A 1.62GS/s Time-Interleaved SAR ADC with Digital ...€¦ · Nicolas Le Dortz. 1,2, Jean-Pierre...

34
A 1.62GS/s Time-Interleaved SAR ADC with Digital Background Mismatch Calibration Achieving Interleaving Spurs Below 70dBFS Nicolas Le Dortz 1,2 , Jean-Pierre Blanc 1 , Thierry Simon 1 , Sarah Verhaeren 1 , Emmanuel Rouat 1 , Pascal Urard 1 , Stéphane Le Tual 1 , Dimitri Goguet 1 , Caroline Lelandais-Perrault 2 , Philippe Benabes 2 1 STMicroelectronics, Crolles, France, 2 Supélec, Gif-sur-Yvette, France

Transcript of A 1.62GS/s Time-Interleaved SAR ADC with Digital ...€¦ · Nicolas Le Dortz. 1,2, Jean-Pierre...

  • A 1.62GS/s Time-Interleaved SAR ADC with Digital Background Mismatch Calibration Achieving

    Interleaving Spurs Below 70dBFS

    Nicolas Le Dortz1,2, Jean-Pierre Blanc1, Thierry Simon1, Sarah Verhaeren1, Emmanuel Rouat1, Pascal Urard1,

    Stéphane Le Tual1, Dimitri Goguet1, Caroline Lelandais-Perrault2, Philippe Benabes2

    1STMicroelectronics, Crolles, France, 2Supélec, Gif-sur-Yvette, France

  • Challenges in high-speed ADCs NEED: High speed ADCs for high data rate communication SOLUTION: Time-interleaved SAR ADCs

    – High sampling frequency (multi-GS/s) – Moderate resolution (up to 10 bits) – Energy efficient

    ISSUE: Mismatch calibration required OUR WORK: Low development time analog/digital co-design

    – Analog TIADC core – Digital background mismatch calibration 2

  • Outline

    • Analog/digital co-design • Classical analog architecture • Digital mismatch calibration • Measurement results

    3

  • Analog/digital co-design

    4

    • 12 interleaved SAR ADC – Fs = 1.62GS/s • Background digital mismatch calibration No feedback to analog

    x12

    Vin+

    Vin-

    12:4

    9 12

    SPI Bus

    SAR ADC 9 bits

    SAR logic

    Background mismatch calibration

    Digital

    Vref clk

    Analog

  • Outline

    • Analog/digital co-design • Classical analog architecture • Digital mismatch calibration • Measurement results

    5

  • Classical SAR ADC structure

    6

    Vin+

    Vp Vn Vm

    Vp Vn Vm

    Vcm

    Vin-

    + -

    128C0

    64C0 32C0 16C0 C0

    • Radix-2 capacitive DAC • 1Vpp input signal delivered through 1.7V buffer • Latch comparator with 2-stage preamplifier

  • Sampling switch

    7

    Vin

    Vcm = 0.7V

    Good linearity achieved through ‒ Bottom plate sampling ‒ HPA low-Vt NMOS/PMOS transmission gate

    Ron

    Vin

    RVT transistor

    HPA transistor

    ϕ1

    ϕ2 ϕ2

    ϕ2

    ϕ1

  • Custom capacitor array

    8

    16C0 8C0

    2C0 4C0

    Bottom plate switch & comparator

    L L/2

    L/4

    Top plate switches C0=400aF

    • Compact 2-metal-layers lateral structure • DAC linearity ensured by good capacitor ratio

    matching

    100fF total capacitance

  • Time-interleaving

    9

    T R 2 1 5 3 4 6 7 8 9 - T 3 1 2 4 5 6

    2 T 1 5 3 4 6 7 8 R 9 - T 3 1 2 4 5 R

    5 3 4 8 6 7 9 - R 2 T 1 3 6 4 5 7 2 1

    Tracking Conversion Reset

    Sampling ADC 0

    ADC 1

    ADC 11

    Conversion & sampling managed by SAR logic • 520ps tracking time • 12 steps per conversion - 1 comparison per cycle

  • Mismatch-limited analog output

    10

  • Outline

    • Analog/digital co-design • Classical analog architecture • Digital mismatch calibration • Measurement results

    11

  • Background digital mismatch calibration

    12

    9 12 ADC

    Offset calibration

    Gain calibration

    Skew calibration

    • Background mismatch calibration Tracking of temperature and aging variations

    • Use of High Level Synthesis (HLS) ‒ Reusable ‒ Parametric ‒ Scalable

  • Offset mismatch calibration principle

    13

    ADC 0

    ADC to calibrate

    Ideal signal

    Objective: estimate the relative offset of each ADC

  • Offset mismatch calibration principle

    14

    ADC 0

    ADC to calibrate

    1N� ∑ samples of ADC to calibrate

    – 1

    N� ∑ samples of ADC 0 =

    Relative offset of ADC to calibrate

    Ideal signal

  • Offset mismatch calibration implementation

    15

    ADC 0

    ADC to calibrate

    Modified moving average

    Modified moving average

    Reduction of rounding errors • 12-bit quantized output • Digital dithering to spread residual spurs

    12 8 1 7 3 6 11

    to 12 bits

    to 12 bits

  • Gain mismatch calibration principle

    16

    ADC 0

    ADC to calibrate

    Ideal signal

    Objective: estimate the relative gain of each ADC

  • Gain mismatch calibration principle

    17

    ADC 0

    ADC to calibrate

    Ideal signal

    ∑ samples of ADC to calibrate ÷

    ∑ samples of ADC 0 =

    Relative gain G of ADC to calibrate

    ABS

    ABS

  • Gain mismatch correction

    18

    ADC 0

    ADC to calibrate

    Modified moving average

    Modified moving average

    Absolute value low implementation cost vs. squared value

    ABS

    ABS 1G�

  • Skew mismatch estimation

    19

    Objective: estimate the delay Δt for each ADC

    ideal signal

    Δt-delayed samples

    ADC 0

    ADC to calibrate

  • Skew mismatch error model

    20

    ADC to calibrate

    Δt

    ϵ

    dxdt

    Output ADC to calibrate Ideal signal

    + Error ϵ = Δt × dxdt

  • Signal/derivative orthogonality

    21

    ADC to calibrate

    Ideal signal

    + Error ϵ = Δt × dxdt

    dxdt

    average

    0

    +

    Δt ×dxdt

    2

    …×dxdt

    Parameter to estimate is isolated

  • Skew mismatch calibration implementation

    22

    ADC to calibrate

    average

    dxdt

    dxdt

    2−1

    dxdt

    Eliminate signal Recover Δt Subtract error

    Δt ϵ

    Estimation and subtraction of the skew error term

  • Digital derivative calculation

    23

    ADC

    • Digital FIR filter of 33 taps • Calculated from the output of all ADCs • Accurate frequency response up to 750MHz

    Offset calibration

    Gain calibration

    Derivative filter

    D(ω)

    π

  • Outline

    • Analog/digital co-design • Classical analog architecture • Digital mismatch calibration • Measurement results

    24

  • FFT Spectrum – Single tone

    25

    Sine wave -1dBFS Fin = 600 Mhz

    Offset spurs ↓23dB Skew spurs ↓23dB

  • 26

    After calibration

    Before calibration

    Sine input -1dBFS Peak SNDR 50.7 dB Up to 5dB increase

    SNDR vs. frequency

    5dB

    Derivative filter limitation

  • SFDR vs. frequency

    27

    After calibration (only mismatches)

    After calibration

    Before calibration

    Sine input -1dBFS Input buffer linearity limitation Mismatch-only SFDR 80dB Derivative filter limitation

    21dB

  • FFT Spectrum – Multitone

    28

    6 tones -17dBFS Fin = 334 513 Mhz

    Offset spurs ↓29dB Skew spurs ↓15dB

  • FFT Spectrum – Modulated signal

    29

    QAM16 modulation Fcarrier = 607 Mhz

    Offset spurs ↓29dB Gain/skew in noise floor

  • Chip fabrication

    30

    2 x digital mismatch

    compensation

    MUX 3:1

    Demux 1:6

    2 x ADC cores

    REF BU

    FFER

    BUFF

    ER LDO

    DC

    AP

    DCAP

    Isolation

    2.03

    mm

    0.82 mm

    Testing

    2 x TIADC on chip Mature ST CMOS 40nm technology Area 1.66 mm2

    • Digital 0.70 mm2 (42%) • Analog 0.96 mm2 (58%)

  • Power consumption

    31

    Total consumption 93mW • Analog: 43.5 mW • Digital: 49.5 mW

    FOM 283 fJ/conv

    References 6mW (7%)

    Offset calibration 2.9mW (3%)

    Gain calibration 11.3mW (12%)

    Skew calibration 35.3mW (38%)

    Analog core 21.5mW (23%)

    Input buffers 16mW (17%)

  • Performance vs. previous work

    32

    [1] [2] [3] This work Technology 65nm 65nm 65nm 40nm Sampling rate [GS/s] 3.6 2.6 2.8 1.6 Mismatch tones [dBFS] 50 55 60 70 SFDR [dBFS] 50 55 55 62 THD [dB] -55 -58 -55 -58 SNDR [dB] 47 49 48 48 Power [mW] 795 480 44.6 (*) 93 FOM [fJ/conv] 1207 801 76 (*) 283 Area [mm²] 7.4 5.1 0.63 (*) 0.83 [1] Doris, ISSCC 2013 [3] Stepanovic, VLSI 2011 [2] Janssen, ISSCC 2011

  • Conclusion

    • Successful analog/digital co-design to reduce development time

    • Background digital calibration – Reusable – Parametric – Scalable

    • Power/area overhead expected to decrease with technology scaling

    33

  • Questions?

    34

    A 1.62GS/s Time-Interleaved SAR ADC with Digital�Background Mismatch Calibration Achieving�Interleaving Spurs Below 70dBFSChallenges in high-speed ADCsOutlineAnalog/digital co-designOutlineClassical SAR ADC structureSampling switchCustom capacitor arrayTime-interleavingMismatch-limited analog outputOutlineBackground digital mismatch calibrationOffset mismatch calibration principleOffset mismatch calibration principleOffset mismatch calibration implementationGain mismatch calibration principleGain mismatch calibration principleGain mismatch correctionSkew mismatch estimationSkew mismatch error modelSignal/derivative orthogonalitySkew mismatch calibration implementationDigital derivative calculationOutlineFFT Spectrum – Single toneSNDR vs. frequencySFDR vs. frequencyFFT Spectrum – MultitoneFFT Spectrum – Modulated signalChip fabricationPower consumptionPerformance vs. previous workConclusionSlide Number 34