9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations...

25
John H. Challis - Modeling in Biomechanics 9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview Equations of motion Estimation of muscle forces Required model parameters Body segment inertial parameters Muscle moment arms and length Osteometric scaling Moment arm equations Muscle length equations Derivative information Inverse and direct dynamics

Transcript of 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations...

Page 1: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-1

INPUT PARAMETERS FOR MODELS I

Lecture Overview• Equations of motion

• Estimation of muscle forces

• Required model parameters

• Body segment inertial parameters

• Muscle moment arms and length

• Osteometric scaling

• Moment arm equations

• Muscle length equations

• Derivative information

• Inverse and direct dynamics

Page 2: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-2

EQUATIONS OF MOTION

Equation for Inverse Dynamics

( ) ( ) ( )θθθθθ G,v.MT ++= ���

Re-arrange equation for Direct Dynamics

( ) ( ) ( )( )θθθθθ G,vT.M 1 −−= − ���

WhereT - vector of joint moments (n x 1)

( )θM - inertia matrix (n x n)( )θθ �,v - vector of centrifugal/Coriolis terms (n x 1)( )θG - vector of gravity terms

and n is the number of joints in the system

Solution Requires• Body Segment Inertial Parameters• Segment Kinematics (complete for inverse

dynamics)• Segment Kinematics (partial for direct dynamics)

Page 3: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-3

EQUATIONS OF MOTIONIf model is driven by forces produced by muscle modelthen

( ) MFRT .θθθθ=Where

( )θθθθR - matrix of muscle moment arms(musculoskeletal geometry)MF - vector of muscle forces, as estimated by

the muscle model.

[ ( ) ( ) ( )( )θθθθθ G,vT.M 1 −−= − ��� ]

Solution Requires• Muscle Moment Arms• Muscle Forces

Page 4: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-4

ESTIMATION OF MUSCLE FORCES

The force produced by the muscle model ( mF ) can bedescribed using the following function

( ) ( )fffm VFLFFaF 21max ...=

Wherefa - normalized degree of activation of muscle

fibers.

maxF - maximum isometric force muscle canproduce

( )fLF1 - normalized force length relationship ofmuscle,

( )fVF2 normalized force-velocity relationship ofmuscle.

Generally the muscle model takes care of theestimation of muscle state during simulation, but themodel still requires parameters.

Page 5: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-5

ESTIMATION OF MUSCLE FORCES

( ) ( )fffm VFLFFaF 21max ...=

Solution Requires• Relationship to estimate Muscle-Tendon Lengths• Maximum Muscle Force• Parameters for Force-Length Curve• Parameters for Force-Velocity Curve• Parameters which describe Activation Dynamics

Page 6: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-6

REQUIRED MODEL PARAMETERSTo run a direct dynamics muscle model drivensimulation model of human movement requires

• Body Segment Inertial Parameters√• Segment Kinematics (complete for inverse

dynamics)√• Segment Kinematics (partial for direct dynamics)√• Muscle Moment Arms√• Muscle-Tendon Lengths√• Maximum Muscle Force• Parameters for Force-Length Curve• Parameters for Force-Velocity Curve• Parameters which describe Activation Dynamics

Page 7: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-7

BODY SEGMENT INERTIALPARAMETERS

Anthropometry - measurement of the human body; inbiomechanics these are mostly concerned with segmentmass, center of mass, moment of inertia (these properties ofa rigid body are often referred to as inertial properties).Anthropometry can include just general measurements ofdimensions of body segments.

Techniques for determining body segment inertialparameters can be classified into four groups:-

1. Simple Statistical Model

2. Complex Statistical Model

3. Imaging techniques

4. Geometric Solid Models

Page 8: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-8

BODY SEGMENT INERTIALPARAMETERS

1. Simple Statistical ModelFor example based on cadaver data of Dempster (1955),where segment mass is given as percentage of total bodymass.

SEGMENT Fraction of Whole Body Mass

UPPER ARM 0.028FOREARM 0.016HAND 0.006THIGH 0.100LOWER LEG 0.0465FOOT 0.0145HEAD & NECK 0.081TRUNK 0.497

Page 9: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-9

BODY SEGMENT INERTIALPARAMETERS

2. Complex Statistical ModelFor example Hinrichs (1985) developed multi-variableregression equations for the determination of segmentmoment of inertia values about transverse andlongitudinal axes, using data from cadaver dissections.

For example for the thigh

IT = (80.589.L + 381.74.B – 6525.7)*0.001

WhereL - the length of the thigh (in centimeters)B – breadth of knee (in centimeters)

Page 10: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-10

BODY SEGMENT INERTIALPARAMETERS

3. Imaging techniquesIt is possible to measure the inertial properties of segmentsusing a variety of imaging techniques.

Martin et al. (1989) used MRI to calculate the inertialparameters of eight baboon cadaver arm segments,they also measured the inertial parameters directly socould assess accuracy of this method.

Parameter Mean Difference StandardDeviation

Volume 6.3 5.0

Density 0.0 3.1

Mass 6.7 2.8

C of M. location -2.4 8.2

Mom. of I (T) 4.4 3.0

Page 11: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-11

BODY SEGMENT INERTIALPARAMETERS

4. Geometric Solid ModelingWithin this class of techniques all segments aremodeled as a series of geometric solids. Thedimensions of these shapes are obtained by takingmeasurements on the subjects, for example:

truncated cones ⇒ length and perimeters

stadium solids lengths ⇒ perimeters and widths.

Density values for these solids are taken from thecadaver data, and is normally assumed to be uniformthroughout a given segment.

Page 12: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-12

BODY SEGMENT INERTIALPARAMETERS

Examples of three commonly used shapes in geometricsolid models

A Cylinderh

r

y

z

x

An Elliptical Discz

x

y

ba

A Truncated Conez

x

y

r1

r2

Page 13: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-13

BODY SEGMENT INERTIALPARAMETERS

Reference: Hatze, H. (1980): A mathematical modelfor the computational determination of parameter valuesof anthropomorphic segments. Journal ofBiomechanics 13, 833-843.

BODYPART Hatze (1980)

Foot 103 Unequal Trapezoindal PlatesShank 10 Elliptical CylindersThigh 1 Ellipto-parabolic section

10 Elliptical CylindersHand 1 Prism

1 Hollow Half-cylinder1 Arched Rectangular Cuboid

Forearm 10 Elliptical CylindersUpper Arm 1 Hemisphere 10 Elliptical CylindersTrunk Lower 10 Complex plates

Buttocks 2 Elliptical ParabolasUpper Unequal Semi-ellipses, with parabolasremoved

Head 1 Elliptical Cylinder1 General Body of Revolution

#Segments 17#Measures 242

Page 14: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-14

BODY SEGMENT INERTIALPARAMETERS

Models rely to some extent on these inertialparameters, estimates report that moments of inertiacannot be determined to within 10% of true value, massand location of center of mass 5%. This is probably notsignificant if the model is not subject specific, if it issubject specific then it may be important; to date thisimportance has not been identified.

Major Cadaver Studies

Author(s) Cadavers Age(Years)

BodyMass(kg)

Stature(m)

Dempster(1955)

8 male 52 - 83 49 - 72 1.59-1.86

Clauser etal. (1969)

13 male 28 - 74 54 - 88 1.62-1.85

Chandler etal. (1975)

6 male 45 - 65 51 - 89 1.64-1.81

Page 15: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-15

MUSCLE MOMENT ARMS ANDLENGTH

Two ways in which these can be determined in vivo

• Based on musculo-skeletal geometry• Using equations describing relationship between

joint angle muscle length/moment arm

If the musculo-skeletal geometry is known then the lineof action of the muscle can be estimated from theknown origin and insertion of the muscles and thelocations of the bones.

There are a variety of sources of geometry data, forexample• Brand et al. (1982) - provided the averaged scaled

locations of the origins and insertions of 47 muscles• White et al. (1989) - provided data suitable for

osteometric scaling for 40 muscles of the lower limb• Johnson et al. (1996) – the major muscles of shoulder

Page 16: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-16

OSTEOMETRIC SCALING

Osteometric scaling - the extrapolation from drybone specimen landmarks to another specimen,normally a live subject.

• The locations of the origins and insertions of musclesand ligaments are often inaccessible on a live subject.This information can be obtained from the results ofcadaver dissection, and then applied to a live subject.

• Some form of scaling is appropriate as the physicaldimensions of the bones of the cadaver and thesubject are likely to be different. Osteometric scalingpermits this.

Page 17: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-17

OSTEOMETRIC SCALINGThe following procedures have been adopted for usingcadaver data for a live subject:

1. No Scaling - e.g. Amis et al. (1987). Dubiousprocedure (see Lew and Lewis, 1977).

2. Uniform Scaling - where all the dimensions ofthe bone are scaled in the same proportions e.g.Crowninshield and Pope (1975).

3. Homogeneous Scaling - scaling alongprescribed principal axes (e.g. Morrison, 1970).

4. Non-homogeneous scaling - scaling isperformed along arbitrary axes, this method involvesnon-homogeneous scaling based on finite-elementprinciples (Lewis et al., 1980). Requires eightcommon landmarks on subject and cadaverspecimen.

Page 18: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-18

OSTEOMETRIC SCALING

ExampleLew and Lewis (1977) presented data of the locations ofsix bony landmarks on two human tibias, selected sothat the "geometry differences between the bones wereas large as possible." (page 174).

1. tubercle of Gerdy2. lateral malleolus2. posterior cruciate attachment4. middle of tibial spines5. center of lateral condylar surface6. tubercle on soleal line

Absolute Relative Differences (m)Point Excluded/

Predicted x y z1 0.016 0.004 0.0082 0.072 0.022 0.0523 0.028 0.010 0.0104 0.009 0.008 0.0095 0.025 0.003 0.0006 0.015 0.007 0.009

Mean 0.027 0.009 0.015

Page 19: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-19

MOMENT ARM EQUATIONSThere are a variety of these equations including

Elbow Joint – e.g. Pigeon et al. (1996)

Knee and Hip Joints – e.g. Visser et al. (1990)

Ankle – e.g. Voigt et al.(1995)

These measurements can be made on cadavers (e.g.Visser et al., 1990), or made in vivo for example usingMRI (e.g. Spoor and Van Leeuwen, 1992).

Equation inputs are joint angle, and some normalizedlength (e.g. limb length).

Page 20: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-20

MUSCLE LENGTH EQUATIONSThere are a variety of these equations including

Elbow Joint – e.g. Pigeon et al. (1996)

Knee and Hip Joints – e.g. Hawkins and Hull,(1990)

Ankle – e.g. Grieve et al. (1978)

Again these measurements can be made on cadavers(e.g. Grieve et al., 1978), or made in vivo for exampleusing MRI (e.g. Spoor and Van Leeuwen, 1992).

Equation inputs are joint angle, and some normalizedlength (e.g. limb length).

Page 21: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-21

DERIVATIVE INFORMATIONTo perform inverse dynamics requires the accelerationof the segments centers of mass, and the angularacceleration of the segments. To perform directdynamics these variables become parameters becausethey are needed as part of the initial conditions for thesolution of the ordinary differential equations whichdefine the equations of motion of the system understudy.

• Sampled movement signals are generallycontaminated with white noise.

• A low-pass filter will remove the high frequency noise,but cannot remove all of it because in the lowerfrequencies the movement signal also exists.

Page 22: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-22

DERIVATIVE INFORMATIONThe data of Dowling (1985) was processed with thegeneralized cross validated quintic spline of Woltring(1986), it shows how poor acceleration estimates canbe.

0 0.2 0.4 0.6 0.8 1-400

-300

-200

-100

0

100

200Spline Estimate of Acceleration Values for Dowling (1985) Data

Time (s)

Ang

ular

Acc

eler

atio

n (r

ad/s

/s)

Criterion DataGCVQS

Page 23: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-23

DERIVATIVE INFORMATIONAs accurate derivative information is so difficult todetermine, the following should be considered

• Using best processing techniques to get as accuratederivatives as possible.

• Use a range of starting values which encompass yourassumed error and see the influence on output.

• Analyze a movement which starts from stationary.

Page 24: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-24

INVERSE AND DIRECT DYNAMICS• Some models are driven using inverse dynamics

information.

• Both sets of equations are derived from samemechanical principles so results should be equivalent.(Never assume you can drive a direct dynamicsmodel with inverse dynamics data and get the sameresults.)

• There are different error sources associated withnumerical differentiation, and numerical integration,so results are never quite the same.

• Numerical differentiation is very sensitive to samplenoise.

• Numerical integration is very sensitive to sampleinterval.

Reference - Risher et al. (1997) The use of inversedynamics solutions in direct dynamics simulations.Journal of Biomechanical Engineering 119, 417-422.

Page 25: 9A-1 INPUT PARAMETERS FOR MODELS I9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview • Equations of motion • Estimation of muscle forces • Required model parameters • Body

John H. Challis - Modeling in Biomechanics

9A-25

REVIEW QUESTIONS1) What methods are available for determining body

segment inertial parameters? Why might errors intheir determination have a greater influence forinverse dynamics than direct dynamics?

2) What is osteometric scaling? How can it be used inthe modeling of human movement?

3) How can the lengths and moment arms of muscle-tendon complexes be determined? Which of thesemethods is to be preferred?

4) What measures should be taken if trying to drive adirect dynamic model with data derived from aninverse dynamics analysis?