97448371-Aspen-Plus-Nice-Tutorial.pps

355
7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 1/355 ©2000 AspenTech. All Rights Reserved. Introduction to Flowsheet Simulation Objective: Introduce general flowsheet simulation concepts and Aspen Plus features

Transcript of 97448371-Aspen-Plus-Nice-Tutorial.pps

Page 1: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 1/355

©2000 AspenTech. All Rights Reserved.

Introduction to Flowsheet Simulation

Objective:

Introduce general flowsheet simulation conceptsand Aspen Plus features

Page 2: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 2/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Flowsheet Simulation

• What is flowsheet simulation?

Use of a computer program to quantitatively model thecharacteristic equations of a chemical process

• Uses underlying physical relationships – Mass and energy balance

 – Equilibrium relationships

 – Rate correlations (reaction and mass/heat transfer)

• Predicts

 – Stream flowrates, compositions, and properties

 – Operating conditions

 – Equipment sizes

Page 3: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 3/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Advantages of Simulation

• Reduces plant design time

 –  Allows designer to quickly test various plant configurations

• Helps improve current process

 –  Answers “what if” questions 

 – Determines optimal process conditions within given constraints

 –  Assists in locating the constraining parts of a process(debottlenecking)

Page 4: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 4/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• What is the composition of stream PRODUCT?

• To solve this problem, we need: – Material balances

 – Energy balances

REACTOR

FEED

RECYCLE

REAC-OUT

COOL

COOL-OUT SEP

PRODUCT

General Simulation Problem

Page 5: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 5/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Approaches to Flowsheet Simulation

• Sequential Modular 

 –  Aspen Plus is a sequential modular simulation program.

 – Each unit operation block is solved in a certain sequence.

• Equation Oriented

 –  Aspen Custom Modeler (formerly SPEEDUP) is an equation orientedsimulation program.

 –  All equations are solved simultaneously.

• Combination

 –  Aspen Dynamics (formerly DynaPLUS) uses the Aspen Plussequential modular approach to initialize the steady state simulationand the Aspen Custom Modeler (formerly SPEEDUP) equationoriented approach to solve the dynamic simulation.

Page 6: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 6/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Good Flowsheeting Practice

• Build large flowsheets a few blocks at a time.

 – This facilitates troubleshooting if errors occur.

• Ensure flowsheet inputs are reasonable.

• Check that results are consistent and realistic.

Page 7: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 7/355©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Important Features of Aspen Plus

• Rigorous Electrolyte Simulation

• Solids Handling

• Petroleum Handling

• Data Regression

• Data Fit

• Optimization

• User Routines

Page 8: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 8/355©2000 AspenTech. All Rights Reserved.

 Aspen Plus References:

User Guide, Chapter 1, The User Interface

User Guide, Chapter 2, Creating a Simulation Model

User Guide, Chapter 4, Defining the Flowsheet

The User Interface

Objective:

Become comfortable and familiar with the AspenPlus graphical user interface

Page 9: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 9/355©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Run ID 

Tool Bar  

Title Bar  

Menu Bar  

Select Mode 

button  Model

Library 

Model Menu Tabs  Process 

Flowsheet Window 

Next Button 

Status Area 

The User Interface

Reference:  Aspen Plus User Guide, Chapter 1, The User Interface

Page 10: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 10/355©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

RStoicModel

Heater Model

Flash2Model

Filename: CUMENE.BKP

REACTOR

FEED

RECYCLE

REAC-OUT

COOL

COOL-OUT SEP

PRODUCT

Cumene Flowsheet Definition

Page 11: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 11/355©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Using the Mouse

• Left button click - Select object/field

• Right button click - Bring up menu for selectedobject/field, or inlet/outlet

- Cancel placement of streams or blocks on the flowsheet

• Double left click - Open Data Browser object sheet

Reference:  Aspen Plus User Guide, Chapter 1, The User Interface

Page 12: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 12/355©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Graphic Flowsheet Operations

• To place a block on the flowsheet:

1. Click on a model category tab in the Model Library.

2. Select a unit operation model. Click the drop-down arrow toselect an icon for the model.

3. Click on the model and then click on the flowsheet to placethe block. You can also click on the model icon and drag itonto the flowsheet.

4. Click the right mouse button to stop placing blocks.

Page 13: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 13/355©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Graphic Flowsheet Operations (Continued)

• To place a stream on the flowsheet:

1. Click on the STREAMS icon in the Model Library.

2. If you want to select a different stream type (Material, Heat or Work), click the down arrow next to the icon and choose a

different type.

3. Click a highlighted port to make the connection.

4. Repeat step 3 to connect the other end of the stream.

5. To place one end of the stream as either a process flowsheet

feed or product, click a blank part of the Process Flowsheetwindow.

6. Click the right mouse button to stop creating streams.

Page 14: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 14/355

Page 15: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 15/355©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Automatic Naming of Streams and Blocks

• Stream and block names can be automatically assignedby Aspen Plus or entered by the user when the object iscreated.

• Stream and block names can be displayed or hidden.

• To modify the naming options:

 – Select Options from the Tools menu.

 – Click the Flowsheet tab.

 – Check or uncheck the naming options desired.

Page 16: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 16/355©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

When finished, save in backupformat (Run-ID.BKP).filename: BENZENE.BKP

FL1

Heater Model

Flash2

Model

Flash2

Model

COOL

FEED COOL

VAP1

LIQ1FL2

VAP2

LIQ2

Benzene Flowsheet Definition Workshop

• Objective - Create a graphical flowsheet

 – Start with the General with English Units Template.

 – Choose the appropriate icons for the blocks.

 – Rename the blocks and streams.

Page 17: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 17/355©2000 AspenTech. All Rights Reserved.

 Aspen Plus References:

User Guide, Chapter 3, Using Aspen Plus Help

User Guide, Chapter 5, Global Information for Calculations

User Guide, Chapter 6, Specifying Components

User Guide, Chapter 7, Physical Property Methods

User Guide, Chapter 9, Specifying Streams

User Guide, Chapter 10, Unit Operation Models

User Guide, Chapter 11, Running Your Simulation

Basic Input

Objective:

Introduce the basic input required to run an AspenPlus simulation

Page 18: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 18/355©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

The User Interface

• Menus

 – Used to specify program options and commands

• Toolbar 

 –  Allows direct access to certain popular functions

 – Can be moved

 – Can be hidden or revealed using the Toolbars dialog box fromthe View menu

• Data Browser 

 – Can be moved, resized, minimized, maximized or closed

 – Used to navigate the folders, forms, and sheets

Page 19: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 19/355©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

The User Interface (Continued)

• Folders

 – Refers to the root items in the Data Browser 

 – Contain forms

• Forms – Used to enter data and view results for the simulation

 – Can be comprised of a number of sheets

 –  Are located in folders

• Sheets

 – Make up forms

 –  Are selected using tabs at the top of each sheet

Page 20: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 20/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Object Manager 

 –  Allows manipulation of discrete objects of information

 – Can be created, edited, renamed, deleted, hidden, andrevealed

• Next Button

 – Checks if the current form is complete and skips to the next

form which requires input

The User Interface (Continued)

Page 21: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 21/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

The Data Browser  

Menu tree 

Previous sheet 

Next sheet 

Status area 

Parent button  Units 

Go back  Go forward 

Comments 

Next 

Description area 

Status 

Page 22: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 22/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Help

• Help Topics

 – Contents - Used to browse through the documentation. TheUser Guides and Reference Manuals are all included in thehelp.

•  All of the information in the User Guides is found under the “Using Aspen Plus” book. 

 – Index - Used to search for help on a topic using the indexentries

 – Find - Used to search for a help on a topic that includes any

word or words

• “What’s This?” Help 

 – Select “What’s This?” from the Help menu and then click onany area to get help for that item.

Page 23: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 23/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Functionality of Forms

• When you select a field on a form (click left mousebutton in the field), the prompt area at the bottom of thewindow gives you information about that field.

• Click the drop-down arrow in a field to bring up a list of possible input values for that field.

 – Typing a letter will bring up the next selection on the list thatbegins with that letter.

• The Tab key will take you to the next field on a form.

Page 24: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 24/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Basic Input

• The minimum required inputs (in addition to the graphical flowsheet)to run a simulation are:

 – Setup

 – Components

 – Properties – Streams

 – Blocks

• Data can be entered on input forms in the above order by clickingthe Next button.

• These inputs are all found in folders within the Data Browser.

• These input folders can be located quickly using the Data menu or the Data Browser buttons on the toolbar.

Page 25: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 25/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Status Indicators

Input for the form is incomplete 

Input for the form is complete 

No input for the form has been entered. It is optional. 

Results for the form exist. 

Results for the form exist, but there were calculation 

errors. 

Results for the form exist, but there were calculation 

warnings. 

Results for the form exist, but input has changed since 

the results were generated. 

Symbol  Status 

Page 26: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 26/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Cumene Production Conditions 

Q = 0 Btu/hr 

Pdrop = 0 psi

C6H6 + C3H6 = C9H12

Benzene Propylene Cumene (Isopropylbenzene)90% Conversion of Propylene

T = 130 F

Pdrop = 0.1 psi

P = 1 atmQ = 0 Btu/hr 

Benzene: 40 lbmol/hr 

Propylene: 40 lbmol/hr 

T = 220 FP = 36 psia

Use the RK-SOAVE Property MethodFilename: CUMENE.BKP

REACTOR

FEED

RECYCLE

REAC-OUT

COOL

COOL-OUT SEP

PRODUCT

Page 27: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 27/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Setup

• Most of the commonly used Setup information is enteredon the Setup Specifications Global sheet:

 – Flowsheet title to be used on reports

 – Run type

 – Input and output units

 – Valid phases (e.g. vapor-liquid or vapor-liquid-liquid)

 –  Ambient pressure

• Stream report options are located on the Setup Report Options Stream sheet.

Page 28: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 28/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Setup Specifications Form

Page 29: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 29/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Stream Report Options

• Stream report options are located on the Setup Report Options Stream sheet.

Page 30: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 30/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Setup Run Types

Run Type

Flowsheet Standard Aspen Plus flowsheet run including sensitivity studies and optimization.

Flowsheet runs can contain property estimation, assay data analysis, and/or property analysiscalculations.

 Assay Data Analysis

 A standalone Assay Data Analysis and pseudocomponent generation run

Use Assay Data Analysis to analyze assay data when you do not want to perform a flowsheetsimulation in the same run.

Data

Regression

 A standalone Data Regression run

Use Data Regression to fit physical property model parameters required by ASPEN PLUS tomeasured pure component, VLE, LLE, and other mixture data. Data Regression can containproperty estimation and property analysis calculations. ASPEN PLUS cannot perform dataregression in a Flowsheet run.

PROPERTIESPLUS

PROPERTIES PLUS setup run

Use PROPERTIES PLUS to prepare a property package for use with Aspen Custom Modeler (formerly SPEEDUP) or Aspen Pinch (formerly ADVENT), with third-party commercialengineering programs, or with your company's in-house programs. You must be licensed to usePROPERTIES PLUS.

Property Analysis

 A standalone Property Analysis runUse Property Analysis to generate property tables, PT-envelopes, residue curve maps, and other property reports when you do not want to perform a flowsheet simulation in the same run.Property Analysis can contain property estimation and assay data analysis calculations.

PropertyEstimation

Standalone Property Constant Estimation run

Use Property Estimation to estimate property parameters when you do not want to perform aflowsheet simulation in the same run.

Page 31: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 31/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Setup Units

• Units in Aspen Plus can be defined at 3 different levels:

1. Global Level (“Input Data” & “Output Results” fields on theSetup Specifications Global sheet)

2. Object level (“Units” field in the top of any input form of an

object such as a block or stream3. Field Level

• Users can create their own units sets using the SetupUnits Sets Object Manager. Units can be copied from an

existing set and then modified.

Page 32: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 32/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Components

• Use the Components Specifications form to specify allthe components required for the simulation.

• If available, physical property parameters for each

component are retrieved from databanks.• Pure component databanks contain parameters such as

molecular weight, critical properties, etc. The databanksearch order is specified on the Databanks sheet.

• The Find button can be used to search for components.

• The Electrolyte Wizard can be used to set up anelectrolyte simulation.

Page 33: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 33/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Components Specifications Form

Page 34: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 34/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Entering Components

• The Component ID is used to identify the component in simulationinputs and results.

• Each Component ID can be associated with a databank componentas either:

 – Formula: Chemical formula of component (e.g., C6H6)(Note that a suffix is added to formulas when there are isomers, e.g.C2H6O-2)

 – Component Name: Full name of component (e.g., BENZENE)

• Databank components can be searched for using the Find button.

 – Search using component name, formula, component class, molecular weight, boiling point, or CAS number.

 –  All components containing specified items will be listed.

Page 35: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 35/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Find

• Find performs an AND search when more than onecriterion is specified.

Page 36: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 36/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Parameters missing from the first selected databank will besearched for in subsequent selected databanks.

Databank  Contents  Use 

PURE10  Data from the Design Institute for Physical Property Data (DIPPR) and AspenTech 

Primary component databank in 

 Aspen Plus 

 AQUEOUS  Pure component parameters for ionic and molecular species in aqueous solution  Simulations containing electrolytes 

SOLIDS  Pure component parameters for strong 

electrolytes, salts, and other solids 

Simulations containing 

electrolytes and solids 

INORGANIC  Thermochemical properties for inorganic 

components in vapor, liquid and solid states 

Solids, electrolytes, and 

metallurgy applications 

PURE93  Data from the Design Institute for Physical Property Data (DIPPR) and AspenTech 

delivered with Aspen Plus 9.3 

For upward compatibility 

PURE856  Data from the Design Institute for Physical Property Data (DIPPR) and AspenTech 

delivered with Aspen Plus 8.5-6 

For upward compatibility 

 ASPENPCD  Databank delivered with Aspen Plus 8.5-6  For upward compatibility 

Pure Component Databanks

Page 37: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 37/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Properties

• Use the Properties Specifications form to specify thephysical property methods to be used in the simulation.

• Property methods are a collection of models and

methods used to describe pure component and mixturebehavior.

• Choosing the right physical properties is critical for obtaining reliable simulation results.

• Selecting a Process Type will narrow the number of methods available.

Page 38: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 38/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Properties Specifications Form

Page 39: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 39/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Streams

• Use Stream Input forms to specify the feed streamconditions and composition.

• To specify stream conditions enter two of the following:

 – Temperature – Pressure

 – Vapor Fraction

• To specify stream composition enter either:

 – Total stream flow and component fractions

 – Individual component flows

• Specifications for streams that are not feeds to theflowsheet are used as estimates.

Page 40: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 40/355

Page 41: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 41/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Blocks

• Each Block Input or Block Setup form specifies operatingconditions and equipment specifications for the unitoperation model.

• Some unit operation models require additionalspecification forms

•  All unit operation models have optional information forms(e.g. BlockOptions form).

Page 42: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 42/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Block Form 

Page 43: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 43/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Starting the Run

• Select Control Panel from the View menu or press theNext button to be prompted.

 – The simulation can be executed when all required forms arecomplete.

 – The Next button will take you to any incomplete forms.

Page 44: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 44/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Run Start or continue calculations

Step Step through the flowsheet oneblock at a time

Stop Pause simulation calculations

Reinitialize Purge simulation results

Results Check simulation results

Control Panel

• The Control Panel consists of:

 –  A message window showing the progress of the simulation bydisplaying the most recent messages from the calculations

 –  A status area showing the hierarchy and order of simulation

blocks and convergence loops executed –  A toolbar which you can use to control the simulation

Page 45: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 45/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Reviewing Results

• History file or Control Panel Messages

 – Contains any generated errors or warnings

 – Select History or Control Panel on the View menu to displaythe History file or the Control Panel

• Stream Results

 – Contains stream conditions and compositions

• For all streams ( /Data/Results Summary/Streams)

• For individual streams (bring up the stream folder in the Data Browser 

and select the Results form)

• Block Results

 – Contains calculated block operating conditions (bring up theblock folder in the Data Browser and select the Results form)

Page 46: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 46/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Benzene Flowsheet Conditions Workshop

• Objective: Add the process and feed stream conditions to aflowsheet.

 – Starting with the flowsheet created in the Benzene FlowsheetDefinition Workshop (saved as BENZENE.BKP), add the process andfeed stream conditions as shown on the next page.

• Questions:

1. What is the heat duty of the block “COOL”? _________  

2. What is the temperature in the second flash block “FL2”? _________  

Note: Answers for all of the workshops are located in the very back of the course notes in Appendix C.

Page 47: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 47/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Feed

T = 1000 F

P = 550 psia

Hydrogen: 405 lbmol/hr 

Methane: 95 lbmol/hr 

Benzene: 95 lbmol/hr 

Toluene: 5 lbmol/hr 

T = 200 F

Pdrop = 0

T = 100 F

P = 500 psia

P = 1 atm

Q = 0

Use the PENG-ROB Property Method When finished, save asfilename: BENZENE.BKP

FL1

COOL

FEED COOL

VAP1

LIQ1FL2

VAP2

LIQ2

Benzene Flowsheet Conditions Workshop

Page 48: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 48/355

©2000 AspenTech. All Rights Reserved.

Unit Operation Models

Objective:

Review major types of unit operation models

 Aspen Plus References:

User Guide, Chapter 10, Unit Operation Models

Unit Operation Models Reference Manual  

Page 49: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 49/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Unit Operation Model Types

• Mixers/Splitters

• Separators

• Heat Exchangers

• Columns

• Reactors

• Pressure Changers

• Manipulators

• Solids

• User Models

Reference: The use of specific models is best described by on-line help and thedocumentation.  Aspen Plus Unit Operation Models Reference Manual  

Page 50: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 50/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Model Description Purpose Use

Mixer Stream mixer Combine multiplestreams into onestream

Mixing tees, stream mixingoperations, adding heatstreams, adding work streams

FSplit Stream splitter Split stream flows Stream splitters, bleed valves

SSplit Substream splitter Split substream flows Solid stream splitters, bleedvalves

Mixers/Splitters

Page 51: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 51/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Model Description Purpose UseFlash2 Two-outlet flash Determine thermal

and phase conditions

Flashes, evaporators, knockout

drums, single stage separators,

free water separations

Flash3 Three-outlet

flash

Determine thermal

and phase conditions

Decanters, single stage separators

with two liquid phases

Decanter Liquid-liquid

decanter

Determine thermal

and phase conditions

Decanters, single stage separators

with two liquid phases and no vapor

phase

Sep Multi-outlet

component

separator

Separate inlet stream

components into any

number of outletstreams

Component separation operations

such as distillation and absorption,

when the details of the separation areunknown or unimportant

Sep2 Two-outlet

component

separator

Separate inlet stream

components into two

outlet streams

Component separation operations

such as distillation and absorption,

when the details of the separation are

unknown or unimportant

Separators

Page 52: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 52/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Heat Exchangers 

* Requires separate license

Model Description Purpose Use

Heater Heater or cooler Determines thermal and

phase conditions

Heaters, coolers, valves. Pumps and

compressors when work-related results are not

needed.

HeatX Two-stream heat

exchanger

Exchange heat between two

streams

Two-stream heat exchangers. Rating shell and

tube heat exchangers when geometry is known.

MHeatX Multistream heat

exchanger

Exchange heat between any

number of streams

Multiple hot and cold stream heat exchangers.

Two-stream heat exchangers. LNGexchangers.

Hetran* Interface to B-JAC

Hetran program

Design and simulate shell and

tube heat exchangers

Shell and tube heat exchangers with a wide

variety of configurations.

Aerotran* Interface to B-JAC

Aerotran program

Design and simulate air-

cooled heat exchangers

Air-cooled heat exchangers with a wide variety

of configurations. Model economizers and the

convection section of fired heaters.

HXFlux Heat transfercalculation model

Models convective heattransfer between a heat sink

and a heat source.

Determines the log-mean temperaturedifference, using either the rigorous or the

approximate method.

HTRIIST* Interface to the IST

heat exchanger

program from HTRI.

Design and simulate shell and

tube heat exchangers

Shell and tube heat exchangers with a wide

variety of configurations, including kettle

boilers.

Page 53: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 53/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Columns - Shortcut 

Model Description Purpose Use

DSTWU Shortcut distillationdesign

Determine minimum RR,minimum stages, and either actual RR or actual stagesby Winn-Underwood-Gilliland method.

Columns with one feed andtwo product streams

Distl Shortcut distillationrating

Determine separationbased on RR, stages, andD:F ratio using Edmister method.

Columns with one feed andtwo product streams

SCFrac Shortcut distillationfor petroleum

fractionation

Determine productcomposition and flow,

stages per section, dutyusing fractionation indices.

Complex columns, such ascrude units and vacuum

towers

Page 54: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 54/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Columns - Rigorous 

Model Description Purpose UseRadFrac Rigorous

fractionationRigorous rating and design for singlecolumns

Distillation, absorbers, strippers,extractive and azeotropic distillation,

reactive distillation

MultiFrac Rigorous

fractionation for complex columns

Rigorous rating and design for 

multiple columns of any complexity

Heat integrated columns, air separators,

absorber/stripper combinations, ethyleneprimary fractionator/quench tower 

combinations, petroleum refiningPetroFrac Petroleum refining

fractionation

Rigorous rating and design for 

petroleum refining applications

Preflash tower, atmospheric crude unit,

vacuum unit, catalytic cracker or coker fractionator, vacuum lube fractionator,

ethylene fractionator and quench towers

BatchFrac*+ Rigorous batch

distillation

Rigorous rating calculations for 

single batch columns

Ordinary azeotropic batch distillation,

3-phase, and reactive batch distillation

RateFrac* Rate-based

distillation

Rigorous rating and design for single

and multiple columns. Based onnonequilibrium calculations

Distillation columns, absorbers, strippers,

reactive systems, heat integrated units,petroleum applications

Extract Liquid-liquid

extraction

Rigorous rating for liquid-liquid

extraction columns

Liquid-liquid extraction

* Requires separate license

+ Input language only in Version 10.0

Page 55: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 55/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Model Description Purpose UseRStoic Stoichiometric

reactor 

Stoichiometric reactor with

specified reaction extent or conversion

Reactors where the kinetics are unknown or 

unimportant but stoichiometry and extent areknown

RYield Yield reactor Reactor with specified yield Reactors where the stoichiometry and kineticsare unknown or unimportant but yield

distribution is known

REquil Equilibrium reactor Chemical and phaseequilibrium by

stoichiometric calculations

Single- and two-phase chemical equilibriumand simultaneous phase equilibrium

RGibbs Equilibrium reactor Chemical and phaseequilibrium by Gibbs

energy minimization

Chemical and/or simultaneous phase andchemical equilibrium. Includes solid phase

equilibrium.

RCSTR Continuous stirred

tank reactor 

Continuous stirred tank

reactor 

One, two, or three-phase stirred tank reactors

with kinetics reactions in the vapor or liquid

RPlug Plug flow reactor Plug flow reactor One, two, or three-phase plug flow reactors withkinetic reactions in any phase. Plug flowreactions with external coolant.

RBatch Batch reactor Batch or semi-batchreactor 

Batch and semi-batch reactors where thereaction kinetics are known

Reactors 

Page 56: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 56/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Pressure Changers 

Model Description Purpose UsePump Pump or  

hydraulicturbine

Change stream pressure whenthe pressure, power requirementor performance curve is known

Pumps and hydraulic turbines

Compr Compressor or  turbine

Change stream pressure whenthe pressure, power requirementor performance curve is known

Polytropic compressors, polytropicpositive displacementcompressors, isentropiccompressors, isentropic turbines.

MCompr Multi-stagecompressor or turbine

Change stream pressure acrossmultiple stages with intercoolers.

 Allows for liquid knockoutstreams from intercoolers

Multistage polytropic compressors,polytropic positive compressors,isentropic compressors, isentropicturbines.

Valve Control valve Determine pressure drop or  

valve coefficient (CV)

Multi-phase, adiabatic flow in ball,

globe and butterfly valves

Pipe Single-segmentpipe

Determine pressure drop andheat transfer in single-segmentpipe or annular space

Multi-phase, one dimensional,steady-state and fully developedpipeline flow with fittings

Pipeline Multi-segmentpipe

Determine pressure drop andheat transfer in multi-segmentpipe or annular space

Multi-phase, one dimensional,steady-state and fully developedpipeline flow

Page 57: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 57/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Manipulators 

Model Description Purpose Use

Mult Stream multiplier Multiply stream flows bya user supplied factor

Multiply streams for scale-up orscale-down

Dupl Streamduplicator

Copy a stream to anynumber of outlets

Duplicate streams to look atdifferent scenarios in the same

flowsheet

ClChng Stream classchanger

Change stream class Link sections or blocks that usedifferent stream classes

Selector Stream selector Switch between differentinlet streams.

Test different flowsheet senarios

Page 58: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 58/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Model Description UsesCrystallizer Continuous Crystallizer Mixed suspension, mixed product removal (MSMPR)

crystallizeer used for the production of a single solid product

Crusher Crushers Gyratory/jaw crusher, cage mill breaker, and single or  multiple roll crushers

Screen Screens Solids-solids separation using screens

FabFl Fabric filters Gas-solids separation using fabric filters

Cyclone Cyclones Gas-solids separation using cyclones

VScrub Venturi scrubbers Gas-solids separation using venturi scrubbers

ESP Dry electrostatic precipitators Gas-solids separation using dry electrostatic precipitators

HyCyc Hydrocyclones Liquid-solids separation using hydrocyclones

CFuge Centrifuge filters Liquid-solids separation using centrifuge filters

Filter Rotary vacuum filters Liquid-solids separation using continuous rotary vacuumfilters

SWash Single-stage solids washer Single-stage solids washer 

CCD Counter-current decanter Multistage washer or a counter-current decanter 

Solids

Page 59: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 59/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

User Models

• Proprietary models or 3-rd party software can beincluded in an Aspen Plus flowsheet using a User2 unitoperation block.

• Excel Workbooks or Fortran code can be used to definethe User2 unit operation model.

• User-defined names can be associated with variables.

• Variables can be dimensioned based on other input

specifications (for example, number of components).

•  Aspen Plus helper functions eliminate the need to knowthe internal data structure to retrieve variables.

Page 60: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 60/355

©2000 AspenTech. All Rights Reserved.

 Aspen Plus References:

Unit Operation Models Reference Manual , Chapter 4, Columns

RadFrac

Objective:Discuss the minimum input required for theRadFrac fractionation model, and the use of design specifications and stage efficiencies

Page 61: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 61/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

RadFrac: Rigorous Multistage Separation

• Vapor-Liquid or Vapor-Liquid-Liquid phase simulation of:

 – Ordinary distillation

 –  Absorption, reboiled absorption

 – Stripping, reboiled stripping

 –  Azeotropic distillation – Reactive distillation

• Configuration options:

 –  Any number of feeds

 –  Any number of side draws – Total liquid draw off and pumparounds

 –  Any number of heaters

 –  Any number of decanters

Page 62: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 62/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

RadFrac Flowsheet Connectivity 

Vapor Distillate

Top-Stage or  1Condenser Heat Duty Heat (optional)

Liquid Distillate

Water Distillate (optional)Feeds

Reflux

Products (optional)Heat (optional)

Pumparound

DecantersHeat (optional)

ProductHeat (optional)

Return

Boil-up

Bottom Stage or  NstageReboiler Heat Duty Heat (optional)

Bottoms

Page 63: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 63/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

RadFrac Setup Configuration Sheet

• Specify:

 – Number of stages

 – Condenser and reboiler configuration

 – Two column operatingspecifications

 – Valid phases

 – Convergence

Page 64: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 64/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

RadFrac Setup Streams Sheet

• Specify:

 – Feed stage location

 – Feed stream convention(see Help)

 ABOVE-STAGE:Vapor from feed goes tostage above feed stage

 – Liquid goes to feed stage

ON-STAGE:

Vapor & Liquid from feedgo to specified feed stage

Page 65: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 65/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Feed Convention

On-stage 

n

Above-stage(default) 

n-1

n

Vapor 

Feed

n-1

Liquid

Feed

Page 66: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 66/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

RadFrac Setup Pressure Sheet

• Specify one of:

 – Column pressure profile

 – Top/Bottom pressure

 – Section pressure drop

Page 67: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 67/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Kettle Reboiler 

T = 65 C

P = 1 bar 

Water: 100 kmol/hr 

Methanol: 100 kmol/hr 

9 StagesReflux Ratio = 1

Distillate to feed ratio = 0.5

Column pressure = 1 bar 

Feed stage = 6

RadFrac specifications

Filename: RAD-EX.BKP

Methanol-Water RadFrac Column 

Use the NRTL-RK Property Method

COLUMNFEED

OVHD

BTMS

Total Condenser 

Page 68: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 68/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

RadFrac Options

• To set up an absorber with no condenser or reboiler, setcondenser and reboiler to none on the RadFrac SetupConfiguration sheet.

• Either Vaporization or Murphree efficiencies on either astage or component basis can be specified on theRadFrac Efficiencies form.

• Tray and packed column design and rating is possible.

•  A Second liquid phase may be modeled if the user selects Vapor-liquid-liquid as Valid phases.

• Reboiler and condenser heat curves can be generated.

Page 69: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 69/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Plot Wizard

• Use Plot Wizard (on the Plot menu) to quickly generate plots of results of a simulation. You can use Plot Wizard for displayingresults for the following operations:

 – Physical property analysis

 – Data regression analysis

 – Profiles for all separation models RadFrac, MultiFrac, PetroFrac andRateFrac

• Click the object of interest in the Data Browser to generate plots for that particular object.

• The wizard guides you in the basic operations for generating a plot.

• Click on the Next button to continue. Click on the Finish button togenerate a plot with default settings.

Page 70: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 70/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Block COLUMN: Vapor Composition Prof iles

Stage

1 2 3 4 5 6 7 8 9

   Y

   (  m  o   l  e   f  r  a  c   )

   0 .   2

   5

   0 .   5

   0 .   7

   5

   1WATER

METHANOL

Plot Wizard Demonstration

• Use the plot wizard on the column to create a plot of thevapor phase compositions throughout the column.

Page 71: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 71/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

RadFrac DesignSpecs and Vary

• Design specifications can be specified and executed inside theRadFrac block using the DesignSpecs and Vary forms.

• One or more RadFrac inputs can be manipulated to achievespecifications on one or more RadFrac performance parameters.

• The number of specs should, in general, be equal to the number of varies.

• The DesignSpecs and Varys in a RadFrac are solved in a “Middleloop.” If you get an error message saying that the middle loop wasnot converged, check the DesignSpecs and Varys you have

entered.

Page 72: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 72/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

RadFrac Convergence Problems

• If a RadFrac column fails to converge, doing one or moreof the following could help:

1. Check that physical property issues (choice of Property

Method, parameter availability, etc.) are properly addressed.

2. Ensure that column operating conditions are feasible.

3. If the column err/tol is decreasing fairly consistently, increasethe maximum iterations on the RadFrac Convergence Basic  sheet.

Page 73: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 73/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

RadFrac Convergence Problems (Continued)

4. Provide temperature estimates for some stages in thecolumn using the RadFrac Estimates Temperature sheet (useful for absorbers).

5. Provide composition estimates for some stages in thecolumn using the RadFrac Estimates Liquid Composition and Vapor Composition sheet (useful for highly non-ideal systems).

6. Experiment with different convergence methods on the

RadFrac Setup Configuration sheet.

Note: When a column does not converge, it is usuallybeneficial to Reinitialize after making changes.

Page 74: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 74/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Filename: RADFRAC.BKPUse the NRTL-RK Property Method

COLUMNFEED

DIST

BTMS

Feed:63.2 wt% Water 36.8 wt% MethanolTotal flow = 120,000 lb/hr Pressure 18 psiaSaturated liquid

Column specification:38 trays (40 stages)Feed tray = 23 (stage 24)Total condenser Top stage pressure = 16.1 psiaPressure drop per stage = 0.1 psiDistillate flowrate = 1245 lbmol/hr 

Molar reflux ratio = 1.3

RadFrac Workshop

Part A

• Perform a rating calculation of a Methanol tower usingthe following data:

•  

Page 75: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 75/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

RadFrac Workshop (Continued)

Part B

• Set up design specifications within the column so the following twoobjectives are met:

 – 99.95 wt% methanol in the distillate

 – 99.90 wt% water in the bottoms

• To achieve these specifications, you can vary the distillate rate (800-1700 lbmol/hr) and the reflux ratio (0.8-2). Make sure streamcompositions are reported as mass fractions before running theproblem. Note the condenser and reboiler duties:

Condenser Duty :_________ 

Reboiler Duty :_________ 

Page 76: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 76/355

Page 77: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 77/355

©2000 AspenTech. All Rights Reserved.

Reactor Models

Objective:Introduce the various classes of reactor models

available, and examine in some detail at least onereactor from each class

 Aspen Plus References

Unit Operation Models Reference Manual , Chapter 5, Reactors

Page 78: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 78/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Reactor Overview 

Reactors

Balance BasedRYieldRStoic

Equilibrium BasedREquilRGibbs

Kinetics BasedRCSTRRPlug

RBatch

Page 79: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 79/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

70 lb/hr H2O20 lb/hr CO2 60 lb/hr CO250 lb/hr tar 

600 lb/hr char 

1000 lb/hr Coal

IN

OUT

RYield

Balanced Based Reactors

• RYield

 – Requires a mass balance only, not an atom balance

 – Is used to simulate reactors in which inlets to the reactor arenot completely known but outlets are known (e.g. to simulate a

furnace)

Page 80: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 80/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

2 CO + O2 --> 2 CO2C + O2 --> CO2

2 C + O2--

> 2 CO

C, O2

IN

OUT

RStoic

C, O2, CO, CO2

Balanced Based Reactors (Continued)

• RStoic

 – Requires both an atom and a mass balance

 – Used in situations where both the equilibrium data and thekinetics are either unknown or unimportant

 – Can specify or calculate heat of reaction at a referencetemperature and pressure

Page 81: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 81/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Equilibrium Based Reactors

• GENERAL

 – Do not take reaction kinetics into account

 – Solve similar problems, but problem specifications are different

 – Individual reactions can be at a restricted equilibrium

• REquil

 – Computes combined chemical and phase equilibrium bysolving reaction equilibrium equations

 – Cannot do a 3-phase flash

 – Useful when there are many components, a few knownreactions, and when relatively few components take part in thereactions

Page 82: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 82/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Equilibrium Based Reactors (Continued)

• RGibbs

 – Unknown Reactions - This feature is quite useful whenreactions occurring are not known or are high in number due tomany components participating in the reactions.

 – Gibbs Energy Minimization - A Gibbs free energyminimization is done to determine the product composition atwhich the Gibbs free energy of the products is at a minimum.

 – Solid Equilibrium - RGibbs is the only Aspen Plus block thatwill deal with solid-liquid-gas phase equilibrium.

Page 83: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 83/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Kinetic Reactors

• Kinetic reactors are RCSTR, RPlug and RBatch.

• Reaction kinetics are taken into account, and hence must bespecified.

• Kinetics can be specified using one of the built-in models, or with a

user subroutine. The current built-in models are – Power Law

 – Langmuir-Hinshelwood-Hougen-Watson (LHHW)

•  A catalyst for a reaction can have a reaction coefficient of zero.

• Reactions are specified using a Reaction ID.

Page 84: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 84/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Using a Reaction ID

• Reaction IDs are setup as objects, separate from thereactor, and then referenced within the reactor(s).

•  A single Reaction ID can be referenced in any number of kinetic reactors (RCSTR, RPlug and RBatch.)

• To set up a Reaction ID, go to the Reactions Reactions Object Manager 

Page 85: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 85/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Power-law Rate Expression 

 

 

 

 

 

  

 

0

n

0

11EnergyActivationexp Factor)lexponentiaPre(

T T  RT 

T k 

rate k concentrationi

i * [ ]

exponenti

Example: 2 3 21

2

 A B C Dk 

      

Forward reaction: (Assuming the reaction is 2nd order in A)

coefficients: A: B: C: D:

exponents: A: B: C: D:

-2 -3 1 2

2 0 0 0

Reverse reaction: (Assuming the reaction is 1st order in C and D)

coefficients: C: D: A: B:

exponents: C: D: A: B:-1 -2 2 3

1 1 0 0

Page 86: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 86/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Heats of Reaction

• Heats of reaction need not be provided for reactions.

• Heats of reaction are typically calculated as thedifference between inlet and outlet enthalpies for thereactor (see Appendix A).

• If you have a heat of reaction value that does not matchthe value calculated by Aspen Plus, you can adjust theheats of formation (DHFORM) of one or morecomponents to make the heats of reaction match.

• Heats of reaction can also be calculated or specified at areference temperature and pressure in an RStoicreactor.

Page 87: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 87/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Reactor Workshop

• Objective - Compare the use of different reactor types to modelone reaction.

• Reactor Conditions:Temperature = 70 C

Pressure = 1 atm

• Stoichiometry:Ethanol + Acetic Acid <--> Ethyl Acetate + Water 

• Kinetic Parameters: – Forward Reaction: Pre-exp. Factor = 1.9 x 108, Act. Energy = 5.95 x 107 J/kmol – Reverse Reaction: Pre-exp. Factor = 5.0 x 107, Act. Energy = 5.95 x 107 J/kmol – Reactions are first order with respect to each of the reactants in the reaction (second

order overall). – Reactions occur in the liquid phase. – Composition basis is Molarity.

Hint: Check that each reactor is considering both Vapor and Liquid as Validphases.

Page 88: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 88/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Temp = 70 CPres = 1 atm

Feed:

Water: 8.892 kmol/hr Ethanol: 186.59 kmol/hr Acetic Acid: 192.6 kmol/hr 

Length = 2 meters

Diameter = 0.3 meters

Volume = 0.14 Cu. M.

70 % conversion of ethanol

When finished, save asfilename: REACTORS.BKP

Use the NRTL-RKproperty method

RSTOICF-STOIC

P-STOIC

RGIBBS

F-GIBBS P-GIBBS

RPLUG

F-PLUG P-PLUG

DUPL

FEED

F-CSTR

RCSTR

P-CSTR

Reactor Workshop (Continued)

Page 89: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 89/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Cyclohexane Production Workshop

• Objective - Create a flowsheet to model a cyclohexane productionprocess

• Cyclohexane can be produced by the hydrogenation of benzene in thefollowing reaction:

C6H6 + 3 H2 = C6H12Benzene Hydrogen Cyclohexane

• The benzene and hydrogen feeds are combined with recycle hydrogen andcyclohexane before entering a fixed bed catalytic reactor. Assume abenzene conversion of 99.8%.

• The reactor effluent is cooled and the light gases separated from the

product stream. Part of the light gas stream is fed back to the reactor asrecycle hydrogen.

• The liquid product stream from the separator is fed to a distillation column tofurther remove any dissolved light gases and to stabilize the end product. Aportion of the cyclohexane product is recycled to the reactor to aid intemperature control.

Page 90: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 90/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

C6H6 + 3 H2 = C6H12

Benzene Hydrogen Cyclohexane

Use the RK-SOAVE property method

When finished, save asfilename: CYCLOHEX.BKP

Bottoms rate = 99 kmol/hr 

P = 25 bar T = 50 C

Molefrac H2 = 0.975N2 = 0.005CH4 = 0.02

Total flow = 330 kmol/hr 

T = 40 C

P = 1 bar 

Benzene flow = 100 kmol/hr 

T = 150C

P = 23 bar T = 200 CPdrop = 1 bar 

Benzene conv =0.998

T = 50 C

Pdrop = 0.5 bar 

92% flow to stream H2RCY

30% flow to stream CHRCY

Specify cyclohexane molerecovery in PRODUCT streamequal to 0.9999 by varyingBottoms rate from 97 to 101 kmol/hr 

Theoretical Stages = 12Reflux ratio = 1.2

Partial Condenser with

vapor distillate onlyColumn Pressure = 15 bar Feed stage = 8

REACTFEED-MIX

H2IN

BZIN

H2RCY

CHRCY

RXIN

RXOUT

HP-SEP

VAP

COLUMN

COLFD

LTENDS

PRODUCT

VFLOW

PURGE

LFLOW

LIQ

Cyclohexane Production Workshop

Page 91: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 91/355

©2000 AspenTech. All Rights Reserved.

Physical Properties

Objectives:

Introduce the ideas of property methods and physical property parameters

Identify issues involved in the choice of a property method

Cover the use of Property Analysis for reporting physical properties

 Aspen Plus References:

User Guide, Chapter 7, Physical Property Methods

User Guide, Chapter 8, Physical Property Parameters and Data

User Guide, Chapter 29, Analyzing Properties

Page 92: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 92/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Correct choice of physical property models and accurate physicalproperty parameters are essential for obtaining accurate simulationresults.

FEED

OVHD

BTMS

COLUMN

5000 lbmol/hr 

10 mole % acetone

90 mole % water 

Specification: 99.5 mole % acetone recovery

Case Study - Acetone Recovery

Ideal

 Approach

Equation of 

State Approach

 Activity Coefficient

Model Approach

Predicted number of 

stages required

 Approximate cost in dollars

11

520, 000

7

390, 000

42

880, 000

Page 93: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 93/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

How to Establish Physical Properties 

Choose a Property Method

Check Parameters/ObtainAdditional Parameters

Confirm Results

Create the Flowsheet

Page 94: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 94/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Property Methods

•  A Property Method is a collection of models and methodsused to calculate physical properties.

• Property Methods containing commonly usedthermodynamic models are provided in Aspen Plus.

• Users can modify existing Property Methods or createnew ones.

Page 95: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 95/355

Page 96: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 96/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

x

y

x

y

x

y

Ideal vs. Non-Ideal Behavior 

• What do we mean by ideal behavior? – Ideal Gas law and Raoult’s law 

• Which systems behave as ideal?

 – Non-polar components of similar size and shape

• What controls degree of non-ideality?

 – Molecular interactionse.g. Polarity, size and shape of the molecules

• How can we study the degree of non-ideality of asystem?

 – Property plots (e.g. TXY & XY)

Page 97: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 97/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

EOS Models Activity Coefficient Models

Limited in ability to representnon-ideal liquids

Can represent highly non-ideal liquids

Fewer binary parametersrequired

Many binary parameters required

Parameters extrapolatereasonably with temperature

Binary parameters are highlytemperature dependent

Consistent in critical region Inconsistent in critical region

Comparison of EOS and Activity Models

Page 98: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 98/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Common Property Methods

• Equation of State Property Methods – PENG-ROB

 – RK-SOAVE

•  Activity Coefficient Property Methods

 – NRTL

 – UNIFAC

 – UNIQUAC

 – WILSON

Page 99: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 99/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Henry's Law

• Henry's Law is only used with ideal and activitycoefficient models.

• It is used to determine the amount of a supercriticalcomponent or light gas in the liquid phase.

•  Any supercritical components or light gases (CO2, N2,etc.) should be declared as Henry's components(Components Henry Comps Selection sheet).

• The Henry's components list ID should be entered onProperties Specifications Global sheet in the Henry Components field.

Page 100: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 100/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Do you have any polar components in your system?

 Are the operating conditions

near the critical region of the

mixture?

Use activity

coefficient model

with Henry’s Law 

Use activity

coefficient

model

Use EOS Model

N

N

NY

Y

Y

References:

 Aspen Plus User Guide, Chapter 7, Physical Property Methods,

gives similar, more detailed guidelines for choosing a

property Method.

Choosing a Property Method - Review

Do you have light gases or 

supercritical components

in your system?

Page 101: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 101/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

System Model Type Property Method

Propane, Ethane, Butane EOS RK-SOAVE, PENG-ROB

Benzene, Water Activity Coefficient NRTL-RK, UNIQUAC

 Acetone, Water Activity Coefficient NRTL-RK, WILSON

System Property Method

Ethanol, Water 

Benzene, Toluene

 Acetone, Water, Carbon Dioxide

Water, Cyclohexane

Ethane and Propanol

Choosing a Property Method - Example

• Choose an appropriate Property Method for the followingsystems of components at ambient conditions.

Page 102: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 102/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

How to Establish Physical Properties 

Choose a Property Method

Check Parameters/Obtain

Additional Parameters

Confirm Results

Create the Flowsheet

Page 103: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 103/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Pure Component Parameters

• Represent attributes of a single component

• Input in the Properties Parameters Pure Component folder.

• Stored in databanks such as PURE10, ASPENPCD, SOLIDS, etc.(The selected databanks are listed on the Components

Specifications Databanks sheet.)

• Parameters retrieved into the Graphical User Interface by selectingRetrieve Parameter Results from the tools menu.

• Examples

 – Scalar: MW for molecular weight

 – Temperature-Dependent: PLXANT for parameters in the extended Antoine vapor pressure model

Page 104: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 104/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Binary Parameters

• Used to describe interactions between two components

• Input in the Properties Parameters Binary Interaction folder 

• Stored in binary databanks such as VLE-IG, LLE-ASPEN

• Parameter values from the databanks can be viewed on the inputforms in the Graphical User Interface.

• Parameter forms that include data from the databanks must beviewed before the flowsheet is complete.

• Examples

 – Scalar: RKTKIJ for the Rackett model

 – Temperature-Dependent: NRTL for parameters in the NRTL model

Page 105: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 105/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Displaying Property Parameters

•  Aspen Plus does not display all databank parameters onthe parameter input forms.

• Select Retrieve Parameter Results from the Tools menuto retrieve all parameters for the components and

property methods defined in the simulation.

•  All results that are currently loaded will be lost. They canbe regenerated by running the simulation again.

• The parameters are viewed on the PropertiesParameters Results forms.

Page 106: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 106/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

PHYSICAL PROPERTIES SECTION

PROPERTY PARAMETERS-------------------

PARAMETERS ACTUALLY USED IN THE SIMULATION

PURE COMPONENT PARAMETERS-------------------------

COMPONENT ID: BENZENEFORMULA: C6H6 NAME: C6H6

SCALAR PARAMETERS-----------------

PARAM SET DESCRIPTIONS VALUE UNITS SOURCE

NAME NO.

API 1 STANDARD API GRAVITY 28.500 PURE10

CHARGE 1 IONIC CHARGE 0.00000E+00 AQUEOUS

CHI 1 STIEL POLAR FACTOR 0.00000E+00 DEFAULT

DCPLS 1 DIFFERENCE BETWEEN LIQUID AND 0.31942 CAL/MOL-K PURE10SOLID CP AT TRIPLE POINT

DGFORM 1 IDEAL GAS GIBBS ENERGY 30.954 KCAL/MOL PURE10OF FORMATION

Reporting Parameters

• To get a Report of the retrieved parameters in a text file. – Select Retrieve Parameter Results from the Tools menu,

 – Select Report from the View menu.

 – Select display report for Simulation and click Ok.

Page 107: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 107/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Reporting Physical Property Parameters

• Follow this procedure to obtain a report file containingvalues of ALL pure component and binary parametersfor ALL components used in a simulation:

1. On the Setup Report Options Property sheet,select All physical property parameters used (in SI units) or select Property parameters’ descriptions, equations, andsources of data.

2. After running the simulation, export a report (*.rep) file (SelectExport from the File menu).

3. Edit the .rep file using any text editor. (From the GraphicalUser Interface, you can choose Report from the View menu.)The parameters are listed under the heading PARAMETERVALUES in the physical properties section of the report file.

Page 108: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 108/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

How to Establish Physical Properties 

Choose a Property Method

Check Parameters/Obtain

Additional Parameters

Confirm Results

Create the Flowsheet

Page 109: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 109/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Property Analysis

• Used to generate simple property diagrams to validate physical propertymodels and data

• Diagram Types:

 – Pure component, e.g. Vapor pressure vs. temperature

 – Binary, e.g. TXY, PXY

 – Ternary residue maps

• Select Analysis from the Tools menu to start Analysis.

•  Additional binary plots are available under the Plot Wizard button on resultform containing raw data.

• When using a binary analysis to check for liquid-liquid phase separation,remember to choose Vapor-Liquid-Liquid as Valid phases.

• Property analysis input and results can be saved as a form for later reference and use.

Page 110: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 110/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Property Analysis - Common Plots 

y-x diagram for METHANOL / PROPANOL

LIQUID MOLEFRAC METHANOL

0 0.2 0.4 0.6 0.8 1

(PRES = 14.7 PSI)

y-x diagram for ETHANOL / TOLUENE

LIQUID MOLEFRAC ETHANOL

0 0.2 0.4 0.6 0.8 1

(PRES = 14.7 PSI)

y-x diagram for TOLUENE / WATER

LIQUID MOLEFRAC TOLUENE0 0.2 0.4 0.6 0.8 1

(PRES = 14.7 PSI)

XY Plot Showing 2 liquid phases:

Ideal XY Plot: XY Plot Showing Azeotrope:

Page 111: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 111/355

Page 112: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 112/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Establishing Physical Properties - Review

1. Choose Property Method - Select a Property Method based on – Components present in simulation

 – Operating conditions in simulation

 –  Available data or parameters for the components

2. Check Parameters - Determine parameters available in Aspen Plus

databanks

3. Obtain Additional Parameters (if necessary) - Parameters that are neededcan be obtained from

 – Literature searches (DETHERM, etc.)

 – Regression of experimental data (Data Regression)

 – Property Constant Estimation (Property Estimation)

4. Confirm Results - Verify choice of Property Method and physical propertydata using

 – Physical Property Analysis

S

Page 113: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 113/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Property Sets

•  A property set (Prop-Set) is a way of accessing a collection, or set,of properties as an object with a user-given name. Only the name of the property set is referenced when using the properties in anapplication.

• Use property sets to report thermodynamic, transport, and other 

property values.

• Current property set applications include:

 – Design specifications, Fortran blocks, sensitivity

 – Stream reports

 – Physical property tables (Property Analysis)

 – Tray properties (RadFrac, MultiFrac, etc.)

 – Heating/cooling curves (Flash2, MHeatX, etc.)

P ti i l d d i P S t

Page 114: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 114/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Properties included in Prop-Sets

• Properties commonly included in property sets include: – VFRAC - Molar vapor fraction of a stream – BETA - Fraction of liquid in a second liquid phase – CPMX - Constant pressure heat capacity for a mixture – MUMX - Viscosity for a mixture

•  Available properties include: – Thermodynamic properties of components in a mixture

 – Pure component thermodynamic properties

 – Transport properties

 – Electrolyte properties

 – Petroleum-related properties

Reference:  Aspen Plus Physical Property Data Reference Manual , Chapter 4, Property Sets, has acomplete list of properties that can be included in a property set.

S if i P t S t

Page 115: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 115/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Use the Properties Prop-Sets form to specify properties in a property set.

• The Search button can be used to search for a property.

•  All specified qualifiers apply to each property specified, whereapplicable.

• Users can define new properties on the Properties Advanced User-Properties form by providing a Fortran subroutine.

Specifying Property Sets

P d fi d P t S t

Page 116: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 116/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Predefined Property Set Types of Properties

HXDESIGN Heat exchanger design

THERMAL Mixture thermal (HMX, CPMX,KMX)

TXPORT Transport

VLE Vapor-liquid equilibrium(PHIMX, GAMMA, PL)

VLLE Vapor-liquid-liquid equilibrium

Predefined Property Sets

• Some simulation Templates contain predefined propertysets.

• The following table lists predefined property sets and thetypes of properties they contain for the General  

Template:

St R lt O ti

Page 117: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 117/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Stream Results Options

• On the Setup Report Options Stream sheet, use:

 – Flow Basis and Fraction Basis check-boxes to specify howstream composition is reported

 – Property Sets button to specify names of property setscontaining additional properties to be reported for each stream

D fi iti f T

Page 118: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 118/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Definition of Terms

• Property Method - Set of property models and methodsused to calculate the properties required for a simulation

• Property - Calculated physical property value such asmixture enthalpy

• Property Model - Equation or equations used tocalculate a physical property

• Property Parameter - Constant used in a property

model

• Property Set (Prop-Set) - A method of accessingproperties so that they can be used or tabulatedelsewhere

A P ti

Page 119: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 119/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Aspen Properties

•  Aspen Properties is now a stand-alone product.

• In addition to the standard property features available in Aspen Plus, Aspen Properties includes:

 – Excel Interface

 – Web Interface

• Excel Interface is an Excel Add-In that has Excelfunctions to do property calculations such as:

 – Flash at a given set of conditions – Calculate a property such as density or viscosity

• Web Interface is currently only available for purecomponents.

Ph i l P ti W k h

Page 120: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 120/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Physical Properties Workshop

• Objective: Simulate a two-liquid phase settling tank andinvestigate the physical properties of the system.

•  A refinery has a settling tank that they use to decant off the water from a mixture of water and a heavy oil. The inlet stream to the tankalso contains some carbon-dioxide and nitrogen. The tank and feed

are at ambient temperature and pressure (70o F, 1atm), and havethe following flow rates of the various components:

Water 515 lb/hr 

Oil 4322 lb/hr 

CO2 751 lb/hr 

N2 43 lb/hr 

• Use the compound n-decane to represent the oil. It is known thatwater and oil form two liquid phases under the conditions in the tank.

Ph sical Properties Workshop (Contin ed)

Page 121: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 121/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Physical Properties Workshop (Continued)

1. Choose an appropriate Property Method to represent this system.Check to see that the required binary physical property parametersare available.

2. Retrieve the physical property parameters used in the simulation anddetermine the critical temperature for carbon dioxide and water.TC(carbon dioxide) = _______; TC(water) = _______ 

3. Using the property analysis feature, verify that the chosen physicalproperty model and the available parameters predict the formation of 2 liquid phases.

4. Set up a simulation to model the settling tank. Use a Flash3 block torepresent the tank.

5. Modify the stream report to include the constant pressure heatcapacity (CPMX) for each phase (Vapor, 1st Liquid and 2nd Liquid),and the fraction of liquid in a second liquid phase (BETA), for allstreams.

Physical Properties Workshop (Continued)

Page 122: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 122/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Physical Properties Workshop (Continued)

This Portion is Optional

• Objective: Generate a table of compositions for each liquidphase (1st Liquid and 2nd Liquid) at different temperatures for a mixture of water and oil. Tabulate the vapor pressure of thecomponents in the same table.

• In addition to the interactive Analysis commands under the Toolsmenu, you also can create a Property Analysis manually, usingforms.

• Manually generated Generic Property Analysis is similar to the

interactive Analysis commands, however it is more flexible regardinginput and reporting.

Detailed instructions are on the following slide.

Physical Properties Workshop (Continued)

Page 123: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 123/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Physical Properties Workshop (Continued)

• Problem Specifications:1. Create a Generic type property analysis from the Properties/Analysis

Object manager.

2. Generate points along a flash curve.

3. Define component flows of 50 mole water and 50 mole oil.

4. Set Valid phases to Vapor-liquid-liquid.

5. Click on the Range/List button, and vary temperature from 50 to 400 F.

6. Use a vapor fraction of zero.

7. Tabulate a new property set that includes:

a. Mole fraction of water and oil in the 1st and 2nd liquid phases (MOLEFRAC)b. Mole flow of water and oil in the 1st and 2nd liquid phases (MOLEFLOW)

c. Beta - the fraction of the 1st liquid to the total liquid (BETA)

d. Pure component vapor pressures of water and oil (PL)

Page 124: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 124/355

©2000 AspenTech. All Rights Reserved.

Accessing Variables

Objective:Become familiar with referencing flowsheet

variables

 Aspen Plus References:

User Guide, Chapter 18, Accessing Flowsheet Variables

Related Topics:

User Guide, Chapter 20, Sensitivity

User Guide, Chapter 21, Design Specifications

User Guide, Chapter 19, Calculator Blocks and In-Line Fortran

User Guide, Chapter 22, Optimization

User Guide, Chapter 23, Fitting a Simulation Model to Data

Why Access Variables?

Page 125: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 125/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

COLUMNFEED

OVHD

BTMS

Why Access Variables?

• What is the effect of the reflux ratio of the column on the purity (molefraction of component B) of the distillate?

• To perform this analysis, references must be made to 2 flowsheetquantities, i.e. 2 flowsheet variables must be accessed:

1. The reflux ratio of the column

2. The mole fraction of component B in the stream OVHD

Accessing Variables

Page 126: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 126/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Accessing Variables

•  An accessed variable is a reference to a particular flowsheet quantity, e.g. temperature of a stream or dutyof a block.

•  Accessed variables can be input, results, or both.

• Flowsheet result variables (calculated quantities) shouldnot be overwritten or varied.

• The concept of accessing variables is used in sensitivity

analyses, design specifications, calculator blocks,optimization, etc.

Variable Categories

Page 127: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 127/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Variable Categories 

Variable Category Type of VariableBlocks Block variables and vectors

Streams Stream variables and vectors.

Both non-component variables andcomponent dependent flow and compositionvariables can be accessed.

Model Utility Parameters, balance block and pressurerelief variables

Property Property parameters

Reactions Reactions and chemistry variables

Costing Costing variables

Variable Definition Dialog Box

Page 128: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 128/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Variable Definition Dialog Box

• When completing a Define sheet, such as on a Calculator, Designspecification or Sensitivity form, specify the variables on the VariableDefinition dialog box.

• You cannot modify the variables on the Define sheet itself.

• On the Variable Definition dialog box, select the variable categoryand Aspen Plus will display the other fields necessary to completethe variable definition.

• If you are editing an existing variable and want to change thevariable name, click the right mouse button on the Variable Name

field. On the popup menu, click Rename.

Notes

Page 129: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 129/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Notes

1. If the Mass-Frac, Mole-Frac or StdVol-Frac of a component in astream is accessed, it should not be modified. To modify thecomposition of a stream, access and modify the Mass-Flow, Mole-Flow or StdVol-Flow of the desired component.

2. If duty is specified for a block, that duty can be read and written

using the variable DUTY for that block. If the duty for a block iscalculated during simulation, it should be read using the variableQCALC.

3. PRES is the specified pressure or pressure drop, and PDROP ispressure drop used in calculating pressure profile in heating or 

cooling curves.

4. Only streams that are feeds to the flowsheet should be varied or modified directly.

Page 130: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 130/355

©2000 AspenTech. All Rights Reserved.

Sensitivity Analysis

Objective:Introduce the use of sensitivity analysis to study

relationships between process variables

 Aspen Plus References:

User Guide, Chapter 20, Sensitivity

Related Topics:

User Guide, Chapter 18, Accessing Flowsheet Variables

User Guide, Chapter 19, Calculator Blocks and In-Line Fortran

Page 131: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 131/355

Sensitivity Analysis Example

Page 132: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 132/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• What is the effect of cooler outlet temperature on the purity of theproduct stream?

• What is the manipulated (varied) variable?

• What is the measured (sampled) variable?

Filename: CUMENE-S.BKP

» Cooler outlet temperature

» Purity (mole fraction) of cumene in product stream

REACTOR

FEED

RECYCLE

REAC-OUT

COOL

COOL-OUT SEP

PRODUCT

Sensitivity Analysis Example

Sensitivity Analysis Results

Page 133: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 133/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Sensitivity S-1 Results Summary

VARY 1 COOL PARAM TEMP F

50 75 100 125 150 175 200 225 250 275 300 325 350

   C

   U   M   E   N   E   P   R   O   D   U   C   T   P   U   R   I   T   Y

   0 .   8   5

   0 .   9

   0 .   9   5

   1

Sensitivity Analysis Results

• What is happening below 75 F and above 300 F?

Page 134: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 134/355

Steps for Using Sensitivity Analysis

Page 135: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 135/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Steps for Using Sensitivity Analysis

1. Specify measured (sampled) variable(s) – These are quantities calculated during the simulation to be used in

step 4 (Sensitivity Input Define sheet).

2. Specify manipulated (varied) variable(s)

 – These are the flowsheet variables to be varied (Sensitivity Input Vary sheet).

3. Specify range(s) for manipulated (varied) variable(s)

 – Variation for manipulated variable can be specified either asequidistant points within an interval or as a list of values for the

variable (Sensitivity Input Vary sheet).

4. Specify quantities to calculate and tabulate

 – Tabulated quantities can be any valid Fortran expression containingvariables defined in step 1 (Sensitivity Input Tabulate sheet).

Plotting

Page 136: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 136/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Plotting

1. Select the column containing the X-axis variable andthen select X-Axis Variable from the Plot menu.

2. Select the column containing the Y-axis variable andthen select Y-Axis Variable from the Plot menu.

3. (Optional) Select the column containing the parametricvariable and then select Parametric Variable from thePlot menu.

4. Select Display Plot from the Plot menu.

Note: To select a column, click on the heading of thecolumn with the left mouse button. 

Notes

Page 137: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 137/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Notes

1. Only quantities that have been input to the flowsheetshould be varied or manipulated.

2. Multiple inputs can be varied.

3. The simulation is run for every combination of manipulated (varied) variables.

Sensitivity Analysis Workshop

Page 138: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 138/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Sensitivity Analysis Workshop

• Objective: Use a sensitivity analysis to study the effect of the recycleflowrate on the reactor duty in the cyclohexane flowsheet

• Part A

 – Using the cyclohexane production flowsheet Workshop (saved asCYCLOHEX.BKP), plot the variation of reactor duty (block REACT) as therecycle split fraction in LFLOW is varied from 0.1 to 0.4.

• Optional Part B

 – In addition to the fraction split off as recycle (Part A), vary the conversion of benzene in the reactor from 0.9 to 1.0. Tabulate the reactor duty andconstruct a parametric plot showing the dependence of reactor duty on thefraction split off as recycle and conversion of benzene.

Note: Both of these studies (parts A and B) should be set up within the samesensitivity analysis block.

• When finished, save as filename: SENS.BKP.

Cyclohexane Production Workshop

Page 139: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 139/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Cyclohexane Production Workshop C6H6 + 3 H2 = C6H12

Benzene Hydrogen Cyclohexane

Use the RK-SOAVE property method

Bottoms rate = 99 kmol/hr 

P = 25 bar T = 50 C

Molefrac H2 = 0.975N2 = 0.005CH4 = 0.02

Total flow = 330 kmol/hr 

T = 40 C

P = 1 bar 

Benzene flow = 100 kmol/hr 

T = 150C

P = 23 bar T = 200 CPdrop = 1 bar 

Benzene conv =0.998

T = 50 C

Pdrop = 0.5 bar 

92% flow to stream H2RCY

30% flow to stream CHRCY

Specify cyclohexane molerecovery of 0.9999 by varyingBottoms rate from 97 to 101 kmol/hr 

Theoretical Stages = 12Reflux ratio = 1.2

Partial Condenser with

vapor distillate onlyColumn Pressure = 15 bar Feed stage = 8

REACTFEED-MIX

H2IN

BZIN

H2RCY

CHRCY

RXIN

RXOUT

HP-SEP

VAP

COLUMN

COLFD

LTENDS

PRODUCT

VFLOW

PURGE

LFLOW

LIQ

Page 140: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 140/355

Design Specifications

Page 141: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 141/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Design Specifications

• Similar to a feedback controller 

•  Allows user to set the value of a calculated flowsheetquantity to a particular value

• Objective is achieved by manipulating a specified inputvariable

• No results associated directly with a design specification

• Located under  /Data/Flowsheeting Options/DesignSpecs

Design Specification Example

Page 142: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 142/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• What should the cooler outlet temperature be to achieve a cumeneproduct purity of 98 mole percent?

• What is the manipulated (varied) variable?

• What is the measured (sampled) variable?

• What is the specification (target) to be achieved?

Filename: CUMENE-D.BKP

» Cooler outlet temperature

» Mole fraction of cumene in stream PRODUCT

» Mole fraction of cumene in stream PRODUCT = 0.98

REACTOR

FEED

RECYCLE

REAC-OUT

COOL

COOL-OUT SEP

PRODUCT

Design Specification Example

Page 143: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 143/355

Steps for Using Design Specifications (Continued)

Page 144: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 144/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

p g g p ( )

4. Specify manipulated (varied) variable – This is the variable whose value the specification changes in

order to satisfy the objective function equation (Design Spec Vary sheet).

5. Specify range of manipulated (varied) variable – These are the lower and upper bounds of the interval within

which Aspen Plus will vary the manipulated variable (DesignSpec Vary sheet). The units of the limits for the variedvariable are the units for that type of variable as specified by

the Units Set declared for the design specification.

Page 145: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 145/355

Notes (Continued)

Page 146: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 146/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

( )

4. If a design-spec does not converge:a. Check to see that the manipulated variable is not at its lower 

or upper bound.

b. Verify that a solution exists within the bounds specified for the manipulated variable, perhaps by performing a

sensitivity analysis.

c. Check to ensure that the manipulated variable does indeedaffect the value of the sampled variables.

d. Try providing a better starting estimate for the value of the

manipulated variable.

Page 147: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 147/355

Design Specification Workshop

Page 148: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 148/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

g p p

• Objective: Use a design specification in the cyclohexaneflowsheet to fix the heat load on the reactor by varying therecycle flowrate.

• The cyclohexane production flowsheet workshop (saved asCYCLOHEX.BKP) is a model of an existing plant. The cooling

system around the reactor can handle a maximum operating load of 4.7 MMkcal/hr. Determine the amount of cyclohexane recyclenecessary to keep the cooling load on the reactor to this amount.

Note: The heat convention used in Aspen Plus is that heat input to ablock is positive, and heat removed from a block is negative.

• When finished, save as filename: DES-SPEC.BKP

Cyclohexane Production Workshop 

Page 149: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 149/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

y pC6H6 + 3 H2 = C6H12

Benzene Hydrogen Cyclohexane

Use the RK-SOAVE property method

Bottoms rate = 99 kmol/hr 

P = 25 bar T = 50 C

Molefrac H2 = 0.975N2 = 0.005CH4 = 0.02

Total flow = 330 kmol/hr 

T = 40 C

P = 1 bar Benzene flow = 100 kmol/hr 

T = 150C

P = 23 bar T = 200 CPdrop = 1 bar 

Benzene conv =0.998

T = 50 C

Pdrop = 0.5 bar 

92% flow to stream H2RCY

30% flow to stream CHRCY

Specify cyclohexane molerecovery of 0.9999 by varyingBottoms rate from 97 to 101 kmol/hr 

Theoretical Stages = 12Reflux ratio = 1.2

Partial Condenser withvapor distillate onlyColumn Pressure = 15 bar Feed stage = 8

REACTFEED-MIXH2IN

BZIN

H2RCY

CHRCY

RXIN

RXOUT

HP-SEP

VAP

COLUMN

COLFD

LTENDS

PRODUCT

VFLOW

PURGE

LFLOW

LIQ

Page 150: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 150/355

Calculator Blocks

Page 151: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 151/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

•  Allows user to write equations in an Excel spreadsheetor in Fortran to be executed by Aspen Plus

• Results of the execution of a Calculator block must beviewed by directly examining the values of the variables

modified by the Calculator block.

• Increasing the diagnostics for the Calculator block willprint the value of all input and result variables in theControl Panel.

• Located under  /Data/Flowsheeting Options/Calculator  

Calculator Block Example

Page 152: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 152/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Use of a Calculator block to set the pressure drop acrossa Heater block.

• Pressure drop across heater is proportional to square of volumetric flow into heater.

Calculator BlockDELTA-P = -10-9 * V2

V

Filename: CUMENE-F.BKPor CUMENE-EXCEL.BKP

DELTA-P

REACTOR

FEED

RECYCLE

REAC-OUT

COOL

COOL-OUTSEP

PRODUCT

Calculator Block Example (Continued)

Page 153: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 153/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Which flowsheet variables must be accessed?

• When should the Calculator block be executed?

• Which variables are imported and which are exported?

» Volumetric flow of stream REAC-OUT

This can be accessed in two different ways: 1. Mass flow and mass density of stream REAC-OUT2. A prop-set containing volumetric flow of a mixture

» Pressure drop across block COOL

» Before block COOL

» Volumetric flow is imported

» Pressure drop is exported

Excel

Page 154: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 154/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Import Variables

Export Variable

=(-10^-9)*B6^2

=FLOW/DENS

Connect Current Cell

to a Defined Variable

 Aspen Plus toolbar in Excel

Steps for Using Calculator Blocks

Page 155: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 155/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

1. Access flowsheet variables to be used within Calculator  –  All flowsheet quantities that must be either read from or written

to, must be identified (Calculator Input Define sheet).

2. Write Fortran or Excel

 – Fortran includes both non-executable (COMMON,EQUIVALENCE, etc) Fortran (click on the Fortran Declarations button) and executable Fortran (Calculator Input Calculate sheet) to achieve desired result.

3. Specify location of Calculator block in executionsequence (Calculator Input Sequence sheet)

 – Specify directly, or 

 – Specify with import and export variables

Page 156: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 156/355

Page 157: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 157/355

Excel

Page 158: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 158/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Excel workbook is embedded into simulation for eachCalculator block.

• When saving as a backup (.bkp file), a .apmbd file iscreated. This file needs to be in the working directory.

• Full functionality of Excel is available including VBA andMacros.

• Cells that contain Import variables have a green border.

Cells that contain Export variables have a blue border.Cells that contain Tear variables have an orange border.

Page 159: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 159/355

Excel Aspen Plus Toolbar 

Page 160: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 160/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Connect Cell Combo Box

 – Use this Combo Box to attach the current cell on the Excel spreadsheet toa Defined Variable. If the Defined Variable chosen is already connectedto another cell, the link between that cell and the Defined Variable is

broken.• Define Button

 – Click the Define Button to create a new Defined Variable or to edit anexisting one. If this cell is already connected to a Defined Variable,clicking on this button will allow you to edit it. If this cell is not connected

to a Defined Variable, clicking on this button will create a new DefinedVariable.

• Unlink Button

 – Click the Unlink Button to remove the link between a cell and a DefinedVariable. Clicking on this button does not delete the Defined Variable.

Excel Aspen Plus Toolbar (Continued)

Page 161: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 161/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Delete Button – Click the Delete Button to remove the link between a cell and a

Defined variable and delete the Defined Variable.

• Refresh Button

 – Click the Refresh Button to refresh the list of Defined Variables in the

Connect Cell Combo Box. You should click this button if you havechanged the list of Defined Variables by making changes on theCalculator Define sheet.

• Changed Button

 –Click the Changed Button to set the "Input Changed" flag of thisCalculator block. This will cause the Calculator to be re-executed thenext time you run the simulation. You should click this button if, after the calculator block is executed, you make changes to the Excelspreadsheet without making any changes on the Calculator blockforms.

Page 162: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 162/355

Page 163: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 163/355

Page 164: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 164/355

Benefits of Windows Interoperability

Page 165: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 165/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Benefits of Copy/Paste/Paste Link – Live data links can be established that update these

applications as the process model is changed to automaticallypropagate results of engineering changes.

 – The benefits to the engineer are quick and error-free data

transfer and consistent engineering results throughout theengineering work process.

Page 166: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 166/355

Page 167: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 167/355

Page 168: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 168/355

Embedding Objects in the Flowsheet

Page 169: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 169/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• You can embed other applications as objects into theProcess Flowsheet window.

• You can do this in two ways:

 – Using Copy and Paste

 – Using the Insert dialog box

• You can edit the object embedded in the flowsheet bydouble clicking on the object to edit it inside Aspen Plus.

• You can also move, resize or attach the object to a blockor stream in the flowsheet.

Page 170: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 170/355

Copy and Paste Workshop 2

Page 171: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 171/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Objective: Use copy and paste to copy the streamresults to a stream input form.

• Use the Cyclohexane flowsheet workshop (saved asCYCLOHEX.BKP)

• Copy the stream results from stream RXIN into the inputform.

 – Copy the compositions, the temperature and the pressureseparately.

Note: Reinitialize before running the simulation in order tosee how many iterations are needed before andafter the estimate is added.

Page 172: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 172/355

Page 173: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 173/355

Paste Link Demonstration

Page 174: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 174/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Objective: Create an active link from Aspen Plus Results into aspreadsheet.

• Start with the cumene flowsheet demonstration.

• Open a spreadsheet and create a cell with the temperature for thecooler in it.

• Copy and paste the link into the Aspen Plus flowsheet.

• Copy and paste a link with the flow and composition of cumene inthe product stream into the spreadsheet.

• Change the temperature in the spreadsheet and then rerun theflowsheet. Notice the changes.

Page 175: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 175/355

Page 176: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 176/355

Running Files with Active Links

Page 177: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 177/355

©2000 AspenTech. All Rights Reserved.

Introduction to Aspen Plus

• When you open the link source file, there is nothingspecial that you need to do.

• When you open the link container file, you will usuallysee a dialog box asking you if you want to re-establish

the links. You can select Yes or No.

• To make a link source application visible:

 – Select Links, from the Edit menu in Aspen Plus.

 – In the Links dialog box, select the source file and click Open

Source.

Note: The Process Flowsheet must be the active window.Links is not an option on the Edit menu if the DataBrowser is active.

Page 178: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 178/355

©2000 AspenTech. All Rights Reserved.

Heat Exchangers

Objective:Introduce the unit operation models used for heat

exchangers and heaters.

 Aspen Plus References:

Unit Operation Models Reference Manual , Chapter 3, Heat Exchangers

Page 179: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 179/355

Working with the Heater Model

Page 180: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 180/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• The Heater block mixes multiple inlet streams to producea single outlet stream at a specified thermodynamicstate.

• Heater can be used to represent:

 – Heaters – Coolers

 – Valves

 – Pumps (when work-related results are not needed)

 – Compressors (when work-related results are not needed)

• Heater can also be used to set the thermodynamicconditions of a stream.

Heater Input Specifications

Page 181: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 181/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

•  Allowed combinations: – Pressure (or Pressure drop) and one of:

• Outlet temperature

• Heat duty or inlet heat stream

• Vapor fraction

• Temperature change• Degrees of subcooling or superheating

 – Outlet Temperature or Temperature change and one of:

• Pressure

• Heat Duty

• Vapor fraction

Heater Input Specifications (Continued)

Page 182: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 182/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• For single phase use Pressure (drop) and one of: – Outlet temperature

 – Heat duty or inlet heat stream

 – Temperature change

• Vapor fraction of 1 means dew point condition,0 means bubble point

Heat Streams

Page 183: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 183/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

•  Any number of inlet heat streams can be specified for aHeater.

• One outlet heat stream can be specified for the net heatload from a Heater.

• The net heat load is the sum of the inlet heat streamsminus the actual (calculated) heat duty.

• If you give only one specification (temperature or 

pressure), Heater uses the sum of the inlet heat streamsas a duty specification.

• If you give two specifications, Heater uses the heatstreams only to calculate the net heat duty.

Page 184: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 184/355

Page 185: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 185/355

Page 186: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 186/355

HeatX Input Specifications

Page 187: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 187/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Select one of the following specifications: – Heat transfer area or Geometry

 – Exchanger duty

 – For hot or cold outlet stream:

• Temperature

• Temperature change

• Temperature approach

• Degrees of superheating / subcooling

• Vapor fraction

Page 188: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 188/355

HeatX versus Heater 

Page 189: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 189/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Consider the following: – Use HeatX when both sides are important.

 – Use Heater when one side (e.g. the utility) is not important.

 – Use two Heaters (coupled by heat stream, Calculator block or design spec) or an MHeatX to avoid flowsheet complexity

created by HeatX.

Two Heaters versus One HeatX

Page 190: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 190/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Working with Hetran and Aerotran

Page 191: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 191/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• The Hetran block is the interface to the B-JAC Hetranprogram for designing and simulating shell and tube heatexchangers.

• The Aerotran block is the interface to the B-JAC Aerotran

program for designing and simulating air-cooled heatexchangers.

• Information related to the heat exchanger configurationand geometry is entered through the Hetran or Aerotran

standalone program interface.

Page 192: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 192/355

Heat Curves

Page 193: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 193/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

•  All of the heat exchanger models are able to calculateHeat Curves (Hcurves).

• Tables can be generated for various independentvariables (typically duty or temperature) for any property

that Aspen Plus can generate.• These tables can be printed, plotted, or exported for use

with other heat exchanger design software.

Heat Curves Tabular Results

Page 194: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 194/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Page 195: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 195/355

Page 196: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 196/355

When finished, save as filename: HEATX.BKP

HeatX Workshop (Continued)

Page 197: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 197/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

RHEATX 

RHOT-IN 

RCLD-IN  RCLD-OUT 

RHOT-OUT 

SHEATX 

SHOT-IN 

SCLD-IN  SCLD-OUT 

SHOT-OUT 

HEATER-1 

HCLD-IN 

Q-TRANS 

HCLD-OUT 

HEATER-2 

HHOT-IN  HHOT-OUT 

Start with the General with Metric Units Template.

Use the NRTL-RK Property Method for the hydrocarbon streams.

Specify that the valid phases for the hydrocarbon stream is Vapor-Liquid-Liquid.

Specify that the Steam Tables are used to calculate the properties for the cooling water streams on the Block BlockOptions Properties sheet.

When finished, save as filename: HEATX.BKP

Page 198: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 198/355

Page 199: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 199/355

Page 200: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 200/355

Page 201: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 201/355

Page 202: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 202/355

Working with the Compr Model

Th C bl k b d t i l t

Page 203: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 203/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• The Compr block can be used to simulate:

 – Polytropic centrifugal compressor 

 – Polytropic positive displacement compressor 

 – Isentropic compressor 

 – Isentropic turbine

• MCompr is used for multi-stage compressors.

• Power requirement is calculated or input.

•  A Heater model can be used for pressure change calculations only.

• Compr is designed to handle both single and multiple phasecalculations.

Page 204: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 204/355

Page 205: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 205/355

Work Streams

Any number of inlet work streams can be specified for

Page 206: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 206/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

•  Any number of inlet work streams can be specified for pumps and compressors.

• One outlet work stream can be specified for the net workload from pumps or compressors.

• The net work load is the sum of the inlet work streamsminus the actual (calculated) work.

Page 207: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 207/355

Page 208: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 208/355

Working with the Pipe Model

• The Pipe block calculates the pressure drop and heat transfer in a

Page 209: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 209/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• The Pipe block calculates the pressure drop and heat transfer in a

single pipe segment.

• The Pipeline block can be used for a multiple-segment pipe.

• Pipe can perform single or multiple phase calculations.

• If the inlet pressure is known, Pipe calculates the outlet pressure.

• If the outlet pressure is known, Pipe calculates the inlet pressureand updates the state variables of the inlet stream.

• Entrance effects are not modeled.

Page 210: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 210/355

Pressure Changers Workshop

• Objective: Add pressure changer unit operations to

Page 211: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 211/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Objective: Add pressure changer unit operations tothe Cyclohexane flowsheet.

• Start with the Cyclohexane Workshop flowsheet(CYCLOHEX.BKP)

VALVE Isentropic4 bar pressure change

Pressure Changers Workshop (Continued)

Page 212: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 212/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

FEED-MIX 

H2IN 

CHRCY3 

H2RCY2 

BZIN2 

RXIN 

REACT 

RXOUT 

HP-SEP 

LIQ 

VAP 

COLUMN 

COLFD 

LTENDS 

PRODUCT 

VFLOW H2RCY 

PURGE 

LFLOW 

CHRCY 

PUMP 

CHRCY2 

PIPE 

COMP 

FEEDPUMP 

BZIN 

PURGE2 

When finished, save asfilename: PRESCHNG.BKP

Pump efficiency = 0.6Driver efficiency = 0.9

Performance Curve

Head Flow[m] [cum/hr]40 20250 10300 5400 3

Carbon SteelSchedule 401-in diameter 25-m length

26 bar outlet pressure

20 bar outlet pressureGlobe valveV810 equal percent flow1.5-in size

4 bar pressure change

Page 213: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 213/355

Page 214: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 214/355

Page 215: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 215/355

Page 216: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 216/355

Page 217: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 217/355

Page 218: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 218/355

Page 219: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 219/355

• Objective

Convergence Workshop

Page 220: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 220/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 – Converge this flowsheet.

 – Start with the file CONVERGE.BKP.

LIQ

VAPOR

FEED-HT

FEED

BOT

DIST

BOT-COOL

GLYCOL

COLUMN

PREHEATR

PREFLASH

T=165 FP=15 psia

100 lbmol/hr 

XH20 = 0.4XMethanol = 0.3XEthanol = 0.3

Area = 65 sqft

DP=0Q=0

Theoretical Stages = 10Reflux Ratio = 5Distillate to Feed Ratio = 0.2

Feed Stage = 5Column Pressure = 1 atm

Total Condenser 

Use NRTL-RK Property Method

T=70 FP=35 psia50 lbmol/hr Ethylene Glycol

When finished, save asfilename: CONV-R.BKP

Page 221: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 221/355

Page 222: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 222/355

Full-Scale Plant Modeling Workshop

• Objective: Practice and apply many of the

Page 223: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 223/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Objective: Practice and apply many of thetechniques used in this course and learn how to bestapproach modeling projects 

Full-Scale Plant Modeling Workshop

• Objective: Model a methanol plant.

Page 224: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 224/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Objective: Model a methanol plant.

• The process being modeled is a methanol plant. Thebasic feed streams to the plant are Natural Gas, CarbonDioxide (assumed to be taken from a nearby AmmoniaPlant) and Water. The aim is to achieve the methanolproduction rate of approximately 62,000 kg/hr, at a purityof at least 99.95 % wt.

• This is a large flowsheet that would take an experienced

engineer more than an afternoon to complete. Startbuilding the flowsheet and think about how you wouldwork to complete the project.

Page 225: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 225/355

Page 226: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 226/355

Page 227: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 227/355

Part 1: Front-End Section (Continued)

• Carbon Dioxide Stream – CO2 • Circulation Water - H2OCIRC

Page 228: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 228/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 – Temperature = 43 C – Pressure = 1.4 bar 

 – Flow = 24823 kg/hr 

 – Mole Fraction

• CO2 - 0.9253

• H2 - 0.0094

• H2O - 0.0606• CH4 - 0.0019

• N2 - 0.0028

• Natural Gas Stream - NATGAS

 – Temperature = 26 C

 – Pressure = 21.7 bar 

 – Flow = 29952 kg/hr  – Mole Fraction

• CO2 - 0.0059

• CH4 - 0.9539

• N2 - 0.0008

• C2H6 - 0.0391

• C3H8 - 0.0003

 – Pure water stream – Flow = 410000 kg/hr 

 – Temperature = 195 C

 – Pressure = 26 bar 

• Makeup Steam - MKUPST

 – Stream of pure steam

 – Flow = 40000 kg/hr 

 – Pressure = 26 bar 

 – Vapor Fraction = 1

 –  Adjust the makeup steam flow toachieve a desired steam to methanemolar ratio of 2.8 in the Reformer feedREFFEED.

Page 229: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 229/355

Part 1: Front-End Section Check 

Reformer Product

Temperature C 860

Page 230: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 230/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Pressure bar 18Vapor Frac 1

Mole Flow kmol/hr 10266.6541

Mass Flow kg/hr 139696.964

Volume Flow cum/hr 53937.9538

Enthalpy MMkcal/hr -213.933793

Mole Flow kmol/hr 

CO 1381.68394

CO2 751.335833H2 4882.77068

WATER 2989.25863

METHANOL 0.000686384

METHANE 258.513276

NITROGEN 3.08402321

BUTANOL 0

DME (DIMETHYLETHER) 2.06E-10

ACETONE 2.18E-08

OXYGEN 1.80E-15

ETHANE 0.007007476

PROPANE 6.74097E-07

SYNCOMP

To Methanol Loop

Part 2: Heat Recovery Section

Page 231: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 231/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

COOL4

FL3

FL1

FL2

COOL1

COOL3COOL2

BOILER

To TOPPINGTo REFINING

From Reformer 

Part 2: Heat Recovery Section (Continued)

• This section consists of a series of heat exchangers and flash vessels used to recover theavailable energy and water in the Reformed Gas stream.

Page 232: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 232/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

FL1 

Pressure Drop = 0 bar 

Heat Duty = 0 MMkcal/hr 

FL2 

Exit Pressure = 17.7 bar 

Heat Duty = 0 MMkcal/hr 

FL3 

Exit Pressure = 17.4 bar 

Heat Duty = 0 MMkcal/hr 

SYNCOM 

Two Stage Polytropic compressor 

Discharge Pressure = 82.5 bar 

Intercooler Exit Temperature = 40 C

available energy and water in the Reformed Gas stream.

BOILER

Exit temperature = 166 C

Exit Pressure = 18 bar 

COOL1

Exit temperature = 136 C

Exit Pressure = 18 bar 

COOL2

Exit temperature = 104 C

Exit Pressure = 17.9 bar 

COOL3

Exit temperature = 85 C

Pressure Drop = 0.1 bar 

COOL4

Exit temperature = 40 C

Exit Pressure = 17.6 bar 

Page 233: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 233/355

MEOHRXR

To Furnace

Part 3: Methanol Synthesis Section

Page 234: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 234/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

SPLIT1

MIX2

E121

From SYNCOMP

E122

CIRC

E124E223

FL4

SPLIT2

To FL5

Page 235: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 235/355

Page 236: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 236/355

To Furnace

From FL4

Part 4: Distillation Section

Page 237: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 237/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

FL5

M4

MKWATER

TOPPING

REFINING

From COOL2From COOL1

Page 238: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 238/355

Part 4: Distillation Section (Continued)

• Refining Column - REFINING

 – Number of Stages = 95 (including condenser and reboiler)

Page 239: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 239/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 – Condenser Type = Total

 – Distillate Rate = 1 kg/hr 

 – Feed stage = 60

 – Liquid Product sidedraw from Stage 4 @ 62000 kg/hr (Stream name  – PRODUCT)

 – Liquid Product sidedraw from Stage 83 @ 550 kg/hr (Stream name  – FUSELOIL)

 – Reflux rate = 188765 kg/hr 

 – Pressure profile: stage 1= 1.5bar and stage 95=2bar  – Reboiler heat duty is provided via a conventional reboiler supplemented by a heat stream from a

heater block to stage 95

 – Boil-up Ratio is approximately 4.8

 – Valve trays

 – To meet environmental regulations, the bottoms stream must contain no more than 100ppm by weightof methanol as this stream is to be dumped to a nearby river.

• FL5

 – Exit Pressure 5 bar 

 – Heat Duty 0 MMkcal/hr 

• M4

 – For water addition to the crude methanol

Page 240: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 240/355

Page 241: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 241/355

Part 5: Furnace Section (Continued)

•  Air to Furnace - AIR

Page 242: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 242/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 – Temperature = 366 C

 – Pressure = 1 atm

 – Flow = 281946 kg/hr 

 –  Adjust the air flow to achieve 2%(vol.) of oxygen in the

FLUEGAS stream.

• Fuel to Furnace - FUEL

 – Flow = 9436 kg/hr 

 – Conditions and composition are the same as for the natural gasstream

Page 243: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 243/355

©2000 AspenTech. All Rights Reserved.

Maintaining Aspen Plus Simulations

Objective:

Introduce how to store simulations and retrievethem from your computer environment

 Aspen Plus References:

User Guide, Chapter 15, Managing Your Files

Page 244: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 244/355

Page 245: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 245/355

Page 246: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 246/355

Page 247: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 247/355

How to Create a Personal Template

•  Any flowsheet (complete or incomplete) can be saved as

t l t fil

Page 248: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 248/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

a template file.

• In order to have a personal template appear on thePersonal sheet of the New dialog box, put the templatefile into the Aspen Plus GUI\Templates\Personal folder.

• The text on the Setup Specifications Description sheetwill appear in the Preview window when the template fileis selected in the New dialog box.

Page 249: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 249/355

Maintaining Your Hard Disk

• Keep plenty of free space on disk used for:

Page 250: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 250/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 – Your Aspen working directory

 – Windows swap files

• Delete unneeded files:

 – Old .appdf, .his, etc. –  Aspen document files (*.apw) that aren’t active 

 –  Aspen temporary files (_4404ydj.appdf, for example)

• Defragment regularly (once a week), even if Windows

says you don’t need to -- make the free spacecontiguous.

C t i i th L k f Y

Page 251: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 251/355

©2000 AspenTech. All Rights Reserved.

Customizing the Look of Your Flowsheet

Objective:

Introduce several ways of annotating your flowsheetto create informative Process Flow Diagrams

 Aspen Plus References:

User Guide, Chapter 14, Annotating Process Flowsheets

Related Topics:

User Guide, Chapter 37, Working with Other Windows Programs

Page 252: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 252/355

Viewing

• Use the View menu to select the elements that you wish

t i

Page 253: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 253/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

to view:

 – PFD Mode

 – Global Data

 –  Annotation

 – OLE Objects

•  All of the elements can be turned on and off independently.

Page 254: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 254/355

Heat and Material Balance Table

Stream ID COOL-OUT FEED PRODUCT REAC-OUT RECYCLE

Temperature F 130 0 220 0 130 1 854 7 130 1

Example of a Stream Table

Page 255: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 255/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Temperature F 130.0 220.0 130.1 854.7 130.1Pressure PSI 14.60 36.00 14.70 14.70 14.70

Vapor Frac 0.054 1.000 0.000 1.000 1.000

Mole Flow LBMOL/HR 44.342 80.000 41.983 44.342 2.359

Mass Flow LB/HR 4914.202 4807.771 4807.772 4914.202 106.431

Volume Flow CUFT/HR 1110.521 15648.095 93.470 42338.408 1003.782

Enthalpy MMBTU/HR -0.490 1.980 -0.513 2.003 0.023

Mole Flow LBMOL/HR  

BENZENE 2.033 40.000 1.983 2.033 0.050

PROPYLEN 4.224 40.000 1.983 4.224 2.241

CUMENE 38.085 38.017 38.085 0.069

Mole Frac

BENZENE 0.046 0.500 0.047 0.046 0.021

PROPYLEN 0.095 0.500 0.047 0.095 0.950

CUMENE 0.859 0.906 0 .859 0 .029

Page 256: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 256/355

Using PFD Mode

• In this mode, you can add or delete unit operation icons

to the flowsheet for graphical purposes only

Page 257: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 257/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

to the flowsheet for graphical purposes only.

• Using PFD mode means that you can change flowsheetconnectivity to match that of your plant.

• PFD-style drawing is completely separate from thegraphical simulation flowsheet. You must return tosimulation mode if you want to make a change to theactual simulation flowsheet.

• PFD Mode is indicated by the Aqua border around theflowsheet.

Examples of When to Use PFD Mode

• In the simulation flowsheet, it may be necessary to use

more than one unit operation block to model a single

Page 258: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 258/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

more than one unit operation block to model a singlepiece of equipment in a plant.

 – For example, a reactor with a liquid product and a vent mayneed to be modeled using an RStoic reactor and a Flash2block. In the report, only one unit operation icon is needed torepresent the unit in the plant.

• On the other hand, some pieces of equipment may notneed to be explicitly modeled in the simulation flowsheet.

 – For example, pumps are frequently not modeled in thesimulation flowsheet; the pressure change can be neglected or included in another unit operation block.

Annotation Workshop

• Objective: Use annotation to create a process flow diagram for 

the cyclohexane flowsheet

Page 259: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 259/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

the cyclohexane flowsheet

• Part A

 – Using the cyclohexane production Workshop (saved asCYCLOHEX.BKP), display all stream and block global data.

• Part B –  Add a title to the flowsheet diagram.

• Part C

 –  Add a stream table to the flowsheet diagram.

• Part D

 – Using PFD Mode, add a pump for the BZIN stream for graphicalpurposes only.

Page 260: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 260/355

©2000 AspenTech. All Rights Reserved.

Estimation of Physical Properties

Objective:

Provide an overview of estimating physicalproperty parameters in Aspen Plus

 Aspen Plus References:

User Guide, Chapter 30, Estimating Property Parameters

Physical Property Methods and Models Reference Manual ,

Chapter 8, Property Parameter Estimation

What is Property Estimation?

• Property Estimation is a system to estimate parameters

required by physical property models It can be used to

Page 261: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 261/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

required by physical property models. It can be used toestimate:

 – Pure component physical property constants

 – Parameters for temperature-dependent models

 – Binary interaction parameters for Wilson, NRTL and UNIQUAC

 – Group parameters for UNIFAC

• Estimations are based on group-contribution methodsand corresponding-states correlations.

• Experimental data can be incorporated into estimation.

Using Property Estimation

• Property Estimation can be used in two ways:

On a stand alone basis: Property Estimation Run Type

Page 262: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 262/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 – On a stand-alone basis: Property Estimation Run Type

 – Within another Run Type: Flowsheet, Property Analysis, DataRegression, PROPERTIES PLUS or Assay Data Analysis

• You can use Property Estimation to estimate propertiesfor both databank and non-databank components.

• Property Estimation information is accessed in theProperties Estimation folder.

Estimation Methods and Requirements

• User Guide, Chapter 30, Estimating Property

Parameters has a complete list of properties that can be

Page 263: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 263/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Parameters, has a complete list of properties that can beestimated, as well as the available estimation methodsand their respective requirements.

• This same information is also available under the on-line

help in the estimation forms.

Page 264: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 264/355

Defining Molecular Structure

• Molecular structure is required for all group-contribution

methods used in Property Estimation You can:

Page 265: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 265/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

methods used in Property Estimation. You can: – Define molecular structure in the general format and allow

 Aspen Plus to determine functional groups,

or 

 – Define molecular structure in terms of functional groups for particular methods

• Reference: For a list of available group-contribution

method functional groups, see Aspen Plus PhysicalProperty Data Reference Manual, Chapter 3, GroupContribution Method Functional Groups.

Steps For Defining General Structure

1. Sketch the structure of the molecule on paper.

2 Assign a number to each atom omitting hydrogen (The numbers

Page 266: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 266/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

2. Assign a number to each atom, omitting hydrogen. (The numbersmust be consecutive starting with 1.)

3. Go to the Properties Molecular Structure Object Manager, choosethe component, and select Edit.

4. On the Molecular Structure General sheet, define the molecule byits connectivity. Describe two atoms at a time:

 – Specify the types of atoms (C, O, S, …)

 – Specify the type of bond that connects the two atoms (single,double, …)

Note: If the molecule is a non-databank component, on theComponents Specifications form, enter a Component ID, butdo not enter a Component name or Formula.

Example of Defining Molecular Structure

• Example of defining molecular structure for isobutyl

alcohol using the general method

Page 267: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 267/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

C2

C1

C4

C3

O5

alcohol using the general method – Sketch the structure of the molecule, and assign a number to

each atom, omitting hydrogen.

Example of Defining Molecular Structure

• Go to the Properties Molecular Structure Object Manager, choose

the component, and select Edit.

Page 268: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 268/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

the component, and select Edit.

• On Properties Molecular Structure General sheet, describe moleculeby its connectivity, two atoms at a time.

Atom Types 

Current available atom types:

Atom Type Description Atom Type Description

Page 269: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 269/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 Atom Type Description Atom Type DescriptionC Carbon P Phosphorous

O Oxygen Zn Zinc

N Nitrogen Ga Gallium

S Sulfur Ge GermaniumB Boron As Arsenic

Si Silicon Cd Cadmium

F Fluorine Sn Tin

CL Chlorine Sb AntimonyBr Bromine Hg Mercury

I Iodine Pb Lead

 Al Aluminum Bi Bismuth

Bond Types

• Current available bond types:

 – Single bond

Page 270: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 270/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Single bond

 – Double bond

 – Triple bond

 – Benzene ring

 –Saturated 5-membered ring

 – Saturated 6-membered ring

 – Saturated 7-membered ring

 – Saturated hydrocarbon chain

Note: You must assign consecutive atom numbers to Benzene ring,Saturated 5-membered ring, Saturated 6-membered ring,Saturated 7-membered ring, and Saturated hydrocarbon chainbonds.

 

Steps For Using Property Estimation

1. Define molecular structure on the Properties Molecular 

Structure form

Page 271: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 271/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Structure form.

2. Enter any experimental data using Parameters or Dataforms.

 – Experimental data such as normal boiling point (TB) is veryimportant for many estimation methods. It should beentered whenever possible.

3. Activate Property Estimation and choose propertyestimation options on the Properties Estimation Input  

form.

Example of Entering Additional Data

• Enter following data for isobutyl alcohol into the

simulation to improve the estimated values

Page 272: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 272/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

simulation to improve the estimated values. – Normal boiling point (TB) = 107.6 C

 – Critical temperature (TC) = 274.6 C

 – Critical pressure (PC) = 43 bar 

Example of Entering Additional Data

• Go to the Properties Parameters Pure Component Object Manager 

and create a new Scalar parameter form.

Page 273: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 273/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

p

• Enter the parameters, the components, and the values.

 

Steps For Using Property Estimation

1. Define molecular structure on the Properties Molecular 

Structure form.

Page 274: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 274/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 Structure form.

2. Enter any experimental data using Parameters or Dataforms.

 – Experimental data such as normal boiling point (TB) is veryimportant for many estimation methods. It should beentered whenever possible.

3. Activate Property Estimation and choose propertyestimation options on the Properties Estimation

Input form.

Activating Property Estimation

• To turn on Property Estimation, go to the Properties

Estimation Input Setup sheet, and select one of the

Page 275: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 275/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Estimation Input Setup sheet, and select one of thefollowing:

 – Estimate all missing parameters

• Estimates all missing required parameters and any parameters youmay request in the optional Pure Component, T-Dependent, Binary,and UNIFAC-Group sheets

 – Estimate only the selected parameters

• Estimates on the parameter types you select on this sheet (and thenspecify on the appropriate additional sheets)

Property Estimation Notes

• You can save your property data specifications,

structures, and estimates as backup files, and import

Page 276: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 276/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

structures, and estimates as backup files, and importthem into other simulations (Flowsheet, DataRegression, Property Analysis, or Assay Data AnalysisRun-Types.)

• You can change the Run type on the SetupSpecifications Global sheet to continue the simulation inthe same file.

• If you want to change the Run type back to Property

Estimation from another Run type, no flowsheetinformation is lost even though it may not be visible inthe Property Estimation mode.

Property Estimation Workshop

• Objective: Estimate the properties of a dimer,

ethycellosolve.

Page 277: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 277/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

When finished, save asfilename: PCES.BKP

ethycellosolve.

• Ethylcellosolve is not in any of the Aspen Plusdatabanks.

• Use a Run Type of Property Estimation, and estimate theproperties for the new component.

• The formula for the component is shown below, alongwith the normal boiling point obtained from literature.

Formula: CH3 - CH2 - O - CH2 - CH2 - O - CH2 - CH2 - OH TB = 195 C

Property Estimation Workshop (Continued)

1. Use a Run Type of Property Estimation and enter the

structure and data for the Dimer.

Page 278: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 278/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

s uc u e a d da a o e e

2. Run the estimation, and examine the results.

 – Note that the results of the estimation are automaticallywritten to parameters forms, for use in other simulations.

3. Change the Run Type back to Flowsheet.

4. Go to the Properties Estimation Input Setup sheet, andchoose Do not estimate any parameters.

5. Optionally, add a flowsheet and use this component.

Electrolytes

Page 279: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 279/355

©2000 AspenTech. All Rights Reserved.

Electrolytes

Objective:

Introduce the electrolyte capabilities in Aspen Plus

 Aspen Plus References:

User Guide, Chapter 6, Specifying Components

Physical Property Methods and Models Reference Manual , Chapter 5, Electrolyte Simulation

Electrolytes Examples

• Solutions with acids, bases or salts

• Sour water solutions

Page 280: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 280/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Sour water solutions

•  Aqueous amines or hot carbonate for gas sweetening

Characteristics of an Electrolyte System

• Some molecular species dissociate partially or 

completely into ions in a liquid solvent

Page 281: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 281/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

p y q

• Liquid phase reactions are always at chemicalequilibrium

• Presence of ions in the liquid phase requires non-idealsolution thermodynamics

• Possible salt precipitation

Types of Components

• Solvents - Standard molecular species

 – Water 

Page 282: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 282/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 – Methanol

 –  Acetic Acid

• Soluble Gases - Henry’s Law components  – Nitrogen

 – Oxygen

 – Carbon Dioxide

Types of Components (Continued)

• Ions - Species with a charge

 – H3O+

Page 283: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 283/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 – OH-

 – Na+

 – Cl-

 – Fe(CN)63-

• Salts - Each precipitated salt is a new pure component.

 – NaCl(s)

 – CaCO3(s) – CaSO4•2H2O (gypsum)

 – Na2CO3•NaHCO3 •2H2O (trona) 

Apparent and True Components

• True component approach

 – Result reported in terms of the ions, salts and molecular 

Page 284: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 284/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

species present after considering solution chemistry

•  Apparent component approach

 – Results reported in terms of base components present beforeconsidering solution chemistry

 – Ions and precipitated salts cannot be apparent components

 – Specifications must be made in terms of apparent componentsand not in terms of ions or solid salts

• Results are equivalent.

Apparent and True Components Example

• NaCl in water 

 – Solution chemistry

Page 285: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 285/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• NaCl --> Na+ + Cl-

• Na+ + Cl- <--> NaCl(s)

 –  Apparent components

• H2O, NaCl

 – True components:

• H2O, Na+, Cl-, NaCl(s)

Electrolyte Wizard

• Generates new components (ions and solid salts)

• Revises the Pure component databank search order so that the first

Page 286: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 286/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

databank searched is now ASPENPCD.

• Generates reactions among components

• Sets the Property method to ELECNRTL

• Creates a Henry’s Component list 

• Retrieves parameters for 

 – Reaction equilibrium constant values

 – Salt solubility parameters – ELECNRTL interaction parameters

 – Henry’s constant correlation parameters 

Electrolyte Wizard (Continued)

• Generated chemistry can be modified. Simplifying the

Chemistry can make the simulation more robust anddecrease execution time

Page 287: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 287/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

ydecrease execution time.

Note: It is the user’s responsibility to ensure that theChemistry is representative of the actual chemical

system.

Simplifying the Chemistry

• Typical modifications include:

 –  Adding to the list of Henry’s components 

Page 288: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 288/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 – Eliminating irrelevant salt precipitation reactions

 – Eliminating irrelevant species

 –  Adding species and/or reactions that are not in the electrolytes

expert system database – Eliminating irrelevant equilibrium reactions

Limitations of Electrolytes

• Restrictions using the True component approach:

 – Liquid-liquid equilibrium cannot be calculated.

Page 289: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 289/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 – The following models may not be used:

• Equilibrium reactors: RGibbs and REquil

• Kinetic reactors: RPlug, RCSTR, and RBatch

• Shortcut distillation: Distl, DSTWU and SCFrac

• Rigorous distillation: MultiFrac and PetroFrac

Limitations of Electrolytes (Continued)

• Restrictions using the Apparent component approach:

 – Chemistry may not contain any volatile species on the rightid f th ti

Page 290: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 290/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

side of the reactions.

 – Chemistry for liquid-liquid equilibrium may not containdissociation reactions.

 – Input specification cannot be in terms of ions or solid salts.

Electrolyte Demonstration

• Objective: Create a flowsheet using electrolytes.

• Create a simple flowsheet to mix and flash two feed streamscontaining aqueous electrolytes Use the Electrolyte Wizard to

Page 291: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 291/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

FLASH2

FLASH

MIXED

VAPOR

LIQUID

MIXER

MIX

NAOH

HCL

Temp = 25 C

Pres = 1 bar 

10 kmol/hr H2O

1 kmol/hr HCl

P-drop = 0

 Adiabatic

IsobaricMolar vapor fraction = 0.75

Filename: ELEC1.BKP

Temp = 25 C

Pres = 1 bar 

10 kmol/hr H2O

1.1 kmol/hr NaOH

containing aqueous electrolytes. Use the Electrolyte Wizard togenerate the Chemistry.

Steps for Using Electrolytes

1. Specify the possible apparent components on the

Components Specifications Selection sheet.

Page 292: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 292/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

2. Click on the Elec Wizard button to generatecomponents and reactions for electrolyte systems.There are 4 steps:

Step 1: Define base components and select reactiongeneration options.

Step 2: Remove any undesired species or reactions from thegenerated list.

Step 3: Select simulation approach for electrolytecalculations.

Step 4: Review physical properties specifications and modifythe generated Henry components list and reactions.

Steps for Using Electrolytes (Continued)

Page 293: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 293/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Steps for Using Electrolytes (Continued)

Step 1: Define base components and select reaction

generation options.

Page 294: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 294/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Steps for Using Electrolytes (Continued)

Step 2: Remove any undesired species or reactions from

the generated list.

Page 295: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 295/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Steps for Using Electrolytes (Continued)

Step 3: Select simulation approach for electrolyte

calculations.

Page 296: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 296/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Steps for Using Electrolytes (Continued)

Step 4: Review physical properties specifications and modify the

generated Henry components list and reactions.

Page 297: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 297/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Electrolyte Workshop

• Objective: Create a flowsheet using electrolytes.

• Create a simple flowsheet to model the treatment of a sulfuric acidwaste water stream using lime (Calcium Hydroxide) Use the

Page 298: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 298/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

B1

WASTEWAT

LIME LIQUID

Temperature = 25CPressure = 1 bar 

Flowrate = 10 kmol/hr 5 mole% lime (calcium hydroxide) solution

Temperature = 25CPressure = 1 bar 

Flowrate = 10 kmol/hr 5 mole% sulfuric acid solution

Temperature = 25CP-drop = 0

Note: Remove from the chemistry:CaSO4(s)

CaSO4•1:2W:A(s) 

When finished, save asfilename: ELEC.BKP

waste water stream using lime (Calcium Hydroxide). Use theElectrolyte Wizard to generate the Chemistry. Use the truecomponent approach.

Electrolyte Workshop (Continued)

1. Open a new Electrolytes with Metric units flowsheet.

2. Draw the flowsheet.

Page 299: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 299/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

3. Enter the necessary components and generate theelectrolytes using the Electrolytes Wizard. Select the

true approach and remove the solid salts not neededfrom the generated reactions.

Sour Water Stripper Workshop

• Objective: Model a sour water stripper using electrolytes.

• Create a simple flowsheet to model a sour water stripper. Use theElectrolyte Wizard to generate the Chemistry. Use the apparent component

Page 300: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 300/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

On stage 10

P = 15 psia

Vapor frac = 1

2,000 lbs/hr 

 Above stage 3

P = 15 psia

10,000 lbs/hr 

Mass fractions:

H2O 0.997

NH3 0.001

H2S 0.001

CO2 0.001

Saturated vapor 

Theoretical trays: 9

(does not include condenser)

Partial condenser 

Reflux Ratio (Molar): 25

No reboiler 

B1 

SOURWAT 

STEAM 

BOTTOMS 

VAPOR 

y g y pp papproach.

Sour Water Stripper Workshop (Continued)

1. Open a new Electrolytes with English units flowsheet.

2. Draw the flowsheet.

Page 301: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 301/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

3. Enter the necessary components and generate theelectrolytes using the Electrolytes Wizard. Select the

apparent approach and remove all solid salts used inthe generated reactions.

Questions: Why aren’t the ionic species’ compositionsdisplayed on the results forms? How can they be

added?

Sour Water Stripper Workshop (Continued)

3. Add a sensitivity analysis

a) Vary the steam flow rate from 1000-3000 lb/hr and tabulatethe ammonia concentration in the bottoms stream The

Page 302: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 302/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Save as: SOURWAT.BKP 

the ammonia concentration in the bottoms stream. Thetarget is 50 ppm.

b) Vary the column reflux ratio from 10-50 and observe thecondenser temperature. The target is 190 F.

4. Create design specifications

a) After hiding the sensitivity blocks, solve the column with twodesign specifications. Use the targets and variables frompart 3.

Solids Handling

Page 303: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 303/355

©2000 AspenTech. All Rights Reserved.

g

Objective:

Provide an overview of the solid handlingcapabilities

 Aspen Plus References:

User Guide, Chapter 6, Specifying Components

Physical Property Methods and Models Reference Manual , Chapter 3, Property Model Descriptions

Classes of Components

• Conventional Components

 – Vapor and liquid components

S lid lt i l ti h i t

Page 304: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 304/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 – Solid salts in solution chemistry

• Conventional Inert Solids (CI Solids)

 – Solids that are inert to phase equilibrium and saltprecipitation/solubility

• Nonconventional Solids (NC Solids)

 – Heterogeneous substances inert to phase, salt, and chemical

equilibrium that cannot be represented with a molecular structure

Specifying Component Type

• When specifying components on the Components

Specifications Selection sheet, choose the appropriatecomponent type in the Type column.

Page 305: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 305/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

p yp yp

 – Conventional - Conventional Components

 – Solid - Conventional Inert Solids

 – Nonconventional - Nonconventional Solids

Conventional Components

• Components participate in vapor and liquid equilibrium

along with salt and chemical equilibrium.

Page 306: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 306/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Components have a molecular weight.

 – e.g. water, nitrogen, oxygen, sodium chloride, sodium ions,chloride ions

 – Located in the MIXED substream

Conventional Inert Solids (CI Solids)

• Components are inert to phase equilibrium and salt

precipitation/solubility.

Page 307: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 307/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Chemical equilibrium and reaction with conventionalcomponents is possible.

• Components have a molecular weight. – e.g. carbon, sulfur 

 – Located in the CISOLID substream

Nonconventional Solids (NC Solids)

• Components are inert to phase, salt or chemical

equilibrium.

Page 308: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 308/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Chemical reaction with conventional and CI Solidcomponents is possible.

• Components are heterogeneous substances and do nothave a molecular weight.

 – e.g. coal, char, ash, wood pulp

 – Located in the NC Solid substream

Component Attributes

• Component attributes typically represent the composition

of a component in terms of some set of identifiableconstituents

Page 309: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 309/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Component attributes can be

 –  Assigned by the user 

 – Initialized in streams

 – Modified in unit operation models

• Component attributes are carried in the material stream.

• Properties of nonconventional components arecalculated by the physical property system usingcomponent attributes.

Component Attribute Descriptions 

Attribute Type Elements Description

PROXANAL 1. Moisture

2. Fixed Carbon3. Volatile Matter 

Proximate analysis, weight %dry

basis

Page 310: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 310/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

4. Ash

ULTANAL 1. Ash

2. Carbon

3. Hydrogen

4. Nitrogen5. Chlorine

6. Sulfur 

7. Oxygen

Ultimate analysis, weight % drybasis

SULFANAL 1. Pyritic

2. Sulfate

3. Organic

Forms of sulfur analysis, weight %of original coal, dry basis

GENANAL 1. Constituent 1

2. Constituent 2

:

20. Constituent 20

General constituent analysis, weightor volume %

Solid Properties

• For conventional components and conventional solids

 – Enthalpy, entropy, free energy and molar volume arecomputed.

Page 311: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 311/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

p

 – Property models in the Property Method specified on theProperties Specification Global sheet are used.

• For nonconventional solids – Enthalpy and mass density are computed.

 – Property models are specified on the Properties Advanced NC-Props form.

Solids Properties - Conventional Solids

For Enthalpy, Free Energy, Entropy and Heat Capacity

• Barin Equations

Page 312: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 312/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 – Single parameter set for all properties

 – Multiple parameter sets may be available for selectedtemperature ranges

 – List INORGANIC databank before SOLIDS

• Conventional Equations

 – Combines heat of formation and free energies of formation withheat capacity models

 –  Aspen Plus and DIPPR model parameters

 – List SOLIDS databank before INORGANIC

• Solid Heat Capacity

 – Heat capacity polynomial modelC C C T C T

C  C  C oS  2 4 5 6

Solids Properties - Conventional Solids

Page 313: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 313/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 – Used to calculate enthalpy, entropy and free energy

 – Parameter name: CPSP01

• Solid Molar Volume

 – Volume polynomial model

 – Used to calculate density

 – Parameter name: VSPOLY

C C C T C T  T  T  T  p 1 2 3 2 3

V C C T C T C T C T  S  1 2 32

43

54

Solids Properties - Nonconventional Solids

• Enthalpy

 – General heat capacity polynomial model: ENTHGEN

– Uses a mass fraction weighted average

Page 314: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 314/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 – Uses a mass fraction weighted average

 – Based on the GENANAL attribute

 – Parameter name: HCGEN

• Density

 – General density polynomial model: DNSTYGEN

 – Uses a mass fraction weighted average

 – Based on the GENANAL attribute

 – Parameter name: DENGEN

Solids Properties - Special Models for Coal

• Enthalpy

 – Coal enthalpy model: HCOALGEN

– Based on the ULTANAL PROXANAL and SULFANAL

Page 315: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 315/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 – Based on the ULTANAL, PROXANAL and SULFANALattributes

• Density

 – Coal density model: DCOALIGT

 – Based on the ULTANAL and SULFANAL attributes

Built-in Material Stream Classes 

Stream Class Description

CONVEN* Conventional components only

MIXNC Conventional and nonconventional solids

Page 316: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 316/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

C Co e t o a a d o co e t o a so ds

MIXCISLD Conventional components and inert solids

MIXNCPSD Conventional components and nonconventionalsolids with particle size distribution

MIXCIPSD Conventional components and inert solids withparticle size distribution

MIXCINC Conventional components and inert solids andnonconventional solids

MIXCINCPSD Conventional components and nonconventionalsolids with particle size distribution

* system default

Unit Operation Models

• General Principles

 – Material streams of any class are accepted.

– The same stream class should be used for inlet and outlet

Page 317: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 317/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

  The same stream class should be used for inlet and outletstreams (exceptions: Mixer and ClChng).

 –  Attributes (components or substream) not recognized arepassed unaltered through the block.

 – Some models allow specifications for each substream present(examples: Sep, RStoic).

 – In vapor-liquid separation, solids leave with the liquid.

 – Unless otherwise specified, outlet solid substreams are in

thermal equilibrium with the MIXED substream.

Solids Workshop 1

• Objective: Model a conventional solids dryer.

• Dry SiO2 from a water content of 0.5% to 0.1% using air.

Page 318: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 318/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Notes

 – Change the Stream class type to: MIXCISLD.

 – Put the SiO2 in the CISOLID substream.

 – The pressure and temperature has to be the same in all thesub-streams of a stream.

 AIR-OUT 

Temp = 190 F

Pres = 14.7 psia

Flow = 1 lbmol/hr 

0.79 mole% N2 

Solids Workshop 1 (Continued)

Page 319: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 319/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

When finished, save as

filename: SOLIDWK1.BKP

Temp = 70 F

Pres = 14.7 psia

995 lb/hr SiO2 5 lb/hr H2O

FLASH2 

DRYER 

 AIR 

WET 

DRY 

Pressure Drop = 0

 Adiabatic

2

0.21 mole% O2 

Design specification:

Vary the air flow rate

from 1 to 10 lbmol/hr toachieve 99.9 wt.% SiO2

[SiO2/(SiO2+Mixed)]

Use the SOLIDS Property Method

Solids Workshop 2

• Objective: Use the solids unit operations to model theparticulate removal from a feed of gasifier off gases.

• The processing of gases containing small quantities of particulate

Page 320: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 320/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

materials is rendered difficult by the tendency of the particulates tointerfere with most operations (e.g., surface erosion, fouling,plugging of orifices and packing). It is therefore necessary to

remove most of the particulate materials from the gaseous stream.Various options are available for this purpose (Cyclone, Bag-filter,Venturi-scrubber, and an Electrostatic precipitator) and their particulate separation efficiency can be changed by varying their design and operating conditions. The final choice of equipment is abalance between the technical performance and the cost associated

with using a particular unit.

• In this workshop, various options for removing particulates from thesyngas obtained by coal gasification are compared.

Temp = 650 C

Pres = 1 bar 

Gas Flowrate = 1000 kmol/hr 

 Ash Flowrate = 200 kg/hr 

Composition (mole-frac)CO 0.19

CO2 0.20

CYC

F CYC

G-CYC

S-CYCTemp = 40 C

Pres = 1 bar 

Water Flowrate = 700 kg/hr

Design Mode

High Efficiency

Separation Efficiency = 0.9

D i M d

Solids Workshop 2 (Continued)

Page 321: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 321/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

When finished, save as

filename: SOLIDWK2.BKP

H2 0.05

H2S 0.02

O2 0.03

CH4 0.01

H2O 0.05

N2 0.35

SO2 0.10

Particle size distribution (PSD)

Size limit wt. %

[mu]

0- 44 30

44- 63 10

63-90 20

90-130 15130-200 10

200-280 15 

DUPL

FAB-

FILT

ESP

V-SCRUB

FEED

F-CYC

F-SCRUB

F-ESP

F-BF

S-BF

G-SCRUB

S-SCRUB

LIQ

G-ESP

S-ESP

G-BF

Water Flowrate 700 kg/hr 

Design Mode

Max. Pres. Drop = 0.048 bar 

Design Mode

Separation Efficiency = 0.9

Dielectric constant = 1.5

Design Mode

Separation Efficiency = 0.9

Solids Workshop 2 (Continued)

• Coal ash is mainly clay and heavy metal oxides and can beconsidered a non-conventional component.

• HCOALGEN and DCOALIGT can be used to calculate the enthalpyf f

Page 322: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 322/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

and material density of ash using the ultimate, proximate, and sulfur analyses (ULTANAL, PROXANAL, SULFANAL). These arespecified on the Properties Advanced NC-Props form.

• Component attributes (ULTANAL, PROXANAL, SULFANAL) arespecified on the Stream Input form. For ash, zero all non-ashattributes.

• The PSD limits can be changed on the Setup Substreams PSD form.

• Use the IDEAL Property Method.

Optimization

Page 323: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 323/355

©2000 AspenTech. All Rights Reserved.

Objective:

Introduce the optimization capability in Aspen Plus

 Aspen Plus References:

User Guide, Chapter 22, Optimization

Related Topics:

User Guide, Chapter 17, Convergence

User Guide, Chapter 18, Accessing Flowsheet Variables

Optimization

• Used to maximize/minimize an objective function

• Objective function is expressed in terms of flowsheetvariables and In-Line Fortran

Page 324: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 324/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

variables and In-Line Fortran.

• Optimization can have zero or more constraints.

• Constraints can be equalities or inequalities.

• Optimization is located under  /Data/Model AnalysisTools/Optimization

• Constraint specification is under  /Data/Model AnalysisTools/Constraint 

FEED

REACTORA, B

A + B --> C + D + E

Optimization Example

Page 325: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 325/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Desired Product C $ 1.30 / lbBy-product D $ 0.11 / lbWaste Product E $ - 0.20 /lb PRODUCT

A, B, C, D, E

• For an existing reactor, find the reactor temperature andinlet amount of reactant A that maximizes the profit fromthis reactor. The reactor can only handle a maximumcooling load of Q.

Optimization Example (Continued)

• What are the measured (sampled) variables?

 – Outlet flowrates of components C, D, E

• What is the objective function to be maximized?

Page 326: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 326/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• What is the objective function to be maximized?

 – Maximize 1.30*(lb/hr C) + 0.11*(lb/hr D) - 0.20*(lb/hr E)

• What is the constraint? – The calculated duty of the reactor can not exceed Q.

• What are the manipulated (varied) variables?

 – Reactor temperature

 – Inlet amount of reactant A

Steps for Using Optimization

1. Identify measured (sampled) variables.

 – These are the flowsheet variables used to calculate theobjective function (Optimization Define sheet).

Page 327: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 327/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

2. Specify objective function (expression).

 – This is the Fortran expression that will be maximized or 

minimized (Optimization Objective & Constraints sheet).

3. Specify maximization or minimization of objectivefunction (Optimization Objective & Constraints sheet).

Steps for Using Optimization (Continued)

4. Specify constraints (optional).

 – These are the constraints used during the optimization(Optimization Objective & Constraints sheet).

Page 328: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 328/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

5. Specify manipulated (varied) variables.

 – These are the variables that the optimization block will

change to maximize/minimize the objective function(Optimization Vary sheet).

6. Specify bounds for manipulated (varied) variables.

 – These are the lower and upper bounds within which to vary

the manipulated variable (Optimization Vary sheet).

Notes

1. The convergence of the optimization can be sensitive

to the initial values of the manipulated variables.

2 It is best if the objective the constraints and the

Page 329: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 329/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

2. It is best if the objective, the constraints, and themanipulated variables are in the range of 1 to 100.This can be accomplished by simply multiplying or 

dividing the function.

3. The optimization algorithm only finds local maxima andminima in the objective function. It is theoreticallypossible to obtain a different maximum/minimum in the

objective function, in some cases, by starting at adifferent point in the solution space.

Notes (Continued)

4. Equality constraints within an optimization are similar to

design specifications.

5 If an optimization does not converge run sensitivity

Page 330: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 330/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

5. If an optimization does not converge, run sensitivitystudies with the same manipulated variables as theoptimization, to ensure that the objective function is not

discontinuous with respect to any of the manipulatedvariables.

6. Optimization blocks also have convergence blocksassociated with them. Any general techniques used

with convergence blocks can be used if the optimizationdoes not converge.

Optimization Workshop

• Objective: Optimize steam usage for a process.

• The flowsheet shown below is part of a Dichloro-Methane solventrecovery system. The two flashes, TOWER1 and TOWER2, are runadiabatically at 19 7 and 18 7 psia respectively The stream FEED

Page 331: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 331/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

adiabatically at 19.7 and 18.7 psia respectively. The stream FEEDcontains 1400 lb/hr of Dichloro-Methane and 98600 lb/hr of water at100oF and 24 psia. Set up the simulation as shown below, and

minimize the total usage of steam in streams STEAM1 andSTEAM2, both of which contain saturated steam at 200 psia. Themaximum allowable concentration of Dichloro-Methane in thestream EFFLUENT from TOWER2 is 150 ppm (mass) to within atolerance of a tenth of a ppm. Use the NRTL Property Method. Usebounds of 1000 lb/hr to 20,000 lb/hr for the flowrate of the two steam

streams. Make sure stream flows are reported in mass flow andmass fraction units before running. Refer to the Notes slides for some hints on the previous page if there are problems convergingthe optimization.

STEAM1

TOP1

TOWER1

Optimization Workshop (Continued)

Page 332: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 332/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

When finished, save as

filename: OPT.BKP

FEED

BOT1

TOP2

EFFLUENT

STEAM2

TOWER2

RadFrac Convergence

Page 333: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 333/355

©2000 AspenTech. All Rights Reserved.

Objective:

Introduce the convergence algorithms andinitialization strategies available in RadFrac

 Aspen Plus References:

Unit Operation Models Reference Manual , Chapter 4, Columns

RadFrac Convergence Methods

• RadFrac provides a variety of convergence methods for 

solving separation problems. Each convergence methodrepresents a convergence algorithm and an initializationmethod The following convergence methods are

Page 334: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 334/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

method. The following convergence methods areavailable:

 – Standard (default)

 – Petroleum / Wide-Boiling

 – Strongly non-ideal liquid

 –  Azeotropic

 – Cryogenic

 – Custom

Method Algorithm Initialization

Standard Standard StandardPetroleum / Wide-boiling Sum-Rates Standard

Convergence Methods (Continued)

Page 335: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 335/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Strongly non-ideal liquid Nonideal Standard

 Azeotropic Newton Azeotropic

Cryogenic Standard Cryogenic

Custom select any select any

RadFrac Convergence Algorithms

• RadFrac provides four convergence algorithms:

 – Standard (with Absorber=Yes or No) – Sum-Rates

Page 336: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 336/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 – Nonideal

 – Newton

Standard Algorithm

• The Standard (default, Absorber=No) algorithm:

 – Uses the original inside-out formulation – Is effective and fast for most problems

Page 337: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 337/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 – Solves design specifications in a middle loop

 – May have difficulties with extremely wide-boiling or highly non-

ideal mixtures

Standard Algorithm (Continued)

• The Standard algorithm with Absorber=Yes:

 – Uses a modified formulation similar to the classical sum-ratesalgorithm

A li t b b d t i l

Page 338: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 338/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 –  Applies to absorbers and strippers only

 – Has fast convergence

 – Solves design specifications in a middle loop – May have difficulties with highly non-ideal mixtures

Sum-Rates Algorithm

• The Sum-Rates algorithm:

 – Uses a modified formulation similar to the classical sum-ratesalgorithm

S l d i ifi ti i lt l ith th l

Page 339: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 339/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 – Solves design specifications simultaneously with the column-describing equations

 – Is effective and fast for wide boiling mixtures and problems with

many design specifications

 – May have difficulties with highly non-ideal mixtures

Nonideal Algorithm

• The Nonideal algorithm:

 – Includes a composition dependency in the local physicalproperty models

Uses the continuation convergence method

Page 340: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 340/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 – Uses the continuation convergence method

 – Solves design specifications in a middle loop

 – Is effective for non-ideal problems

Newton Algorithm

• The Newton algorithm:

 – Is a classic implementation of the Newton method – Solves all column-describing equations simultaneously

Page 341: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 341/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 – Uses the dogleg strategy of Powell to stabilize convergence

 – Can solve design specifications simultaneously or in an outer 

loop – Handles non-ideality well, with excellent convergence in the

vicinity of the solution

 – Is recommended for azeotropic distillation columns

Vapor-Liquid-Liquid Calculations

• You can use the Standard, Newton and Nonideal

algorithms for 3-phase Vapor-Liquid-Liquid systems. Onthe RadFrac Setup Configuration sheet, select Vapor-Liquid-Liquid in the Valid Phases field.

Page 342: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 342/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Liquid Liquid in the Valid Phases field.

• Vapor-Liquid-Liquid calculations:

 – Handle column calculations involving two liquid phasesrigorously

 – Handle decanters

 – Solve design specifications using:

• Either the simultaneous (default) loop or the middle loop approach for the Newton algorithm

• The middle loop approach for all other algorithms

Convergence Method Selection

• For Vapor-Liquid systems, start with the Standard

convergence method. If the Standard method fails: – Use the Petroleum / Wide Boiling method if the mixture is very

wide-boiling

Page 343: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 343/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

wide-boiling.

 – Use the Custom method and change Absorber to Yes on theRadFrac Convergence Algorithm sheet, if the column is an

absorber or a stripper.

 – Use the Strongly non-ideal liquid method if the mixture is highlynon-ideal.

 – Use the Azeotropic method for azeotropic distillation problemswith multiple solutions possible. The Azeotropic algorithm isalso another alternative for highly non-ideal systems.

Convergence Method Selection (Continued)

• For Vapor-Liquid-Liquid systems:

 – Start by selecting Vapor-Liquid-Liquid in the Valid Phases fieldof the RadFrac Setup Configuration sheet and use theStandard convergence method.

Page 344: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 344/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

Standard convergence method.

 – If the Standard method fails, try the Custom method with theNonideal or the Newton algorithm.

RadFrac Initialization Method

• Standard is the default Initialization method for RadFrac.

• This method:

 – Performs flash calculations on composite feed to obtain

Page 345: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 345/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

paverage vapor and liquid compositions

 –  Assumes a constant composition profile

 – Estimates temperature profiles based on bubble and dew pointtemperatures of composite feed

Specialized Initialization Methods

• Four specialized Initialization methods are available.

Use: For:Crude Wide boiling systems with

multi draw columns

Page 346: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 346/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

multi-draw columns

Chemical Narrow boiling chemical systems

 Azeotropic Azeotropic distillation columnsCryogenic Cryogenic applications

Estimates

• RadFrac does not usually require estimates for 

temperature, flow and composition profiles.• RadFrac may require:

Page 347: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 347/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

 – Temperature estimates as a first trial in case of convergenceproblems

 – Liquid and/or vapor flow estimates for the separation of wideboiling mixtures.

 – Composition estimates for highly non-ideal, extremely wide-boiling (for example, hydrogen-rich), azeotropic distillation or vapor-liquid-liquid systems.

Composition Estimates

• The following example illustrates the need for 

composition estimates in an extremely wide-boiling pointsystem:

Page 348: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 348/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

RadFrac Convergence Workshop

• Objective: Apply the convergence hints explained in thissection.

• HCl column in a VCM production plant

F d

Page 349: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 349/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Feed

 – 130000 kg/hr at 50C, 18 bar 

 – 19.5%wt HCl, 33.5%wt VCM, 47%wt EDC – (VCM : vinyl-chloride, EDC : 1,2-dichloroethane)

• Column

 – 33 theoretical stages

 – partial condenser (vapor distillate) – kettle reboiler 

 – pressure : top 17.88 bar, bottom 18.24 bar 

 – feed on stage 17

RadFrac Convergence Workshop (Continued)

• First Step:

 – Specify the column.• Set the distillate flow rate to be equal to the mass flow rate of HCl in the

feed.

Page 350: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 350/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

• Specify that the mass reflux ratio is 0.7.

• Use Peng-Robinson equation of state (PENG-ROB).

 – Question: How should these specifications be implemented?

• Note: Look at the results.

 – Temperature profile

 – Composition profile

RadFrac Convergence Workshop (Continued)

• Second step:

 – VCM in distillate and HCl in bottom are much too high! –  Allow only 5 ppm of HCl in the residue and 10 ppm VCM in the

distillate

Page 351: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 351/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

distillate.

 – Question: How should these specifications be implemented?

• Note: You may have some convergence difficulties. –  Apply the guidelines presented in this section

130000 kg/h

50 C, 18 bar,

flow : HCl in feed

max 10 ppm VCM

17 88 b

Use the PENG-ROB Property method

RadFrac Convergence Workshop (Continued)

Page 352: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 352/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

feed on stage 17

, ,

HCl 19.5%wt

VCM 33.5%wt

EDC 47.0%wtmass reflux ratio:0.7

max 5 ppm HCl

17.88 bar 

18.24 bar 

When finished, save as filename: VCMHCL1.BKP (step 1) and VCMHCL2.BKP (step 2)

• Objective: Set up a flowsheet of a VCM process using the toolslearned in the course.

• Vinyl chloride monomer (VCM) is produced through a high pressure, non-catalytic process involving the pyrolysis of 1,2-dichloroethane (EDC)according to the following reaction:

Vinyl Chloride Monomer (VCM) Workshop

Page 353: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 353/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

CH2Cl-CH2Cl HCl + CHCl=CH2 

• The cracking of EDC occurs at 500 C and 30 bar in a direct fired furnace.1000 kmol/hr of pure EDC feed enters the reactor at 20 C and 30 bar. EDCconversion in the reactor is maintained at 55%. The hot gases from thereactor are subcooled by 10 degrees before fractionation.

• Two distillation columns are used for the purification of the VCM product. Inthe first column, anhydrous HCl is removed overhead and sent to the oxy

chlorination unit. In the second column, VCM product is removed overheadand the bottoms stream containing unreacted EDC is recycled back to thefurnace. Overheads from both columns are removed as saturated liquids.The HCL column is run at 25 bar and the VCM column is run at 8 bar. Usethe RK-SOAVE Property Method.

1000 kmol/hr EDC20C30 bar 

FEED

HCLOUT

RStoic ModelHeater Model

RadFrac Model

RadFrac Model

CH2Cl-CH2Cl HCl + CHCl=CH2

EDC HCl VCM

VCM Workshop (Continued)

Page 354: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 354/355

©2000 AspenTech. All Rights Reserved. Introduction to Aspen Plus 

CRACK

RECYCIN

REACTOUT

PUMP

RECYCLE

QUENCH

COOLOUT COL1

VCMIN COL2

VCMOUT

Pump Model

30 bar outlet pressure

500 C

30 bar EDC Conv. = 55%

10 deg C subcooling0.5 bar pressure drop

10 stagesReflux ratio = 0.969

Distillate to feed ratio = 0.550Feed enters above stage 7Column pressure = 8 bar 

15 stages

Reflux ratio = 1.082Distillate to feed ratio = 0.354

Feed enters above stage 8Column pressure = 25 bar 

When finished, save asfilename: VCM.BKPUse RK-SOAVE property method

VCM Workshop (Continued)

Part A:

• With the help of the process flow diagram on the previous page, setup a flowsheet to simulate the VCM process. What are the values of the following quantities?

Page 355: 97448371-Aspen-Plus-Nice-Tutorial.pps

7/29/2019 97448371-Aspen-Plus-Nice-Tutorial.pps

http://slidepdf.com/reader/full/97448371-aspen-plus-nice-tutorialpps 355/355

1. Furnace heat duty ________ 

2. Quench cooling duty ________