A Crewed Mars Exploration Architecture Using Fly-by and Return Trajectories

68
A CREWED MARS EXPLORATION ARCHITECTURE USING FLYBY AND RETURN TRAJECTORIES Andrew S.W. Thomas NASA Astronaut, Explora1on Branch, Astronaut Office, NASA Johnson Space Center Cesar A. Ocampo Senior Engineer, Odyssey Space Research LLC., NASA Johnson Space Center Damon F. Landau Jet Propulsion Laboratory, California Ins1tute of Technology FISO Telecon 04-08-15 Presentation given by: C. Ocampo and D. Landau 1 This presentation is not a stand-alone presentation document. It requires narration. These are part of the results of an internal NASA-JSC study with NASA-JPL collaboration titled The Mars Lite Study © 2015 All rights reserved

description

The Future In-Space Operations (FISO) telecon colloquium hosted Cesar Ocampo (Odyssey Space Research/NASA JSC) and Damon Landau (NASA JPL), who spoke on "A Crewed Mars Exploration Architecture Using Fly-by and Return Trajectories."

Transcript of A Crewed Mars Exploration Architecture Using Fly-by and Return Trajectories

  • A CREWED MARS EXPLORATION ARCHITECTURE USING FLYBY AND RETURN TRAJECTORIES

    Andrew S.W. Thomas NASA Astronaut, Explora1on Branch, Astronaut Oce, NASA Johnson Space Center

    Cesar A. Ocampo

    Senior Engineer, Odyssey Space Research LLC., NASA Johnson Space Center

    Damon F. Landau Jet Propulsion Laboratory, California Ins1tute of Technology

    FISO Telecon 04-08-15

    Presentation given by: C. Ocampo and D. Landau

    1

    This presentation is not a stand-alone presentation document. It requires narration.

    These are part of the results of an internal NASA-JSC study with NASA-JPL collaboration titled The Mars Lite Study

    2015 All rights reserved

  • Inspira1on Mars Founda1on

    Aims to launch a manned mission to y by Mars in by 2021

    Founda1on claims that space explora+on provides a catalyst for growth, na+onal prosperity, knowledge and global leadership.

    By taking advantage of this window of opportunity, the Inspira1on Mars Founda1on intends to revitalize interest in science, technology, engineering and mathema+cs (STEM) educa+on.

    hPp://www.inspira1onmars.org/

    2

  • 3

    Figure Only: EME-Inspiration Mars Foundation. (in case next slide video does not work for some)

  • 4

    Video: EME-Inspiration Mars Foundation. Click center of screen once to start.

  • 5

    Figure Only: EME-Inspiration Mars Foundation Fly Around. (in case next slide video does not work for some)

  • 6

    Video: EME-Inspiration Mars Foundation Fly Around. Click center of screen once to start.

  • Single Flyby Mission: fast in-and-out

    7

    Ballistic single flyby Pass.

    Speed up Catch up

    dip in and out v v

    v

  • 8

    Figure Only: Single Flyby Mission: fast in-and-out: (in case next slide video does not work for some)

  • 9

    Video: Single Flyby Mission: fast in-and-out: Click center of screen once to start.

  • Solu1on: Use Low Energy Flyby and Return Trajectories with Two Flyby Events

    Inherit natural abort op1on

    The two yby events separated by months

    Place massive transit habitat(s) on these trajectories

    eliminate inser_on and departure of massive assets into and out of Mars Orbit

    1st yby event is used to drop o a crew taxi

    2nd yby event picks-up and uses a hyperbolic rendezvous for Earth return

    Assume Mars Stay Habitat has been Pre-deployed at Mars

    Favor launch, en-route maneuvers, Earth arrival speeds over transit >mes. Assume no new major technology development.

    10

  • Work summarized and presented as paper AAS 15-372 at the 25th AAS/AIAA Space Flight Mechanics Mee1ng, Williamsburg, VA, January 2015

    11

  • Mars Free Returns

    Damon Landau

    12

  • Broad Search of Mars Free-Returns Search parameters

    Launch 20152052

    Maximum ight 1me: 1200 days

    Maximum Launch V: 7 km/s

    Maximum Arrival V: 9 km/s

    Minimum Mars yby al1tude: 300 km

    Heliocentric revolu1ons between encounters: 0 or 1

    Number of gravity assists: 1 or 2

    Parameters specic to Star algorithm

    Time step for encounter dates: 3 days

    Maximum V at yby: 20 m/s

    V step for 180 transfers: 20 m/s 13

  • Trajectory Search Methodology

    1. Grid up Earth, Mars, and Earth encounter 1mes

    2. Calculate outbound & inbound legs independently

    3. Filter on low V to match in & out V at Mars

    Turns a 3-D search into two 2-D searches

    720M sequences considered with only 7.3M trajectory computa1ons (Lambert ts)

    44,725 trajectories met all constraints

    Flight time < 1200 d

    Mars Flyby V < 20 m/s Alt > 300 km

    Launch Dates

    V < 7 km/s

    Earth Return

    V < 9 km/s 2015

    2052

    3-day increments

    V constraint violated

    Time node deleted

    14

  • Double-Flyby Free-Returns

    Flight time < 1200 d

    Launch Dates

    V < 7 km/s

    Mars or Venus

    V < 20 m/s

    Mars or Venus

    V < 20 m/s

    Earth Return

    V < 9 km/s 2015

    2052

    3-day increments

    EMME, EMVE, EVME sequences in single run

    Transform 4-D search into three 2-D searches

    280B sequences assessed with only 27M trajectory ts

    1,425 trajectories met all constraints

    15 15

  • Building Mul1ple Flybys Flyby V calcula1on builds trajectory segments with three encounters:

    departure body to yby body (incoming leg) and yby body to arrival body (outgoing leg).

    The outgoing legs for one trajectory segment match with the incoming legs to another trajectory segment.

    =

    Launch Dates

    Mars or Venus

    Mars or Venus

    Earth Return

    +

    Launch Dates

    Mars or Venus

    Mars or Venus

    Earth Return

    16

  • Flight Times

    Trajectories in black also satisfy Trans-Mars Injection V < 4.5 km/s and Earth entry < 12.5 km/s

    17

  • Launch Opportuni1es

    Trajectories in black also satisfy Trans-Mars Injection V < 4.5 km/s and Earth entry < 12.5 km/s

    18

  • 3:2 Resonance Free Returns

    19

  • 2:1 Resonance Free Returns

    20

  • Short Flight Time

    21

  • Double Mars Flyby

    22

  • Venus Flybys

    23

  • con1nue Using Free Returns for extended Human Mars Explora1on missions

    24

  • ? 25

    Determine how to use 2 yby events

  • Solu1on 1: Dual Habitat Concept

    OTH = Outbound Transit Habitat RTH = Return Transit Habitat 26

    Sketch credited to Ryan Whitley (JSC)

  • Solu1on 2: Loiter Habitat Concept

    27

    Sketch credited to Ryan Whitley (JSC)

  • Copernicus: A Generalized

    Trajectory Design and Op_miza_on System

    Developed jointly between the University of Texas and the NASA Johnson Space Center (2001-present)

    Hosted at NASA-JSC

    Current Development at JSC

    Current Lead Developer:

    Jacob Williams, ERC-NASA-JSC, Houston, Texas

    28 http://www.nasa.gov/centers/johnson/copernicus/

    Used

  • Impulsive Gravity Assist to Real Flyby Conversion

    29

  • Impulsive Gravity Assist to Real Flyby Conversion

    30

  • 31

    Figure Only: Initial Guess for An Earth-Venus-Mars-Earth Free Return. Animation on next slide.

    Earth Depart

    Earth Arrive

    Venus Flyby

    Mars Flyby

  • 32

    Video: EVME Trajectory Construction Iteration Sequence. Click center of screen once to start.

  • Dual Habitat Model

    33

    Uses an Earth-Mars conjunc1on class trajectory for the Outbound Habitat and an Earth-Mars-Earth Flyby and Return Trajectory for the Return Habitat

    Crew Taxi Drop-o and Transfer to a 1-Sol Orbit

    1-Sol Orbit Departure and Hyperbolic

    Rendezvous with Return Habitat

    Low energy conjunc1on class Earth-Mars

    3:2 Resonant Earth-Mars-Earth Free Return Trajectory (Habitat orbits Sun twice while the Earth orbits Sun 3 1mes

    33

  • OTHEarth Departure10/13/2039

    RTHMars Flyby10/21/2041

    OTHMars Arrival06/21/2040

    RTHEarth Departure06/04/2039

    RTH Earth Arrival05/13/2042

    RTH E-M-E Trajectory

    (3:2 Resonant w/Earth)

    2039 2040 2041 2042 2043

    RTH

    OTH

    EarthDep.

    EarthDep.

    MarsFly by

    MarsFly by

    Crew at Mars

    EarthArr.

    34

  • 35

    Figure Only: Dual Habitat Model Animation on next slide

    OTH Mars Arrive

    RTH Mars Flyby Pickup, Hyperbolic Rendezvous

    RTH Earth Arrive

    RTH Earth Depart

    OTH Earth Depart

  • 36

    Video: Dual Habitat Model Animation. Click center of screen once to start.

  • Dual Habitat Model 37

  • Loiter Habitat Model Uses an Earth-Mars-Mars-Earth Flyby and Return Trajectory

    Mars Flyby 1 to Mars Flyby 2

    Loiter Leg

    Crew Taxi Drop-o and Transfer to a 1-Sol Orbit

    1-Sol Orbit Departure and Hyperbolic

    Rendezvous with Loiter Habitat

    In live discussion point out the key features/pros/cons

    38

  • 39 39

  • 40

    Video: Loiter Hab Mars Centered Iteration Sequence. Click center of screen once to start.

  • 41 Figure only: Converged Solution of previous slide video.

  • 42

    Figure: Mars Arrival Flyby-Loiter-Mars Departure Flyby

  • 43

    Figure only: Loiter Hab Mode;. (in case next slide video does not work for some)

  • 44

    Video: Loiter Hab Model Animation. Click center of screen once to start.

  • 45

    Figure Only: Loiter Hab Model Fly Around. (in case next slide video does not work for some)

  • 46

    Video: Loiter Hab Model Fly Around. Click center of screen once to start.

  • Loiter Habitat Model Departure Earth

    Mars Transit

    Mars Mars Transit

    Mars Earth Transit

    Total MissionDuration

    EarthDeparture

    V

    Mars Fly-by1V

    Mars Fly-by2V

    Earth ArrivalV

    TotalEn-route

    V

    date day day day day km/s km/s km/s km/s km/s

    6 Aug 2020 399 325 303 1028 3.794 2.550 3.018 4.714 1.676

    8 Sep 2022 380 311 320 1010 3.673 2.573 2.887 3.787 0.621

    05 Oct 2024 348 305 325 976 3.335 2.555 2.721 3.018 0.000

    27 Nov 2026 280 303 358 941 4.000 2.942 2.989 3.546 0.126

    29 Dec 2028 252 305 366 923 4.000 3.746 3.505 4.609 0.205

    13 Feb 2031 223 321 379 924 4.000 3.804 3.251 4.317 0.515

    31 Mar 2033 218 358 346 922 4.000 3.703 3.108 4.410 1.100

    22 Jul 2035 364 346 213 923 4.000 3.100 3.737 3.884 0.856

    10 Sep 2037 370 317 234 921 4.000 3.178 3.669 4.118 0.195

    3 Oct 2039 367 305 267 939 3.530 2.852 3.041 4.045 0.000

    21 Oct 2041 341 302 338 981 3.159 2.635 2.647 3.268 0.000

    15 Oct 2043 331 303 381 1016 4.000 2.782 2.666 3.630 0.495

    22 Jan 2046 244 315 375 934 4.000 3.762 3.289 4.227 0.477

    13 Mar 2048 219 343 360 923 4.000 3.877 3.214 4.453 0.775

    7 Jul 2050 347 361 209 917 4.000 3.046 3.606 3.721 1.068

    47

  • Drop-O from and Rendezvous with Transi_ng (Loiter) Habitat

    48

  • Drop-O from and Rendezvous with Transi_ng (Loiter) Habitat

    49

  • 1st maneuver: capture, coast to apoapsis

    50

  • 2nd maneuver: plane change, coast to periapsis

    51

  • 3rd maneuver: capture into op1mal 1-Sol Orbit Mars Stay

    52

  • 4th, 5th maneuver: depart and do Hyperbolic Rendezvous

    Total In-and-Out DV cost = 2.308 km/s (Oct 2039) (this ranges from 2.1 to 3.1 for all 15 Loiter Habitat Solu_ons) 53

  • 54

    Figure Only: Mars centered transfers, iteration sequence. (in case next slide video does not work for some)

  • 55

    Video: Mars centered transfers, iteration sequence. Click center of screen once to start.

  • All Dual-Habitat, Loiter-Habitat Solu1ons require same type of Mars Centered Maneuvering

    56 Note orienta_on of the 1-Sol Orbit

  • 57

    Figure only: Capture-Departure Geometry Fly Around. (in case next slide video does not work for some)

  • 58

    Video: Capture-Departure Geometry Fly Around. Click center of screen once to start.

  • 59

    Figure only: Departure, Hyperbolic Rendezvous. (in case next slide video does not work for some)

  • Video: Departure, Hyperbolic Rendezvous. Click center of screen once to start.

    60

  • One chance to catch the train ride home.

    61

    (image credit: The Darjeeling Limited, Fox Searchlight Pictures)

  • Solu_on 3: Hybrid Dual Loitering Habitat Model Four Flyby Events

    62

  • 63

  • Six E-M-M-E Mission Possibili_es for the Hybrid Dual-Loitering Habitat Strategy

    64

  • 65

  • Dual Loitering Habitat Model: Maneuver Data and Performance

    66

  • Concluding Remarks... ! Stair-step approach: Flyby-only, orbital, surface access,

    access to Phobos, Deimos

    ! Launch vehicle (Space Launch System) requirements (ongoing work, paper TBP August 2015, Whitley et al.)

    - Dual Habitat Model: Requires 3 SLS Block 2B Launches

    - Loiter Habitat Model: Requires 2 SLS Block 2B Launches

    ! Inser1on-Departure to and from op1mal 1-Sol Orbit is feasible

    ! Pre-deployment of Mars Stay Assets yet to be addressed (ongoing)

    ! Sensi1vity studies of Hyperbolic Rendezvous wrt to delays, o-engine performance (ongoing work, paper TBP August 2015, Jedrey et al.) 67

  • Thank you

    Thanks also to the other members of the NASA JSC-JPL Mars Lite Study Team

    John Aitchison Lora Bailey Joe Caram Bret Drake Ricky Jedrey Kent Joosten Stan Love

    Fay Mckinney Nathan Strange/JPL

    Brenda Ward Ryan Whitley

    68