9vTw5tSZ

883

Transcript of 9vTw5tSZ

WATER RESgURCES SYSTEMS PLAHHIHG MAHAGEHEHT AND

DEVELOPMENTSIN WATERSCIENCE, 51 OTHER TITLES IN THIS SERIES4 J.J. FRIED GROUNDWATER POLLUTION 13 M.N. MARII~IO AND J.N. LUTIN SEEPAGE AND GROUNDWATER 14 D. STEPHENSON STORMWATER HYDROLOGYAND DRAINAGE 18 J, BALEK HYDROLOGY AND WATER RESOURCES IN TROPICAL REGIONS 19 D, STEPHENSON PIPEFLOW ANALYSIS 22 H.C. RIGGS STREAMFLOW CHARACTERISTICS 25 W. KINZELBACH GROUNDWATER MODELLING 26 D. STEPHENSON AND M.E. MEADOWS KINEMATIC HYDROLOGYAND MODELLING 28 M, JERMAR WATER RESOURCES AND WATER MANAGEMENT 29 G.W. ANNANDALE RESERVOIR SEDIMENTATION 30 D. CLARKE MICROCOMPUTER PROGRAMS IN GROUNDWATER 31 R.H. FRENCH HYDRAULIC PROCESSES ON ALLUVIAL FANS 32 L. VOTRUBA, Z. KOS, K. NACH.&.ZEL, A. PATERA AND V. ZEMAN ANALYSIS OF WATER RESOURCE SYSTEMS 33 L. VOTRUBA AND V. BRO;P.A WATER MANAGEMENT IN RESERVOIRS 34 D. STEPHENSON WATER AND WASTEWATER SYSTEMS ANALYSIS 35 M.A. CELIA ET AL. (EDITORS) COMPUTATIONAL METHODS IN WATER RESOURCES, 1, MODELLINGSURFACEAND SUB-SURFACE FLOWS 36 M.A. CELIA ET AL. (EDITORS) COMPUTATIONAL METHODS IN WATER RESOURCES, 2, NUMERICALMETHODS FOR TRANSPORT AND HYDROLOGICAL PROCESSES 37 D. CLARKE GROUNDWATER DISCHARGETEST SIMULATIONAND ANALYSIS MICROCOMPUTERPROGRAMMES IN TURBOPASCAL 38 J. BALEK GROUNDWATER RESOURCESASSESSMENT 39 E. CUSTODIO AND A. GURGUI (EDITORS) GROUNDWATER ECONOMICS 40 D. STEPHENSON PIPELINE DESIGN FOR WATER ENGINEERS third revised and updated edition 41 D. STEPHENSON AND M.S. PETERSON WATER RESOURCES DEVELOPMENT IN DEVELOPING COUNTRIES 42 K. NACHAZEL ESTIMATION THEORY IN HYDROLOGYAND WATER SYSTEMS 43 J. ZARUBA WATER HAMMER IN PIPE-LINE SYSTEMS 44 W.E. KELLY AND S.MARESV (EDITORS) APPLIED GEOPHYSICS IN HYDROGEOLOGICAL 45 K.W. HIPEL AND A,I. McLEOD TIME SERIES MODELLING OF WATER RESOURCESAND ENVIROMENTALSYSTEMS 46 G.A. BRUGGEMAN ANALYTICAL SOLUTIONS OF GEOHYDROLOGICALPROBLEMS 47 S.M. HASSANIZADEH, R.J. SCHOTTING, W.G. GRAY AND G.R PINDER COMPUTATIONAL METHODS IN WATER RECOURCES 49 R WlLDERER AND S. WUER'I-Z MODERN SCIENTIFICTOOLS IN BIOPROCESSING

WATER RESgURCES SYSTEHS PLAHHIHG MAHAGEHEHT AHg

National Institute of Hydrology, Roorkee 247 667, Uttaranchal, India

S.K. Jain

V.P. Singh

Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803-6405, USA

2003ELSEVIER Amsterdam - Boston - Heidelberg - London - New York - Oxford - SydneyTokyo

Paris- San Diego - San Francisco - Singapore

=LSEVIER SCIENCE B.V. Sara Burgerhartstraat 25 RO. Box 211, 1000 AE Amsterdam, The Netherlands 2003 Elsevier Science B.V. All rights reserved. This work is protected under copyright by Elsevier Science, and the following terms and conditions apply to its use: Photocopying Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. Permission of the Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying, copying for advertising or promotional purposes, resale, and all forms of document delivery. Special rates are available for educational institutions that wish to make photocopies for non-profit educational classroom use. Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: [email protected]. You may also complete your request on-line via the Elsevier Science homepage (http://www.elsevier.com), by selecting 'Customer Support' and then 'Obtaining Permissions'. In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA; phone: (+ 1) (978) 7508400, fax: (+ 1) (978) 7504744, and in me LIK through the Copyright Ucensing Agency Rapid Clearance Service (CLARCS), 90 Tottenham Court Road, L~qdor, -j1p 0L+RUK; phone: (+44) 207 631 5555; fax: (+44) 207 631 5500. Other countries may have a local reprograpl~Jc :;;~+s aa~ecy for payments. Derivative Works Tables of contents may be reproduced for internal circulation, but permission of Elsevier Science is t~,~it ~, t~.~ ~~e,'~al resale or distribution of such material. Permission of the Publisher is required for all other derivative works, including compilations and translations. Electronic Storage or Usage Permission of the Publisher is required to store or use electronically any material contained in this work, including any chapter or part of a chapter. Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the Publisher. Address permissions requests to: Elsevier's Science & Technology Rights Department, at the phone, fax and e-mail addresses noted above. Notice No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made.

First edition 2003 Library of Congress Cataloging in Publication Data A catalog record from the Library of Congress has been applied for. British Library Cataloguing in Publication Data A catalogue record from the British Library has been applied for. ISSN: 0167-5648 ISBN: 0-444-51429-5 Printed and bound by Antony Rowe Ltd, Eastbourne Transferred to digita[ printing 2005

Sahanaavavatu, sahanau bhunaktu Saha viryam karvaavahai Tejasvinah avadheetamastu, maa vidvishavahai Om! Shanti, shanti, shanti! (Shanti Mantra)May all of u s unite together! May all of u s enjoy together! May all of us strive for great things together! Let great m i n d s flourish! Let there be no m i s u n d e r s t a n d i n g s ! The ultimate is Peace, Peace, Peace!

Dedicated to Our Families:SKJ" My Parents VPS" Anita, Vinay, and Arti

This Page Intentionally Left Blank

Shanno devirbhistaya aapon bhavantu p e e t a y e ! Shanyorbhi stravantu nab ! IYajur Veda (36.12) May beautiful w a t e r s be p l e a s a n t to u s to d r i n k and acquire happiness, a n d flow with h e a l t h a n d s t r e n g t h to us.

PREFACEIn nature, the water of right quality in right quantity is usually not available at the right place at the right time. Sometimes, it is available at the wrong place and at the wrong time and its quality and quantity are not what they should be. Although in nutshell, this is the gist of the problem, this seemingly innocuous, albeit naughty interplay of words fails to convey the gravity and the magnitude of the problems that are caused by the mismatch between the availability and the demand of good quality water. Nature can indeed be very harsh and ruthless at times. However, a positive outcome of this mismatch is the development of a wide range of tools and techniques for water resources systems planning, development, operation, and management. Since the publication of "Design of Water Resources Systems" by the Harvard Water Group in 1962, systems techniques have been commonly applied to water resources planning, design, operation and management. The results of numerous studies, applications, and practices have been reported in many monographs and books. Although the material presented in these books is undoubtedly relevant; praiseworthy, and authoritative, the practice of water resources management has undergone significant and far-reaching changes during recent years. In developed countries, for example, the emphasis these days is on conservation and sustainable development of water resources, whereas the emphasis in developing countries is more on the development of untapped water resources to meet rapidly increasing demands and for alleviation of poverty. These objectives have to be attained, while simultaneously minimizing adverse impacts on the environment and the social fabric of the society. There is a growing call for involving stakeholders in decision-making at all levels. To that end, there is unanimity all over the world that water resources of a river basin have to be developed and managed by systematically integrating socio-economic, environmental, political and engineering considerations. Furthermore, the revolutions occurring in technology these days are having a profound influence on the practice of water resources engineering. Two glaring examples of this revolution are the Internet and electronic mail. These have provided a convenient, cheap, and rapid medium of communication and access to huge volumes of information. These days, people

viii physically located far away from each other can be in close contact and can frequently exchange ideas, notes, and documents almost instantaneously. Such a quick communication was unthinkable only a few years ago. These are the factors that motivated the writing of this book which provides a discussion on topics deemed relevant in the present scenario of water resources practice. Another feature, deemed important, is the employment of a real-word system as an example to illustrate application of systems concepts and techniques. The subject matter of the book is divided into four parts. The first part, termed Preliminaries, contains four chapters. Introducing the basic theme of the book, the first chapter provides an overview of the current status of water resources utilization, and the likely scenario of demands in the near future. The basic concepts, practical applications, and advantages and disadvantages of systems analysis techniques are presented. Also provided is a discussion of seven challenges for the water sector identified and debated in recent international forums. Temporal and spatial hydrologic analyses require extensive data. An understanding of how this data is measured and how the processing of this data is done is important before undertaking any water resources systems analysis. Chapter 2 presents techniques of observing and processing the data used in water resources systems. The discussion is extended to emerging techniques in Chapter 3. These techniques are Remote Sensing, GIS, Artificial Neural Networks, and Expert Systems. These techniques are versatile, highly useful, and are playing increasingly important role in water resources planning and management. Chapter 4 discusses statistical tools for deriving the desired information from these data, including commonly used probability distributions, methods of parameter estimation, regression and correlation analysis, frequency analysis, time-series analysis, and transition matrices and Markov chains. Part 2 of the book deals with Decision Making which is a bouquet of techniques organized in 4 chapters. Optimization and simulation techniques are discussed in Chapter 5. Most of the analysis dealing with planning and management of water resources systems is carried out using these techniques. Besides technical aspects, economic analysis is essential to rank the various competing projects and the subsequent approval by the decision-maker. Chapter 6 dwells upon the techniques of economic analysis. During recent years, environmental and social aspects, and rehabilitation and resettlement of project-affected people have come to occupy a central stage in planning as well as management of water resources projects. It is now recognized that these projects may have a lasting impact on the social fabric of the area concerned. It is, therefore, necessary that while planning as well as operating a water resources system, adequate care and precautions are exercised so that adverse impacts on the society and the environment are minimized. These issues form the subject matter of Chapter 7. Using basic analytical tools and the knowledge of environmental and social aspects, the practitioner is required to take a rational and balanced decision regarding design and management of water resources systems. Since major inputs to a water resources system, such as rainfall, meteorological variables, etc. are not deterministic, these systems inherently have an element of risk. The concept of rational

ix

decision making and the associated elements, such as the concept of risk, reliability, and uncertainty in water resources systems, are discussed in Chapter 8. Part 3 of the book, comprising 2 chapters, deals with Water Resources Planning and Development. Chapter 9 discusses basic concepts of planning, classification and steps of the planning process, integrated planning, institutional setup, public involvement, and planning models. Chapter 10 discusses planning and sizing of reservoirs, and approaches to compute the storage capacity for conservation as well as flood control. The fourth and last part of the book, encompassing 4 chapters, focuses on

Systems Operation and Management. After a reservoir has been constructed, it isessential that it is managed in the best possible way so that benefits can be maximized. The techniques of reservoir operation are discussed in Chapter 11. It includes a detailed discussion on conventional and systems techniques for regulating a system consisting of reservoirs in series and parallel and the application of various systems analysis techniques, such as optimization and simulation. It also discusses real-time operation of reservoirs and the logistics required. Many dams around the world are experiencing a significant loss of their storage capacity every year due to sedimentation. This topic is discussed in Chapter 12, providing details of soil erosion and mathematical modeling of sediment transport, empirical techniques as well as latest satellite data-based techniques to assess reservoir sedimentation, methods to prevent the sediment from entering a reservoir, and recovery of reservoir storage by flushing and dredging. No analysis of water resources systems is complete without consideration of water quality. Chapter 13 presents fundamentals of measurement of water quality variables and modeling of water quality in rivers. A river basin is the natural unit in which water occurs and currently a lot of emphasis is being placed on holistic management of river basins. Chapter 14, the final chapter, discusses various issues related to management of a river basin. The discussion includes integrated water quality and quantity management, water pricing, water rights, inter-basin water transfer, decision support systems, privatization, and management of intemational river basins. It is hoped that the book will be useful to those engaged in practice of water resources engineering. This book is intended for senior undergraduate and beginning graduate students as well as water resources practitioners. Its purpose will be served if it provides them motivation and information in their pursuit for further search and a deeper dive in this vast reservoir of knowledge to quench their thirst. Sharad K. Jain National Institute of Hydrology Roorkee, India

Vijay e. Si.ghLouisiana State University Baton Rouge, Louisiana, U. S. A.

AcknowledgmentsThe material for the book evolved from lecture notes prepared for various short-term and regular courses with which we were associated. A large number of colleagues and friends helped in preparation of the book at various stages. While it is not possible to mention all the names here, we will be amiss if we failed to mention a few individuals who have been particularly helpful. Mr. M K Goel gave suggestions and useful inputs for several chapters. Mr. P K Agarwal prepared many drawings and tables for the book. The help provided by Ms. Mahima Gupta through excellent typing and editing is gratefully acknowledged. Mr. Hemant Chowdhary and Dr. R. Jha provided suggestions and material for some chapters. Some material in this book is based on studies with which we were associated and thus we are grateful to our co-workers in those studies. The data pertaining to Sabarmati River system have been used in examples to illustrate various techniques throughout the book. Thanks are also due to the officers and staff of Gujarat Irrigation Department, involved with the collection of data, analysis, and management of Sabarmati River system. Our families (Shikha, Sanchit, and Surabhi; and Anita, Vinay, and Arti) created congenial atmosphere at home and allowed us to work in the evenings and on weekends on innumerable occasions. Many relatives, friends, and colleagues gave encouragement while we worked on this book. Their support and good wishes are gratefully acknowledged.

S K Jain

v P Singh

CONTENTSPreface ................................................................................................................. vii Acknowledgments ................................................................................................... x

Part I Preliminaries .............................................................................................. 1 Chapter 1 Introduction to Water Resources Systems .............................................. 3 1.1 Need for Water ............................................................................................ 6 1.1.1 Likely Future Trends of Water Demands ....................................... 10 1.1.2 Water and Ecosystems ................................................................... 11 1.2 Availability of Water ................................................................................. 12 1.2.1 Water Resources Assessment ......................................................... 14 1.3 Technology for Meeting Water Needs ...................................................... 18 1.4 Water Resources Planning ......................................................................... 19 1.5 Water Resources Development ................................................................. 20 1.6 Water Resources Management ...................................... . ........................... 21 1.7 Water Resources Systems .......................................................................... 26 1.7.1 Concept of a System ....................................................................... 26 1.7.2 Systems Analysis Techniques ........................................................ 29 1.7.3 Characteristics of Water Resources Systems ................................. 30 1.8 Issues in Systems Approach ...................................................................... 31 1.8.1 Potential o f Systems Analysis Approach ....................................... 32 1.8.2 Economics in Systems Engineering ............................................... 33 1.9 Advantages and Limitations of Systems Approach ................................... 34 1.10 Challenges in Water Sector ....................................................................... 36 1.11 An Example Water Resources S y s t e m - Sabarmati System ..................... 40 1.11.1 Regulation of Sabarmati System .................................................... 43 1.12 Closure ...................................................................................................... 43 1.13 References ................................................................................................. 44 Chapter 2 Acquisition and Processing of Water Resources Data .......................... 47 2.1 Types of Water Resources Data ................................................................ 48 2 . 1 . 1 Time-Oriented Data ....................................................................... 50 2.1.2 Space-Oriented Data ...................................................................... 50 2.1.3 Relation-Oriented Data .................................................................. 50 2.1.4 Techniques for Observation o f Water Resources Data .................. 51 2.1.5 Sources of Data .............................................................................. 52 2.2 Design of Hydrometeorological Networks ................................................ 52 2.2.1 Precipitation Networks ................................................................... 53

.

Xll

Contents2.2.2 Streamflow Networks ..................................................................... 54 Data Validation .......................................................................................... 55 2.3.1 Primary Validation ......................................................................... 58 2.3.2 Secondary Validation ..................................................................... 58 2.3.3 Hydrological Validation ................................................................. 58 2.3.4 Data Fill-in ..................................................................................... 59 Acquisition and Processing of Precipitation Data ..................................... 59 2.4.1 Precipitation Gages ........................................................................ 59 2.4.2 Processing of Precipitation Data .................................................... 64 2.4.3 Spatial Interpolation of Precipitation Data ..................................... 67 2.4.4 Disaggregation of Rainfall Data ..................................................... 75 2.4.5 Rain Storm Analysis ...................................................................... 75 Acquisition and Processing of other Meteorological Data ........................ 76 2.5.1 Pan Evaporation Data ..................................................................... 76 2.5.2 Temperature and Humidity Data .................................................... 78 2.5.3 Wind Speed and Direction ............................................................. 79 2.5.4 Sunshine Duration ............. 80 2.5.5 Automatic Hydrologic Stations ...................................................... 80 Acquisition and Processing of Streamflow Data ....................................... 81 2.6.1 Selection of Gauging Sites ............................................................. 82 2.6.2 Measurement of Stage .................................................................... 83 2.6.3 Measurement of Discharge ............................................................. 85 2.6.4 Processing of Streamflow Data ...................................................... 94 Water Quality Data .................................................................................... 99 2.7.1 Physical Parameters ....................................................................... 99 2.7.2 Chemical Parameters .................................................................... 101 2.7.3 Biological Parameters .................................................................. 103 2.7.4 Sediment Data . .......... 104 2.7.5 Processing of Water Quality Data ................................................ 106 Other Data ............................................................................................... 107 2.8.1 Ground Water Data ...................................................................... 107 2.8.2 Reservoir and Lake Data .............................................................. 108 2.8.3 Spatial Data .................................................................................. 108 2.8.4 Socio-economic and Agriculture Data ......................................... 109 2.8.5 Water Use and Demand Data ....................................................... 111 2.8.6 Data Gathered during System Operation ...................................... 112 Water Resource Information System ........................................................ 114 2.9.1 Data Transmission ........................................................................ 115 2.9.2 Data Storage and Retrieval ............................................................ ! 16 2.9.3 Data Dissemination ...................................................................... i 18 Closure .................................................................................................... 119 References ............................................................................................... 119

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10 2.11

Chapter 3 Emerging Techniques for Data Acquisition and Systems Modeling. 1233.1 Remote Sensing ....................................................................................... 123 3.1.1 Basic Components of Remote Sensing Data Collection .............. 126

Contents3.1.2

xiii

R e m o t e Sensing Sensors .............................................................. 127

3.2

3.3

3.4

3.5 3.6

3.1.3 R e m o t e Sensing Platforms .................. , ........................................ 128 3.1.4 Resolution o f R e m o t e Sensing D a t a ............................................. 131 3.1.5 Reflectance Characteristics o f Earth Featm'es .............................. 132 3.1.6 R e m o t e Sensing Data Analysis .................................................... 135 3.1.7 Digital Image Processing ............................................................. 135 3.1.8 Applications o f R e m o t e Sensing to W a t e r Resources P r o b l e m s ... 141 3.1.9 Cost of R e m o t e Sensing Analysis ................................................ 146 G e o g r a p h i c Information Systems ........ . ................................................... 146 3.2.1 Geographic Data Types ................................................................ 148 3.2.2 GIS Data Structure ....................................................................... 151 3.2.3 Geographic Coordinate Systems .................................................. 157 3.2.4 GIS-User Interface ....................................................................... 160 3.2.5 Steps of GIS Based Analysis ........................................................ 160 3.2.6 Analysis o f Geographic Data using a GIS .................................... 162 3.2.7 Digital Terrain M o d e l ( D T M ) ...................................................... 167 3.2.8 GIS Applications in W a t e r Resources ...... .................................... 169 3.2.9 Conclusions .................................................................................. 171 Artificial Neural N e t w o r k s ...................................................................... 171 3.3.1 Structure and Classification o f A N N s .......................................... 173 3.3.2 Feed-forward A N N s ..................................................................... 173 3.3.3 Designing an A N N ....................................................................... 176 3.3.4 Training o f A N N .......................................................................... 176 3.3.5 Error Back Propagation A l g o r i t h m .............................................. 178 3.3.6 Cascade Correlation A l g o r i t h m .................................................... 182 3.3.7 Modular N e u r a l N e t w o r k ............................................................. 183 3.3.8 Radial-Basis Function N e t w o r k s .................................................. 184 3.3.9 Applications ................................................................................. 186 3.3.10 Issues in A N N Applications ......................................................... 187 E x p e r t Systems .............. . .................... .., .................................................. 189 3.4.1 Expert Systems Architecture ........................................................ 191 3.4.2 ES D e v e l o p m e n t ........................................................................... 192 3.4.3 ES Techniques ............................. ................................................. 193 3.4.4 ES Tools ....................................................................................... 193 3.4.5 K n o w l e d g e Base ........................................................................... 194 3.4.6 Inference Engine .......................................................................... 195 3.4.7 Applications in Water Resources ................................................. 196 Closure .................................................................................................... 198 References ............................................................................................... 199

Chapter 4 Statistical Techniques for Data Analysis .............................................. 2074.1 4.2 Basic Concepts ........................................................................................ 208 4.1.1 Distribution Characteristics .................................................... . ..... 210 Probability Distributions ......................................................................... 215 4.2.1 Continuous Probability Distributions ........................................... 217 4.2.2 Discrete Probability Distributions ................................................ 221

xiv 4.3

ContentsMethods of Parameter Estimation ........................................................... 222 4.3.1 Method of Moments for Continuous Systems .............................. 223 4.3.2 Method of Moments for Discrete Systems ................................... 224 4.3.3 Method of Probability Weighted Moments .................................. 226 4.3.4 Methods of Mixed Moments ........................................................ 227 4.3.5 Method of L-Moments ................................................................. 227 4.3.6 Method of Maximum Likelihood Estimation (MLE) ................... 229 4.3.7 Method of Least Squares .............................................................. 230 Concept of Entropy .................................................................................. 230 4.4.1 Principle of Maximum Entropy .................................................... 231 4.4.2 Entropy-Based Parameter Estimation .......................................... 232 Problems of Parameter Estimation .......................................................... 232 Hypothesis Testing .................................................................................. 235 4.6.1 The t-test ...................................................................................... 238 4.6.2 Chi-square Distribution ................................................................ 239 Linear Regression .................................................................................... 240 4.7.1 Parameter Estimation ................................................................... 241 4.7.2 Goodness of Regression ............................................................... 241 4.7.3 Inferences on Regression Coefficients ......................................... 243 4.7.4 Confidence Intervals .................................................................... 243 4.7.5 Extrapolation ................................................................................ 247 Multiple Linear Regression ..................................................................... 248 4.8.1 Estimation of Regression Coefficients ......................................... 249 4.8.2 Inferences on Regression Coefficients ......................................... 249 4.8.3 Stepwise Regression ..................................................................... 250 Correlation Analysis ................................................................................ 251 4.9.1 Cross-Correlation ......................................................................... 251 4.9.2 Serial or Auto-Correlation ............................................................ 252 4.9.3 Inferences on Correlation Coefficients ......................................... 253 Frequency Analysis ................................................................................. 254 4.10.1 Point Frequency Analysis ............................................................. 255 4.10.2 Frequency-Factor Method ............................................................ 256 4.10.3 Confidence Limits ........................................................................ 258 4.10.4 Regional Frequency Analysis ....................................................... 259 4.10.5 Index Flood Method ..................................................................... 259 4.10.6 Multiple Regression Method ........................................................ 262 Time Series Analysis ............................................................................... 262 4.11.1 Stationary Stochastic Processes .................................................... 264 4.11.2 Time SeriesModels ...................................................................... 264 4.11.3 Partial Autocorrelation Function .................................................. 266 4.11.4 Fitting of A R M A Models ............................................................. 267 Markov Models ....................................................................................... 271 Closure .................................................................................................... 274 References ............................................................................................... 274

4.4

4.5 4.6

4.7

4.8

4.9

4.10

4.11

4.12 4.13 4.14

Contents

xv

P a r t II Decision M a k i n g ............................. ....................................................... 277 C h a p t e r 5 Systems Analysis T e c h n i q u e s ............................................................... 279 5.1 Systems Analysis Techniques ................................................................. 279 5.2 Optimization ............................................................................................ 280 5.2.1 Classification of Optimization Techniques .................................. 282 5.3 Linear Programming ................................................................................ 282 5.3.1 Assumptions in LP ....................................................................... 283 5.3.2 Mathematical Representation of an LP Problem .......................... 283 5.3.3 Formulation of an LP Model ........................................................ 285 5.3.4 Reduction of a General LP Problem to a Standard Form ............. 286 5.3.5 Canonical Form of an LP Problem ............................................... 287 5.3.6 Graphical Solution o f a LP Problem ............................................ 288 5.3.7 Simplex Method of LP ................................................................. 290 5.3.8 Duality in LP ................................................................................ 294 5.3.9 Post Optimality Analysis .............................................................. 296 5.3.10 Important Classes o f LP Problems ............................................... 296 5.4 Nonlinear Programming .......................................................................... 297 5.4.1 Lagrange Multipliers and Kuhn-Tucker Conditions .................... 299 5.4.2 Classification o f Nonlinear Programming Methods ..................... 300 5.4.3 Unconstrained Nonlinear Programming Methods ........................ 300 5.4.4 Constrained Nonlinear Programming Methods ............................ 304 5.4.5 Some Common Problems in N L P Applications ........................... 306 5.5 Dynamic Programming ........................................................................... 307 5.5.1 Recursive Equation of DP ............................................................ 309 5.5.2 Discrete Differential DP ............................................................... 312 5.5.3 Advantages and Disadvantages of DP .......................................... 313 5.6 Stochastic Optimization ........................................................................... 314 5.6.1 Chance-constrained Linear Programming .................................... 315 5.6.2 Stochastic Dynamic Programming ............................................... 316 5.7 Multi-Objective Optimization ................................................................. 319 5.7.1 Classification o f Multi-objective Optimization Techniques ......... 324 5.7.2 Generating Techniques ................................................................. 324 5.7.3 Surrogate Worth T r a d e - o f f M e t h o d ............................................. 326 5.8 Goal Programming .................................................................................. 328 5.8.1 Goal Programming Model ............................................................ 330 5.9 Simulation ............................................................................................... 337 5.9.1 Classification o f Simulation Models ............................................ 338 5.9.2 Monte Carlo Simulation ............................................................... 339 5.9.3 Time Management in Simulation ................................................. 340 5.9.4 Design of Sampling Strategy ........................................................ 341 5.9.5 Steps in Simulation Modeling ...................................................... 342 5.9.6 Inputs to Simulation Models ........................................................ 343 5.9.7 Outputs of Simulation Models ..................................................... 344 5.9.8 Pros and Cons of Simulation Models ........................................... 344 5.10 Closure .................................................................................................... 345

xvi Appendix 5.11

Contents5A.1 Generation of Random Numbers ......................................... 346 5A.2 Transformation of Random Numbers .................................. 347 References ............................................................................................... 349

Chapter 6 Economic Considerations ..................................................................... 3516.1 Basic 6.1.1 6. !.2 6.1.3 6.1.4 6.1.5 Principles of Project Economics .................................................... 352 Cash Flow Diagram ...................................................................... 353 Discount Rate ............................................................................... 353 Discount Factors ........................................................................... 355 Sunk Cost ..................................................................................... 357 Intangible Values ......................................................................... 357 6.1.6 Salvage Value ............................................................................... 358 6.1.7 Marginal Returns .......................................................................... 358 6.1.8 Planning Horizons ........................................................................ 358 Demand and Utility of Water .................................................................. 359 6.2.1 Water Demand and Cost ............................................................. . 3 5 9 6.2.2 Elasticity of Water Demand ......................................................... 361 6.2.3 Utility Theory ............................................................................... 361 Project Economics and Evaluation .......................................................... 363 6.3.1 Project Cost .................................................................................. 363 6.3.2 Project Installation Cost ............................................................... 363 6.3.3 Rehabilitation and Resettlement Costs ......................................... 364 6.3.4 Operation, Maintenance and Replacement Costs ......................... 365 6.3.5 Total Annual Cost ........................................................................ 365 6.3.6 Project Benefits ............................................................................ 366 Discounting Techniques .......................................................................... 366 Benefit-Cost Ratio Method ...................................................................... 367 6.5.1 Steps of BC Analysis ................................................................... 368 6.5.2 Incremental Benefit and Cost ....................................................... 370 6.5.3 Economic Rationale of Benefit-Cost Analysis ............................. 372 Other Discounting Methods ..................................................................... 373 6,6.1 Present Worth Method ................................................................. 373 6.6.2 Rate-of-Return Method ................................................................ 375 6.6.3 Comparison of BC Ratio and IRR Method .................................. 377 6.6.4 Annual Cost Method .................................................................... 379 6.6.5 Comparison of Discounting Techniques ...................................... 380 Project Feasibility and Optimality ........................................................... 381 6.7.1 Cost and Benefit Curves ............................................................... 383 6.7.2 Optimal Allocation of Water to Individual Users ........................ 383 6.7.3 Optimal Allocation of Water among Different Uses .................... 384 6.7.4 Allocation of Ground Water ......................................................... 385 6.7.5 Project Optimality ........................................................................ 385 Allocation of Project Cost ....................................................................... 386 6.8.1 Cost Allocation Practices in India . ............................ 389 6.8.2 Funding Needs in Water Sector ................................................... 389 6.8.3 Case Study of Dharoi Project .................................... ................ 390

6.2

6.3

6.4 6.5

6.6

6.7

6.8

Contents6.9 6.10

xvii

Closure .................................................. , ........ ........................................ 392 References ............................................................................................... 392

Chapter 7 Environmental and Social Considerations .......................................... 395 7.1 D y n a m i s m o f E n v i r o n m e n t ..................................................................... 396 7.2 W a t e r in Environment ............................................................................. 397 7.3 Environmental Impacts o f W a t e r Resources Projects .............................. 398 7.3.1 Adverse Impacts ........................................................................... 401 7.3.2 Beneficial Impacts ........................................................................ 403 7.4 Environmental Impacts o f Reservoirs ..................................................... 405 7.4.1 Physical Impacts ........................................................................... 406 7.4.2 Biological Impacts ....................................................................... 409 7.4.3 Small D a m s Versus Big D a m s ..................................................... 410 7.5 Environmental Problems in C o m m a n d Areas ......................................... 413 7.6 Environmental Impact Assessment .......................................................... 415 7.6.1 Environmental Impact A s s e s s m e n t Procedure ............................. 416 7.6.2 Techniques o f Environmental Impact A s s e s s m e n t ..................... .. 417 7 . 6 3 Indices for Environmental Impact A s s e s s m e n t ............................ 427 7.6.4 Current EIA Procedures ............................................................... 429 7.7 Integration o f Environmental Aspects in W a t e r Resources Planning ...... 430 7.7.1 Optimization Methods .................................................................. 432 7.8 Environmental Considerations in Reservoir Planning and Operation ..... 433 7.8.1 Guidelines o f l C O L D ................................................................... 433 7.8.2 Guidelines for Planning ................................................................ 435 7.9 Sustainable D e v e l o p m e n t ........................................................................ 436 7.9.1 Def'ming Sustainable D e v e l o p m e n t .............................................. 437 7.9.2 Issues in Sustainable D e v e l o p m e n t .............................................. 440 7.10 Social Impacts ......................................................................................... 442 7.10.1 Rehabilitation and Resettlement ................................................... 444 7.11 Case Study - Sardar Sarovar Project, India .............................................. 448 7.11.1 The Project ................................................................................... 449 7.11.2 The Controversy ........................................................................... 451 7.11.3 The Protests by N G O ' s ................................................................ 452 7.11.4 Project Status ................................................................................ 453 7.12 Closure .................................................................................................... 454 7.13 References ............................................................................................... 454 A p p e n d i x 7A The Report o f World C o m m i s s i o n on D a m s ................................ 457 Chapter 8 Rational Decision Making ..................................................................... 8.1 Concept of Rationality ............................................................................. 8.2 Risk Analysis and M a n a g e m e n t .............................................................. 8.2.1 Classification o f Risks .................................................................. 8.2.2 Sources o f Risk ............................................................................ 8.2.3 Estimation o f Risk ........................................................................ 8.2.4 Risk M a n a g e m e n t ......................................................................... 8.3 Uncertainty Analysis ............................................................................... 459 461 462 466 467 469 471 472

.. XVlll

Contents8.3.1 Classification of Uncertainty ........................................................ 472 8.3.2 Sources of Uncertainty ................................................................. 474 8.3.3 Analysis of Errors ........................................................................ 474 8.3.4 Analysis of Uncertainty ................................................................ 480 8.3.5 Value of Information .................................................................... 484 Utility Theory ........................................................................................... 485 8.4.1 Expected Monetary Value of a Decision ...................................... 487 8.4.2 Improving the Decision Policy ...................................................... 489 8.4.3 Sensitivity Analysis ...................................................................... 489 Systems Techniques for Rational Decision Making ................................ 492 8.5.1 Stochastic Optimization ............................................................... 492 8.5.2 Stochastic Simulation ................................................................... 494 Bayesian Decision Making ...................................................................... 495 8.6.1 Bayes' Theorem ........................................................................... 495 8.6.2 Application of Bayes' Theorem ................................................... 496 Closure .................................................................................................... 501 References ............................................................................................... 501

8.4

8.5

8.6

8.7 8.8

Part III Water Resources Planning and Development ................................... 503 Chapter 9 Water Resources Planning .................................................................... 505 9.1 Integrated Planning .................................................................................. 508 9.2 Stages in Water Resources Planning ....................................................... 509 9.2.1 Relationship among Stages .......................................................... 511 9.3 Data Collection and Processing ............................................................... 513 9.3.1 Specification and Sources of Data ................................................ 513 9.3.2 Data Adequacy ............................................................................. 514 9.3.3 Data Quality Control .................................................................... 515 9.3.4 Data Systems .. .............................................................................. 515 9.4 Estimation of Future Water Demands ..................................................... 516 9.4.1 Water Requirements for Irrigation ............................................... 517 9.4.2 Municipal Water Use ................................................................... 519 9.5 Plan Initiation and Preliminary Planning ................................................. 520 9.5.1 Dependency of Water Sector Plan on Other Sectors .................... 522 9.5.2 Articulation of Project Objectives ................................................ 522 9.5.3 Project Constraints ....................................................................... 523 9.5.4 Planning for Operation ................................................................. 524 9.5.5 Conjunctive Use Planning ............................................................ 525 9.6 Institutional Set-up .................................................................................. 525 9.6.1 Involvement of Experts ................................................................ 526 9.6.2 Decision Making Levels ............................................................... 527 9.6.3 Compatibility among Agencies .................................................... 528 9.6.4 Capacity Building ......................................................................... 528 9.7 Public Involvement .................................................................................. 528 9.7.1 Advantages of Public Involvement ............... ............................... 530

Contents9.7.2 Activities in Public Involvement Process ..................................... Formulation and Screening of Alternatives ............................................. 9.8.1 Classification o f Alternatives ....................................................... 9.8.2 Generation of Alternatives ........................................................... 9.8.3 Techniques for Screening Alternatives ........................................ 9.8.4 Evaluation of Alternatives and Finalization ................................. Models for Water Resources Planning ..................................................... 9.9.1 System Decomposition ................................................................. 9.9.2 Selection of Systems Analysis Tools ........................................... 9.9.3 Use of Multi-objective Analysis ................................................... 9.9.4 Object-Oriented Modeling Approach ........................................... 9.9.5 Model Credibility ......................................................................... Sensitivity Analysis ................................................................................. 9.10.1 Risk and Uncertainty Analysis ..................................................... 9.10.2 Uncertainties Associated with Objectives and Constraints .......... 9.10.3 Post-evaluation o f Projects ........................................................... Interaction between Analyst and Decision-maker ................................... 9.11.1 Presentation of Results ................................................................. Water Resource Planning - Case Studies ................................................ 9.12.1 Ganga-Brahmputra-Barak Basin Study ........................................ 9.12.2 Water Resources Planning for Egypt ........................................... Closure .................................................................................................... References ...............................................................................................

xix 531 533 533 534 534 534 535 536 537 538 540 540 541 541 542 543 543 544 545 545 549 550 551

9.8

9.9

9.10

9.11 9.12

9.13 9.14

Chapter 10 Reservoir Sizing .................................................................................... 55510.1 10.2 10.3 Need for Reservoirs ................................................................................. 556 10.1.1 Classification o f Reservoirs ......................................................... 558 Characteristics and Requirements o f Water Uses .................................... 558 Reservoir Planning .................................................................................. 561 10.3.1 Site Selection Criteria for a Reservoir .......................................... 561 10.3.2 Investigations for Planning a Reservoir ....................................... 562 Estimation o f Water Yield Using Flow Duration Curves ........................ 566 10.4.1 Procedure to Prepare a Flow Duration Curve ............................... 567 10.4.2 Use of Flow Duration Curves ....................................................... 568 Hydropower Generation .......................................................................... 569 10.5.1 Components o f Hydropower Projects .......................................... 571 10.5.2 Estimating Hydropower Potential and Demand ........................... 573 Reservoir Losses ...................................................................................... 574 10.6.1 Evaporation Losses ...................................................................... 575 10.6.2 Seepage Losses ............................................................................. 576 10.6.3 Leakage through D a m .................................................................. 576 10.6.4 Water Balance of a Reservoir ....................................................... 576 Range Analysis ........................................................................................ 577 10.7.1 Hurst Phenomenon ....................................................................... 578 10.7.2 Dependence in Hydrologic Time-Series ....................................... 579 10.7.3 Sensitivity of Reservoir Storage to Inflow Statistics .................... 580

10.4

10.5

10.6

10.7

XX

Contents10.8 Regulation Regime Function .......... ......................................................... 581 10.8.1 Development of Components of Regime Function ...................... 582 10.9 Reservoir Capacity Computation ............................................................. 583 10.9.1 Storage Zones in a Reservoir ....................................................... 584 10.10 Storage Requirement for Conservation Purposes .................................... 585 10.10.1 Mass Curve Method .................................................................... 586 10.10.2 Sequent Peak Algorithm ............................................................. 589 10.10.3 S t r e t c h e d - Thread Rule ............................................................. 590 10.10.4 Storage-Yield Analysis ............................................................... 591 10.10.5 Simulation Method (Behavior Analysis) .................................... 593 10.10.6 Reservoir Screening .................................................................... 595 10.11 Flood Control Storage Capacity .............................................................. 595 10.11.1 Reservoir Design Flood .............................................................. 596 10.12 Reservoir Routing .................................................................................... 59g 10.12.1 Reservoir Routing Techniques ................................................... 599 10.12.2 Mass Curve Method .................................................................... 599 10.12.3 Modified Puls Method ................................................................ 600 10.12.4 Coefficient Method ..................................................................... 601 10.12.5 Reservoir Routing with Controlled Outflow .............................. 602 10.12.6 Major Applications of Storage Routing ...................................... 602 10.12.7 General Comments ..................................................................... 603 10.13 Fixing Top of Dam .................................................................................. 606 Appendix 10.A Definitions .................................................................................. 607 Appendix 10.B Fixing Live Storage Capacity of Dharoi Reservoir ..................... 609 10.14 References ............................................................................................... 611

Part IV Systems Operation and Management ................................................ 613 Chapter 11 Reservoir Operation ............................................................................. 615 11.1 Conflicts in Reservoir Operation ............................................................. 616 11.2 Critical Issues in Reservoir Operation ..................................................... 617 11.2.1 Use of Flood Storage .................................................................... 618 11.2.2 Use of Total Storage ..................................................................... 618 11.2.3 Release of Stored Water ............................................................... 619 11.2.4 Release by Reservoir .................................................................... 619 11.2.5 Use of Available Water ................................................................ 619 11.2.6 Release Elevation ......................................................................... 619 11.3 Basic Concepts of Reservoir Operation ................................................... 620 11.3.1 Long-range Planning Schedules ................................................... 621 11.3.2 Rigid Operation Schedules ........................................................... 621 11.3.3 Standard Linear Operating Policy ................................................ 621 11.4 Rule Curves ............................................................................................. 623 11.4.1 Derivation of Rule Curves ............................................................ 623 11.4.2 Operation of a Reservoir Using Rule Curves ............................... 624 11.4.3 Concept of Storage Zoning .......................................................... 625 11.5 Operation of a Multi-Reservoir System ................................................... 627

Contents11.5.1 Reservoirs in Series ........................ . ............................................. 11.5.2 Hydropower Reservoirs ................................................................ 11.5.3 Reservoirs in Parallel ................................................................... 11.5.4 Other Rules .................................................................................. 11.5.5 Selective Withdrawal ................................................................... 11.6 Reservoir Operation for Flood Control .................................................... 11.6.1 Flood Control Reservation Diagram ............................................. 11.6.2 Approaches to Reservoir Operation during Floods ...................... 11.6.3 Pre-depletion of Reservoirs .......................................................... 11.6.4 Normal and Emergency Operation ............................................... 11.6.5 Flood Control Operation of a Multi-reservoir System ................. 11.7 System Engineering for Reservoir Management ..................................... 11.7.1 Optimization ................................................................................. 11.7.2 Simulation .................................................................................... 11.7.3 Network Flow Models .................................................................. 11.7.4 Linear Decision Rule .................................................................... 11.7.5 Recomposition-decomposition Approach .................................... 11.8 Real-Time Reservoir Operation ............................................................... 11.8.1 Logistics Required for Real-time Operation ................................. 11.8.2 Special Considerations in Real-time Operation ............................ 11.8.3 Information Dissemination ........................................................... 11.8.4 Advantages o f Real-time Operation ............................................. 11.9 Development of Operating Rules for Sabarmati System ......................... 11.9.1 Solution Approach ........................................................................ 11.9.2 Data Availability and Processing ................................................. 11.9.3 Integrated Conservation Operation of the System ........................ 11.9.4 Flood Control Operation of the System ....................................... 11.10 Closure .................................................................................................... 11.11 References ...............................................................................................

xxi628 630 632 634 639 639 641 642 643 645 647 650 650 652 654 654 656 660 662 662 663 664 664 666 667 667 670 675 676

Chapter 12 Reservoir Sedimentation ....................................................................... 681 12.1 Reservoir Sedimentation ......................................................................... 684 12.1.1 Problems due to Reservoir Sedimentation ................................... 686 12.1.2 Factors Influencing Reservoir Sedimentation .............................. 686 12.1.3 Trap Efficiency ............................................................................. 687 12.1.4 Sedimentation and Life of a Reservoir ......................................... 689 12.1.5 Allocation of Space for Sediments ............................................... 691 12.2 Loss o f Storage Capacity ......................................................................... 691 12.2.1 Rate of Loss o f Storage Capacity ................................................. 692 12.2.2 Unit-Weight of Deposited Sediments .................... , ...................... 694 12.2.3 Aggradation and Degradation ...................................................... 696 12.2.4 Distribution of Sediments in Reservoirs ...................................... 697 12.2.5 Empirical Area Reduction Method ............................................... 697 12.2.6 Economics o f Reservoir Sedimentation ....................................... 701 12.3 Sediment Yield of Watersheds ................................................................ 702 12.3.1 Methods of Sediment Yield Determination .................................. 704

xxii

Contents12.3.2 Comparison with Nearby Watersheds and Reservoirs ................. 704 12.3.3 Stream Gaging .............................................................................. 705 12.3.4 Mathematical Modelling of Reservoir Sedimentation .................. 706 12.3.5 Universal Soil Loss Equation (USLE) ......................................... 706 12.3.6 HEC-6 Model ............................................................................... 709 12.3.7 The WEPP Model ........................................................................ 712 12.4 Reservoir Surveys .................................................................................... 715 12.4.1 Contour Survey Method ............................................................... 717 12.4.2 Range Survey Method ....... .~......................................................... 717 12.4.3 Instruments for Reservoir Survey ................................................. 719 Assessment of Reservoir Sedimentation Using Remote Sensing ............ 721 12.5 12.5.1 Identification of Water Spread Area ............................................ 722 12.5.2 Analysis o f Imageries ................................................................... 723 12.5.3 Case Study- Assessment o f Sedimentation in Dharoi Reservoir .. 725 Methods to Control Sediment Inflow into a Reservoir ............................ 727 12.6 12.6.1 Off-stream Reservoirs .................................................................. 728 12.6.2 Cheek Dams ................................................................................. 728 12.6.3 Watershed Management to Reduce Soil Erosion .... ..................... 728 12.6.4 Vegetative Measures .................................................................... 729 12.6.5 Engineering Measures .................................................................. 730 12.6.6 Watershed Prioritization ............................................................... 731 Sediment Routing .................................................................................... 734 12.7 12.7.1 Reservoir Drawdown ................................................................... 734 12.7.2 Density Currents ........................................................................... 734 12.7.3 Sediment By-pass ......................................................................... 736 R e c o v e r y of Storage Capacity ................................................................. 737 12.8 12.8.1 Flushing ........................................................................................ 737 12.8.2 Dredging ....................................................................................... 738 12.9 Closure .................................................................................................... 739 12.10 References ............................................................................................... 739

Chapter 13 Water Quality Modeling ....................................................................... 74313.1 13.2 Relevant Properties of Water ................................................................... 744 Water Quality Monitoring ....................................................................... 746 13.2.1 Monitoring Network ..................................................................... 747 13.2.2 Sampling Program ... " ............................................... 748 13.2.3 Water Quality Standards .............................................................. 749 13.2.4 Water Quality Based Classification of Rivers .............................. 749 River Water Quality Modeling ................................................................ 752 13.3.1 Components o f a River Water Quality Model .............................. 755 13.3.2 Hydraulic and Thermal Models .................................................... 755 13.3.3 Biochemical Model ...................................................................... 756 13.3.4 Geochemical Processes ................................................................ 756 13.3.5 Sorption/Desorption .................................................................... 757 13.3.6 Pollutant Concentration and Load ................................................ 758 13.3.7 Transport of Solutes in Rivers ...................................................... 759

13.3

Contents

xxiii 763 765 766 766 768 768 770 772 775 776 777 778 779 781 782 784 785

13.4

13.5 13.6

13.7 13.8 13.9

13.3.8 Governing Advective-Diffusion Equation ................................... Modeling of Oxygen in Rivers ................................................................ 13.4.1 Dissolved Oxygen (DO) ............................................................... 13.4.2 Biochemical Oxygen Demand .................................................... 13.4.3 Chemical Oxygen Demand (COD) .............................................. 13.4.4 Reaeration ................................................................................... 13.4.5 Modeling of Dissolved Oxygen .................................................. Catchment-scale Water Quality Models .................................................. Water Quality in Lakes and Reservoirs ................................................... 13.6.1 Differences between Lakes and Reservoirs .................................. 13.6.2 Chemical Considerations .............................................................. 13.6.3 Biological Considerations ............................................................ 13.6.4 Lake Mass Balance ...................................................................... Groundwater Quality ............................................................................... 13.7.1 Models for Groundwater Quality ................................................. Closure .................................................................................................... References ............................................................................... . ...............

Chapter 14 River Basin Planning and Management ............................................... 78714.1 Definition and Scope of River Basin Management ................................. 789 14.1.1 Scope of R B M .............................................................................. 790 14.1.2 Operations .................................................................................... 791 14.1.3 Water Charges .............................................................................. 792 14.1.4 Water Rights ................................................................................ 794 Planning and River Basin Management ................................................... 796 14.2.1 The Planning Process ................................................................... 796 14.2.2 River Basin Planning Systems ..................................................... 797 Integrated Water Resources Management ............................................... 797 14.3.1 Conjunctive use of Surface and Ground Water ............................ 802 14.3.2 Models for Integrated Water Resources Management ................. 803 14.3.3 Impact of Climate Change on Basin Management ....................... 806 Decision Support Systems (DSS) ............................................................ 809 14.4.1 Definition and Objectives ............................................................. 810 14.4.2 Need and Types of DSS ............................................................... 810 14.4.3 Components of a DSS .................................................................. 811 14.4.4 Designing a DSS .......................................................................... 813 14.4.5 Applications ................................................................................. 816 Institutional Aspects of Basin Management ............................................ 817 14.5.1 Models of R B M ............................................................................ 818 14.5.2 Decentralisation and Privatization ................................................ 819 14.5.3 Monitoring and Analysis .............................................................. 820 14.5.4 Practical Aspects of R B M ............................................................ 821 14.5.5 Role of Financiers ........................................................................ 822 14.5.6 Co-operation among Basin Management Organizations .............. 822 14.5.7 Some Important River Basins Organizations ............................... 822 Public Involvement .................................................................................. 825

14.2

14.3

14.4

14.5

14.6

xxiv

Contents14.6.1 Approaches for PI ........................................................................ 826 14.6.2 Information Dissemination and Follow-up .................................. 826 Inter-Basin Water Transfer ...................................................................... 827 14.7 14.7.1 Planning for IBWT Projects ......................................................... 828 14.7.2 Evaluation of IBWT Projects ....................................................... 829 14.7.3 Examples of IBWT Projects ......................................................... 830 Management of International River Basins ............................................. 832 14.8 14.8.1 International River Basin Organisations ...................................... 832 14.8.2 International Initiatives for Freshwater Management .................. 835 14.9 Closure .................................................................................................... 837 14.10 References ............................................................................................... 838 Appendix A: Conversion Factors 843 Appendix B: Useful Internet Sites ..................................................................... 845 Index ....................................................................................................... 849

Nastha seinno sadhastttaclanm Naaseedrajo no vyoma paroyata I Kimavreevah kuh k a s y a s h a r m a n n A a m b h a h k e e m a s e e d g a h n a m gabheeram ] ] Rig Veda. X. 12 9.1Neither n o n - b e i n g nor being was as yet, Neither w a s airy s p a c e nor h e a v e n s beyond. W h a t w a s enveloped? And w h e r e ? S h e l t e r e d by w h o m ? And w a s t h e r e water? B o t t o m l e s s u n f a t h o m e d ?

Part I

Preliminaries

This Page Intentionally Left Blank

Chapter i

Introduction to Water Resources Systems

The objectives of this chapter are: 9 To introduce the subject matter of this book; 9 to explain the need and availability of water including the magnitude of the quantities involved; 9 to provide an overview of systems approach; and 9 to explain the challenges in water sector in the time to come.

Earth is a blue planet. Three quarters of it are covered with water, a unique substance. The journey of evolution of life began in water and it is the major constituent of a human being an average human contains about 50 liters of water. On account of its peculiar molecular structure, it is a nearly universal solvent. The movement of water on the earth has been one of the main causes in shaping the topography. Water also has a high thermal inertia due to high specific heat and therefore the oceans have important influence on heat cycle of the earth. The culture, food, and life style of a place are closely knitted together and depend on climate. It is well known that water is central to the climate of a place. Along with all the benign features, water is also a paramount vehicle to convey the fury of nature. The watercentered hazards, like floods and droughts, have caused havoc since the dawn of civilization. According to the beliefs of some religions, the life on this planet is certain to be destroyed one day by a great deluge.-

Since the dawn of civilization, mankind has shown a preference to settle near rivers due to assured supply of water, facility of navigation, and fertility of river valleys. Even today, a considerable portion of world population lives in areas adjacent to water bodies. Every continent has a number of major cities which are located on the ocean coasts and banks of rivers, for example, New Delhi (Yamuna), Washington DC (Potomac), London (Thames), Paris (Seine), Cairo (Nile), Manaus (Amazon), Tokyo, New York, Sao

4

Need for Water

Paulo, and Sydney. While the cities enjoy the benefits due to the proximity of a source of water, man has harmed the sources of water in many ways by unwise exploitation. People living close to rivers often become victims of misery and upheaval in the wake of devastating floods which have accompanied mankind throughout its history. Due to these reasons, man always had a desire to somehow tame and control the nature in general and rivers in particular, and use them for beneficial purposes. To fulfil this objective, man has been closely observing, measuring and attempting to understand hydrological processes and developing techniques for control and management of water resources. This book is an attempt to take the reader on a journey to visit some tools and developments which are the results of the quest of the mankind over many centuries. The practice of hydrologic observations dates back to historic times. The Arthasashtra of Cautilya (a famous administrator/economist in ancient India) discusses rainfall measurements which were the basis of revenue collection. Varahamihira (AD 505587), an ancient Indian philosopher, had discussed the topics like formation of clouds, signs of immediate rain, rainfall quantity, and exploration of groundwater in his treatise by the name Brihat Samhita. The Egyptians have been systematically measuring the flow of River Nile for a very long time. An open masonry water well was built in the first century AD at the upstream end of an island in the Nile at Cairo. The marks on the inner wall of this well constitute a water-level gauge which was calibrated by Pliny-the-Elder (A.D. 23-79) in terms which illustrate the social importance of the water level in the river (These were: disaster, abundance, security, happiness, suffering, and hunger. See Fig. 1.1). Around the second century BC, Romans had built many aqueducts in Iberian peninsula whose ruins can still be seen in places like Segovia. The rainfall records of more than 100 years duration are available at many stations around the world. However, the early hydrological design practices were not very scientific and the designs were mostly based on empiricism, thumb rules or heuristics. In many countries, the computer-based analysis and design techniques have been in vogue since the 1950s. With the advent of computers, the systems analysis techniques were introduced in the water resources area in the 1960s. One of the earliest comprehensive works on river basin simulation was published by Maass et al. (1962). They had offered the following on digital simulation: "Until digital computers of the magnitude of the (IBM 650 or Univac I) were constructed, the solution of large scale simulation problems was not feasible. Even the storage capacities of these computers were not commodious enough .... (River basin simulation) had to await elaboration of the very large computers of the IBM 700 class, with an intemal magnetic-core storage capacity of up to 32768 words." This was the status of computer application in the 1960s when no interactive color graphic displays were available, there were no digitizers, color laser printers, mice, disk capacities of the order of giga bytes, and Intemet. Compared to this, today the CPU memory of a typical desk-top PC is measured in mega bytes and disk capacity in giga bytes, its processing speed is also faster by thousands of times and a variety of peripherals can be easily interfaced to it. A number of software, including compilers, editors, spreadsheet, word processing and utilities, are loaded on each machine. The wider availability of powerful computers in the last few decades has led to a proliferation ofmathematical models and studies dealing with water resources systems.

Introduction to Water Resources Systems

5

20 DISASTER 18

20

18

z

ABUNDANCE 16~

16 SECURITY HAPPINESS

H 14 SUFFFERING9

[..,

14

HUNGER 12 12

10

10

Fig. 1.1 Nilometer built by Pliny-the-Elder [Source: Dooge (1988). Copyright 9 IAHS. Used by permission]. It is a bit disappointing to note that the use of modem tools for day-to-day management of water resources development projects is quite limited. There is a feeling in many quarters that despite all the developments of sophisticated models and techniques, there has not been significant improvement in planning, design and operation of water resources projects. Hence the "age old problems" still remain unsolved: there are more than a billion people who do not have access to water supply and three billion people still do not have adequate sanitation. The data also suggest that there is a slow-down in the growth and productivity of irrigated lands. Besides, "new problems", mostly related to environmental degradation, are cropping up. The quality of river water is degrading rapidly in many rivers despite attempts to reverse the trend. The rate of freshwater fish species extinction is five times that of salt water species. Water diversions for irrigation are having devastating effects on water bodies, e.g., the Aral Sea in Central Asia is shrinking and may soon reduce to a fraction of its original size. Deforestation/land degradation (impacts on flooding and siltation of reservoirs), salinization and water logging, and water contamination by chemicals, fertilizers, and human waste are all serious issues in many parts of the world. The ground water aquifers are being mined at an unprecedented rate. About 10% of the world' s agricultural food production now depends on mined ground water. Water tables are failing as much as a meter per year in many parts of the world.

6

Need for Water

Water is a nature's gift whose availability in a region is limited by climate and topography. Traditionally, water has been considered a social commodity being a "basic requirement" for life. In ancient times, a fundamental premise was that anybody who is thirsty should not be denied water, whatever be his income and purchasing power. This privileged social status of water was based on the doctrine of'essential service' or 'public service' depending on the country. Of late, due to various reasons among which scarcity being the chief, water and related services are becoming more and more an economic asset with production and conservation costs, utilization values, opporttmity costs, and demands that vary with price. Water is required for various day-to-day activities of mankind. Therefore, before attempting to solve the problems of water resources planning and management, it is necessary to examine the various uses and needs of water.1.1 NEED FOR WATER

The need for water is derived from a variety of activities in which it is used as shown in Fig. 1.2. These activities are vital for existence and development of human society. Because usable water is limited in its availability, it has an economic value. Furthermore, different activities require water of differing quality. For example, water ofhigh quality is needed for domestic use while the quality may be compromised for sanitation use. Clearly, all uses of water cannot be supported to the fullest extent and a management policy has to be developed that can prioritise water use following established criteria. There may be conflicts and interactions amongst different water uses, and these, in turn, interact with water elements. The management policy has to incorporate all these considerations. The term 'water withdrawal' refers to water removed from a source. Some ofthis water may be returned to the original source with changes in the quality. The term 'consumptive use' refers to water which is not available after satisfying the intended purpose, e.g., drinking and evaporation are consumptive uses. The term 'water demand' is often used to denote the quantity of water required for a purpose. Basically, the uses of water can be divided into two categories: withdrawal (off-stream) and in-situ (in-stream). The withdrawal uses are those for which water is diverted from its natural place of occurrence. The water used for agriculture, industry and municipal purposes are a few examples of this type. The in-situ uses are those for which water need not be diverted and include recreation, wild life habitat, minimum flow requirement, and hydroelectric power generation (in most cases). The utility of water lies in the various productive functions that it can perform. Traditionally, municipal and agricultural water supply have been the usual uses. These two (particularly in an agrarian economy) are viewed as social objectives and cannot be given up even if alternate use of water gives a higher benefit. Other important uses are hydropower, navigation, and recreation. The objectives of water resources development are more varied now. Pollution control, repulsion of saline water, preservation of natural rivers, beautification, groundwater replenishment, and a host of other equally non-quantifiable and competitive purposes now demand equal attention along with economic purposes.

Introduction to Water Resources Systems

7

I

EXTERNAL. . . .

k,WATER

WATER

NATURALCAUSES

PHYSICAL ]

[~!

QUANTITY _ i~,, ,

WATER QUAL1TY

.Jl

.... I

ci

s

z I

BIOLOGICAL

,,

---SURFACE WATER.... t .......

GROUND WATER~ ,

RAINWATER

t

Fig. 1.2 Sources and quality of water from the perspective of its use. The issues of water demand and its supply are specific to time and place. There has been continuous increase in the water use over the world since the time such records are available. It has been estimated that the total water use at the beginning of the last century was about 600 km3/year. This rate witnessed a sharp increase and the global water use by the year 2000 is likely to be about 5300 km3/year. Thus, there was a tenfold rise in the water use in the last century. As the population of the world is rising, the demand for water will also continue to increase in the 21 st century. A number of projections of the future world population have been made and it is estimated that the population of the world will stabilize sometimes after the year 2060. The rate of urbanization would further rise and by 2025, about 4 billion people are likely to live in urban areas. Estimates of water use in the various continents at different times in the 20 th century are given in Table 1.1. Gleick (1997) has estimated sector-wise water requirements for the year 2025. The domestic water use has been estimated assuming that the world's entire population has access to a"basic water requirement" of at least 50 liters/person/day and regions using more than that amount would implement measures that would reduce per-capita domestic water use to the present level in the developed nations which is around 300 liters/person/day. In this scenario, the total domestic water needs would be approximately 340 km3/year. In the agricultural sector, all regions are assumed to attain a minimum consumption of 2,500 calories per person per day. There are likely reductions in water needed to grow these diets

8

Need for Water

as a result of changes in the water-intensive components of diets, particularly meat, and changes in irrigation efficiency, cropping intensities, and irrigated area. Taking into account the increase in population, the agricultural water consumption would be about 2,930 km3/year. The industrial water withdrawals would be at around 1,000 km3/year and an additional 225 km3/year will be lost due to reservoir evaporation. Thus, the total global water withdrawals are projected by Gleick (1997) to be approximately 4,500 km 3 in 2025. This figure is little low compared to the estimate of Shiklomanov (1998). Table 1.1 Historical Water Withdrawal, Consumption, and Projections [Source: Shiklomanov (1998)]. Continent 1900 Europe North America Africa Asia South America Australia +Oceania Total 37.5 17.6 70 29.2 41.0 34.0 414 322 15.2 11.3 1.6 0.6 579 71.0 29.8 221 83.8 49.0 39.0 689 528 27.7 20.6 6.8 3.4 Historical Estimates of Use (km3) 93.8 38.4 286 104 56.0 44.0 860 654 59.4 41.7 10.3 5.1 185 53.9 410 138 86.0 66.0 932 68.5 44.4 17.4 9.0 294 81.8 555 181 116 88.0 445 158 677 221 168 129 491 183 652 221 199 151 2067 152 91.4 28.5 16.4 3590 511 187 685 238 215 160 2157 166 97.7 30.5 17.6 3765 Forecasted Use (km3) 2010 578 202 744 255 270