitivity to pore water density. D, the sensitivity to

    matrix density 20

    Figure 2.2 Log derived porosities in

     w e l l  Nor-1/6-7

     Norway. The low porosity

    interval

      f r o m

     3261m to 4346m depth is the

      Cretaceous

     Chalk. The

     values

      are

    listed in Appendix 1 23

    Figure 2.3 Comparison o f porosity  w i t h  effective stress for the

      A t h y

      and the SM

    equations.  I n i t i a l  porosity (sea  floor porosity) for

     A t h y

     is 0.7 (70 %) whi le the

    porosity at  100 kPa (approximately  100

     meters

     below sea

      f l o o r )

      is 0.66 (66 %)

    The compaction factors a re for

     A t h y ; 0.00008

     and SM; 0.74 26

    Figure 2.4 The relation ship between porosity, solidity and

      v o i d

      ratio is shown. The y-

    axis is the compaction as a length reduction. It is

     assumed

     that a confined

    volume is

     compressed

     beginning

      w i t h

      a

     v o i d

      ratio of four 27

    Figure 2.5. Porosity

      f r o m

     a

     pseudo  w e l l

     is plotted

     versus

     depth. Integrating the density

    log and subtracting the hydrostatic  pressure  calculate the effective

     stress.

     The

    two

     normal compaction  curves are coming

      f r o m

     Figure 2.3 30

    Figure 2.6 Porosity

      f r o m

     a

     pseudo

      w e l l is plotted

     versus

     mean effective stress. The

    two

     normal compaction

      curves

     are coming

      f r o m

     Figure 2.3. See text for an

    explanation for the equivalent effective stress method 32

    Figure 2.7 Comparing the porosity derived

      f r o m

      the sonic, density and neutron log

    w i t h  the resistivity derived using the equation 1.37 proposed by

      A l ix a n t

      and

    Desbrandes(1991)

      34

    Figure 2.8 The PresGraf normal compaction trend to the

      l e f t

     compared  w i t h  the

      A t h y

    normal

      compaction curve (Figure 2.3) to the right 39

    Figure 2.9  Scree plot of the eigenvalue of

     each

     principal component of the PCA of the

    wireline

      logs 43

    Figure

     2.10

     a, b, c and d. The plots to the

      l e f t

     (a and c) are  cross

     sections

     through

     data

    perpendicular to

     PCI,

      PC2 and PC3. b and d show the loading values  w i t h

    respect

     to the different principal components  44

    Figure

      2.11

     a and b.

     PCI  versus

     depth in blue and the sonic travel time in green 46

    Figure 2.12 The plot

     shows

     the

      d'exponent

      and the corrected

      d'exponent versus

      depth.

    The straight lines are trend lines representing one particular pressure  gradient

    (one mud weight) 49

    Figure 2.13  Cross plot of the d'exponent

     versus

     the sonic travel time, w e l l  N  1/6-7. It

    suggests

      a good relationship between the sonic log and the

     d'exponent

     in the

    Tertiary

      section (pink

     squares).

     The correlation is

     less

     obvious in the

      Jurassic

    (yellow

      triangles). There is no correlation in the Chalk 50

    Carl

      Frecii

      ik

      Gvl l en h a m m a r

      vn

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    10/176

    Figure

     2.14 Cross

     plot of the

     d'exponent versus

     the resistivity log. The plot show no

    correlation 51

    Figure

     2.15

     Scree plot of the eigenvalue of

     each

     principal component of the PCA of

    the

      dri l l ing

     parameters

      53

    Figure 2.16 a, b, c, d. The plots to the  left (a and c) are cross

     sections

     through

     data

    perpendicular to

     PCI,

     PC2 and PC3. b and d show the loading

     values

      with

    respect

     to the

     different

     principal

     components

      53

    Figure

     2.17

     a, b and c.

     PCI

      versus

     depth

      wi th

     the standardized log porosity overlaid in

    Figure b and the normalized sonic travel time in Figure c 54

    Figure 3.1 The corrected  d'exponent plotted

     versus

     depth

      wi th

     a normal trend line

    overlaid

     in green.

     Normally

     new trend lines

      w i l l

      be

     added

     paralleling the green

    line

     each time a new bit is put on the  drill  string. The new line w i l l represent the

    actual

      M W .

      An alternative trend line is

     suggested

     in red. That trend line

     w i l l also

    result in a

     reasonable

     calculated pore

     pressure

     at the target of interest (i.e. 4200

    to 4800

     m)

      63

    Figure 3.2 The sonic velocities in the

     shale sections

     plotted

     against

     depth on a

    semilogaritmic graph. The yellow line is the best visual  f i t trend line 65

    Figure 3.3 A comparison of the calculated pore

     pressure

     f r o m the

     d'exponent

     (blue

    dots) and the sonic velocity calculated pore

     pressure

      66

    Figure 3.4

     Shale

     velocities f r o m the wells in Figure 3.2 compared

      wi th

     the wells

     used

    by

      Hansen (1996). The Figure to the  left has a logarithmic X-axis. At such a plot

    the  A t h y type normal compaction trend

     become

     a straight

      line.

     On the plot to the

    right

     it is much more obvious that the

      wel l used

     in this study are different f r o m

    the one

     used

     by Hansen

     (1996)

      70

    Figure 3.5 Porosity

     data

     f r o m

     10000

     DSDP/ODP mudrock

     samples.

      ODP site #336 is

    in

      the

     deep

     water Norwegian Sea. The yellow curve is the

     suggested

     normal

    compaction trend drawn through the

     data

     set 71

    Figure 3.6 Compaction

     trends

     as plotted as vo id ratio

     versus

     effective stress.

     A l l

      the

    different trends

     that

     have been tested

     in this

     chapter

     are overlaid. The PresGraf

    (in

      blue) is an approximation as the real curve is proprietary

     data

     to BP 72

    Figure 3.7.

     Different

     wireline methods to calculate the volume of clay are compared

    in  wel l

     N 1/6-7. The red dot are  V c l  f o rm using the GR log, the blue

     dots

     f r o m

    the neural network (ShaleQuant and the green

     dots

     the neutron and density log.

    74

    Figure 3.8 Twenty-six wells in 5 offshore

     areas

     and 4

     onshore

     fields (MacGregor,

    1965). The pink line is a

     suggested

     normal trend for the

      G u l f

     of Mexico  77

    Figure 3.9

     Pore pressure

     in

     mega-Pascal versus

     depth in

     meters.

     The green solid line

    is the overburden and the blue solid line is the hydrostatic pressure. The

    equivalent depth method calculated pressure is in blue

     dots

     while the

     orange

     is

    the University of Durham method. The

     dashed

     black curve is the

     operator's

    interpretation while the olive solid line is the mud weight. The red crosses are the

    R FT

      direct pore pressure

     measurements

      79

    Figure 3.10

     Pore pressure

     in

     mega-Pascal versus

     depth in meters. The green solid line

    is the overburden and the blue solid line is the hydrostatic

     pressure.

     The Eaton

    equation

      wi th

     the sonic log as input (red dots) compared

      wi th

     the Equivalent

    depth method

      wi th

     the porosity as input (blue dots). The red

     crosses

     are the RFT

    direct pore

     pressure measurements.

     The

     values

     are listed in Appendix 2 82

    Figure

     3.11 Pore pressure

     in

     mega-Pascal versus

     depth in

     meters.

     The green solid line

    is the overburden and the blue solid line is the hydrostatic pressure. The Eaton

    equation in red

     dots

     compared

      wi th

     the Equivalent depth method in solid blue,

    Curl  Fredrik  Gvilenhuff im;ir

    V l l l

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    11/176

    both  w i t h  the sonic log as input. The red

     crosses

     are the RFT direct pore

      pressure

    measurements.

     The values are listed in Appendix 2 83

    Figure

     3.12 Pore

     pressure

     in mega-Pascal versus depth in meters. The green  solid line

    is the overburden and the blue  solid line is the hydrostatic

     pressure.

     The

    Equivalent

     depth method tested  w i t h  two

     different

     normal trends. The

      A t h y

    equation used by the operator of

     w e l l

     Nor-1/6-7

      (blue dots)

     versus

     the DSDP-

    ODP

     based trend (red dots).The red crosses are the RFT direct pore

     pressure

    measurements. The values are listed in Appendix 2 83

    Figure 3.13 The

      shale

     porosity (red solid curve to the  right) and the

      shale

     travel time

    (green

      solid line

     to the

      right) versus

     depth in the

     Jurassic

     section. The x axis is in

    for porosity,

     u,sec/ft

     for the sonic log. The curves to the  l e f t of the overburden

    (strait solid green  line) is in MPa. Between the overburden and the hydrostatic

    pressure  ( l e f t

     most  solid blue) are

      f r o m l e f t

     the pore

     pressure

     calculated using the

    sonic log as input (blue curve) then  w i t h  porosity as input (orange curve). The

    values are lis ted in Appendix 2 84

    Figure 3.14 Figure 3.13, the

     pressure

     transition

     zone

      f r o m

     4850- 4890 meters. The

    values are listed in Appendix 2 84

    Figure

     3.15 Pore pressure in mega-Pascal versus depth in meters. The green  solid line

    is the overburden and the blue solid line is the hydrostatic pressure. The Eaton

    equation  w i t h  the resistivity log as input (green dots) compared  w i t h  the Eaton

    sonic (red dots). The red

     crosses

     are the RFT direct pore

     pressure measurements.

    The values are listed in Appendix 2 85

    Figure 3.16 Depiction of salt features in the area around the basin. The

      local

    depocenteres

     are termed mini-basins (Yardley and Couples, 2000) 87

    Figure

     3.17

     Comparison of the NRG derived

     shale

     porosity

     versus

     permeability

    curves,

      w i t h

      some

     basin modell ing default curves. A

      range

     o f

     clay-fractions

     are

    shown,

      f r o m

     20% to 80% (Yang and  A p l i n ,  2000) 89

    Figure

     3.18

     Comparison o f the GeoPOP derived

     shale

     compaction curves  w i t h

      some

    basin modell ing default curves. A

     range

     o f clay fractions are shown,

      f r o m

     20%

    to 80% (Yang and  A p l i n ,  1999) 90

    Figure 3.19 Pore

     pressure

     prediction for

     V i m t o

      #2. The blue curve is the pore

    pressure

     calculated using the Eaton method and the

      shale

     sonic

     velocity

     as input.

    The red

      line

     is pore

     pressure

     using the equivalent depth method. The

     pink

    diamonds are the  M D T

      pressure

     points. The red  line to the  l e f t is the overburden.

    The values are listed in Appendix 3  91

    Figure 3.20 The reservoir section for

     w e l l

      Vimto#2.

     The MDT

     pressures

     are generally

    50 to

      100

     psi higher than the calculated

      shale pressures  91

    Figure 3.21

     The red curve is the pore

     pressure

     calculated  f r o m a 2-D model alowing

    for lateral transfere (Yardley and Couples, 2000) 92

    Figure 4.1 A curve showing the variation in oxygen isotope composition of the sea-

    water for the last 6 m i l l i o n years. The oxygen isotope

     data

     are

      based

     on

    foraminifera f r o m three boreholes  near the  coast of Ecuador (Shackleton et  al .,

    1990; Shackleton et  a l . ,  1995 98

    Figure 4.2 Reconstruction o f the Scandinavian and

      B r i t i s h

      Ice

     Sheet

     during a glacial

    stadial (after Hughes,

      1998).

     The maximum ice thickness onshore was 2600 m

    and the maximum thickness i n the offshore

     North

      Sea was approximately 1600

    m

      101

    Figure 4.3 Porosity

     versus

     depth. A compilation of core

      measurements

     and

      wireline

    calculated porosities  106

    Carl

      I-relink  Gvl lenhammar

    X

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    12/176

    Figure 4.4 To the  l e f t is the oxygen isotope data shown in Figure

      4 . 1 .

     To the

      right

      is

    the GR log followed by the  filtered  GR log f r o m  w e l l

     Nor-1/3-2.

     The  t h i r d  curve

    is  picks representing sudden

      changes

     i n the  c y c l i c i t y of the filtered GR curve.

    The  t h i r d curve show peaks, positive or negative representing sudden transitions

    f r o m

     high

     to low GR value, shown as a negative peak (to the  l e f t ) . The opposite

    results in a positive peak. The last curve is the integration of previous curve.

    These curve were output  f r o m CYCLOLOG*. This curve represents the

    cumulative

     difference between the predicted log values and the actual log values.

    Breaks in the  c y c l i c i t y succession may be related to missing sections or abrupt

    changes

     in sedimentation

     rates.

     A large positive peak

      could

     be a condensed

    section

      109

    Figure

     4.5 Correlation of

      five

     wells

     d r i l l e d

      in the southern part of the Norwegian

    sector using

     CycloLog

     software. The distance

      f r o m Nor-1/3-2

     to

     Nor-2/11-7

      is

    about 100 km (60

      m i l s ) .

     The cycles are compared on the

      l e f t  w i t h

      oxygen isotope

    signature (See text)  111

    Figure

     4.6 The

      four maps

     above present the palaeo-coastline for each

     subsequent

    crustal motion

     model. It is important to note that large parts of the

     North

      Sea

    were dry land after the last deglaciation, in each  case for a period of several

      1000

    years 113

    Figure 4.7 The  figure to the  l e f t show a

     typical

     pore pressure profile in the

     North

      Sea

    w i t h no seawater just prior to a

     glaciation.

      The sand at 2000 meters subcrope to

    seafloor and has therefore hydrostatic pressure.

     During

     glaciation of the

      North

    Sea the overburden pressure and the hydrostatic pressure increase  w i t h  a pressure

    equivalent to the weight of the ice-sheet.  I f the sand subcrops under the ice-sheet

    the pore

     pressure

      w i l l

     also increase in the sand. But

      i f i t

      subcrops outside the ice-

    sheet,

     its pore pressure

      w i l l  only

     vary as much as the sealevel

     changes

      114

    Figure 4.8 The profile

      B - B '

      shown on Figure 4.7. It show that the maximum

    subsidence was i n the centre o f the

     Baltic

     Sea of more than 400 metres,

      while

     it

    was

     potentially

     u p l i f t in the

     North

      Sea  ( M i l n e  et

      a l . ,

      1999, Mitrovica  et

      a l . ,

      1994,

    Tushingham,

      A . M . ,

      1991) 116

    Figure

     4.9

     Resistivity

     curves  f r o m the

     North

      Sea compared  w i t h G u l f of

     Mexico.

      The

    graph to the

      l e f t

     is raw data

      while

      the raw

     resistivity

      curves have been

    temperature corrected on the graph to the

     right  122

    C a r l

      Fredr ik  Gyllenhammar

    x

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    13/176

    Declaration

    The content of this

      thesis

     is the original work of the author (other

     people's

     work,

    where included, is acknowledged by reference). It has not

     been

      previously submitted

    for

     a

     degree

     at this or any other university.

    Carl

     Fredrik

     Gyllenhammar

    Durham

    September 2003

    Copyright

    The copyright of this thesis rests w i t h  the author. No quotation  f r o m  it should be

    published without his prior written

     consent

     and  information derived

      f r o m

      it should be

    acknowledged.

    Cur

    Fredrik

      Gyl lcnhammar

    xi

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    14/176

    Chapter 1 Introduction

    Carl

      Fredrik Gvilenhummur

    1

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    15/176

    h i i - o ; H k ' ; i o n

    1.1 Background

    Fifteen years ago, most pore pressure studies were undertaken solely for safety

    aspects in the design and

      d r i l l i n g

     o f exploration

     wells.

     As the need for accurate pore

    pressure

     evaluation is

     growing

     due to its general application in exploration  studies

    such as hydrocarbon

     migration

     studies, more accurate methods founded on sound

    physical

     principles, and not just empirical observations, are needed.

    Pore

     pressure

     estimation is a particular challenge i n the North Sea on account of the

    complex  tectonic and sedimentological history of the region, where the highest

    overpressure (pore pressures above the normal , hydrostatic pressure) are  found in

    Jurassic

     and Triassic reservoir

     sandstones.

      The

     presence

     o f a thick Chalk section as

    w e l l  as a variety of

     mudrock

      types,  including a kerogen-rich petroleum source rock,

    challenge standard practices fo r pore pressure evaluation which were, in many cases,

    developed

     in the  G u l f o f

     Mexico

     where the rocks are younger and exclusively

    siliciclastic

      (sandstone, siltstones and shale mudrocks). The late history (Pleistocene-

    Holocene) o f the

     North

      Sea has

      involved

      ice loading and the deposition of

     glacially-

    derived

     sediments  which add a further component of complexity to the stress and

    f l u i d

     history of

     North

      Sea sediments.

    The availability of a very high quality set of w e l l  data  f r o m the Norwegian North  Sea

    (Central

     Graben) provided impetus for this project

     which

     was designed to test current

    methods of pore

     pressure prediction,

     assess the impact of a late ice-loading and

    unloading

     history and apply new technology on mudrock compaction (being

    concurrently developed in the GeoPOP research group - see  below).

    There are a number o f complementary data which  can be used for pore

     pressure

    evaluation  including basin modelling, seismic velocities, wireline logs and

      d r i l l i n g

    parameters. Each requires

     different

     data

      input

     and interpretation requirements. In this

    thesis the emphasis is fo r pore

     pressure

     evaluation using

     wireline

     logs. The

     response

    f r o m

     the

      d r i l l i n g

     parameters was used as an independent

      control.

    Carl 1-reilrik  Gyl lenhammar

    2

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    16/176

    Chapter  nirouui'i  i o n

    The thesis was funded by Norske Conoco in Norway and the work was included as

    part of GeoPoP. GeoPoP (GEOsciences Project

     into

      OverPressure) was a  j o i n t

    research project involving University of

     Durham,

     Newcastle University, Heriot Watt

    University

      and

     industrial sponsors

     such as major

     o i l

      companies

      l i k e

     BP, Amoco,

    Statoil,

     Norsk

     Hydro,

     Phillips, Conoco, etc. The aim of GeoPOP was to expla in how

    pore

     pressures

     evolve in mudrocks and to evaluate and develop new methods to

    predict and calculate the pore

     pressure

     in

     these

      sediments.

    1.2 Data

    Norske Conoco made most of the data available, consisting of

     wireline

     data  f r o m

    exploration wells.

     The most important

     w e l l

      was

      1/6-7, d r i l l e d

     by Norske Conoco in

    1989, which  is classified as a

     high

      pressure

      ( >

     10,000 psi) and

     high

      temperature

    (>350°F)  (HPHT)  w e l l .  In addition to  w e l l  1/6-7 were a number of offset well s in the

    southern part o f the Norwegian shelf. The data set included also

      some

     wells

     f r o m

    Haltenbanken and the Barents sea.

      W e ll

      1/6-7 has

      high quality wireline

     and mud

    logging data particularly  w i t h respect to testing pore pressure prediction and

    calculation

     methods (Figure 1.1, 1.2 and 1.3).

    GeoPOP provided the data  f r o m the  G u l f of

     Mexico.

      Data  f r o m the shallow coring

    project

     by

      B r i t i s h

     Geological Survey (BGS) were provided by BGS. Data

      f r o m

      the

    Ocean  D r i l l i n g Project (ODP) are freely available on the Internet and were

    downloaded free o f any charge.

    Frednk

      Gvlk 'n luunmar

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    17/176

    Chapter

      Intrudm/iiun

    W E L L N1 6 7

    Q

      —

    r  |  i  | 

    " V T C X A T L r j

    .CUt  L

    M L

      L E T  L

    71

    H   L I B L

      I T

      L

    T

     ZL

      X

      L

    S A J T — T M

    t

     J O

    L  1 t

    1

    i  r

     1

    L_l

    L

      r.

    • - n

    "W4 I K  » * *

    -4DD  J E :

    If

    fa •

    i   •

    LDD

    L

    S ff

    Lt

      r•

     [•

    l.L   [•[•

    . 7(,r,

    ,  - r .

    t

    .

    H O [ '

    L . M - f

    :

    L L C C

    Li

     f t

    I

      i l l

    . 1M

    Figure  1.1 The wireline log plot of we ll 1/6-7 fr o m seabed to 2000m.

    C a r l  Fredrik

      Gyllenhammar

    4

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    18/176

    Chapter

    I t  tw

    U N

    Figure 1.2 The wireline log plot of well 1/6-7  f ro m 1900 to 4000m.

    Carl

     Fredrik Gyllenhammur

    5

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    19/176

    W E L L

      N1 6-7

    « £ T

      CALL

      L

    I I M I I U I I >   I I I

    U K   liiilli

      ill

    I I I -1111111   I I I

    i i r - i u n i r  m i l

    l l E ? i M I I I | i

     i ll

    M I I M i l l l l  II

    I I I K I I I I I H I  M i

    mi i i i i i u i i  I S M

    iiiiiiiiniii

    iimiimiii

    lllllllllllll

      L

    illllllllllll  E

    m i n i u m

      ?

    H I I I S H I I I I I

    fiiihiinii  i i

    HIIBIIIII  llli

    lllllllllllll   I I I

    N I I U I I I I I I I

      I I I

    [ I I I E I I I I I I I I

      I I I

    H I I E 2 I I I I I I

     I I I

    I I I I M I I I I I I

     

    I I I E I I I I I I I I

      I I I

    I W I B I I I I H I I I

    [   I I M I I I I I I I   IF

    ' . n u l l u m  r:

    L U K I I I I I I I I I

      i

    I ' D l g H U M   111:'

    It  iSillllll

     

    I I M - .  i l l l

    I ' E i ^ i i l l l l

    I C S U U I I I I :

    l l l l l i  Ull'

    IllrillllSi

    lit.

     Will

    I I I I

     nun

    mi  win

    I

    ' ^ l l l l l

    I M I I I I I I I

    l .»?ll l l l l .

    I H I C t M i

      i T M

    "m i

     IIIIII IIIIII 

    i i i i J i l l l IIIIII E

    siiiiimiiimiiii

    211  i n i n   i

    IIIIII IIIIII  mill

     

    mm mm

      m i n i

    IIIIII IIIIII IIIIII

     

    IIIIII IIIIII

     m i n i

    IIIIII IIIIII IIIIII i

    i n  IIIIII

     m i n i

    IIIIII IIIIII

     m i n i

    T *

    3 §

    or  

    rai

      sum

      l

    immmFh

    Figure

     1.3

     The wireline

     log

     plot

     of

     well

     1/6-7

     from

     3000 m to

     4995

     m

      ( T D ) .

    (  ai  l Fredrik  Gvllenhumniur

    6

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    20/176

    1.3 Introduction

    I n exploration d r i l l i n g operations  pressure  f r o m the

     circulating

      d r i l l i n g  f l u i d (mud) is

    used to prevent the pore

      f l u i d

     in the porous rock entering the borehole. The pressure

    f r o m the mud at a particular depth is a function o f the average density (MW = Mud

    Weight)

     and the vertical height of the column

      f r o m

     that depth to the surface. In low

    permeability formations, such as mudrocks, the  formation can cave into the wellbore

    through

     tensile failure  i f the pore pressure is higher than the counter pressure  f r o m the

    mud. The industry has a long history of establishing empirical relationships between

    d r i l l i n g

     parameters

      such as the rate of penetration and the gas measured in the

    returning

      d r i l l i n g

      f l u i d

     to the pore

     pressure

     in the mudrocks. The

     uses

     o f

      d r i l l i n g

    parameters are very subjective and prone to large uncertainties. The pressure can also

    be calculated

     indirectly

      f r o m petrophysical

     measurements.

     Petrophysical

     data

     can be

    acquired while  d r i l l i n g or after d r i l l i n g a section. In the former

     case

     the petrophysical

    sensors are placed behind the  d r i l l bit in operations known as Logging While  D r i l l i n g

    ( L W D )

     or Measurement

      While

      D r i l l i n g

      ( M W D ) .

      When

     data

     is acquired

     once  d r i l l i n g

    has been completed, the petrophysical sensors are lowered down the hole

      suspended

    f r o m

     a

     wire (wireline

     logging) and readings taken by the tools while being reeled back

    up. The pore pressures in the reservoir rocks  w i t h high  permeability are measured

    directly

     using a

     wireline

      tool  w i t h  a pressure

     gauge.

     A cylindrical probe  w i t h a small

    aperture is hydraulically  forced into the  formation (Figure  1.4) and the

      tool

      remains at

    the location  u n t i l  the pressure stabilizes between the inside of the  tool  (where the

    pressure gauge is located) and the

      formation

     (where the probe has

     been

      extended).

    The pressure is recorded as pressure vs time. The most common trade acronyms for

    these tools are RFT  (Repeat Formation), FMT (Formation multi-tester) or MDT

    (Modular Dynamics Tester). In mudrocks where permeability is very low, this

      tool

    cannot be used due to the time it w i l l  take for pressure to stabilize. Direct  pressure

    measurements are also recorded when a hydrocarbon zone is tested, called a  D r i l l

    Stem Test  (DST).

    The accompanying petrophysical

     measurements

     collected at the same time as the

    pressure

     tests

     include sonic, velocity, neutron porosity, density, and resistivity (unless

    you intended to  l i s t  something else). These sensors are all calibrated for the porous

    formation

     and  w i l l  tend to give erroneous reading  i f any clay minerals are

      present.

    C'ai

    h e d n k

      Gvilenlnuriinai'

    7

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    21/176

    Inli oduciion

    The challenge is therefore to use  these

     measurements

     in mudrocks

      w i t h

      low

    permeability and high clay content. During compaction of compressible sediment,

    such as mudrock, water is expelled and the porosity decreases.  I f the free water which

    needs

     to be expelled to maintain equilibrium

     w i t h

      the imposed

      stresses

     cannot drain

    out of the system, the porosity  w i l l  not decrease,

      w i t h

      the result that the pore pressure

    increases

     above

     the hydrostatic  pressure. Porosity cannot be

     measured

     directly in a

    borehole. The porosity is calculated indirectly f r o m the sonic velocity, neutron

    porosity, density or the resistivity

     measurement,

     or a combination of

     these

    measurements.

     The effective or inter-granular

      stress

     is then calculated using a

    relationship between the porosity, the normal compaction trend and the total

    lithostatic stress

     (overburden

      stress).

    A   variety of empirical relationships

     have been

     developed for calculating mudrock

    porosity

      f r o m

     different log

     responses.

     Typically,  a stress-porosity relationship is not

    used

     directly, but instead porosity is compared

      against

     a normal compaction trend,

    which would be the porosity

     against

     depth for the location in question assuming a

    'normal'

      pressure

     profile

     equivalent to the hydrostatic

     head

     of a water column. In this

    work  it w i l l be shown that the normal compaction trend often yields the biggest

    uncertainties in calculating the pore pressure  in mudrocks.

    Carl  Fredrik  G y 1

     lenhann 1

     i;ii

    8

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    22/176

    Figure 1.4 Schematic of wireline logging. The lithological column to the right is a schematic of a

    pressure probe

      ( R F T )

     being used to measure the pore pressure in permeable sandstone.

    Having inferred mudrock porosity  f r o m logs and computed or established a normal

    compaction trend of expected porosity for normal pressure, the  f i n a l step is to  f i n d a

    relationship

     quantifies the pore pressure magnitude  associated  w i t h a mismatch

    between the estimated mudrock porosity  f r o m log response and the normal

    compaction trend.. This transform or equation might be based on physical principles,

    such as the equivalent depth (or effective stress) method, or empirical relationships,

    such as the Eaton's method. It

     w i l l

     be shown that the transform method used for

    calculating the pore pressure is

     less

     important than the choice of normal compaction

    trend.

    Carl Fredrik  Gyllenhammar

    9

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    23/176

    Chapter  i

    The

      i n i t i a l

     goal for this research was to establish a new method to calculate the pore

    pressure

     in mudrocks as a function of petrophysical

      measurements. During

     the

     course

    o f

      this research it became

     apparent

      that the classical equivalent depth method is a

    reliable equation and it

     would

     be of

      l i m i t e d

     value to attempt an improvement to it.

    Also,

     the porosity of the mudrocks can be reliably calculated  f r o m a combination of

    the available wireline logs. A sensitivity study shows clearly that the biggest

    uncertainty is the normal compaction curve. Eaton (1975) summarized it

     best:

      "The

    methods used

      to establish normal

     trends

     vary as much as the number  o f  people who

    do it".

    A

     normal compaction curve

     represents

     the

     reference

      trend describing the compaction

    behaviour of

     sediments which

      are normally

     pressured.

      The compaction (porosity loss

    involving expulsion of fluids) is caused by increases in vertical and /or horizontal

    stress.  Conventional pore

     pressure

     prediction uses  the normal compaction curve to

    estimate

      the magnitude of

     overpressure.

      Data  f r o m

     which

     normal compaction

      curves

    are derived include shallow buried

     sediments

     o f the same age and  lithology, or

    published compaction relationships. For example,

      Hansen

     (1996) examined

      three

    wells

     in the

     North

      Sea where he

     assumed

     that the mudrocks  have normal pore

    pressure. He established a relationship between the sonic travel time and the mudrock

    porosity

     used

     in this research.  Other approaches are based on laboratory

    measurements

     of compaction such as by Skempton (1970) where he showed a

    relationship between compaction and the volume of fine-grained material in the

    samples. The shortcoming o f that approach is that the relationship does not take into

    account the different compaction behaviours of clay minerals such as montmorillonite

    versus

     fine-grained quartz, (K.

     Bjorlykke (2001)

     personal oral cornmun.).

    This research

     shows

     that it is unlikely  that any useful normal compaction trend can be

    established in the

      North

      Sea due to

      recent glacial

      events.  The glacial

      t i l l s  l e f t

     by a

    earlier glacial event  have been  overlooked for many  years.  The  nature  of  these

    sediments

      is found to be very different  from  normal marine and non-marine  shale

    mudrocks. This

      suggest

      that the previous method of establishing a normal trend by

    overlaying

      a number of porosity

      curves

      f o r m offset wells

      w i l l

      give wrong

      results

     i f

    used

     in basins such as the North  Sea.

    C a r l  Frednk Gyllcnliammar

    10

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    24/176

    imroiiuaiijn

    1.4 Pressure, the basic concepts

    Fluids differ

      f r o m solids in that they are unable to support

     shear stress.

     When a body

    is

      submerged in a

      f l u i d

      such as water, the

      f l u i d

      exerts a force perpendicular to the

    surface at all locations around the surface of the body. I f the body is small enough so

    we can neglect any differences in the vertical water column, the force (F) per

     unit area

    ( A )

      is the

     same

     in all directions. This force per

     unit

     area

     is called the

     pressure

     P of the

    f l u i d :

    =

     F/A  [ E l . l ]

    The SI

     unit

      of

     pressure

      is Newton per

      square

      meter  ( N / m

    2

    ) ,

      which

      is called

      Pascal

    (Pa). The equivalent imperial

     unit

     is pounds per

     square inch

     (psi  =

      l b / i n

      ).

    Liquids  found in rocks in the subsurface are relatively incompressible. This means

    that the ratio of

     mass

      to volume, called density is approximately constant. For a

    l i q u i d

      whose density is constant, the

      pressure increases

      linearly

      w i t h

      depth. The

    pressure

     P at any point in a

      l i q u i d

     column is:

    =P

    0

      +

     pxgxh

      [E1.2]

    P

      is the

     pressure

     at the surface and h is the vertical

      l i q u i d

     column. The Greek letter

      p

    (rho)  is the density. Density has the

      unit

      mass/volume

      (kg/m

    3

      = g/cm

    3

    ).

      g

      is the

    acceleration due gravity at the earth surface and equal to

     9.81

      m/s

    2

    .

    Figure

      1.5 shows a

      simplified

     diagram of how pore

     pressure

     may

      increase

      in a

      w e l l .

    The hydrostatic

     pressure

      (often called the normal

     pressure)

      in sediments underlying

    the ocean often

     follows

      a gradient equal to 0.0101

      MPa/m.

      That is the

      increase

      in

    hydrostatic

     pressure

     in water

      w i t h

      an average density of 1.03  g/cm

    3

    .  The overburden

    pressure

     is the

     pressure

     exerted by all

     overlying

     material, both

     solid

     and  f l u i d . Below

    the water bottom, this

      line

      approximates 0.0226  MPa/m  (1

      psi/ft)

      in a clastic

    sedimentary environment. The pore

      pressure

      is the

      pressure

     of the

      f l u i d

      in the pore

    space of the rock. It may be equal to or higher than the hydrostatic

     pressure,

     but not

    higher than the overburden

      pressure

     (Figure 1.5). I f the pore

     pressure approaches

      the

    overburden

      pressure

      the rock

      w i l l

      fracture and

      release  fluids.

      However, often

    fracturing  w i l l occur at a lower pressure, equivalent to the  least principal stress,

     which

    C a r l  r iedi  ik (Jyllenhammiir

    11

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    25/176

    Chapter  I

    Introduction

    i n an extensional basin is

     less

     than the overburden (the vertical

     stress).

     I f at a specific

    depth of

     burial

      the

      mudrock

     permeability

     becomes

     so low that the  excess water

      f r o m

    normal  compaction can no longer

      f l o w

      out of the system as fast as the

      rate

      of new

    sediments, the pore

     pressure

      w i l l  increase. The maximum

     increase

     o f pore

     pressure

     by

    this

      mechanism called disequilibrium compaction (Swarbrick and Osborne, 1997)-

    and is often found to be parallel to the lithostatic gradient (Clayton and Hey, 1994),

    indicating,

      at depth, transfer of most/all of the load onto the pore  f l u i d ,

      w i t h

      very

    little/no increase  w i t h

     vertical effective stress..

    S E A

    sun

    nidi)

    1500

    SHALE

    s

    \

    4J

    g 2500-

    ressure

    .

    Q

      3000 -

    -

    3500-

    \

    \

    /J

    4000-

    SAND

    3>\  ^

    4500

    I  I I I I  I

    5000

    70

    -lo

    l l

    id

    100

    U

    Ml

    90

    Pore

     pressure

     (MPa)

    Figure  1.5 Pressure plotted against depth in a fictional well. The effective stress is equal to the

    overburden pressure minus the pore pressure and the overpressure is equal to the pore pressure

    minus the hydrostatic pressure.

    I n  a borehole, the  pressure  exerted by the

      d r i l l i n g

      f l u i d  to either prevent

      i n f l u x

      of

    pore

      fluids

      f r o m  the formation or prevent hole caving

      instability

      is equivalent to

    C a r l  F r e d r i k  Gyllenhammar

    I 2

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    26/176

    density of the

      d r i l l i n g

      f l u i d  and its column height. Therefore, the formation pore

    pressures  are often converted into

      d r i l l i n g

      f l u i d  density equivalents so it is clear as

    what

      d r i l l i n g

      f l u i d

     density just

     balances

      the pore

      pressures.

      Figure

      1.6

      shows how a

    typical

     pore

     pressure

     profile

     can be displayed as

     pressure

     gradient

     versus

     depth.

      I f

      one

    follows

      the

      change

      in the

      pressure

      gradient of the pore

      pressure

      (red curve), every

    point

      on the curve

      represents

      a

     pressure

      gradient and a corresponding

      average

      f l u i d

    density that particular

     pressure

      at that depth

      represents.

     The maximum pore

      pressure

    gradient is reached at the top of the reservoir (3200 meters) equal 0.016

      MPa/m.

      That

    is

     equivalent to the

      pressure

     at the bottom of a 3200-meter vertical  f l u i d column

      w i t h

    an

      average  f l u i d

      density of 1.64 g/cm

    3

    . In exploration

      d r i l l i n g

      a

      d r i l l i n g

      mud is used

    where materials such as barite is mixed to  f o r m  a

      l i q u i d

      (called

      d r i l l i n g

      mud)

      w i t h

    such

      high average

     density. The terminology used is equivalent mud weight  ( E q M W ) .

    The

      pressure

      gradient

      plot

      illustrates a big challenge

      while

      d r i l l i n g

      these wells.

      The

    EqMW

      has to be

      high

      enough to

      hold

      back the  f l u i d  f r o m  the depth where the

    formation

     has the highest-pressure gradient. However, in

     some

      formations,

     typically

    the shallower

     ones,

     this mud density

     would

     apply a

     pressure

      significantly

     greater than

    the pore

     pressures

     in

     these

     formations. This

     excess

     pressure

     may lead to

      fracturing

     of

    the rock and losses o f the

      d r i l l i n g

      f l u i d .

    A

      confusing

     aspect

      in the oil industry

      w i t h

      regard to

      pressure

      terminology is the

    mixing  the terms;

      pressure

      gradient and density  ( E q M W ) .  This

     becomes

     particularly

    d i f f i c u l t

      and confusing when

      working  w i t h

      a mixture of both imperial and the SI

    units.

      It has already

      been

      shown that the

     pressure

     gradient

      equals

     density

      multiplied

    by

      the acceleration due to gravity. In the imperial system, the norm is to use

      weight

    density

     rather than density. Weight density is defined as the ratio of the weight of an

    object to its volume. The units are pounds per gallon (ppg). As the weight is equal to

    the

     mass multiplied

      w i t h

     gravity, both weight density and

      pressure

      gradient

      have

      the

    same units. The imperial

     unit

     system has  historically been the norm in the oil industry

    and the people

      involved

      has become used to converting directly  f r o m weight density

    (ppg)

      to

     pressure

      gradient

      (psi/ft)

      and to

     pressure

      (psi).

      The

      word

      weight density is

    often

      shortened to density. This has created a problem when converting to the SI

    system. Too often,

      while

      converting  f r o m  density (g/cm

    3

    ) to

      pressure

      gradient

    (MPa/m),

      density is not

      multiplied

      by gravity (9.81 m/s

    2

    ). A

      typical

      example is a

    recent paper

      t i t l e d

     "Pore Pressure terminology" in the Leading Edge

     written

      to explain

    C ' a r i

      I redrik  Gyllenhammar

    13

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    27/176

    Chapter i

    Introduction

    the problem, but  f a i l i n g  to explain the difference between weight density and density

    (Bruce and Bowers, 2002).

    ijrn

    Pore p rrnurr

     gnoient

    Effective stress

    I.

    O  3000

    ft

    4500

    I—I-

      J

      I I

    I I I I I I I I

    L-LJ

    000

    n

      j ;

    .014

    0.016

    0  70 80 90 100 0.01 0.012

    i l l

    20 30

    .i.

    50

    Pore pressure (MPa) Pore pressure gradient (MPa/m)

    Figure  1.6 The Figure to the right  shows  how a pressure versus depth  plot  (left, Figure 1.5)

    becomes

     presented

     as pressure gradient versus depth.

    1.5 Aims and layout of

     thesis

    The aims and objective of this thesis are to:

    1.  Develop a critical review of current methods  used  to calculate the pore

    pressure in mudrocks.

    2 .

      Establish the uncertainties o f the input variables using in principle

    component analysis, applied to the wireline measurements  w i t h  reference

    to  the mudrock porosity calculated and the  d r i l l i n g parameters  w i t h

    reference to the calculated

      d r i l l i n g

      exponents.

    3.  Identify the variables that have  the biggest impact on the estimation of

    pore pressure, and how they can be improved.

    C a r l  F r e d r i k  Gyllenhammar 14

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    28/176

    Chapter 1

    In i roduct ion

    4.  Compare the wireline signature of overpressured shales in the North Sea

    basin

      w i t h

      those  f r o m the

      G u l f

     of

     Mexico.

    5. Examine why the resistivity

     measurements

     of the mudrocks can be used  as

    input

     parameter

     to calculate pore

     pressure

     in the

      G u l f

     of

     Mexico,

     while

    this has proved  d i f f i c u l t to apply in the estimation of pore pressure in the

    North

      Sea.

    Following  the introduction  comes  Chapter  2 where the  pressure concepts  w i t h

    respects  to pore  pressure  in shallow

      sediments

      are

      discussed.

      That is  followed  by a

    discussion of mudrock porosity and normal compaction in mudrocks. Then the

    different pressure

      calculation methods,

      first  w i t h

      wireline logs as input, then

      those

    using  d r i l l i n g parameters.

    Chapter  3  discusses  the  results  f r o m  using  these different pore

      pressure

      estimation

    methods

      on a  test

      w e l l ,

      Nor 1/6-7 in the North Sea. The sensitivity of the input

    parameters

     are

      discussed.

      The

      results

      f r o m  the North Sea are then compared

      w i t h

      the

    mudrocks

      f r o m

     a mini-basin in the

      G u l f

     of

     Mexico,

    Chapter  4

      examines

      the glacial history of the North Sea to explain the

      nature

      of the

    shallow

      sediments,

      and their physical and petrophysical properties. Use of a novel

    application of the software Cyclolog has helped in characterising the glacial

    sediments.  Finally the  relevance o f the glacial history of the North Sea is reviewed in

    relation to the petroleum system which has

      generated

     productive oil and gas fields .

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    29/176

    Ch apter 2 Pore  Pressure  Evaluation

      Concepts

      and

      definition;-

    Chapter 2 Pore Pressure Evaluation

     Concepts

     and

    definitions

    C a r l  F r e d r i k  Gvlienharnmar

    16

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    30/176

    C i K i p i c r

      2

    Poi

     v.  Pi'fssm'c-  )_•  \. Ina ion  Concep t and

      ck'iinilions

    2.1 Definition

    Underpinning

      pore  pressure  interpretation is the effective stress  equation for porous

    media (Terzhagi, 1936):

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    31/176

    Chapter  2

    Pore Pressure

      .Evaluation

      Conce pts and d eii niii ons

    2.1.1 Mudrock porosity

    Blatt

      (1970) has defined mudrock

      based

      on grain size, where

      mud

      is sediment

    composed of clay sized particles.  Typically  mudrocks contain  some

      s i l t .

      A

    mudstone  is a sedimentary rock composed of

      l i t h i f i e d

      mud, and

      shale

      is a fissile

    mudstone. The term porosity has a different meaning in various disciplines as

      w e l l

      as

    being different for

      coarse

      grain

      sandstone

      when compared

      w i t h

      a mudrock. The

    porosities

      discussed

     here  w i l l  be  l i m i t e d  to the physical or total porosity, which is the

    ratio

     of v o i d volume to total volume.

    The preferred method of obtaining the porosity in a rock is to carry out laboratory

    experiments on

     core

      extracted

      f r o m

      the

      w e l l

      during

      d r i l l i n g

      operations. The porosity

    o f

      low permeability rocks such as mudrocks is

     measured  f r o m

      the bulk density, then

    drying

      the sample,

      followed

      by

      measurement

      of the dry density in the laboratory.

    This

     procedure ideally must be commenced prior to the

      samples

     drying after reaching

    the surface. On

     research

     vessels

     such

      used

     during the

     Ocean  D r i l l i n g

      Program (ODP),

    these measurements

     are

      done

     just after the

     samples

     are recovered at surface. Mudrock

    is generally not cored during exploration

      d r i l l i n g .

      I f it is cored, the

     samples

      are waxed

    at the wellsite so the water content is

     preserved.

    Mudrock  porosity as

      w e l l

      as general rock porosity

      f r o m

      exploration wells is in most

    cases

     calculated

      f r o m

     wireline measurements  such as the sonic log, the density log or

    the neutron log. None of these measurements  are a direct

      measurement

      of porosity.

    They are referred to as log-derived porosity to indicate that their

      o r i g i n

      is

      f r o m

    wireline

      log

     responses.

      For all

     these

      instruments, the

      tool

      response

      is affected by the

    formation

      porosity,  f l u i d  and matrix. I f the  f l u i d  and matrix effects are known, the

    porosity can be derived

      f r o m

     the  tool  response.

    I n  addition to the  above  tools, the resistivity  response  can  also

      used

      to determine

    porosity. However the resistivity is greatly influenced by the

      f l u i d

      saturation.

    2.1.2 Different porosity evaluation

      equations

    Sonic derived porosity

    C a r l

      I

      reclrik Gvllenhammar 18

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    32/176

    W y l l i e  et

      a l .

      (1958) demonstrated that

      there

      was an approximate linear relationship

    between sonic velocity and porosity in

      sandstone.

      The porosity is calculated  f r o m  a

    linear interpolation between the  zero  porosity matrix sonic velocity (in principle

    slowness

      when using |isec/ft unit) and the

      100

     % porosity

      fluid

      sonic velocity.

    f

      t,

      -t

    log

      ma

    [E2.5]

    where;  t

    ma

      is the matrix velocity (67 (isec/ft in mudrock, 47.5 |isec/ft in chalk, 55.5

    iisec/ft  in  sandstone)  and  //  the  fluid  velocity equal 189 (isec/ft in fresh water

    (Schlumberger,  1989). t\„

     

    is the measured sonic velocity.

    Another equation was  suggested by

     Raiga-Clemenceau

     et al. (1988):

    0

     =

      1-

    f

     At

      ^

    ma

    At

    [E2.6]

    The matrix velocity

      t

    ma

      and  x  are both  constants  that are basin specific. Raiga-

    Clemenceau called  " x " the  acoustic formation factor exponent.

    Issler (1992) developed this relationship using  data  f r o m  the Beaufort-Mackenzie

    Basin, Northern Canada  where the  shales are quite uniform in their composition. The

    matrix  transit time is the  same  as for mudrocks in the  W y l l i e  equation (67 |isec/ft)

    ( W y l l i e , 1958) and the x was calculated to 2.19.

    , , 6lY

    2A9

    p =

     1

     - — i

    A t

    J  [E2.7]

    Hansen

     11 (1996), using

      shale  densities

      measured  on sidewall and cuttings

      samples

    f r o m the Nor th Sea, modified this equation. He

     suggests

     using the

      f o l l o w i n g

      equation

    where the shale matrix velocity is 76.5 |isec/ft and x=

      1.17:

    0 =  1-

    ^ 7 6 . 5 ^

    1 7

    At  J

    [E2.8]

    C u r l  I  icdrik Gvllenh amnia r 19

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    33/176

    Cha pter 2 i'u;e

      i ' l v ^ u r c  i . wduaia

      at

      Coincpiv  a Vi

      dc :  retaat--

    Figure  2.1a  show how the porosity in a mudrock

      w i l l

      change  as a func tion of

     sonic

    velocity.  In the shallow section where the velocities often are

      150  L i s e c

    / f t the

      Hansen

    (1996)

     model  suggests 44 % porosity versus the  W y l l i e

      (1958)

      equation estimation of

    68 %. The

      W y l l i e

      equation, although

     based

     on an empirical relationship in

     sandstones

    is used  to calculate mudrock porosity in

      several

      publications

      (e

    .g.

     Hermanrud

      et

      al.,

    1998).

    Iss er

    ii  0

    Hansen

    Wyllie  67

    i

      :

    u

     41

    Wyllie  76.5

    0

      fO

    Wyllie

      (68.8)

    0 30   5

    P   0.40

    u   .   0

    0

     20

    0  10

    )  00

    o c o

    2

      15

    75

    5

    90 100 110 120 130 140 150 160 170

    :

    Si

    Bulk

      Dens i t y

    S o n i c  u sec / f t )

    0.315

    o

     )?

    J

      J13

    (I  10

    0.J11

    o  ;'5

    a-

      0 26

    )00

    4

    n   ir,7

    i: 2.

    0 20

    tot

    2

      S

    0=

    1

      04 • 06

    1   J?

    :  OS

    01

    Matrix

      Dens i t y

    ater

      Dens i t y

    Figure 2.1 a,b,c,d. la porosity variation as a function of sonic velocity. B, porosity versus bulk

    density.  C , the sensitivity to pore water density. D, the sensitivity to matrix density.

    Density derived porosity

    C a r

    F r e d r i k  GvUenhammai

    20

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    34/176

    Chapier  2

    Pore

      Pressure Evalua tion Concepts

      and  definitions

    Density  log-derived porosity is calculated  f r o m  the log

      bulk

      density, the matrix

    density and the pore  f l u i d density (equation 2.9).

    0:

    \

    Pm a

      ~

      Pb

    Pn,a  P f

    [E2.9]

    where  p

    ma

      is the matr ix density, Pf is the pore water density and  ph is the

     bulk

      density

    measured by the density

      t o o l .

     In mudrocks

      f r o m

     the

     North

      Sea,

      2.715 g/cm

      was used

    as an

     average

     matrix density. This value is used by

      B r i t i s h

     Geological Survey (BGS)

    and is

     based

     on their shallow coring program in the

     North

     Sea. The pore water density

    is

      assumed

     to

     increase

      f r o m

      1.03

     to

      1.08

     g/cm

    3

      w i t h

     depth. As the

      shale

     compacts, the

    released  water has a lower salt concentration than the remaining pore water. Figure

    2.1b shows the porosity variation, as a  function of

     bulk

      density. The matr ix density

    and the  fluid  density are kept constant at  2.715

      g/cm

    3

      and 1.03 g/cm

    3

      while

      the

    measured

      bulk

     density increases  f r o m  1.75 to 2.75

      g/cm

    3

    .

     The porosity varies linearly

    w i t h

      the measured

      bulk

      density and an

      increase

     of 0.1

      g/cm

    3

      changes the porosity by

    5.8 %. The second sensitivity

      plot

      (Figure 2.1c) shows that increasing the  f l u i d

    density  f r o m

      1.03

     to

      1.08 g/cm

    3

      only

     increases the porosity by

      1

     %. Figure 2.

     I d

      shows

    that the porosity

      changes

      by 4 % if the matr ix density

      changes

      by

      0.1

     g/cm . The

    relationship

      between porosity and matrix density is not linear, but

      near

      linear. The

    porosity  increases  slightly

      faster at lower matrix densities that at the higher end. The

    matrix

     density is a

      function

     o f

     mineralogy.

     Smectite has a low matrix density

      (2.21

      to

    2.71 g/cm

    3

    )

      while

      chlorite matrix density can be as

      high

      as 2.94

      (Fertl

      and

    Chilingarian,

      1989). In the

      North

      Sea the mudrock compositions vary and therefore

    so do the dry densities. Using a constant dry density  w i l l therefore result in 10 to 20%

    error in calculated the porosity using the density log.

    Neutron derived porosity

    Neutron-derived

      porosity is related to the hydrogen index,

     which

      is an indication of

    the amount of hydrogen in the sediment. As most of the hydrogen in a

     formation

     is in

    the water and hydrocarbon molecules it is for all practical

     purposes

     a

     measure

     of the

    water and/or hydrocarbon content. In formations

     w i t h

     phyllosilicates, the bound water

    w i l l

      be counted as water, and

     hence  v o i d  space,

     by the neutron log. When comparing

    C a r l  Predrik  Gvlle nha mma r 21

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    35/176

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    36/176

    Chapter 2

    Fore Pressure

     (-.valuation

      Concepts and definitions

    i or.

    Sonic

      {Wy t l i e } -

      porosity

    :i

      9 0

    S.   Hansen

      -

      porosity

    Density

      -

      porosity

    i.«0

    Neutron

      -

     porosity

    L O G

      -

      porosity

    n

     7f

    1

    S

      0.60

    i

    i

     

    it

      0.50

    1

     .

     

    i

    J

    i

    S

    0.30

    0 20

    0 10

    L

    C no

    500 1000 1500

      2000 2500 3000 3500 4000 4500 5000

    D e p t h  m R K B )

    Figure 2.2 Log derived  porosities  in well  Nor-1/6-7  Norway. The low porosity interval from

    3261m

     to

     4346m

     depth is the Cretaceous  Chalk. The values are listed in Appendix 1.

    Based on Figure 2.2 it is important to realize the uncertainties that exit in the porosity

    estimates

      in

     shales

     based  on wireline logs. This put limitations on the conclusions we

    may wish to draw concerning the

      mechanisms

      underlying the porosity reduction or

    compaction. I f one only has available a wireline log-derived porosity  profile, one can

    clearly

      not attribute the porosity change  solely either to a mechanical

      process

      or to a

    chemical process.

    2.1.3 Normal compaction curve and trend lines

    During

      normal compaction, a mudrock

      undergoes

      a monotonic

      increase

      in effective

    stress,

     which

     causes

      an elastoplastic reduction in porosity. Compaction is a result of

    grain

      reorientation and

      breakage.

      Mudstone

      consists

      of clay minerals, fine grained

    quartz, feldspar and mica. As the compressibility is dif ferent for different minerals as

    w e l l

      as for different clay minerals, the mudrock compressibili ty  becomes  very

    d i f f i c u l t

      to predict. The resultant relationship between effective

     stress

      and porosity is

    known

      as the normal compaction curve (Harrold et

      a l . ,

      1999). In this

     case

     equilibrium

    is reached  such that:

    Pf  (pore

      pressure)

     = ph

    yc

    j  (hydrostatic  pressure).

    Curl

      Fredrik Gyllenhammar

    23

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    37/176

    Chapter 2

    Pore

     Pressure  b\

      alum io n  Concept : and definitions

    Although

     many porosity - depth

     data have been

     published, details of age,  lithology  or

    effective

      stress  are generally

      absent.

      In this study it was chosen to evaluate and

    compare two different relationships: (1) A t h y type and (2) Soil-mechanical type.

    These  compaction curves

      assume

      mechanical compaction

      only,

      and are suitable

      only

    to  describe siliciclastic sediments. Below 2-3 km depth  ( 7 0 - 1 0 0 ° C ) ,  mineral

    dissolution

      and precipitation  becomes  important  (Bjorlykke,  1999). At  these

    temperatures hydrocarbon generation also  comes  into play. There  have been  many

    publications  on attempts to  assess  the potential overpressure generated by  these

    reactions. The results are  conflicting  in the

      sense

      that for the  same  reaction,  some

    suggest

      that no overpressure is generated

      while

      others

      suggest

      generation of large

    overpressure. The

      conflict

      lies to a large  degree  in the  assumed  permeability. For

    many of

     these

      reactions to

      generate

      overpressure, the permeability

      w i l l

      not be low

    enough for overpressure to be retained over geological time (Osborne and Swarbrick,

    1999).

      It is also evident that  w i t h  all the uncertainties  w i t h  regard to chemical

    compaction or chemical reactions in mudrocks, it would be quite impossible to predict

    the normal compaction trend and  hence  impossible to calculate the pore

      pressure.

    Chemical compaction  w i l l  therefore not be taken into account in the

     present

     study.

    2.1.3.1

      Athy-type relationship

    The exponential curve to describe compaction was introduced by  A t h y

      (1930).

      It was

    based on curve  f i t t i n g a particular data set and is given as:

    Where  0  is porosity at depth of interest,  00  is porosity at sea bed, c the compaction

    coefficient  and z the depth. Variations of the compaction curve result

      f r om

    substituting

      depth  w i t h  mean or vertical effective

     stress.

     The  A t h y  compaction curve

    was later

      modified

      by Hubbert and Rubey

      (1959),

      who recognised that porosity is

    controlled

     by

     effective

     stress and not by depth:

    0 —

     0oe

    (-«)

    ( A t h y ,  1930)

    [E2.10]

    0  = K 0

    o

    e

      c

    [ E 2 . l l ] 

    Carl  Predrik Gvllenhammar 24

    http://e2.ll/http://e2.ll/

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    38/176

    Chapter  2

      Pore

      Pressure

      kvaluation

      Concepts  and

      ueiimhuns

    Where

     

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    39/176

    Chap

    Pore Pressure Evaluation Concepts and definitions

    reach

      0 % porosity, only at

      i n f i n i t y .

      The sea

      floor

      porosity is a factor that can be

    related to

      samples.

      The compaction coefficient is a function of rock compressibility,

    which

      in theory could be

      measured

      in the laboratory  ( A t h y ,  1930). But the

    compressibility  w i l l  vary

      w i t h

      depth as the rock

      becomes

      more consolidated. In

    practice what is being

      done

      is to use a

      w e l l

      where the pore

      pressure

      is

      assumed

    hydrostatic

      based

      on the M W

      used

      and RFT

      pressure

      points. Then calculate the

    mudrock porosity to calibrate the compaction coefficients in the normal compaction

    equation.

    Figure 2.3

      shows

     how different the two

     equations  express

     the  change in porosity

      w i t h

    increased

      total

      stress.

     The

      soil

      mechanical function

     suggests

      a larger

      rate

     of porosity

    reduction in the shallow section and

      w i l l

      always end up  w i t h  zero porosity i f the total

    stress  gets

      large enough. The

      A t h y

      function suggests  a more

      moderate

      change  of

    porosity in the shallow section.

      W i t h

      increasing  stress,  the porosity

      w i l l

      move

    asymptotically to zero porosity, but never

     become

      zero.

    Normal

      compaction

    Lo g

      derived porosity

    0.1

    0.4

    5000

    10000

    15000

    20000

    L0

    25000

    30000

    Athy, 0.7 0.00008

    35000

    40000

    SM ,  2 (0.66), 0.74

    45000

    50000

    Figure 2.3 Comparison of porosity with effective stress for the Athy and the SM equations.  Initial

    porosity (sea floor porosity) for Athy is 0.7 (70 ) while the porosity at 100 kPa (approximately

    100 meters  below  sea floor) is 0.66 (66 ) The compaction factors a re for Athy; 0.00008  and

    SM ;  0.74.

    Ca r l  Fredr ik

      Gyllenhammar

    26

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    40/176

    Chapter 2

    I'orc Pressure  valuation Concepts and definitions

    100 (porosity  in

    % )

    0

    40

    60 80

    Porosity

    0

    Solidity

    °

      1.5

    Void Ratio

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

    Void ratio

    Figure 2.4 The relation ship  between  porosity, solidity and void ratio is shown. The y-axis is the

    compaction as a

     length

      reduction. It is assumed that a confined volume is compressed beginning

    with a void ratio of four.

    Figure 2.4

      shows

      the

      three

      different frames of

      reference

      to

      describe

      the

      loss

      of pore

    space. This is a theoretical model

      bu i l t

      in

     EXCEL  based

     on the

      definition

     of porosity,

    solidity

      and  v o i d  ratio. The compaction as length reduction on the y-axis

      represents

    the proportional thickness reduction and the corresponding porosity,

      solidity

     and  vo id

    ration.  Solidity

      is the volume of

      solid

      grains as a

      percent

      of the total volume of

    sediment, i.e. (1- ())). The complement to

      solidity

      is porosity as the volume of pore

    space  as a

      percent

      of the total volume of sediment. This is the opposite of what has

    been suggested

      by

      Baldwin

      and Butler (1985). The  t h i r d

      parameter

      is  v o i d  ratio,

    which

      is the ratio of the volume of pore  space  and the volume of solids. Figure 2.4

    shows

      that

      there

      is a linear relationship between  v o i d  ratio and compaction

      while

      the

    relationship is non-linear between porosity as

      w e l l

      as

      solidity

      to compaction. It

     would

    therefore be mathematically

      easier

      to

      describe

      the compaction as a function of

      vo i d

    ratio

      rather than porosity. The

      reason

     why the oil industry

     uses

      porosity is that it has

    become

      the convention in the reservoir section. By comparison the convention in the

    soil mechanics

     environment is to use  v o i d ratio as compaction is of interest.

    Ca r l

      Fredr ik  Gyllenhammar

    27

  • 8/20/2019 A Critical Review of Cerrently Pore Pressure Methods

    41/176

    2.1.4  Vertical versus mean effective stress

    The mean effective

     stress

      (cr

    m

    )

      is defined as the difference between the mean