92北科 工程數學 詳解 - chenlee.com.t · 92 北科-1 92 北科土木 The following is a...

92
92 北科 工程數學 詳解 a−δ a a+δ l x f a x = ) ( lim 陳立林易周成 編著 (a,l) y x y=f(x) δ ε l+ε l−ε l

Transcript of 92北科 工程數學 詳解 - chenlee.com.t · 92 北科-1 92 北科土木 The following is a...

  • 92 北科

    工程數學 詳解

    a−δ a a+δ

    lxfax

    =→

    )(lim

    陳立、林易、周成 編著

    (a,l)

    y

    x

    y=f(x)

    δ

    ε

    l+ε

    l−ε

    l

  • 92北科-1

    92北科土木

    The following is a 2-dimensional Laplace Equation problem. (1) Please derive the Laplace equation from the rectangular coordinate system

    to the polar coordinate system.(10%) (2) Please solve the following boundary value problem in the polar coordinate

    system (i.e., find the steady-state temperature ),( θru in the semicircular plate shown in Fig. 1). (15%)

    【92北科土木】

    【範圍】§16-1 【詳解】(1)卡氏座標之 Laplace方程式

    為 022

    2

    2

    =∂∂

    +∂∂

    yu

    xu

    範例 1

  • 92北科-2

    令⎩⎨⎧

    ==

    θθ

    sincos

    ryrx

    ,即⎪⎩

    ⎪⎨⎧

    =

    +=−

    xyyxr

    1

    22

    tanθ

    ⎪⎪⎩

    ⎪⎪⎨

    ==+

    =∂∂

    ==+

    =∂∂

    θθ

    θθ

    sinsin

    coscos

    22

    22

    rr

    yxy

    yr

    rr

    yxx

    xr

    同理

    ⎪⎪⎪⎪

    ⎪⎪⎪⎪

    −==+

    =+

    =∂∂

    −=−

    =+−

    =+

    −=

    ∂∂

    rrr

    yxx

    xy

    xy

    rrr

    yxy

    xy

    xy

    x

    θθθ

    θθθ

    coscos

    )(1

    1

    sinsin

    )(1

    2222

    2222

    2

    代入r

    uru

    xu

    xr

    ru

    xu θ

    θθθ

    θsincos

    ∂∂

    −∂∂

    =∂∂

    ∂∂

    +∂∂

    ∂∂

    =∂∂

    則x

    xu

    xr

    rxu

    xxu

    xu

    ∂∂

    ∂∂∂

    ∂+

    ∂∂

    ∂∂∂

    ∂=

    ∂∂∂

    ∂=

    ∂∂ θ

    θ22

    = )sincos(sin)sincos(cosr

    uru

    rru

    ru

    θθ

    θθθ

    θθθ

    ∂∂

    −∂∂

    ∂∂

    −∂∂

    −∂∂

    ∂∂

    θθθ

    θθθ∂∂

    +∂∂

    ∂−

    ∂∂ u

    rru

    rru

    2

    2

    2

    22 cossin2sincos2cos

    22

    2

    22 sinsinθ

    θθ∂∂

    +∂∂

    +u

    rru

    r

    又r

    uru

    yu

    yr

    ru

    yu θ

    θθθ

    θcossin

    ∂∂

    +∂∂

    =∂∂

    ∂∂

    +∂∂

    ∂∂

    =∂∂

  • 92北科-3

    則y

    yu

    yr

    ryu

    yyu

    yu

    ∂∂

    ∂∂∂

    ∂+

    ∂∂

    ∂∂∂

    ∂=

    ∂∂∂

    ∂=

    ∂∂ θ

    θ22

    = )cossin(cos)cossin(sinr

    uru

    rru

    ru

    θθ

    θθθ

    θθθ

    ∂∂

    +∂∂

    ∂∂

    +∂∂

    +∂∂

    ∂∂

    θθθ

    θθθ∂∂

    −∂∂

    ∂+

    ∂∂ u

    rru

    rru

    2

    2

    2

    22 cossin2sincos2sin

    22

    2

    22 coscosθ

    θθ∂∂

    +∂∂

    +u

    rru

    r

    故 2

    2

    22

    2

    2

    2

    2

    2 11θ∂∂

    +∂∂

    +∂∂

    =∂∂

    +∂∂ u

    rru

    rru

    yu

    xu

    即極座標之 Laplace方程式為 011 22

    22

    2

    =∂∂

    +∂∂

    +∂∂

    θu

    rru

    rru

    (2) 由分離變數法

    令 )()(),( θθ Θ= rRru 代入 P.D.E

    得 011 2 =Θ ′′+Θ′+Θ′′ RrR

    rR ⇒ λ=

    ΘΘ ′′

    −=′+′′

    Rr

    Rr

    R

    2

    1

    1

    ⇒ ⎪⎩

    ⎪⎨⎧

    =Θ=Θ=Θ+Θ′′

    =−′+′′

    LLLLLLLLL

    LLLLLLLLLLLLL

    0)()0(;0

    01 2

    πλ

    λ Rr

    Rr

    R

    由○2 2n=λ ( L,3,2,1=n ) θθ nsin)( =Θ

    由○1 022 =−′+′′ RnRrRr (Cauchy等維方程式) ⇒ nn BrArrR += −)(

    由 B.C. =)0(R 有界 ⇒ 0=A ∴ nBrrR =)(

    ○1

    ○2

  • 92北科-4

    由重疊原理

    令 ∑∞

    =

    =1

    sin),(n

    nn nrBru θθ

    B.C. ∑∞

    =

    ==1

    0 sin),(n

    nn ncBucu θθ

    ⇒ ∫=π

    θθπ 0 0

    sin2 dnucB nn⎪⎩

    ⎪⎨⎧

    =

    ==−=L

    L

    ,6,4,20

    ,5,3,1n4)cos1(20

    0

    nnu

    nnu

    πππ

    ⇒ =nB⎪⎩

    ⎪⎨⎧

    =

    =

    L

    L

    ,6,4,20

    ,5,3,14 0

    n

    ncn

    unπ

    將 nB 代入 ∑∞

    =

    =1

    sin),(n

    nn nrBru θθ ∑

    =

    =L,5,3,1

    0 sin14n

    nn nrnc

    u θπ

    【另解】(1) θeru

    re

    ruu r

    vv

    ∂∂

    +∂∂

    =∇1

    ⎭⎬⎫

    ⎩⎨⎧

    ∂∂

    ∂∂

    +∂∂

    ∂∂

    =∇⋅∇=∇ )1()(12θθu

    rrur

    rruu

    = 22

    22

    2 11θ∂∂

    +∂∂

    +∂∂ u

    rru

    rru

    故極座標之 Laplace方程式為 011 22

    22

    2

    =∂∂

    +∂∂

    +∂∂

    θu

    rru

    rru

    Consider the spring/mass system of Fig. 2. Let 021 == xx at the equilibrium position, where the weight are at rest. Choose the direction to the right as positive and suppose the weights are at positions )(1 tx and )(2 tx at time t. The equations of motion of the system are as shown as follows.

    範例 2

  • 92北科-5

    )()()()(

    22321222

    12212111

    tfxkkxkxmtfxkxkkxm

    ++−=+++−=

    &&

    &&

    These equations assume that damping is negligible but allow for forcing functions acting on each mass. Suppose 121 == mm and 431 == kk while

    5.22 =k ; and suppose 0)(2 =tf and )]3(1[2)(1 −−= tHtf . Please use the Laplace transform to solve this system.

    (25%)【92 北科土木】

    【範圍】§8-3

    【詳解】 [ ]⎩⎨⎧

    −−+−=+−=

    )2()3(125.65.2)1(5.25.6

    212

    211

    LLLL&&

    LLLLLLLLLLL&&

    tHxxxxxx

    取 Laplace變換

    ⎪⎩

    ⎪⎨⎧

    −=Χ++Χ−

    =Χ−Χ+− )1(2)()5.6()(5.2

    0)(5.2)()5.6(3

    22

    1

    212

    ses

    sss

    sss

    由 Cramer rule

    5.6)1(25.20

    )(5.65.2

    5.25.62312

    2

    +−

    −=Χ

    +−−+

    − ses

    ss

    ss

    )1(5)()3613( 312 se

    ssss −−=Χ++⇒

    ( )ss

    essssss

    es 33

    1 191

    91

    41

    411

    365

    )9)(4()1(5)( −

    −⎟⎠⎞

    ⎜⎝⎛

    ++

    +−=

    ++−

    =Χ⇒

  • 92北科-6

    )3(365

    91

    41

    365)( 941 −−+−=⇒

    −− tHeetx tt

    )3(91)3(

    41 )3(9)3(4 −−−+ −−−− tHetHe tt

    由 式 )3(9)3(4945.6)(5.2 )3(9)3(494112 −−−++−=+=

    −−−−−− tHetHeeexxtx tttt&&

    )3(36

    5.3295.6

    45.6

    365.32 94 −−+−+ −− tHee tt

    )3(95.6)3(

    45.6 )3(9)3(4 −−−+ −−−− tHetHe tt

    )3(36

    5.329

    5.874

    5.2236

    5.32 94 −−+−= −− tHee tt

    )3(9

    5.87)3(4

    5.22 )3(9)3(4 −−−+ −−−− tHetHe tt

    t9t42 e9

    35e49

    3613tx −− +−=⇒ )(

    )3(935)3(

    49)3(

    3613 )3(9)3(4 −−−+−− −−−− tHetHetH tt

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+⎥

    ⎤⎢⎣

    ⎡=+= te

    tXtGtAXdt

    tdX34

    8)(

    5133

    )()()( , where )(tX is a 2×1 matrix,

    and A is 2×2 matrix. (a) Find the solution of the above equation. (15%) (b) Find the matrix A10. (10%) 【92 北科土木】

    【範圍】§24-4

    範例 3

  • 92北科-7

    【詳解】 051

    33)det( =

    −−

    =Ι−λ

    λλA 6 2,=⇒ λ

    ⎥⎦

    ⎤⎢⎣

    ⎡−

    =⇒=⎥⎦

    ⎤⎢⎣

    ⎡=

    13

    03131

    :2 111 kuuλ

    ⎥⎦

    ⎤⎢⎣

    ⎡=⇒=⎥

    ⎤⎢⎣

    ⎡−

    −=

    11

    011

    33:6 222 kuuλ

    取 ⎥⎦

    ⎤⎢⎣

    ⎡=

    6002

    D , ⎥⎦

    ⎤⎢⎣

    ⎡−

    =1113

    P , ⎥⎦

    ⎤⎢⎣

    ⎡ −=−

    3111

    411P

    則可將 A對角化成 DAPP =−1 ,即 1A −= PDP (a) 令座標變換 YPX =

    代入 GXAX +=′

    得 GPYDY 1−+=′

    ⇒ ⎥⎦

    ⎤⎢⎣

    ⎡⎥⎦

    ⎤⎢⎣

    ⎡ −+⎥

    ⎤⎢⎣

    ⎡⎥⎦

    ⎤⎢⎣

    ⎡=

    ⎥⎥⎦

    ⎢⎢⎣

    ⎡′

    ′tey

    y

    yy

    32

    1

    2

    1

    48

    3111

    41

    6002

    ⎪⎩

    ⎪⎨⎧

    ++=′−+=′⇒

    t

    t

    eyyeyy

    322

    311

    32622

    ⎪⎩

    ⎪⎨⎧

    −−=

    −−=⇒ tt

    tt

    eeky

    eeky36

    22

    3211

    31

    31

    ⇒ ttt eekekyy

    Px

    362

    21

    2

    1

    2

    1

    210

    323

    10

    11

    13x

    ⎥⎦

    ⎤⎢⎣

    ⎡−+

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡−+⎥

    ⎤⎢⎣

    ⎡+⎥

    ⎤⎢⎣

    ⎡−

    =⎥⎦

    ⎤⎢⎣

    ⎡=⎥

    ⎤⎢⎣

    (b) AQ 可對角化成 1A −= PDP

    11010A −=∴ PPD ⎥⎦

    ⎤⎢⎣

    ⎡−

    =1113

    ⎥⎦

    ⎤⎢⎣

    ⎡10

    10

    6002

    ⎥⎦

    ⎤⎢⎣

    ⎡ −3111

    41

    ⎥⎦

    ⎤⎢⎣

    ⋅++−⋅+⋅−+⋅

    = 1010101010101010

    632626323623

    41

  • 92北科-8

    The system of equations is shown as follow. BAX =

    ⎟⎟⎟

    ⎜⎜⎜

    −−=

    432655102

    A , ⎟⎟⎟

    ⎜⎜⎜

    ⎛−=41

    2B

    a. Please use Gauss-Jordan elimination to solve the above equations. (15%) b. Please use Cramer’s rule to solve the above equations. (10%)【92 北科土木】

    【範圍】§21-3

    【詳解】(a) 由增廣矩陣 ]|[ BA =⎥⎥⎥

    ⎢⎢⎢

    ⎡−

    −−

    41

    2

    432655102

    ⎥⎥⎥

    ⎢⎢⎢

    − 366219

    100010001

    ⇒⎥⎥⎥

    ⎢⎢⎢

    −=

    366219

    X

    (b) 由 Cramer’s rule

    =1x 19

    432655102434651102

    =

    −−

    , =2x 62

    432655102442615122

    =

    −−

    −−−

    , =3x 36

    432655102432155

    202

    −=

    −−

    −−−

    範例 4

  • 92北科-9

    92北科化工

    Schrodinger’s Equation is given by

    0)(822

    2

    2

    2

    2

    =Ψ++Ψ

    rZeE

    hdrd

    rdrd µπ , where E<0

    (a) By means of the substitution rx λ2= , where hE /)8( 2µπλ = , the

    above equation becomes 0)41(22

    2

    =Ψ−+Ψ

    xp

    dxd

    xxdd …………………(1)

    Determine p. (5%)

    (b) By means of the substitution )()( 2 xuexx

    −=Ψ , Equation (1) becomes

    0)()()2(22

    =+−+ xuxgdxdux

    dxudx ………………………………………(2)

    determine g(x). (5%) (c) By differentiation of the following Laguerre’s differential Equation,

    0)1( =+′−+′′ pyyxyx equation (2) can be obtained with the identification of )()( xyxu ′= . Find a solution of Laguerre’s differential Equation. (10%) 【92 北科化工】

    【範圍】ch1 【詳解】(a)令 rx λ2=

    則dxd

    drdx

    dxd

    drd ψλψψ 2==

    範例 1

  • 92北科-10

    22

    22

    2

    422dxd

    drdx

    dxdxdd

    dxdxdd

    drd ψλ

    ψ

    λ

    ψ

    λψ ===

    代入 0)(822

    2

    2

    2

    2

    =Ψ++Ψ

    rZeE

    hdrd

    rdrd µπ

    得 0)(8842

    2

    22

    2

    22 =+++ ϕµπ

    λψλψλ

    rZeE

    hdd

    xdxd

    0)(222

    22

    2

    2

    2

    =Ψ++Ψ

    rZeE

    hdrd

    rdrd

    λµπ

    0)(118

    22 22

    2

    2

    2

    2

    2

    =Ψ++Ψ

    ⇒r

    ZeEEu

    hhu

    dxd

    xdxd

    ππ

    0)(412 2

    2

    2

    =Ψ+−

    ⇒r

    ZeEEdx

    dxdx

    d

    0)41

    4(2

    2

    2

    2

    =Ψ−−

    ⇒E

    Zedxd

    xdxd

    0)412

    4(2

    2

    2

    2

    =Ψ−−

    ⇒xE

    Zedxd

    xdxd λ

    0)41

    2(2

    2

    2

    2

    =Ψ−−+Ψ

    ⇒Ex

    Zedxd

    xdxd λ

    故E

    Zep2

    2λ−=

    (b)令 )()( 2 xuexx

    −=ψ

    則 )(21 22 xue

    dxdue

    dxd xx −−

    −=ψ

    )(41 22

    2

    22

    2

    2

    xuedxdue

    dxude

    dxd xxx −−−

    +−=ψ

    代入 0)41(22

    2

    =Ψ−+Ψ

    xp

    dxd

    xdxd

  • 92北科-11

    得 )(12)(41 2222

    2

    22 xue

    xdxdue

    xxue

    dxdue

    dxude

    xxxxx−−−−−

    −++−

    0)()41( 2 =−+

    −xue

    xp x

    0)(1)12(22

    =−

    +−+⇒ xux

    pdxdu

    xdxud

    0)()1()2(22

    =−+−+⇒ xupdxdux

    dxudx

    故 1)( −= pxg

    (c) )()()( 2 xexuxyx

    ψ==′

    故 dxxexyx

    x

    )()(0

    2ψ∫=

    Evaluate the inverse of the following Laplace transform

    (a) £ })1(s

    1{1−

    s (10%)【92 北科化工】

    【範圍】§7-3

    【詳解】£ }1

    1s

    1{1−

    ⋅−s

    =£ ∗− }s

    1{1 £ }1

    1{−s

    tet

    *11π

    =

    Evaluate the inverse of the following Laplace transform

    (b) £ }2

    tan2

    { 11 s−− −π (10%)【92 北科化工】

    【範圍】§7-3

    範例 2

    範例 2

  • 92北科-12

    【詳解】 =)(tf £ =− −− }2

    tan2

    { 11 sπ £ }2{tan 11s

    −−

    由變換後之微分定理

    £ ⎥⎦

    ⎤⎢⎣

    ⎡⎟⎠⎞

    ⎜⎝⎛−= −

    sdsdttf 2tan})({ 1 2

    2

    2

    )2(1

    1s

    s

    +−= 22 2

    2+

    =s

    =)(ttf £⎭⎬⎫

    ⎩⎨⎧

    +−

    221

    22

    st2sin=

    t

    ttf 2sin)( =∴

    Expand the function in a Fourier integral and determine what the integral representation converge to?

    xxf =)( as ππ ≤≤− x and 0)( =xf π>x (15%)【92 北科化工】

    【範圍】§12-2 【詳解】 )(xfQ 為奇函數

    ∴令 ∫∞

    =0

    wxdwwBxf sin)(2)(π

    則 ∫∞

    =0

    wxdxxfwB sin)()(

    ππππ

    ww

    ww

    wxdxx 20 cossin1sin −== ∫

    故 ∫∞

    −=0 2

    wxdwww

    ww

    xf sin)cossin1(2)( ππππ

    1當 ππ

  • 92北科-13

    ⎪⎩

    ⎪⎨

    =

    −=−=−∫

    ππ

    ππ

    ππππ x

    2

    x2wxdww

    ww

    w0 2 收斂至sin)cossin1(2

    3當 π>x :

    0sin)cossin1(2收斂至=−∫

    0 2wxdww

    ww

    wπππ

    π

    Solve the following partial differential equation

    0x 2

    2

    2

    2

    =∂∂

    +∂∂

    yUU )0,0( >> yx

    0),0( =yU )0( >y )()0,( xFxU = )0( >x where xxF =)( as 20 ≤≤ x

    0)( =xF as 2>x (20%)【92 北科化工】

    【範圍】§15-2 【詳解】由特徵函數展開法

    令 =),( yxU ∫∞

    0sin)( wxdwyc

    代入得 0)()( 2 =−′′ ycwyc ; )(∞c 有界 wykeyc −=⇒ )(

    =∴ ),( yxU ∫∞ −

    0sin wxdwke wy

    B.C. ∫∞

    =0

    )(sin)0,( xFwxdwkxU

    得 ∫∞

    =0

    sin)(2 wxdwxFkπ

    範例 4

  • 92北科-14

    202cos22sin2sin2

    wwwwwxdxx −== ∫

    ππ

    故 wxdwew

    w2w2w22yxU0

    wy2 sin

    cossin),( ∫∞ −−=

    π

    Evaluate ∫∫ ⋅S

    dAnF rr

    kyzjxyiFrrrr

    ++= S: zyx ≤+ 22 , 0≥y , 4≤z (10%)【92 北科化工】

    【範圍】§19-3

    【答案】 ∫∫ ⋅S

    dAnF rr

    564

    −=

    Solve xexyyyy 28126 =−′+′′−′′′ (15%)【92 北科化工】

    【範圍】§3-3 【詳解】 齊性解: 08126 23 =−+− mmm 2,2,20)2( 3 =⇒=−⇒ mm

    xxxn excxececy32

    32

    22

    1 ++=∴

    特解:由逆算子法

    xD

    eexD

    y xxp 322

    31

    )2(1

    =−

    =

    25

    223

    22

    1541

    321 x

    Dex

    De xx ==

    範例 5

    範例 6

  • 92北科-15

    27

    2

    1058 xe x=

    通解:

    xxxxpn exexcxececyyy22

    722

    32

    22

    1 1058

    +++=+=

  • 92北科-16

    92北科光電

    Find the general solution of the following equations (1) )1sin(1374 +=+′+′′ − teyyy t . (10%)【92 北科光電】

    【範圍】§3-3 【詳解】 齊性解: 0742 =++ mm

    im 32 ±−=⇒

    )3sin3cos( 212 tctcey tn +=∴−

    特解:由待定係數法

    令 [ ])1sin()1cos( +++= − tBtAey tp

    代入得 3,2 =−= BA

    得 [ ])1sin(3)1cos(2 +++−= − ttey tp

    通解: ph yyy +=

    [ ])sin()cos()sincos( 1t31t2et3ct3ce t21t2 +++−++= −−

    【令解】由逆算子法

    )1sin(133)2(

    1)1sin(1374

    122 +++

    =+++

    = −− teD

    teDD

    y ttp

    [ ] )1sin(32)1(113 2 +++−

    = − tD

    e t

    範例 1

  • 92北科-17

    )1sin(42

    113 2 +++= − t

    DDe t )1sin(

    421113 2 +++−

    = − tD

    e t

    )1sin(943D213)1sin(

    32113 2 +−

    −=+

    += −− t

    Det

    De tt

    )1sin()23()1sin(13

    3213 +−=+−−

    = −− tDetDe tt

    [ ])1sin(3)1cos(2 +++−= − tte t

    Find the general solution of the following equations (2) )ln(13413132 )1()2(2)3(3 xyxyyxyx −=−+− (10%)【92 北科光電】

    【範圍】§4-1

    【詳解】令dtdDxtex t ≡== ,ln,

    代入得{ } tyDDDDDD 1341313)1(2)2)(1( −=−+−−−− tyDDD 134)13175( 23 −=−+−⇒ tyDDD 134)134)(1( 2 −=+−−⇒

    齊性解: 0)134)(1( 2 =+−− mmm im 32,1 ±=⇒

    )3sin3cos( 322

    1 tctceecytt

    n ++=⇒

    [ ])(ln3sin)(ln3cos 3221 xcxcxxc ++=

    特解: )134(13175

    123 tDDD

    yp −−+−=

    1)134)(16917

    131( +=−+−−= ttD L 1ln += x

    通解: [ ] 1ln)(ln3sin)(ln3cos 3221 ++++=+= xxcxcxxcyyy ph

    範例 1

  • 92北科-18

    The Bernoulli equation is in the form of αyxRyxQyxP ⋅=⋅+′⋅ )()()( , in which α is a constant. Please find the integrating factor ),( yxµ . (Hint: try αµ −⋅= yxfyx )(),( ) (10%)【92 北科光電】

    【範圍】§2-6

    【詳解】 αyxRyxQdxdyxP )()()( =+

    [ ] 0)()()( =−+⇒ dxyxRyxQdyxP α 乘上積分因子 αµ −= yxfyx )(),( 得 [ ] 0)()()()()()( 1 =−+ −− dxxfxRyxfxQdyyxfxP αα 必為正合方程式

    故 [ ] [ ])()()()()()( 1 xfxRyxfxQy

    yxfxPx

    −∂∂

    =∂∂ −− αα

    αα α −− −=∂

    ∂⇒ Qfy1

    xPfy )()( Qf

    dxPfd )1()( α−=⇒

    由分離變數法 dxpQ

    pfPfd )1()( α−=

    積分得 ∫−= dxxpxQf)()()1()Pln( α

    故∫−

    =dx

    xpxQ

    exfxP )()()1(

    )()(α

    ∫−

    =⇒dx

    xPxQ

    exP

    xf )()()1(

    )(1)(

    α

    故積分因子為∫

    =−− dx

    xPxQ

    exP

    yyx )()()1(

    )(),(

    αα

    µ

    範例 2

  • 92北科-19

    If )()( tftf =+ω , so that )(tf has a period ω . Prove that the Laplace transform of )(tf is

    £ ∫ ⋅⋅−=−

    ω

    ω 0)(

    11)}({ dttfee

    tf sts . (10%)【92 北科光電】

    【範圍】§7-4 f(t) 【證明】 0 ω 2ω 3ω 4ω 5ω 6ω

    £{ } ∫∞ −=0

    )()( dttfetf st ∫ ∫ −− +=ω ω

    ω0

    2)()( dttfedttfe stst

    ∫ ++ −ω

    ω

    3

    2)( dttfe st ∫ ∑∫

    + ∞

    =

    + −− =++ω

    ω

    ω

    ω

    )1(

    0

    )1()()(

    n

    nn

    n

    n

    stst dttfedttfe LL

    令 ωntu −= 則 dudt = 當 ω)1( += nt → ω=u 當 ωnt = → 0=u

    則 £{ } ∫∞ −=0

    )()( dttfetf st ∑∫∞

    =

    +−=0

    0

    )( )(n

    nus duufeω ω

    ∑ ∫∞

    =

    −−=0

    0)(

    n

    susn duufeeωω ∫ −−−=

    ω

    ω 0)(

    11 dttfee

    sts

    Solve the initial value problem )(65 tfyyy =+′+′′ , 0)0()0( =′= yy ,

    where ⎩⎨⎧

  • 92北科-20

    【範圍】§8-1 【詳解】 )2()0(65 −+−−=+′+′′ tutuyyy 取 Laplace transform

    得 )(1)()65( 022 ss ees

    sYss −− −=++

    )()3)(2(

    1)( 02 ss eesss

    sY −− −++

    =⇒

    ))(3

    131

    21

    211

    61()( 02 ss ee

    ssssY −− −

    ++

    +−=⇒

    故 )()31

    21

    61()( 32 tueety tt −− −+−=

    )2(31

    21

    61 )2(3)2(2 −⎥⎦

    ⎤⎢⎣⎡ +−+ −−−− tuee tt

    (1) Define ∫ ⋅⋅>=<π

    0)()(, dxxgxfgf , where f, g is in the vector space of

    functions continuous on ],0[ π . Prove that )cos(,),2cos(),cos( nxxx K are mutual orthogonal. (7%)

    (2) Compute the cosine series of the function xexf −⋅= 2)( , where 20 ≤≤ x . (8%) 【92 北科光電】

    【範圍】§12-3

    【詳解】(1) ∫=π

    0coscoscos,cos nxdxmxnxmx

    [ ]∫ =−++=π

    00)cos()cos(

    21 dxxnmxnm

    故 )cos(,),2cos(),cos( nxxx L 互相正交。

    (2)令 ∑∞

    =

    +=1

    0 2cos)(

    nn x

    naaxf π

    範例 5

  • 92北科-21

    則 [ ]∫∫ −==−− −=−===2

    0

    220

    2

    0012

    21)(

    21 eedxedxxfa xx

    xx

    xdxnexdxnxfa xn 2cos2

    2cos)(

    22 2

    0

    2

    0

    ππ∫∫ −==

    2

    022 2

    cos

    41

    2 =

    =

    −⎥⎦⎤

    ⎢⎣⎡

    +

    −=

    x

    x

    x xnen

    ππ

    [ ]nen

    nen

    )1(14

    8)1cos(4

    8 222

    222 −−+

    =−+

    −= −−π

    ππ

    故 ∑∞

    =

    −−

    +−−

    +−=1

    22

    22

    2cos

    4)1(181)(

    n

    n

    xnn

    eexf ππ

    ⎥⎦

    ⎤⎢⎣

    ⎡=

    3241

    A

    (1) Find the eigenvalues and the corresponding eigenvectors. of A. (4%) (2) Find An for any positive integer n. (6%) 【92 北科光電】

    【範圍】§24-3

    【詳解】(1) ⎥⎦

    ⎤⎢⎣

    ⎡−

    −=1

    2k1 1:λ ; ⎥

    ⎤⎢⎣

    ⎡=

    11

    k5 1:λ

    (2) 取 ⎥⎦

    ⎤⎢⎣

    ⎡−=

    5001

    D , ⎥⎦

    ⎤⎢⎣

    ⎡−

    =1112

    P , ⎥⎦

    ⎤⎢⎣

    ⎡ −=−

    2111

    31P 1

    則可將 A對角化成 DAPP =−1 ,即 1A −= PDP

    1n PPD −=nA ⎥⎦

    ⎤⎢⎣

    ⎡−

    =1112

    ⎥⎦

    ⎤⎢⎣

    ⎡ −n

    n

    5001)(

    ⎥⎦

    ⎤⎢⎣

    ⎡ −2111

    31

    ⎥⎦

    ⎤⎢⎣

    ⋅+−+−−⋅+−−+−

    = nnnnnnnn

    521515212512

    31

    )()()()(

    範例 6

  • 92北科-22

    )(, CMPA nn×∈ and APP1− is a diagonal matrix D.

    Prove that 1−⋅⋅= PePe DA (10%)【92 北科光電】

    【範圍】§24-3 【證明】已知 1PDPA −= ,則 ))(())(( 1111n PDPPDPPDPPDPA −−−−= L 1111 PDPPDPPDPPDP −−−−= L 其中 IPP =−1 ⇒ 1nn PPDA −− == 1IDIDPPDIDI LL

    1n1nn PDPPPDA −∞

    =

    −∞

    =

    =∑∑∑ ===

    1n1n1n

    A

    n1

    n1

    n1e

    !!!

    11n PPPDP −−∞

    =

    ⋅⋅=⎟⎠

    ⎞⎜⎝

    ⎛= ∑ D

    1ne

    n1!

    範例 7

  • 92北科-23

    Derive the following formula by using the residue theorem.

    ∫∞

    ∞− − −⋅−⋅

    =+ 2222 ])!1[(2

    )!22()1( n

    nx

    dxnn

    π (8%)【92 北科光電】

    【範圍】陳立工數經典題型 §1-1

    【分析】 )1())(()()(

    1 +−− +−=+=+

    nnn iznizdz

    dizdz

    d

    )2(2)1(2

    2

    )()1)(()1())(()(

    1 +−+− +⋅+−=+−=+

    nnn iznnizndz

    dizdz

    d

    )3(33

    3

    )()2)(1)(()1()(

    1 +−+⋅++−=+

    nn iznnnizdz

    d

    )1(11

    1

    ))(2)(3()2)(1)(()1()(

    1 −+−−−

    +−+−+++−=+

    nnnnn

    n

    iznnnnnnnizdz

    dL

    )12(1 ))(22)(32()2)(1)(()1( −−− +−−++−= nn iznnnnn L

    121

    )(1

    )!1()!22()1( −

    +−−

    −= nn

    iznn

    【詳解】令 nzzf

    )1(1)( 2+

    = ,則 iz ±= 為『n階極點』

    其留數

    )(Re is [ ])()()!1(

    1lim 11

    zfizdzd

    nn

    n

    n

    iz−

    −= −

    [ ])()()!1(

    1lim 11

    zfizdzd

    nn

    n

    n

    iz−

    −= −

    ⎥⎦

    ⎤⎢⎣

    ⎡+

    −−

    = −−

    → nn

    n

    n

    iz ziz

    dzd

    n )1(1)(

    )!1(1lim 21

    1

    範例 8

  • 92北科-24

    ⎥⎦

    ⎤⎢⎣

    ⎡−+

    −−

    = −−

    → nnn

    n

    n

    iz iziziz

    dzd

    n )()(1)(

    )!1(1lim 1

    1

    nn

    n

    iz izdzd

    n )(1

    )!1(1lim 1

    1

    +−= −

    121

    )(1

    )!1()!22()1(

    )!1(1lim −

    → +−−

    −−

    = nn

    iz iznn

    n

    12

    1

    )2()1(

    )!1()!22(

    )!1(1

    −−−−

    −= n

    n

    inn

    n 121

    12 )()1(

    )!1()!22(

    )!1()2(1

    −−−

    −= n

    n

    n inn

    n

    12

    1

    12 )()()1(

    )!1()!22(

    )!1()2(1

    −−−

    −=

    iinn

    n nn

    n

    n

    n

    n

    inn

    n )1()1(

    )!1()!22(

    )!1()2(1 1

    12 −−

    −−

    −=

    − 1)!1()!22(

    )!1()2(1

    12 −−−

    −= −

    inn

    nn

    212 )!1()!22(

    )!1()2(1

    ii

    nn

    nn −−

    −= − i1n2

    2n221n2 ])![(

    )!(−⋅

    −= −

    由留數定理 ∫∞

    ∞− − −⋅−⋅

    ==+ 2222 ])!1[(2

    )!22()(Re2)1( n

    nisix

    dxnn

    ππ

    Evaluate ∫ ++

    C 4dz

    izzz

    )()]sin()[cos( , where C is any simple closed path about –i.

    (7%)【92 北科光電】

    【範圍】§30-2

    【詳解】令 4izzzzf

    )()]sin()[cos()(

    ++

    = ,則 iz −= 為『4階極點』

    範例 9

  • 92北科-25

    )(Re is − ( ) ( )[ ]zfizdzd

    31 4

    3

    3

    iz+=

    −→ !lim

    ( )⎥⎥⎦

    ⎢⎢⎣

    ++

    +=−→ 4

    43

    3

    iz izzziz

    dzd

    31

    )()]sin()[cos(

    !lim

    [ ])sin()cos(!

    lim zzdzd

    31

    3

    3

    iz+=

    −→[ ])cos()sin(

    !lim zz

    31

    iz−=

    −→

    [ ])cos()sin( ii61

    −−−= [ ])cos()sin( ii61

    −−=

    [ ])cosh()sinh( 11i61

    +−=

    ∫ ++

    C 4dz

    izzz

    )()]sin()[cos( )(Re isi2 −= π [ ])cosh()sinh( 11i

    3i

    +−=π

    [ ])cosh()sinh( 1i13

    −=π

  • 92北科-26

    92北科自動化

    試解下列微分方程式 (其中 dxdyy /=′ 22 / dxydy =′′ ) )3/()5.063( 222 yxyxyyxy +++−=′ (20%)【92 北科自動化】

    【範圍】§2-3

    【詳解】yx

    yxyyxdxdy

    +++

    −= 222

    35.063

    0)3()5.063( 222 =++++⇒ dyyxdxyxyyx

    令⎩⎨⎧

    +=++=

    yxyxNyxyyxyxM

    2

    22

    3),(5.063),(

    1336)63(

    2

    22

    =++

    =−++

    =∂∂

    −∂∂′

    yxyx

    Nxyxx

    NxN

    yu

    Q

    故積分因子為 xdx

    eexI =∫=1

    )(

    乘回 O.D.E.,得正合方程式 0)3()5.063( 222 =++++ dyeyxdxeyxyyx xx

    其解為 c).( =+ x22 ey50yx3

    範例 1

  • 92北科-27

    試解下列微分方程式 (其中 dxdyy /=′ 22 / dxydy =′′ ) 22 42 xyyxy +=′ 4)2( =y (20%)【92 北科自動化】

    【範圍】§2-2. §2-3. §2-6.

    【詳解】 ⇒+=′ 22 42xy xyy 4)(2dy 2 +=xy

    dxxy

    令xyu = ,即 uxy = ,則 xduudxdy +=

    代入上式得 42 2 +=+ udx

    xduudxu

    42 22 +=+⇒ udxduxuu 42 +=⇒ u

    dxduxu dxuxudu )4( 2 +=⇒

    由分離變數法 x

    dxduu

    u=

    + 42

    xdxdu

    uu 2

    422 =+

    積分得 ∫∫ =+ xdxdu

    uu 2

    422

    222 lnlnlnlnln2)4ln( cxcxcxu =+=+=+⇒

    22 4 cxu =+⇒ 222

    4 cxxy

    =+⇒

    由 B.C. x=2, y=4: 222

    2424 c=+ 2=⇒ c

    故解答為 222

    24 xxy

    =+ 422 24 xxy =+⇒

    【另解】 ⇒+=′ 22 42xy xyy 0)42( 22 =−+ xydydxxy

    令⎩⎨⎧

    −=+=xyyxN

    xyyxM),(

    42),( 22,則

    xxyyy

    NxN

    yM

    5)(4 −=

    −−−

    =∂∂

    −∂∂

    範例 2

  • 92北科-28

    積分因子為 55

    )( −−

    =∫= xexIdx

    x

    乘回 O.D.E. 0)42( 22 =−+ xydydxxy

    得正合方程式 0)42( 4352

    =−+ dyxydx

    xxy

    其解為 cxx

    y=−− 24

    2 221

    由 B.C. x=2, y=4: c=−− 242

    22

    24

    21 1−=c

    故解答為 1221

    24

    2

    −=−−xx

    y 422 24 xxy =+⇒

    【另解】 ⇒+=′ 22 x4y2yxy 22 42 xydxdyxy =−

    令 2yu = ,則dxdyy

    dxdu 2= ,代入上式得 242

    2xu

    dxdux

    =−

    xuxdx

    du 84 =−⇒

    1積分因子: 4)4(

    )( −−

    =∫= xexIdx

    x

    2通解: cxxdxxuxI +−=⋅= −−∫ 24 48)( 424 cxxu +−=⇒ 422 4 cxxy +−=⇒

    由 B.C. x=2, y=4: 422 2244 c+⋅−= 2=⇒ c 故解答為 422 24 xxy +−= 422 24 xxy =+⇒

  • 92北科-29

    試解下列微分方程式 (其中 dxdyy /=′ 22 / dxydy =′′ ) xxyyy sin3cos444 +=+′+′′ (20%)【92 北科自動化】

    【範圍】§3-3 【詳解】1齊性解: 2,20442 −−=⇒=++ mmm

    xxh xececy

    22

    21

    −− +=∴

    2特解:由待定係數法,令 xBxAy p sincos +=

    代入得 0=A , 1=B xy p sin=⇒

    3通解: xxececyyxy xxph sin)(2

    22

    1 ++=+=−−

    【另解】由逆算子法

    )sin3cos4(441

    1)sin3cos4(44

    122 xxD

    xxDD

    y p +++−=+

    ++=

    )sin3cos4(916

    34)sin3cos4(34

    12 xxD

    DxxD

    +−−

    =++

    =

    )sin3cos4(25

    34)sin3cos4(9)1(16

    342 xx

    DxxD +−−

    =+−−

    −=

    )sin9cos12cos12sin16(251 xxxx −−+−−= xsin=

    試解下列微分方程式 (其中 dxdyy /=′ 22 / dxydy =′′ )

    xxex3xyy )( +=′

    −′′ (20%)【92 北科自動化】

    範例 3

    範例 4

  • 92北科-30

    【範圍】§4-1 【詳解】同乘以 2x

    得 xexxyxyx )3( 432 +=′−′′

    令 tex = ,dtdDxxt ≡>= ),0(ln

    得{ } tet4t3 eee3yD1DD )()( +=−−

    { } tet4t32 eee3y2DDyD2D )()()( +=−=−⇒

    (1) 齊性解: ( ) 2m0m02mmmm2 ==⇒=−=− ,2

    221t2

    21h xcceccy +=+=⇒

    (2) 特解:

    ( )tet4t3

    p eee32DD1y )( +−

    =

    tt et4t3et4t3 eee3D1

    21eee3

    2D1 )()(

    21

    +−+−

    =

    ∫∫ +−+= − dteee321dteee3ee

    21 tt et4t3et4t3t2t2 )()(

    ∫∫ +−+= dteee321dteee3e

    21 tt et4tet2tt2 )()( 3

    ∫∫ +−+= tet3t2tett2 deeee321deee3e

    21 tt )()(

    tt et3ett2 ee21eee

    21

    −+= )2(tt et3et3t2 ee

    21eee

    21

    −+= )2(

    tet2 ee= x2ex=

    (3) 通解: 221ph xccyyy +=+=x2ex+

  • 92北科-31

    試解下列微分方程式組 (其中 dtdD /= ) 25654)5( 2 ++−=−− ttyxD 0)0( =x

    42)2( 2 ++−=−− ttxyD 0)0( =y (20%)【92 北科自動化】

    【範圍】ch5 【答案】 5tee4x 2t6 −++= t teey t6 −−= t

    範例 5

  • 92北科-32

    92北科冷凍空調

    Solve the following ordinary differential equations.

    (a) yeyxxyy 422

    3

    8322

    ++

    −=′ (5%)【92 北科冷凍】

    【範圍】§2-3

    【詳解】 yeyxxy

    dxdy

    422

    3

    8322

    ++

    −=

    0)83()22( 4223 =+++ dyeyxdxxy y

    )83()22( 4223 yeyxy

    xyy

    +∂∂

    =+∂∂

    Q

    ∴此為正合方程式 ),( yxφ∃

    ⎪⎪⎩

    ⎪⎪⎨

    +=∂∂

    +=∂∂

    ∋yeyx

    y

    xyx

    422

    3

    83

    22

    φ

    φ

    其解為 cexyx y =++= 432 22φ

    範例 1

  • 92北科-33

    Solve the following ordinary differential equations. (b) xexyy 224 −+=+′′ (5%)【92 北科冷凍】

    【範圍】§3-3 【詳解】 齊性解: imm 2042 ±=⇒=+

    xcxcyn 2sin2cos 21 +=∴

    特解:由待定係數法

    令 xp CeBAxy2−++=

    代入得41,0,

    41

    === CBA

    xp exy2

    41

    41 −+=∴

    通解:

    xpn exxcxcyyy2

    21 41

    412sin2cos −+++=+=

    【另解】由逆算子法

    xp eD

    xD

    y 222 241

    41 −

    ++

    +=

    xexD 222 2

    4)2(1)

    161

    41( −

    +−++−= L

    xex 241

    41 −+=

    範例 1

  • 92北科-34

    Solve the following ordinary differential equations. (c) 0)642()352( =−+−+− dyyxdxyx (5%)【92 北科冷凍】

    【範圍】§2-2

    【詳解】聯立⎩⎨⎧

    =−−=+−

    06420352

    yxyx

    得交點 )1,1(),( =yx

    令座標平移⎩⎨⎧

    −=Υ−=Χ

    11

    yx,即

    ⎩⎨⎧

    +Υ=+Χ=

    1y1x

    代入 O.D.E.得齊次方程式 0)42()52( =ΥΥ+Χ−ΧΥ−Χ dd

    將上式同 Χ÷ 得 ΥΧΥ

    +=ΧΧΥ

    − dd )42()52(

    令ΧΥ

    =u ,即 Χ=Υ u ,則 duudd Χ+Χ=Υ

    代入上式得 ))(42()52( duududu Χ+Χ+=Χ− 0)24()274( 2 =+Χ+Χ−+⇒ duuduu

    0)21()

    21

    47( 2 =+Χ+Χ−+⇒ duuduu

    由分離變數法 0

    21

    47

    21

    2=

    −+

    ++

    ΧΧ du

    uu

    ud

    0)

    41)(2(

    21

    =−+

    ++

    ΧΧ

    ⇒ duuu

    ud 0)

    41

    31

    232

    ( =−

    ++

    +ΧΧ

    ⇒ duuu

    d

    0)

    41

    12

    2(3 =−

    ++

    +ΧΧ

    ⇒ duuu

    d

    範例 1

  • 92北科-35

    積分得 cuu ln)41ln(20ln(2ln3 =−+++Χ

    cuu ln)41ln()2ln(ln 23 =−+++Χ⇒

    cuu ln)41()2(ln 23 =−+Χ⇒ cuu =−+Χ⇒ )

    41()2( 23

    c=−ΧΥ

    +ΧΥ

    Χ⇒ )41()2( 23 c=Χ−ΥΧ+Υ⇒ )

    41()2( 2

    c421 2 =Χ−ΥΧ+Υ⇒ )()(4

    k=Χ−ΥΧ+Υ⇒ )4()2( 2

    kxyxy =−−−+⇒ )34()32( 2

    Solve the following ordinary differential equations. (d) 34222 2)42()42()1( xxyxxyxxxyxx −−=+++′++−′′+

    (Hint: xy = is a homogeneous solution) (5%)【92 北科冷凍】

    【範圍】§4-2 【分析】 xxhxaa =⇒=+ )(001 為齊性解 【詳解】令 )(xxy φ= ,則 )()( xxxy φφ ′+=′ )()(2 xxxy φφ ′′+′=′′ 代入 O.D.E.得 2)2()1( −−=′+−′′+ xxx φφ

    可降為一階 O.D.E. 12

    12

    ++

    −=′++

    −′

    xx

    xx

    dxd φφ

    積分因子:1

    )( 12

    +=∫=

    −++

    xeexI

    xdxxx

    通解: ∫ ++

    −=′ dxxxxIxI )

    12)(()( φ

    ∫ −−

    ++

    −=′+

    ⇒ dxexx

    xe xx

    2)1(2

    1φ ∫ −+

    ++−= dxe

    xx x

    2)1(1)1(

    範例 1

  • 92北科-36

    ∫∫ −− +−+−= dxexdxexxx

    2)1(1

    11

    ∫∫ −−

    ++

    ++

    +−= dxe

    xxedxe

    xx

    xx

    11

    111

    111c

    xe

    xe xx

    ++

    =′+

    ⇒−−

    φ

    )1(1 1 ++=′⇒ xecxφ

    21 cxecxx ++=⇒φ

    xcexcxxxy x 22

    12)( ++==∴ φ

    Apply the Laplace transform to solve 0)0()0(;142 =′==−′+′′ yyyyty (15%)【92 北科冷凍】

    【範圍】§8-1

    【分析】1£{ } )(ˆ)( sfdsdttf −= 2初值定理: )(ˆlim)0( sysy

    s ∞→=

    【詳解】 [ ]s

    yysdsdys 1ˆ4ˆ2ˆ2 =−−

    syy

    dsydsys 1ˆ4ˆ2ˆ

    2ˆ2 =−−−⇒

    sys

    dsyds 1ˆ)6(ˆ

    2 2 =−+−⇒ 221ˆ)

    23(

    ˆs

    yssds

    yd−=−+⇒

    1積分因子: 434ln4ln34ln3)

    23(

    22

    3

    22

    )(ss

    ss

    sssdss

    s eseeeeeesI−−−−−

    ====∫=

    2通解: ∫ +=−=−

    ces

    sIsysIs2

    41

    2 )21)(()(ˆ)(

    2

    41

    3311)(ˆ

    se

    sc

    ssy +=⇒

    由初值定理: )0()(ˆlim ysyss

    =→∞

    0)11(lim2

    41

    22 =+⇒ →∞s

    se

    sc

    s 0=⇒ c

    即 31)(ˆs

    sy = 221)( tty =⇒

    範例 2

  • 92北科-37

    Suppose a substance has density ),,( zyxρ , specific heat ),,( zyxc , and thermal conductivity ),,( zyxk . Let ),,,( tzyxT be the temperature of this substance at time t and point ),,( zyx . Consider an imaginary smooth closed surface Σ within the substance, bounding a solid region M. If Ν is the unit outer normal to Σ , from the energy balance we have

    ∫∫∫∫∫ ∂∂

    =Ν•∇Σ M

    dVtTcdTk ρσ)( .

    (a) Briefly explain the Gauss’s divergence theorem. (5%) (b) Apply the Gauss’s divergence theorem to the above energy balance result to

    obtain the heat conduction partial differential equation. (10%) (c) If the thermal conductivity k is constant and the substance is

    one-dimensional with length L and has the following conditions, find the solution of ),( txT .

    Boundary conditions ⎩⎨⎧

    ==

    BtLTAt0T

    ),(),(

    ,

    Initial condition )()0,( xxT φ= , Lx0

  • 92北科-38

    Tc

    ktT 2∇=∂∂

    ρ (heat conduction P.D.E.)

    (c) 令 ( ) ( ) ( )xstxtx += ,,T ω

    代入 P.D.E. 22

    xT

    ck

    tT

    ∂∂

    =∂∂

    ρ ( )xs

    ck

    xck

    t 22

    ′′+∂∂

    =∂∂

    ρω

    ρω

    B.C. ( )( )⎩

    ⎨⎧

    ==

    BtLuAt0u

    ,,

    ( ) ( )( ) ( )⎩

    ⎨⎧

    =+=+

    BLstLA0st0

    ,,

    ωω

    I.C. ( ) )(, x0xu φ= ( ) ( ) )(, xxstL φω =+ 1 steady state: O.D.E. ( )xs0 ′′=

    B.C. ( )( )⎩

    ⎨⎧

    ==

    BLsA0s

    ( ) AxL

    ABxs +−=

    2 transient state:

    P.D.E. 22

    xck

    t ∂∂

    =∂∂ ω

    ρω

    B.C. ( )( )⎩

    ⎨⎧

    ==

    0tL0t0

    ,,

    ωω

    I.C. ( ) ( ) ⎟⎠⎞

    ⎜⎝⎛ +

    −−=−= Ax

    LABxxsx0x )()(, φφω

    ( ) xL

    nebtx1n

    tL

    nc

    k

    n2

    22

    πωπ

    ρ sin, ∑∞

    =

    −=

    由 I.C. ( ) ⎟⎠⎞

    ⎜⎝⎛ +

    −−==∑

    =

    axL

    abxxL

    nb0x1n

    n )(sin, φπω

    得 ( )∫⎭⎬⎫

    ⎩⎨⎧

    ⎟⎠⎞

    ⎜⎝⎛ +

    −−=

    L

    0nxdx

    Lnax

    Labxf

    L2b πsin

  • 92北科-39

    【答案】 ( ) ( ) ( )xstxtx += ,,T ω xL

    neb1n

    tL

    nc

    k

    n2

    22

    ππρ sin∑∞

    =

    −= ⎟

    ⎠⎞

    ⎜⎝⎛ +

    −+ Ax

    LAB

    其中 ( )∫⎭⎬⎫

    ⎩⎨⎧

    ⎟⎠⎞

    ⎜⎝⎛ +

    −−=

    L

    0nxdx

    Lnax

    Labxf

    L2b πsin

    23)( xxf = for 40

  • 92北科-40

    Explain briefly the concepts and procedures to solve a system AXX =′ with A an nn× matrix of real numbers. (10%)【92 北科冷凍】

    【範圍】§24-4 【答案】完全抄襲 陳立工數 §24-4 題型1 課文

    範例 5

  • 92北科-41

    92北科車輛

    Solve the differential equation 0t =++dtdytey with the initial value 2)1( =y .

    (25%)【92 北科車輛】

    【範圍】§2-5

    【詳解】 tet

    ytdt

    dy 11 −=+

    積分因子: tetIdt

    t =∫=1

    )(

    通解: ∫ +−=−

    = cedtet

    tIytI tt1)()( tce

    ty t +−=⇒ 1

    由 I.C. 22)1( +=⇒=+−= eccey

    tee

    tty t 21)( ++−=∴

    Find the values )1(y and )2(y for the differential equation )(tfydtdy

    =+

    with the initial value 1)0( =y , where ⎪⎩

    ⎪⎨

    <≤<

    ≤=

    tt

    ttf

    2 ,021 ,1

    1 ,0)( .

    (25%)【92 北科車輛】

    範例 1

    範例 2

  • 92北科-42

    【範圍】§8-1

    【詳解】O.D.E. )2()1( −−−=+ tutuydtdy

    取 Laplace transform

    { } ss es

    es

    syss 211)()0()( −− −=Υ+−Υ

    ss es

    es

    ss 2111)()1( −− −+=Υ+⇒

    ss ess

    esss

    s 2)1(

    1)1(

    11

    1)( −−+

    −+

    ++

    =Υ⇒

    ss ess

    esss

    2)1

    11()1

    11(1

    1 −−+

    −−+

    −++

    =

    [ ] [ ] )2(1)1(1)( )2()1( −−−−−+=⇒ −−−−− tuetueety ttt 1)1( −= ey

    12 1)2( −− −+= eey

    Let ⎥⎦

    ⎤⎢⎣

    ⎡=

    2112

    A .

    (a) (15%) Find the eigenvalues and eigenvectors of the matrix A.

    (b) (10%) Find the value of Ae . ( Ae is defined as LL++++!3!2!1

    32 AAAI )

    【92 北科車輛】

    【範圍】§24-3

    【詳解】(a) 021

    12)det( =⎥

    ⎤⎢⎣

    ⎡−

    −=Ι−

    λλ

    λA 3,1=⇒ λ

    範例 3

  • 92北科-43

    ⎥⎦

    ⎤⎢⎣

    ⎡−

    =⎥⎦

    ⎤⎢⎣

    ⎡⇒⎥

    ⎤⎢⎣

    ⎡=⎥

    ⎤⎢⎣

    ⎡⎥⎦

    ⎤⎢⎣

    ⎡=

    11

    00

    1111

    :1 12

    1

    2

    11 kx

    xxx

    λ

    ⎥⎦

    ⎤⎢⎣

    ⎡=⎥

    ⎤⎢⎣

    ⎡⇒⎥

    ⎤⎢⎣

    ⎡=⎥

    ⎤⎢⎣

    ⎡⎥⎦

    ⎤⎢⎣

    ⎡−

    −=

    11

    00

    1111

    :3 22

    1

    2

    12 kx

    xxx

    λ

    (b) 取 ⎥⎦

    ⎤⎢⎣

    ⎡=

    3001

    D , ⎥⎦

    ⎤⎢⎣

    ⎡−

    =1111

    P , ⎥⎦

    ⎤⎢⎣

    ⎡ −=−

    1111

    211P

    則可將 A對角化成 1−= PDPA

    Ae 1−= PPeD ⎥⎦

    ⎤⎢⎣

    ⎡−

    =1111

    ⎥⎦

    ⎤⎢⎣

    ⎡3

    1

    00e

    e⎥⎦

    ⎤⎢⎣

    ⎡ −1111

    21

    Determine the Fourier series representation of the steady-state output )(ty for

    the dynamic equation )(tfydtdy

    =+ , where the input ∑∞

    = −+=

    12 1

    )sin(21)(

    n ntntf π .

    (25%)【92 北科車輛】

    【範圍】附錄 §2-9

    【詳解】 ⎥⎦

    ⎤⎢⎣

    ⎡−

    ++

    =+

    = ∑∞

    =12 1

    )sin(21

    11)(

    11

    np n

    tnD

    tfD

    y π = ∑∞

    = −++

    12 1

    )sin(1

    121

    n ntn

    = ∑∞

    = −−−

    +1

    22 1)sin(

    11

    21

    n ntn

    DD π = ∑

    = −−−−

    +1

    222 1)sin(

    11

    21

    n ntn

    nD ππ

    = ∑∞

    = −+−

    +1

    222 )1)(1()cos()sin(

    21

    n nntnntn

    ππππ

    範例 4

  • 92北科-44

    92北科高分子

    0)2( 223 =′−+ yxyxy (10%)【92 北科高分子】

    【範圍】§2-4 【詳解】 02 223 =−+ dyxydyxdxy 0)2( 22 =+−⇒ dyxxdyydxy

    0232

    2 =+⇒ −−

    dyxy

    dxyy 0225 =+⇒ dyx

    yxdy

    同 4y÷ ,得 042

    2 =+ dyyx

    yxyd 0

    y42

    2 =+⇒dy

    yx

    yxd

    由分離變數法,將上式同 42

    yx

    ÷ ,得 0)(

    )(

    22

    2

    =+y

    dy

    yxyxd

    積分得 cy

    yx

    lnln1 =+− cye xy

    lnlnln =+⇒−

    cye xy

    lnln =⇒−

    cye xy

    =⇒−

    0)sinh()4cosh3( =++ dyyxdxxy (10%)【92 北科高分子】

    【範圍】§2-5

    範例 1

    範例 2

  • 92北科-45

    【詳解】 xydxdyyx 4cosh3sinh −=+

    令 yu cosh= ,則dxdyyu sinh=′

    代入 O.D.E.得 xuux 43 −=+′ 43 −=+′⇒ ux

    u

    積分因子: 33

    )( xexIdx

    x =∫=

    通解: ∫ −= dxxIuxI )4)(()( cxdxxux +−=−=⇒ ∫ 433 4

    3xcxu +−=⇒

    3cosh xcxy +−=∴

    222 22 +=+′−′′ xyyxyx (10%)【92 北科高分子】

    【範圍】§4-1

    【詳解】令dtdDxtex t === ,ln,

    則{ } 222)1( 2 +=+−− teyDDD

    2)1)(2(

    11

    12

    1 2221 −−

    +−−

    ++=⇒DD

    eDD

    ececy ttt

    12

    1 2221 +−

    ++= ttt eD

    ecec 12221 +++=ttt teecec

    1ln2221 +++= xxxcec

    範例 3

  • 92北科-46

    342

    =+′+′=++′−′

    xyxtyxyx

    , solve )(),( tytx . (10%)【92 北科高分子】

    【範圍】Ch5

    【詳解】⎩⎨⎧

    =++=−−+

    3)4()1()12(

    DyxDtyDxD

    由 Cramer rule

    ⎪⎪⎩

    ⎪⎪⎨

    ++

    =+

    −−+

    −−=

    +−−+

    3412

    4)1(12

    3)1(

    4)1(12

    DtD

    yDDDD

    DDt

    xDDDD

    ⎩⎨⎧

    −=−+−=−+

    ⇒txDD

    xDD42)443(

    2)443(2

    2

    ⎪⎩

    ⎪⎨

    −=+−

    −=+−⇒

    tyDD

    xDD

    34

    32)2)(

    32(

    32)2)(

    32(

    ⎪⎪⎩

    ⎪⎪⎨

    +++=

    ++=⇒

    tececty

    ecectx

    tt

    tt

    21)(

    21)(

    24

    32

    3

    22

    32

    1

    代入 34 =+′+′ xyx

    得 12322

    32 2

    432

    32

    232

    1 +−+−−− tttt ecececec 3244 223

    2

    1 =+++− tt ecec

    ⎩⎨⎧

    =−=

    ⇒24

    13 7cc

    cc

    ⎪⎪⎩

    ⎪⎪⎨

    +++=

    ++=

    tececty

    ecectx

    tt

    tt

    21)(

    21)(

    24

    32

    3

    22

    32

    1

    範例 4

  • 92北科-47

    Find the eigenvalue and eigenfunction of the of the following problem: 0=+′′ yy λ with 0)4()3( == yy . (10%)【92 北科高分子】

    【範圍】§11-1 【詳解】令座標平移 3−= xt

    則 O.D.E. 022

    =+ ydt

    yd λ

    B.C. 010==

    == ttyy

    得⎩⎨⎧

    −=∈=

    )(sinsin:oneigenfunti)(:eigenvalue

    3xntnNnn 22

    πππλ

    Please find the Inverse Laplace Transform of the following:

    (a) 1)3(

    53)(Y 2 +++

    =s

    ss (5%)【92 北科高分子】

    【範圍】§7-2

    【詳解】1)3(4)3(3

    1)3(53)( 22 ++

    −+=

    +++

    =ss

    sssY

    1)3(14-

    1)3(33 22 ++++

    +=

    sss

    故 tettty 3)sin4cos3()( −−=

    Please find the Inverse Laplace Transform of the following:

    (b) )4(

    1)( 2 +=

    sssY (5%)【92 北科高分子】

    範例 5

    範例 6

    範例 6

  • 92北科-48

    【範圍】§7-1

    【詳解】4

    41

    41

    )4(1)( 22 +

    −+=

    +=

    s

    s

    ssssY

    故 tty 2cos41

    41)( −=

    Using Frobenius theorem (power series) to solve the following equation: 0=+′+′′ yyyx (20%)【92 北科高分子】

    【範圍】§9-3 【詳解】 0=xQ 為規則奇點

    ∴令 ∑∑∞

    =

    +∞

    =

    ===00 n

    rnn

    n

    nn

    r xaxaxy

    則 ∑∞

    =

    −++=′0

    1)(n

    rnn xarny

    ∑∞

    =

    −+−++=′′0

    2)1)((n

    rnnxarnrny

    代入 O.D.E. 0=+′+′′ yyyx

    得 ∑∑∑∞

    =

    +∞

    =

    −+∞

    =

    −+ =+++−++00

    1

    0

    1 0)()1)((n

    rnn

    n

    rnn

    n

    rnn xaxarnxarnrn

    ∑∑∑∞

    =

    −+∞

    =

    −+∞

    =

    −+ =+++−++⇒1

    1

    0

    1

    0

    1 0)()1)((n

    rnn

    n

    rnn

    n

    rnn xaxarnxarnrn

    0=n : 0,00)1( =⇒=+− rrrr 1≥n : [ ] 0)()1)(( 1 =+++−++ −nn aarnrnrn

    12)(1

    −+−= nn arn

    a (降 1遞迴)

    範例 7

  • 92北科-49

    令 00 =a

    則 2021 )1(1

    )1(1

    +−=

    +−=

    ra

    ra

    22122 )1()1(1

    )2(1

    ++−=

    +−=

    rra

    ra

    222123 )1()1()1(1

    )3(1

    +++−=

    +−=

    rrra

    ra

    M

    M

    { }LL++++=∴ 332210 xaxaxaaxy r

    { 2222 )2()1(1

    )1(11 x

    rrx

    rxr

    +++

    +−=

    }L++++

    − 3222 )3()2()1(1 x

    rrr

    則⎩⎨⎧

    ⎥⎦⎤

    ⎢⎣⎡

    +−

    +−+⋅=

    ∂∂ x

    rrxyx

    ry r

    112

    )1(1ln 2

    222 212

    112

    )2()1(1 x

    rrrr ⎥⎦⎤

    ⎢⎣⎡

    +−

    +−

    +++

    }L+⎥⎦⎤

    ⎢⎣⎡

    +−

    +−

    +−

    +++− 3222 3

    122

    121

    12)3()2()1(

    1 xrrrrrr

    故 L+−+−=== 321 361

    411)0( xxxryy

    且 L+−−−−−−++⋅= 3212 )3212(

    361)12(

    412ln xxxyxy

    L++−+⋅= 321 10811

    432ln xxxyx

    得通解 2211 ycycy +=

  • 92北科-50

    Find the Fourier Series of the following function: π+= xxf )( , if ππ

  • 92北科-51

    92北科電腦通訊甲、乙、丁組

    A system consists of four switches is illustrated in Fig. 1. 1A is the event that switch 1C is connected,

    2A is the event that switch 2C is connected,

    3A is the event that switch 3C is connected, and

    4A is the event that switch 4C is connected, If 1A , 2A , 3A , 4A are independent events, 1.0)( 1 =AP , 2.0)( 2 =AP ,

    3.0)( 3 =AP , and 4.0)( 4 =AP , find the probability that electrical current can pass through the system.

    (5%)【92 北科電腦】

    【範圍】機率 【答案】0.1624

    A continuous random variable X has a pdf (probability density function ) of the form 9/2)( xxf x = for 30

  • 92北科-52

    【範圍】機率

    【答案】(a) 2][ =XE (b) 21XVar =][ (c)

    3625511XP =≤− ].[

    Let X and Y be continuous random variables with a joint pdf (probability density function) of the form )(),( yxkyxf XY += for 10 ≤≤≤ yx and zero otherwise. (a) Find k such that ),( yxf XY is a joint pdf. (5%)

    (b) Find the conditional pdf )( xyf XY . (5%)

    (c) Find ][ 2YXE . (5%) 【92 北科電腦】

    【範圍】機率 【答案】(a)k=2

    (b)⎪⎩

    ⎪⎨⎧

  • 92北科-53

    【範圍】機率 【答案】(a) 0.7696 (b) )2.083()2.083()2.083( Φ−=−Φ−Φ 21 (查表)

    Let W be the subspace of 4R consisting of vectors of the form

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    =

    4

    3

    2

    1

    xxxx

    x . All vectors x in W satisfy 0321 =−+ xxx and 042 =− xx .

    (a) Find the dimention of W. (5%) (b) Find a basis for W. (5%) (c) Find an orthonormal basis for W. (5%) 【92 北科電腦】

    【範圍】電機線代

    【答案】 (b)

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    +

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    =

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    +=

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    =

    1110

    x

    0101

    x

    xxx

    xx

    xxxx

    x 21

    2

    21

    2

    1

    4

    3

    2

    1

    (a) dim(W)=2

    (c) {⎥⎥⎥⎥

    ⎢⎢⎢⎢

    0101

    21 ,

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    ⎡−

    0121

    101 }

    範例 5

  • 92北科-54

    Let V be 3R and let },,{ 321 XXXS = and },,{ 321 YYYT be bases for 3R ,

    where ⎥⎥⎥

    ⎢⎢⎢

    ⎡=

    102

    1X , ⎥⎥⎥

    ⎢⎢⎢

    ⎡=

    021

    2X , ⎥⎥⎥

    ⎢⎢⎢

    ⎡=

    111

    3X and ⎥⎥⎥

    ⎢⎢⎢

    ⎡=

    336

    1Y , ⎥⎥⎥

    ⎢⎢⎢

    ⎡−=31

    4

    2Y , ⎥⎥⎥

    ⎢⎢⎢

    ⎡=

    255

    3Y .

    Compute the transition matrix P from the T-basis to the S-basis. (10%)【92 北科電腦】

    【範圍】電機線代

    【答案】

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡−=

    111211122

    P

    Let ⎥⎦

    ⎤⎢⎣

    ⎡−

    =4211

    A and ⎥⎦

    ⎤⎢⎣

    ⎡−

    =1201

    B .

    (a) Which matrix is diagonalizable? (5%) (b) If A is diagonalizable, find a nonsingular matrix P such that APP 1− is

    diagonal; If B is diagonalizable, find a nonsingular matrix Q such that AQQ 1− is

    diagonal. (10%) 【92 北科電腦】

    【範圍】§24-3 【詳解】(a) A可對角化;而 B為下三角矩陣,特徵值為對角線上元素

    1 1,=λ ,即特徵值全為重根,故不可對角化。

    範例 6

    範例 7

  • 92北科-55

    (b) 由 0)det( =− IA λ ⇒ 042

    11=

    −−−

    λλ

    ⇒ 3,2=λ

    1 2=λ : ⎥⎦

    ⎤⎢⎣

    ⎡=⎥

    ⎤⎢⎣

    ⎡11

    12

    1 kxx

    ;2 3=λ : ⎥⎦

    ⎤⎢⎣

    ⎡=⎥

    ⎤⎢⎣

    ⎡21

    22

    1 kxx

    令 ⎥⎦

    ⎤⎢⎣

    ⎡=

    2111

    P ,可使得 ⎥⎦

    ⎤⎢⎣

    ⎡==−

    30021 DAPP

    Find the rank of

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    −−

    −−

    =

    232383191121

    A . (10%)【92 北科電腦】

    【範圍】§22-2

    【詳解】

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    −−

    −−

    =

    232383191121

    A ~

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    ⎡ −

    0700140070121

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    ⎡ −

    000000070121

    2)( =Arank

    範例 8

  • 92北科-56

    92北科電腦通訊丙組

    Solve the non-homogeneous equation xexyyy 82 +=+′−′′ (20%)【92 北科電腦】

    【範圍】§3-3 【詳解】 齊性解: 1,10122 =⇒=+− mmm

    xxh xeCeCy 21 +=∴

    特解:由特定係數法,令 xp eCxBAxy2++=

    代入得 4,2,1 === CBA

    xp exxy242 ++=∴

    通解: xxxph exxxeCeCyyy2

    21 42 ++++=+=

    【另解】由逆算子法 xp eDx

    DDy 8

    )1(1

    121

    22 −+

    +−=

    = 81)21( 2DexD x+++ LL = xexx 242 ++

    Find the Laplace transform of the following function with period ωπ2

    =T :

    tVtv m ωsin)( = when ωπ /0

  • 92北科-57

    【範圍】§7-4 【詳解】取 Laplace transform

    £{ } ∫ −−−=T st

    sT dtetvetv

    0)(

    11)( ∫ −−

    −= ω

    π

    ωπ

    2

    0s2)(

    1

    1 dtetve

    st

    ∫ −− ⋅−

    = ωπ

    ωπ ω02 sin

    1

    1 dtetVe

    stm

    s

    s

    m

    e

    V

    ωπ2

    1−

    −=

    ωπ

    ωωωω

    =

    =

    −−+

    t

    t

    st

    ttse

    022 )cossin(s

    )1(1

    222

    s

    s

    m es

    e

    V ωπ

    ωπ ω

    ω −−

    ++

    −= 22

    ω

    ωπ +

    −=

    − se

    Vs

    m

    【積分公式】 cttsedtetst

    st +−−+

    =⋅−

    −∫ )cossin(ssin 22 ωωωωω

    cttsedtetst

    st ++−+

    =⋅−

    −∫ )sincos(scos 22 ωωωωω

    Show that if )(tf has the Fourier transform )(ωF and )(tg has the Fourier transform )(ωG , then the convolution of the two functions )()( tgtf ∗ has the Fourier transform )()( ωω GF . (20%)【92 北科電腦】

    【範圍】§13-3

    【詳解】F { } dtedgtftgtf ti ])()([)()( ωτττ −∞∞−

    ∞−−=∗ ∫∫

    令 τ−= tu ,則 dudt =

    上式 duedguf ui )( )()( τωττ +−∞

    ∞−

    ∞− ∫∫=

    範例 3

  • 92北科-58

    ])([ dueuf uiω−∞

    ∞−∫= ])([ ττ τω deg i−

    ∞−∫⋅

    ])t([ dtef tiω−∞

    ∞−∫= ])([ dtetg tiω−

    ∞−∫⋅

    =F }{ f F }{g = )()( ωω GF

    Integrate maz )/(1 − (m is a positive integer) in the counterclockwise sense round any simple closed path C enclosing the point az = .

    (20%)【92 北科電腦】

    【範圍】§28-2

    【詳解】1 1−≠m : dzazC

    m∫ − )(

    0

    0

    i0

    2i0

    1m0

    rezzrezz

    1mzz

    θ

    πθ

    +=+=

    +−

    =++ )()(

    [ ] 01ee1m

    r 1n2i1ni1m 0 =−+

    = +++

    )()( πθ

    2 1m −= :

    0

    0

    i

    2i

    C

    1

    reazreaz

    azdzaz θπθ

    +=+=

    −=−+

    −∫)(

    )ln()(

    [ ] )ln(ln )( 00 i2i rere θπθ −= + i2ir2ir 00 πθπθ =−−++= ln)(ln

    Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem 0=+′′ yy λ , 0)0( =y , 0)( =πy . (20%)【92 北科電腦】

    範例 4

    範例 5

  • 92北科-59

    【範圍】§11-1

    【詳解】○1 相異實根:令 ∞

  • 92北科-60

    92北科電機丁、戊組

    One bag contains 4 white balls and 3 black balls, and a second bag contains 3 white balls and 5 black balls. One ball is drawn from the first bag and placed unseen in the second bag. What is the probability that a ball now drawn from the second bag is black? (10%)【92 北科電機】

    【範圍】機率

    【答案】6338

    Consider two random variables X and Y. the conditional probability density function of X given Y has a Poisson distribution with rate y:

    !

    )/(xeyyxf

    yx

    YX

    = K,2,1,0=x

    The probability density function of variable Y is given by

    ⎩⎨⎧ ∞

  • 92北科-61

    (You may assume !0

    nden =∫∞

    − µµ µ for a positive integer n) 【92 北科電機】

    【範圍】機率

    【答案】(a) ⎪⎩

    ⎪⎨⎧

    >==

    .).(

    ),,,,,(!),(YX,

    wo0

    0y3210xxey2

    yxfy3x

    L

    (b) ),,,,(3

    )( 1X L3210x2xf x == +

    (c) ),,,,,(!

    )()(XY 0y3210xxey33xyf

    y3x

    >==−

    L

    (d) ][ XYE3

    1x +=

    Let X be a Gaussian random variable with probability density function

    22

    2x

    2Xe

    21xf σπσ

    −=)(

    Find the probability density function of the random variable 24XZ = . (10%)【92 北科電機】

    【範圍】機率

    【答案】28

    z

    2Ze

    z221xf σπσ

    −=)(

    範例 3

  • 92北科-62

    Let X, Y be two independent random variables with probability density functions Xf and Yf , respectively. Let the random variable Z = X+Y, show that the probability density function of the random variable Z is YXZ fff ∗= where ∗ denotes the convolution operation. (10%)【92 北科電機】

    【範圍】機率 【答案】詳見上課講義

    Label the following statements as being true or false:(assume that all matrices in the following items are real, 2 points for each item with correct answer, -2 points for each item with incorrect answer, 0 points for each item with no answer) (a) The rank of a matrix is equal to the number of its nonzero columns. (b) The product of two matrices always has rank equal to the lesser of the ranks

    of two matrices. (c) The determinant of a diagonal matrix is the product of its diagonal entries. (d) If E is an elementary matrix, then 1)det( ±=E . (e) Similar matrices always have the same eigenvectors. (10%)【92 北科電機】

    【答案】(a) false (b) false (c) true (d) false (e) false

    Let D, E be ordered bases for R3 given by ]}6,1,2[],1,5,3[],2,2,1{[=D ]}1,5,0[],8,41,0[],1,4,1{[=E

    (a) (10%) Find the transition matrix form D-coordinates to E-coordinates (b) (5%) Let ]1,8,3[ −=v , find Dv][ :the D-coordinates of vector v.

    【92北科電機】

    範例 4

    範例 5

    範例 6

  • 92北科-63

    【範圍】電機線代

    【答案】(a) transition matrix ⎥⎥⎥

    ⎢⎢⎢

    −−−−=2202657

    2737231

    T

    (b) Dv][ ],,2[ 11 −=

    Consider the following matrix

    ⎥⎥⎥

    ⎢⎢⎢

    −−−−

    =021232120

    A

    (a) (10%) Find the eigenvalues and the corresponding eigenvectors of A. (b) (5%) Find the orthonormal matrix U such that A = UDUT where D is

    diagonal. (c) (5%) Give the definition of the Hermitian matrix. Is A a Hermitian

    matrix? (d) (5%) Give the definition of the positive definite matrix. Is A a positive

    definite matrix? 【92 北科電機】

    【範圍】§25-4

    【詳解】(a) =− )det( IA λ 0021

    232120

    =⎥⎥⎥

    ⎢⎢⎢

    −−−−−−−

    λλ

    λdet 511 ,,−−=λ

    範例 7

  • 92北科-64

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡=

    ⎥⎥⎥

    ⎢⎢⎢

    ⎥⎥⎥

    ⎢⎢⎢

    −−−−

    −−=000

    xxx

    121242121

    11

    3

    2

    1

    :,λ ⎥⎥⎥

    ⎢⎢⎢

    ⎡−

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡=

    ⎥⎥⎥

    ⎢⎢⎢

    01

    2

    101

    xxx

    3

    2

    1

    ,

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡=

    ⎥⎥⎥

    ⎢⎢⎢

    ⎥⎥⎥

    ⎢⎢⎢

    −−−−−−−

    =000

    xxx

    521222125

    5

    3

    2

    1

    :λ ⎥⎥⎥

    ⎢⎢⎢

    −=

    ⎥⎥⎥

    ⎢⎢⎢

    121

    xxx

    3

    2

    1

    (b) 將 eigenvectors 取 Gram – Schmidt正交化,

    ⎥⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢⎢

    −−

    −=

    61

    31

    21

    62

    310

    61

    31

    21

    U

    可將 A正交對角化成 A = UDUT ,其中⎥⎥⎥

    ⎢⎢⎢

    ⎡−

    −=

    500010001

    D

    (c) Hermitian matrix : AA =∗

    ⎥⎥⎥

    ⎢⎢⎢

    −−−−

    =021232120

    A 為 Hermitian matrix

    (d) 511 ,,−−=λ 不全大於 0,故 A非正定

  • 92北科-65

    92北科電機甲、乙、丙組

    Let xey 31−= be one of the solutions to the differential equation

    096 =+′+′′ yyy . (a) Derive the other linearly independent solution 2y from 1y . (10%) (b) Show they are indeed linearly independent. (5%) (c) Find the dimension of the solution space. (5%) 【92 北科電機】

    【範圍】§4-2 【詳解】(a)令 )(3 xey xφ−= 則 )()(3 33 xexey xx φφ ′+=′ −− )()(6)(9 333 xexexey xxx φφφ ′′+′−=′′ −−− 代入 O.D.E. 096 =+′+′′ yyy 得 2)(0)( cxx =′⇒=′′ φφ 12)( cxcx +=⇒φ 故 x32

    x3x3 xece9xey −−− +== )(φ ,即另一組解 x32 xey−=

    (b) 0)31(3

    ),( 63333

    21 ≠=−−= −

    −−

    −−x

    xx

    xx

    eexe

    xeeyyW

    故 1y 與 2y 為 L.I. (c) dimension=2

    Solve )(22 πδ −=+′+′′ tyyy ; 0)0()0( =′= yy . (15%)【92 北科電機】

    【範圍】§8-1

    範例 1

    範例 2

  • 92北科-66

    【詳解】取 Laplace transform sesYss π−=++ )()22( 2

    ses

    sY π−++

    =⇒1)1(

    1)( 2

    )()sin()( )( ππ π −−=⇒ −− tuetty t

    Consider the periodic function ∑∞

    −∞=

    =n

    jnten

    tfπ2

    2)( , 0≠n .

    (a) Find the forced response of )(2502.0 tfyyy =+′+′′ in the form of complex Fourier series. (10%)

    (b) Express the derived response in trigonometric form. (5%) 【92 北科電機】

    【範圍】附錄 §2-9 【詳解】(a) 特解 (forced response)

    jnt2

    0nn

    2jnt

    0nn

    22p e25D020D1

    n2e

    n2

    25D020D1y

    ++=

    ++= ∑∑

    ≠−∞=

    ≠−∞= .. ππ

    jnt20n

    n2 e25jn020jn

    1n

    2++

    = ∑∞

    ≠−∞= .)(π

    jnt2

    0nn

    2 e25jn020n1

    n2

    ++−= ∑

    ≠−∞= .π

    (b) )sin(cos.)(25

    ntjntnj020n

    1n

    2y 20n

    n2p ++−

    = ∑∞

    ≠−∞= π

    範例 3

  • 92北科-67

    )sin(cos.)(25.)(25 ntjnt

    n00040nnj020n

    n2

    222

    2

    0nn

    2 ++−−−

    = ∑∞

    ≠−∞= π

    222

    2

    0nn

    2 n00040nntn020ntn

    n2

    .)(25sin.cos)(25

    +−+−

    = ∑∞

    ≠−∞= π

    222

    2

    0nn

    2 n00040nntn020ntn

    n2j

    .)(25cos.sin)(25

    +−−−

    + ∑∞

    ≠−∞= π

    222

    2

    0nn

    2 n00040nntn020ntn

    n2

    .)(25sin.cos)(25

    +−+−

    = ∑∞

    ≠−∞= π

    222

    2

    0nn

    2 n00040nntn020ntn

    n2j

    .)(25cos.sin)(25

    +−−−

    + ∑∞

    ≠−∞= π

    ( )奇函數偶函數 j0n

    n∑∞

    ≠−∞=

    += ( 01n

    += ∑∞

    =

    )2 偶函數

    222

    2

    1n2 n00040n

    ntn020ntnn

    4.)(25

    sin.cos)(25+−+−

    =∑∞

    = π

    Suppose that S consists of all vectors ),,,( xyyx −− in 4R . (a) Show that S is a subspace. (5%) (b) Determine a basis for the subspace S of 4R . (5%) (c) Determine the dimension of the subspace. (5%) 【92 北科電機】

    【範圍】電機線代

    範例 4

  • 92北科-68

    【詳解】(b)

    tt

    01

    10

    y

    1001

    xxyyx

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    −+

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    =−− ),,,(

    (a) 由封閉性可證明 S為 4R 之子空間(subspace) (c) dim(S)=2

    Let ⎥⎦

    ⎤⎢⎣

    ⎡ −=

    3120

    A and )sin()( xxf = .

    (a) Find the eigenvalues of )(Af . (5%) (b) Find )(Af . (10%) 【92 北科電機】

    【範圍】§24-3

    【詳解】 031

    2)det( =⎥

    ⎤⎢⎣

    ⎡−−−

    =Ι−λ

    λλA 2,1=⇒ λ

    ⎥⎦

    ⎤⎢⎣

    ⎡−

    =⎥⎦

    ⎤⎢⎣

    ⎡⇒⎥

    ⎤⎢⎣

    ⎡=⎥

    ⎤⎢⎣

    ⎡⎥⎦

    ⎤⎢⎣

    ⎡−−−

    =1

    200

    4121

    :1 12

    1

    2

    1 kxx

    xx

    λ

    ⎥⎦

    ⎤⎢⎣

    ⎡−

    =⎥⎦

    ⎤⎢⎣

    ⎡⇒⎥

    ⎤⎢⎣

    ⎡=⎥

    ⎤⎢⎣

    ⎡⎥⎦

    ⎤⎢⎣

    ⎡ −−=

    11

    00

    1122

    :2 22

    1

    2

    1 kxx

    xx

    λ

    (a) f(A)之特徵值為 )1(s)1( inf = , )2(s)2( inf =

    (b)令 ⎥⎦

    ⎤⎢⎣

    ⎡=

    2001

    D , ⎥⎦

    ⎤⎢⎣

    ⎡−−

    =11

    12P , ⎥

    ⎤⎢⎣

    ⎡−−

    =21

    111P

    可將 A對角化成 1−= PDPA

    則 11)2(0

    0)1()()( −− ⎥

    ⎤⎢⎣

    ⎡== p

    ff

    pPDPfAf

    ⎥⎦

    ⎤⎢⎣

    ⎡−−

    =11

    12⎥⎦

    ⎤⎢⎣

    ⎡2sin0

    0sin1⎥⎦

    ⎤⎢⎣

    ⎡−− 2111

    ⎥⎦

    ⎤⎢⎣

    ⎡+−+−−−

    =21212212212

    sin2sinsinsinsinsinsinsin

    範例 5

  • 92北科-69

    Consider the quadratic form 3122

    21 222 xxxx ++ . Find the matrix Q that

    transforms the quadratic form into the standard form (i.e., 233222

    211 yyy λλλ ++ )

    (20%)【92 北科電機】

    【範圍】§25-4

    【詳解】 3122

    21 222 xxxx ++ [ ]

    ⎥⎥⎥

    ⎢⎢⎢

    ⎥⎥⎥

    ⎢⎢⎢

    =

    3

    2

    1

    321

    xxx

    002020201

    xxx xAxt=

    其中⎥⎥⎥

    ⎢⎢⎢

    =002020201

    A

    =− )det( IA λ 0002

    02020

    =⎥⎥⎥

    ⎢⎢⎢

    −−

    λλ

    λ1det 122 −= ,,λ

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡=

    ⎥⎥⎥

    ⎢⎢⎢

    ⎥⎥⎥

    ⎢⎢⎢

    −=

    000

    xxx

    202000201

    22

    3

    2

    1

    :,λ

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡=

    ⎥⎥⎥

    ⎢⎢⎢

    31032

    010

    xxx

    3

    2

    1

    ,

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡=

    ⎥⎥⎥

    ⎢⎢⎢

    ⎥⎥⎥

    ⎢⎢⎢

    −=000

    xxx

    102030202

    1

    3

    2

    1

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    =⎥⎥⎥

    ⎢⎢⎢

    32

    03

    1

    xxx

    3

    2

    1

    範例 6

  • 92北科-70

    取 transfer matrix

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    =

    32

    03

    1

    31032

    010

    Q

    令座標旋轉

    ⎥⎥⎥

    ⎢⎢⎢

    3

    2

    1

    xxx

    Q=⎥⎥⎥

    ⎢⎢⎢

    3

    2

    1

    yyy

    可將 quadratic form 3122

    21 222 xxxx ++ xAx

    t=

    轉成 standard form

    [ ] 2322213

    2

    1

    321 yy2y2yyy

    100020002

    yyy −+=⎥⎥⎥

    ⎢⎢⎢

    ⎥⎥⎥

    ⎢⎢⎢

  • 92北科-71

    92北科製造

    Solve the following differential equations. In case the power series method is used, at least four (4) non-zero terms must be given. (a) 3168 =+′−′′ yyxy ; 0)0()0( =′= yy . (15%)【92 北科製造】

    【範圍】§9-2 【詳解】 3168 +−′=′′ yyxy 33)0(16)0( =+−=′′ yy yxyy ′′+′−=′′′ 88 0)0(8)0( =′−=′′′ yy yxy ′′′= 8)4( 0)0()4( =y

    M

    M

    )4()5( 88 xyyy +′′=

    0)0(8)0()5( =′′′= yy

    代入 Taylor級數

    L+++′′′

    +′′

    +′

    += 5)5(

    4)4(

    32

    !5)0(

    !4)0(

    !3)0(

    !2)0(

    !1)0()0()( xyxyxyxyxyyxy

    223)( xxy =⇒

    (b) Let 1)( 2 −= xxy be a solution of the ODE 022)1( 2 =+′−′′+ yyxyx . Find its general solution. (15%)【92 北科製造】

    【範圍】§4-2

    範例 1

    範例 1

  • 92北科-72

    【詳解】令 )()1( 2 xxy φ−= 則 )()1()(2 2 xxxxy φφ ′−+=′ )()1()(4)(2 2 xxxxxy φφφ ′′−+′+=′′ 代入 022)1( 2 =+′−′′+ yyxyx 得 0)1(2)1(4)1)(1( 2222 =′+−′++′′++ φφφ xxxxxx 0)62()1)(1( 322 =′++′′++⇒ φφ xxxx

    0)1)(1)(1(

    622

    3

    =′−++

    ++′′⇒ φφ

    xxxxx

    0)1

    21

    21

    2( 2 =′+−

    −+

    ++′

    ⇒ φφx

    xxxdx

    d

    由分離變數法

    0)1

    21

    21

    2( 2 =+−

    −+

    ++

    ′′

    dxx

    xxx

    dφφ

    積分得 12 ln)1ln()1ln(2)1ln(2ln cxxx =+−−+++′φ

    1222 ln)1ln()1ln()1ln(ln cxxx =+−−+++′⇒ φ

    12

    22

    ln1

    )1()1(ln cx

    xx=

    +−+′⇒ φ

    ⎥⎦

    ⎤⎢⎣

    ⎡−

    ++

    =−+

    +=′⇒ 22

    122

    2

    1 )1(1

    )1(1

    2)1()1(1

    xxc

    xxxcφ

    21 )

    11

    11(

    2)( c

    xxcx +

    −+

    +−=⇒φ

    221 1c

    xxc +−

    −=

    故 )1()()1( 2212 −+−=− xcxcxxy φ

    (c) )cos(4)4( xyy −=− . (15%)【92 北科製造】

    【範圍】§3-3 【詳解】 齊性解: imm ±±=⇒=− ,1014

    範例 1

  • 92北科-73

    xcxcececy xxh sincos 4321 +++=⇒−

    特解: 由待定係數法

    令 xBxxAxyp sincos +=

    代入得 1,0 == BA

    故 xxyp sin=

    通解:

    xxxcxcececyyy xxph sinsincos 4321 ++++=+=−

    【另解】 )cos4(1

    11

    1)cos4(1

    1224 xDD

    xD

    yp −−+=−

    −=

    xxxD

    sincos21

    12 =+

    =

    (d) Find )(yx satisfies ODE 0)1( =+′− yy eyxe . (15%)【92 北科製造】

    【範圍】§2-3

    【詳解】 0)1( =+− yy edxdyxe

    0)1( =−+⇒ dyxedxe yy

    )1( −∂∂

    =∂∂ yy xe

    ye

    yQ

    ∴此為正合方程式 ),( yxφ∃

    範例 1

  • 92北科-74

    ⎪⎪⎩

    ⎪⎪⎨

    −=∂∂

    =∂∂

    ∋1y

    y

    xey

    exφ

    φ

    )(

    )(

    2

    1

    xkyxe

    ykxe

    y

    y

    +−=

    +=

    φ

    φ

    故 cyxeyx y =−=),(φ 即本題之解為 )()( cyeyx y += −

    Prove the Laplace transform of the Dirac delta function at a is )exp( as− , i.e., to prove £ aseat −=− )]([δ Where £[.] denotes the Laplace transform from t to s. (20%)【92 北科製造】

    【範圍】§7-1

    【分析】ε

    εδε

    )()(lim)( −−−−=−→

    atuatuat0

    【詳解】£{ }=− )( atδ £⎭⎬⎫

    ⎩⎨⎧ −−−−

    → εε

    ε

    )()(lim0

    atuatu

    )00(~

    11

    lim

    )(

    0 ε

    ε

    ε

    saas es

    es

    +−−

    −= as

    sa

    ese

    s −+−

    →=

    −⋅⋅−=

    1

    )(10lim

    )(

    0

    ε

    ε

    【另解】£{ } dtateat st∫∞ − −=−

    0)()( δδ

    ∫ ∫∞ ∞ −−− =−=−=0 0

    )()( sasasa edtatedtate δδ

    範例 2

  • 92北科-75

    Solve the initial value problem ⎪⎩

    ⎪⎨

    +−=′−+=′+−=′

    3213

    3212

    3211

    )()(

    3)(

    yyytyyyytyyyyty

    with the initial

    condition ⎪⎭

    ⎪⎬

    ⎪⎩

    ⎪⎨

    ⎧=

    ⎪⎭

    ⎪⎬

    ⎪⎩

    ⎪⎨

    151

    )0(

    3

    2

    1

    yyy

    . (20%)【92 北科製造】

    【範圍】§24-4

    【詳解】

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡=

    ⎥⎥⎥

    ⎢⎢⎢

    ⎥⎥⎥

    ⎢⎢⎢

    −−

    −=

    ⎥⎥⎥

    ⎢⎢⎢

    ′′′

    3

    2

    1

    3

    2

    1

    3

    2

    1

    111111

    113y

    yyy

    Ayyy

    yy

    令 texxx

    yy λ

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡=

    ⎥⎥⎥

    ⎢⎢⎢

    3

    2

    1

    3

    2

    1y

    代入原式可得 0)det( =− IA λ ⇒ 0111

    11111-3

    =−−−−

    λλ

    λ

    ⇒ 3,2,0=λ

    1 0=λ :⎥⎥⎥

    ⎢⎢⎢

    ⎡=

    ⎥⎥⎥

    ⎢⎢⎢

    011

    1

    3

    2

    1

    kxxx

    2 2=λ :⎥⎥⎥

    ⎢⎢⎢

    ⎡=

    ⎥⎥⎥

    ⎢⎢⎢

    011

    2

    3

    2

    1

    kxxx

    範例 3

  • 92北科-76

    2 2=λ :⎥⎥⎥

    ⎢⎢⎢

    ⎡=

    ⎥⎥⎥

    ⎢⎢⎢

    113

    3

    3

    2

    1

    kxxx

    ∴ ttt ekekekyyy

    33

    22

    01

    3

    2

    1

    113

    011

    110

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡+

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡+

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡=

    ⎥⎥⎥

    ⎢⎢⎢

    由 I.C. =⎪⎭

    ⎪⎬

    ⎪⎩

    ⎪⎨

    ⎧)0(y

    3

    2

    1

    y

    y

    ⎪⎭

    ⎪⎬

    ⎪⎩

    ⎪⎨

    151

    ⎪⎩

    ⎪⎨

    −===

    ⇒1

    42k

    3

    2

    1

    kk

    ∴ tt eeyyy

    32

    3

    2

    1

    113

    011

    4110

    2⎥⎥⎥

    ⎢⎢⎢

    ⎡−

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡+

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡=

    ⎥⎥⎥

    ⎢⎢⎢

  • 92北科-77

    92北科機電整合

    Solve the initial value problem xy

    yyyxlnln −

    =−′ ; 2)2( =y .

    (10%)【92 北科機電整合】

    【範圍】§2-1

    【詳解】令 xyu lnln −= ,則xy

    yu 1−′

    =′ ,即x

    uyy 1

    +′=′

    代入 O.D.E. xy

    yyyxlnln −

    =−′ xyy

    yxlnln

    11-−

    =′

    可得u

    ux 111 =−+′ udx

    duxu

    ux 11 =⇒=′⇒

    由分離變數法得 x

    dxudu =

    再積分得 ∫∫ = xdxudu cxu +=⇒ ln

    21 2

    [ ] cxxy +=−⇒ lnlnln21 2

    B.C. 令 2,2x == y 代入,得 [ ] c+=− 2ln2ln2ln21 2

    2ln−=⇒ c

    故解答為 [ ] 2lnlnlnln21 2 −=− xxy

    範例 1

  • 92北科-78

    Find the general solution of differential equation 116 2)4( +=+ tyy . (10%)【92 北科機電整合】

    【範圍】§3-3 【詳解】 齊性解: )2(444 216016 ππ kiemm +=−=⇒=+

    )

    21

    4(

    2ππ ki

    em+

    =⇒ )3,2,1,0( =k (複數方根,詳見 ch18.)

    ππππ47

    45

    43

    4 2,2,2,2iiii

    eeeem =⇒

    )(),(),(),( i12i12i12i12m −−−+−+=⇒

    )(),( i12i12m ±−±=⇒

    )sincos()sincos( t2ct2cet2ct2cey 43t2

    21t2

    n +++=∴−

    特解:由待定係數法,令 CBtAtyp ++=2

    代入得161,0,

    161

    === CBA ,故161

    161 2 += typ

    通解:

    )sincos( t2ct2ceyyy 21t2

    pn +=+=

    )sincos( t2ct2ce 43t2 ++ −

    161

    161 2 ++ t

    【另解】由逆算子法

    161

    161)1(

    161 22

    4 +=++= tt

    Dyp

    範例 2

  • 92北科-79

    Solve the initial value problem )(4 tfyy =+′′ , 1)0( =y , 0)0( =′y with

    ⎩⎨⎧

  • 92北科-80

    得 L+++′′′

    +′′

    +′

    += 5)5(

    4)4(

    32

    !5)0(

    !4)0(

    !3)0(

    !2)0(

    !1)0()0()( xyxyxyxyxyyxy

    LL+−+−−= 543!5