90400 Transients

download 90400 Transients

of 89

Transcript of 90400 Transients

  • 7/25/2019 90400 Transients

    1/89

    Revision Lecture 4: Transients &

    Lines

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 1 / 9

  • 7/25/2019 90400 Transients

    2/89

    Transients: Basic Ideas

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 2 / 9

    Transients happen in response to asudden change

    Input voltage/current abruptly changes its magnitude,

    frequency or phase

    A switch alters the circuit

  • 7/25/2019 90400 Transients

    3/89

    Transients: Basic Ideas

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 2 / 9

    Transients happen in response to asudden change

    Input voltage/current abruptly changes its magnitude,

    frequency or phase

    A switch alters the circuit

    1st order circuits only: one capacitor/inductor

  • 7/25/2019 90400 Transients

    4/89

    Transients: Basic Ideas

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 2 / 9

    Transients happen in response to asudden change

    Input voltage/current abruptly changes its magnitude,

    frequency or phase

    A switch alters the circuit

    1st order circuits only: one capacitor/inductor

    All voltage/current waveforms are: Steady State + Transient

    Steady States:find with nodal analysis or transfer function

    Note:Steady Stateis not the same asDC Level

    Need steady states beforeandafter the sudden change

  • 7/25/2019 90400 Transients

    5/89

    Transients: Basic Ideas

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 2 / 9

    Transients happen in response to asudden change

    Input voltage/current abruptly changes its magnitude,

    frequency or phase

    A switch alters the circuit

    1st order circuits only: one capacitor/inductor

    All voltage/current waveforms are: Steady State + Transient

    Steady States:find with nodal analysis or transfer function

    Note:Steady Stateis not the same asDC Level

    Need steady states beforeandafter the sudden change

    Transient: Always a negative exponential: Ae

    t

  • 7/25/2019 90400 Transients

    6/89

    Transients: Basic Ideas

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 2 / 9

    Transients happen in response to asudden change

    Input voltage/current abruptly changes its magnitude,

    frequency or phase

    A switch alters the circuit

    1st order circuits only: one capacitor/inductor

    All voltage/current waveforms are: Steady State + Transient

    Steady States:find with nodal analysis or transfer function

    Note:Steady Stateis not the same asDC Level

    Need steady states beforeandafter the sudden change

    Transient: Always a negative exponential: Ae

    t

    Time Constant: =RCor LR whereR is the Thveninresistance at the terminals ofCorL

  • 7/25/2019 90400 Transients

    7/89

    Transients: Basic Ideas

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 2 / 9

    Transients happen in response to asudden change

    Input voltage/current abruptly changes its magnitude,

    frequency or phase

    A switch alters the circuit

    1st order circuits only: one capacitor/inductor

    All voltage/current waveforms are: Steady State + Transient

    Steady States:find with nodal analysis or transfer function

    Note:Steady Stateis not the same asDC Level

    Need steady states beforeandafter the sudden change

    Transient: Always a negative exponential: Ae

    t

    Time Constant: =RCor LR whereR is the Thveninresistance at the terminals ofCorL

    Find transient amplitude,A, from continuity sinceVC or

    IL cannot change instantly.

  • 7/25/2019 90400 Transients

    8/89

    Transients: Basic Ideas

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 2 / 9

    Transients happen in response to asudden change

    Input voltage/current abruptly changes its magnitude,

    frequency or phase

    A switch alters the circuit

    1st order circuits only: one capacitor/inductor

    All voltage/current waveforms are: Steady State + Transient

    Steady States:find with nodal analysis or transfer function

    Note:Steady Stateis not the same asDC Level

    Need steady states beforeandafter the sudden change

    Transient: Always a negative exponential: Ae

    t

    Time Constant: =RCor LR whereR is the Thveninresistance at the terminals ofCorL

    Find transient amplitude,A, from continuity sinceVC or

    IL cannot change instantly. andA can also be found from the transfer function.

  • 7/25/2019 90400 Transients

    9/89

    Steady States

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 3 / 9

    Asteady-stateoutput assumes the input frequency, phase and amplitude

    are constant forever. You need to determinetwoySS(t)steady stateoutputs: one forbeforethe transient (t

  • 7/25/2019 90400 Transients

    10/89

    Steady States

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 3 / 9

    Asteady-stateoutput assumes the input frequency, phase and amplitude

    are constant forever. You need to determinetwoySS(t)steady stateoutputs: one forbeforethe transient (t

  • 7/25/2019 90400 Transients

    11/89

    Steady States

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 3 / 9

    Asteady-stateoutput assumes the input frequency, phase and amplitude

    are constant forever. You need to determinetwoySS(t)steady stateoutputs: one forbeforethe transient (t

  • 7/25/2019 90400 Transients

    12/89

  • 7/25/2019 90400 Transients

    13/89

    Steady States

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 3 / 9

    Asteady-stateoutput assumes the input frequency, phase and amplitude

    are constant forever. You need to determinetwoySS(t)steady stateoutputs: one forbeforethe transient (t

  • 7/25/2019 90400 Transients

    14/89

    Steady States

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 3 / 9

    Asteady-stateoutput assumes the input frequency, phase and amplitude

    are constant forever. You need to determinetwoySS(t)steady stateoutputs: one forbeforethe transient (t

  • 7/25/2019 90400 Transients

    15/89

    Steady States

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 3 / 9

    Asteady-stateoutput assumes the input frequency, phase and amplitude

    are constant forever. You need to determinetwoySS(t)steady stateoutputs: one forbeforethe transient (t

  • 7/25/2019 90400 Transients

    16/89

    Steady States

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 3 / 9

    Asteady-stateoutput assumes the input frequency, phase and amplitude

    are constant forever. You need to determinetwoySS(t)steady stateoutputs: one forbeforethe transient (t

  • 7/25/2019 90400 Transients

    17/89

    Steady States

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 3 / 9

    Asteady-stateoutput assumes the input frequency, phase and amplitude

    are constant forever. You need to determinetwoySS(t)steady stateoutputs: one forbeforethe transient (t

  • 7/25/2019 90400 Transients

    18/89

    Determining Time Constant

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 4 / 9

    Method 1: Thvenin

  • 7/25/2019 90400 Transients

    19/89

    Determining Time Constant

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 4 / 9

    Method 1: Thvenin

    (a)Remove the capacitor/inductor

  • 7/25/2019 90400 Transients

    20/89

    Determining Time Constant

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 4 / 9

    Method 1: Thvenin

    (a)Remove the capacitor/inductor

    (b)Set all sources to zero (including the input

    voltage source). Leave output unconnected.

  • 7/25/2019 90400 Transients

    21/89

    Determining Time Constant

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 4 / 9

    Method 1: Thvenin

    (a)Remove the capacitor/inductor

    (b)Set all sources to zero (including the input

    voltage source). Leave output unconnected.

    (c)Calculate the Thvenin resistancebetween the capacitor/inductor terminals:

    RTh = 8R||4R||(6R+ 2R) = 2R

  • 7/25/2019 90400 Transients

    22/89

    Determining Time Constant

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 4 / 9

    Method 1: Thvenin

    (a)Remove the capacitor/inductor

    (b)Set all sources to zero (including the input

    voltage source). Leave output unconnected.

    (c)Calculate the Thvenin resistancebetween the capacitor/inductor terminals:

    RTh = 8R||4R||(6R+ 2R) = 2R(d)Time constant:=RThCor

    LRTh

    =

    RTh

    C= 2

    RC

  • 7/25/2019 90400 Transients

    23/89

    Determining Time Constant

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 4 / 9

    Method 1: Thvenin

    (a)Remove the capacitor/inductor

    (b)Set all sources to zero (including the input

    voltage source). Leave output unconnected.

    (c)Calculate the Thvenin resistancebetween the capacitor/inductor terminals:

    RTh = 8R||4R||(6R+ 2R) = 2R(d)Time constant:=RThCor

    LRTh

    =

    RTh

    C= 2

    RC

    Method 2: Transfer function

  • 7/25/2019 90400 Transients

    24/89

    Determining Time Constant

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 4 / 9

    Method 1: Thvenin

    (a)Remove the capacitor/inductor

    (b)Set all sources to zero (including the input

    voltage source). Leave output unconnected.

    (c)Calculate the Thvenin resistancebetween the capacitor/inductor terminals:

    RTh = 8R||4R||(6R+ 2R) = 2R(d)Time constant:=RThCor

    LRTh

    =

    RTh

    C= 2

    RC

    Method 2: Transfer function

    (a)Calculate transfer function using nodal analysis

  • 7/25/2019 90400 Transients

    25/89

    Determining Time Constant

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 4 / 9

    Method 1: Thvenin

    (a)Remove the capacitor/inductor

    (b)Set all sources to zero (including the input

    voltage source). Leave output unconnected.

    (c)Calculate the Thvenin resistancebetween the capacitor/inductor terminals:

    RTh = 8R||4R||(6R+ 2R) = 2R(d)Time constant:=RThCor

    LRTh

    =RTh

    C= 2RC

    Method 2: Transfer function

    (a)Calculate transfer function using nodal analysis

    KCL @ V:

    VX

    4R + V

    8R +jCV + VY

    2R = 0KCL @ Y: YV2R +

    YX6R = 0

  • 7/25/2019 90400 Transients

    26/89

    Determining Time Constant

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 4 / 9

    Method 1: Thvenin

    (a)Remove the capacitor/inductor

    (b)Set all sources to zero (including the input

    voltage source). Leave output unconnected.

    (c)Calculate the Thvenin resistancebetween the capacitor/inductor terminals:

    RTh = 8R||4R||(6R+ 2R) = 2R(d)Time constant:=RThCor

    LRTh

    =RTh

    C= 2RC

    Method 2: Transfer function

    (a)Calculate transfer function using nodal analysis

    KCL @ V:

    VX

    4R + V

    8R +jCV + VY

    2R = 0KCL @ Y: YV2R +

    YX6R = 0

    EliminateV to get transfer Function: YX = 8jRC+1332jRC+16

  • 7/25/2019 90400 Transients

    27/89

    Determining Time Constant

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 4 / 9

    Method 1: Thvenin

    (a)Remove the capacitor/inductor

    (b)Set all sources to zero (including the input

    voltage source). Leave output unconnected.

    (c)Calculate the Thvenin resistancebetween the capacitor/inductor terminals:

    RTh = 8R||4R||(6R+ 2R) = 2R(d)Time constant:=RThCor

    LRTh

    =RTh

    C= 2RC

    Method 2: Transfer function

    (a)Calculate transfer function using nodal analysis

    KCL @ V:

    VX

    4R + V

    8R +jCV + VY

    2R = 0KCL @ Y: YV2R +

    YX6R = 0

    EliminateV to get transfer Function: YX = 8jRC+1332jRC+16

    (b)Time Constant = 1

    Denominator corner frequency

  • 7/25/2019 90400 Transients

    28/89

    Determining Time Constant

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 4 / 9

    Method 1: Thvenin

    (a)Remove the capacitor/inductor

    (b)Set all sources to zero (including the input

    voltage source). Leave output unconnected.

    (c)Calculate the Thvenin resistancebetween the capacitor/inductor terminals:

    RTh = 8R||4R||(6R+ 2R) = 2R(d)Time constant:=RThCor

    LRTh

    =RTh

    C= 2RC

    Method 2: Transfer function

    (a)Calculate transfer function using nodal analysis

    KCL @ V:

    VX

    4R + V

    8R +jCV + VY

    2R = 0KCL @ Y: YV2R +

    YX6R = 0

    EliminateV to get transfer Function: YX = 8jRC+1332jRC+16

    (b)Time Constant = 1

    Denominator corner frequencyd = 1632RC =

    1d

    = 2RC

  • 7/25/2019 90400 Transients

    29/89

    Determining Transient Amplitude

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 5 / 9

    After an input change att = 0,y(t) =ySS(t) +Ae t .

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    ySS

  • 7/25/2019 90400 Transients

    30/89

    Determining Transient Amplitude

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 5 / 9

    After an input change att = 0,y(t) =ySS(t) +Ae t .

    y(0+) =ySS(0+) +A A=y(0+) ySS(0+)

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    ySS

  • 7/25/2019 90400 Transients

    31/89

    Determining Transient Amplitude

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 5 / 9

    After an input change att = 0,y(t) =ySS(t) +Ae t .

    y(0+) =ySS(0+) +A A=y(0+) ySS(0+)Method:(a)calculate true outputy(0+),(b)subtractySS(0+)to getA

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    ySS

  • 7/25/2019 90400 Transients

    32/89

    Determining Transient Amplitude

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 5 / 9

    After an input change att = 0,y(t) =ySS(t) +Ae t .

    y(0+) =ySS(0+) +A A=y(0+) ySS(0+)Method:(a)calculate true outputy(0+),(b)subtractySS(0+)to getA

    (i)Version 1: vC oriL continuity

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    ySS

  • 7/25/2019 90400 Transients

    33/89

    Determining Transient Amplitude

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 5 / 9

    After an input change att = 0,y(t) =ySS(t) +Ae t .

    y(0+) =ySS(0+) +A A=y(0+) ySS(0+)Method:(a)calculate true outputy(0+),(b)subtractySS(0+)to getA

    (i)Version 1: vC oriL continuityx(0) = 2

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    ySS

  • 7/25/2019 90400 Transients

    34/89

    Determining Transient Amplitude

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 5 / 9

    After an input change att = 0,y(t) =ySS(t) +Ae t .

    y(0+) =ySS(0+) +A A=y(0+) ySS(0+)Method:(a)calculate true outputy(0+),(b)subtractySS(0+)to getA

    (i)Version 1: vC oriL continuityx(0) = 2 iL(0) = 1 mA

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    ySS

  • 7/25/2019 90400 Transients

    35/89

    Determining Transient Amplitude

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 5 / 9

    After an input change att = 0,y(t) =ySS(t) +Ae t .

    y(0+) =ySS(0+) +A A=y(0+) ySS(0+)Method:(a)calculate true outputy(0+),(b)subtractySS(0+)to getA

    (i)Version 1: vC oriL continuityx(0) = 2 iL(0) = 1 mAContinuity iL(0+) =iL(0)

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    ySS

  • 7/25/2019 90400 Transients

    36/89

    Determining Transient Amplitude

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 5 / 9

    After an input change att = 0,y(t) =ySS(t) +Ae t .

    y(0+) =ySS(0+) +A A=y(0+) ySS(0+)Method:(a)calculate true outputy(0+),(b)subtractySS(0+)to getA

    (i)Version 1: vC oriL continuityx(0) = 2 iL(0) = 1 mAContinuity iL(0+) =iL(0)ReplaceL with a1 mA current source

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    ySS

  • 7/25/2019 90400 Transients

    37/89

    Determining Transient Amplitude

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 5 / 9

    After an input change att = 0,y(t) =ySS(t) +Ae t .

    y(0+) =ySS(0+) +A A=y(0+) ySS(0+)Method:(a)calculate true outputy(0+),(b)subtractySS(0+)to getA

    (i)Version 1: vC oriL continuityx(0) = 2 iL(0) = 1 mAContinuity iL(0+) =iL(0)ReplaceL with a1 mA current sourcey(0+) =x(0+) iR= 6 1 = 5

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    ySS

  • 7/25/2019 90400 Transients

    38/89

    Determining Transient Amplitude

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 5 / 9

    After an input change att = 0,y(t) =ySS(t) +Ae t .

    y(0+) =ySS(0+) +A A=y(0+) ySS(0+)Method:(a)calculate true outputy(0+),(b)subtractySS(0+)to getA

    (i)Version 1: vC oriL continuityx(0) = 2 iL(0) = 1 mAContinuity iL(0+) =iL(0)ReplaceL with a1 mA current sourcey(0+) =x(0+) iR= 6 1 = 5

    (i)Version 2: Transfer function

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    ySS

  • 7/25/2019 90400 Transients

    39/89

    Determining Transient Amplitude

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 5 / 9

    After an input change att = 0,y(t) =ySS(t) +Ae t .

    y(0+) =ySS(0+) +A A=y(0+) ySS(0+)Method:(a)calculate true outputy(0+),(b)subtractySS(0+)to getA

    (i)Version 1: vC oriL continuityx(0) = 2 iL(0) = 1 mAContinuity iL(0+) =iL(0)ReplaceL with a1 mA current sourcey(0+) =x(0+) iR= 6 1 = 5

    (i)Version 2: Transfer function

    H(j) = YX (j) = R+jL2R+jL

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    ySS

  • 7/25/2019 90400 Transients

    40/89

    Determining Transient Amplitude

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 5 / 9

    After an input change att = 0,y(t) =ySS(t) +Ae t .

    y(0+) =ySS(0+) +A A=y(0+) ySS(0+)Method:(a)calculate true outputy(0+),(b)subtractySS(0+)to getA

    (i)Version 1: vC oriL continuityx(0) = 2 iL(0) = 1 mAContinuity iL(0+) =iL(0)ReplaceL with a1 mA current sourcey(0+) =x(0+) iR= 6 1 = 5

    (i)Version 2: Transfer function

    H(j) = YX (j) = R+jL2R+jL

    Input step,x=x(0+) x(0) = +4-5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    ySS

  • 7/25/2019 90400 Transients

    41/89

    Determining Transient Amplitude

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 5 / 9

    After an input change att = 0,y(t) =ySS(t) +Ae t .

    y(0+) =ySS(0+) +A A=y(0+) ySS(0+)Method:(a)calculate true outputy(0+),(b)subtractySS(0+)to getA

    (i)Version 1: vC oriL continuityx(0) = 2 iL(0) = 1 mAContinuity iL(0+) =iL(0)ReplaceL with a1 mA current sourcey(0+) =x(0+) iR= 6 1 = 5

    (i)Version 2: Transfer function

    H(j) = YX (j) = R+jL2R+jL

    Input step,x=x(0+) x(0) = +4y(0+) =y(0) +H(j)x

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    ySS

  • 7/25/2019 90400 Transients

    42/89

    Determining Transient Amplitude

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 5 / 9

    After an input change att = 0,y(t) =ySS(t) +Ae t .

    y(0+) =ySS(0+) +A A=y(0+) ySS(0+)Method:(a)calculate true outputy(0+),(b)subtractySS(0+)to getA

    (i)Version 1: vC oriL continuityx(0) = 2 iL(0) = 1 mAContinuity iL(0+) =iL(0)ReplaceL with a1 mA current sourcey(0+) =x(0+) iR= 6 1 = 5

    (i)Version 2: Transfer function

    H(j) = YX (j) = R+jL2R+jL

    Input step,x=x(0+) x(0) = +4y(0+) =y(0) +H(j)x

    = 1 + 1 4 = 5

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    ySS

  • 7/25/2019 90400 Transients

    43/89

    Determining Transient Amplitude

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 5 / 9

    After an input change att = 0,y(t) =ySS(t) +Ae t .

    y(0+) =ySS(0+) +A A=y(0+) ySS(0+)Method:(a)calculate true outputy(0+),(b)subtractySS(0+)to getA

    (i)Version 1: vC oriL continuityx(0) = 2 iL(0) = 1 mAContinuity iL(0+) =iL(0)ReplaceL with a1 mA current sourcey(0+) =x(0+) iR= 6 1 = 5

    (i)Version 2: Transfer function

    H(j) = YX (j) = R+jL2R+jL

    Input step,x=x(0+) x(0) = +4y(0+) =y(0) +H(j)x

    = 1 + 1 4 = 5

    (ii)A =y(0+) ySS(0+) = 5 3 = 2

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    yTr

    ySS

  • 7/25/2019 90400 Transients

    44/89

    Determining Transient Amplitude

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 5 / 9

    After an input change att = 0,y(t) =ySS(t) +Ae t .

    y(0+) =ySS(0+) +A A=y(0+) ySS(0+)Method:(a)calculate true outputy(0+),(b)subtractySS(0+)to getA

    (i)Version 1: vC oriL continuityx(0) = 2 iL(0) = 1 mAContinuity iL(0+) =iL(0)ReplaceL with a1 mA current sourcey(0+) =x(0+) iR= 6 1 = 5

    (i)Version 2: Transfer function

    H(j) = YX (j) = R+jL2R+jL

    Input step,x=x(0+) x(0) = +4y(0+) =y(0) +H(j)x

    = 1 + 1 4 = 5

    (ii)A =y(0+) ySS(0+) = 5 3 = 2

    (iii)y(t) =ySS(t) +Aet/

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    yTr

    ySS

  • 7/25/2019 90400 Transients

    45/89

    Determining Transient Amplitude

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 5 / 9

    After an input change att = 0,y(t) =ySS(t) +Ae t .

    y(0+) =ySS(0+) +A A=y(0+) ySS(0+)Method:(a)calculate true outputy(0+),(b)subtractySS(0+)to getA

    (i)Version 1: vC oriL continuityx(0) = 2 iL(0) = 1 mAContinuity iL(0+) =iL(0)ReplaceL with a1 mA current sourcey(0+) =x(0+) iR= 6 1 = 5

    (i)Version 2: Transfer function

    H(j) = YX (j) = R+jL2R+jL

    Input step,x=x(0+) x(0) = +4y(0+) =y(0) +H(j)x

    = 1 + 1 4 = 5

    (ii)A =y(0+) ySS(0+) = 5 3 = 2

    (iii)y(t) =ySS(t) +Aet/

    = 3 + 2e

    t/2

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    -5 0 5 10 15 20

    0

    2

    4

    6

    t (s)

    yTr

    ySS

    y

  • 7/25/2019 90400 Transients

    46/89

    Transmission Lines Basics

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 6 / 9

    Transmission Line: constantL0 andC0 : inductance/capacitance permetre.

    Forward wavetravels along the line: fx(t) =f0

    t xu

    .

    Velocityu =

    1L0C0

    12c= 15cm/ns

  • 7/25/2019 90400 Transients

    47/89

    Transmission Lines Basics

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 6 / 9

    Transmission Line: constantL0 andC0 : inductance/capacitance permetre.

    Forward wavetravels along the line: fx(t) =f0

    t xu

    .

    Velocityu =

    1L0C0

    12c= 15cm/ns

    fx(t)equalsf0(t)but delayed by xu .

  • 7/25/2019 90400 Transients

    48/89

    Transmission Lines Basics

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 6 / 9

    Transmission Line: constantL0 andC0 : inductance/capacitance permetre.

    Forward wavetravels along the line: fx(t) =f0

    t xu

    .

    Velocityu =

    1L0C0

    12c= 15cm/ns

    fx(t)equalsf0(t)but delayed by xu .

    0 2 4 6 8 10Time (ns)

    f(t-0/u)

  • 7/25/2019 90400 Transients

    49/89

    Transmission Lines Basics

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 6 / 9

    Transmission Line: constantL0 andC0 : inductance/capacitance permetre.

    Forward wavetravels along the line: fx(t) =f0

    t xu

    .

    Velocityu =

    1L0C0

    12c= 15cm/ns

    fx(t)equalsf0(t)but delayed by xu .

    0 2 4 6 8 10Time (ns)

    f(t-0/u) f(t-45/u)

  • 7/25/2019 90400 Transients

    50/89

    Transmission Lines Basics

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 6 / 9

    Transmission Line: constantL0 andC0 : inductance/capacitance permetre.

    Forward wavetravels along the line: fx(t) =f0

    t xu

    .

    Velocityu =

    1L0C0

    12c= 15cm/ns

    fx(t)equalsf0(t)but delayed by xu .

    Knowingfx(t)forx=x0 fixes it for allotherx.

    0 2 4 6 8 10Time (ns)

    f(t-0/u) f(t-45/u) f(t-90/u)

  • 7/25/2019 90400 Transients

    51/89

    Transmission Lines Basics

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 6 / 9

    Transmission Line: constantL0 andC0 : inductance/capacitance permetre.

    Forward wavetravels along the line: fx(t) =f0

    t xu

    .

    Velocityu =

    1L0C0

    12c= 15cm/ns

    fx(t)equalsf0(t)but delayed by xu .

    Knowingfx(t)forx=x0 fixes it for allotherx.

    0 2 4 6 8 10Time (ns)

    f(t-0/u) f(t-45/u) f(t-90/u)

    Backward wave: gx(t)is the same but travelling : gx(t) =g0

    t+ xu

    .

  • 7/25/2019 90400 Transients

    52/89

    Transmission Lines Basics

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 6 / 9

    Transmission Line: constantL0 andC0 : inductance/capacitance permetre.

    Forward wavetravels along the line: fx(t) =f0

    t xu

    .

    Velocityu =

    1L0C0

    12c= 15cm/ns

    fx(t)equalsf0(t)but delayed by xu .

    Knowingfx(t)forx=x0 fixes it for allotherx.

    0 2 4 6 8 10Time (ns)

    f(t-0/u) f(t-45/u) f(t-90/u)

    Backward wave: gx(t)is the same but travelling : gx(t) =g0

    t+ xu

    .

    Voltage and current are: vx =fx+gx andix = fxgx

    Z0whereix is

    positive in the+xdirection () andZ0 =

    L0C0

  • 7/25/2019 90400 Transients

    53/89

    Transmission Lines Basics

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 6 / 9

    Transmission Line: constantL0 andC0 : inductance/capacitance permetre.

    Forward wavetravels along the line: fx(t) =f0

    t xu

    .

    Velocityu =

    1L0C0

    12c= 15cm/ns

    fx(t)equalsf0(t)but delayed by xu .

    Knowingfx(t)forx=x0 fixes it for allotherx.

    0 2 4 6 8 10Time (ns)

    f(t-0/u) f(t-45/u) f(t-90/u)

    Backward wave: gx(t)is the same but travelling : gx(t) =g0

    t+ xu

    .

    Voltage and current are: vx =fx+gx andix = fxgx

    Z0whereix is

    positive in the+xdirection () andZ0 =

    L0C0

    Waveforms offx andgx are determined by the connections at both ends.

  • 7/25/2019 90400 Transients

    54/89

    Reflections

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 7 / 9

    vx =fx+gxix =

    fxgxZ0

  • 7/25/2019 90400 Transients

    55/89

    Reflections

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 7 / 9

    vx =fx+gxix =

    fxgxZ0

    Atx =L, Ohms law vL(t)iL(t) =RL gL(t) = RLZ0RL+Z0

    fL(t).

  • 7/25/2019 90400 Transients

    56/89

    Reflections

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 7 / 9

    vx =fx+gxix =

    fxgxZ0

    Atx =L, Ohms law vL(t)iL(t) =RL gL(t) = RLZ0RL+Z0

    fL(t).

    Reflection coefficient:L= gL(t)fL(t)

    = RLZ0RL+Z0

  • 7/25/2019 90400 Transients

    57/89

    Reflections

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 7 / 9

    vx =fx+gxix =

    fxgxZ0

    Atx =L, Ohms law vL(t)iL(t) =RL gL(t) = RLZ0RL+Z0

    fL(t).

    Reflection coefficient:L= gL(t)fL(t)

    = RLZ0RL+Z0L [1, +1]and increases withRL

  • 7/25/2019 90400 Transients

    58/89

    Reflections

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 7 / 9

    vx =fx+gxix =

    fxgxZ0

    Atx =L, Ohms law vL(t)iL(t) =RL gL(t) = RLZ0RL+Z0

    fL(t).

    Reflection coefficient:L= gL(t)fL(t)

    = RLZ0RL+Z0L [1, +1]and increases withRL

    Knowingfx(t)forx =x0 now tells youfx, gx, vx, ix x

  • 7/25/2019 90400 Transients

    59/89

    Reflections

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 7 / 9

    vx =fx+gxix =

    fxgxZ0

    Atx =L, Ohms law vL(t)iL(t) =RL gL(t) = RLZ0RL+Z0

    fL(t).

    Reflection coefficient:L= gL(t)fL(t)

    = RLZ0RL+Z0L [1, +1]and increases withRL

    Knowingfx(t)forx =x0 now tells youfx, gx, vx, ix x

    Atx = 0:f0(t) = Z0RS+Z0

    vS(t) +RSZ0RS+Z0

    g0(t)

  • 7/25/2019 90400 Transients

    60/89

    Reflections

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 7 / 9

    vx =fx+gxix =

    fxgxZ0

    Atx =L, Ohms law vL(t)iL(t) =RL gL(t) = RLZ0RL+Z0

    fL(t).

    Reflection coefficient:L= gL(t)fL(t)

    = RLZ0RL+Z0L [1, +1]and increases withRL

    Knowingfx(t)forx =x0 now tells youfx, gx, vx, ix x

    Atx = 0:f0(t) = Z0RS+Z0

    vS(t) +RSZ0RS+Z0

    g0(t) =0vS(t) +0g0(t)

  • 7/25/2019 90400 Transients

    61/89

    Reflections

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 7 / 9

    vx =fx+gxix =

    fxgxZ0

    Atx =L, Ohms law vL(t)iL(t) =RL gL(t) = RLZ0RL+Z0

    fL(t).

    Reflection coefficient:L= gL(t)fL(t)

    = RLZ0RL+Z0L [1, +1]and increases withRL

    Knowingfx(t)forx =x0 now tells youfx, gx, vx, ix x

    Atx = 0:f0(t) = Z0RS+Z0

    vS(t) +RSZ0RS+Z0

    g0(t) =0vS(t) +0g0(t)

    Wave bounces back and forth getting smaller with each reflection:

  • 7/25/2019 90400 Transients

    62/89

    Reflections

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 7 / 9

    vx =fx+gxix =

    fxgxZ0

    Atx =L, Ohms law vL(t)iL(t) =RL gL(t) = RLZ0RL+Z0

    fL(t).

    Reflection coefficient:L= gL(t)fL(t)

    = RLZ0RL+Z0L [1, +1]and increases withRL

    Knowingfx(t)forx =x0 now tells youfx, gx, vx, ix x

    Atx = 0:f0(t) = Z0RS+Z0

    vS(t) +RSZ0RS+Z0

    g0(t) =0vS(t) +0g0(t)

    Wave bounces back and forth getting smaller with each reflection:

    vS(t) 0 f0(t)

    R fl i

  • 7/25/2019 90400 Transients

    63/89

    Reflections

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 7 / 9

    vx =fx+gxix =

    fxgxZ0

    Atx =L, Ohms law vL(t)iL(t) =RL gL(t) = RLZ0RL+Z0

    fL(t).

    Reflection coefficient:L= gL(t)fL(t)

    = RLZ0RL+Z0L [1, +1]and increases withRL

    Knowingfx(t)forx =x0 now tells youfx, gx, vx, ix x

    Atx = 0:f0(t) = Z0RS+Z0

    vS(t) +RSZ0RS+Z0

    g0(t) =0vS(t) +0g0(t)

    Wave bounces back and forth getting smaller with each reflection:

    vS(t) 0 f0(t)

    L g0(t +

    2Lu )

    R fl i

  • 7/25/2019 90400 Transients

    64/89

    Reflections

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 7 / 9

    vx =fx+gxix =

    fxgxZ0

    Atx =L, Ohms law vL(t)iL(t) =RL gL(t) = RLZ0RL+Z0

    fL(t).

    Reflection coefficient:L= gL(t)fL(t)

    = RLZ0RL+Z0L [1, +1]and increases withRL

    Knowingfx(t)forx =x0 now tells youfx, gx, vx, ix x

    Atx = 0:f0(t) = Z0RS+Z0

    vS(t) +RSZ0RS+Z0

    g0(t) =0vS(t) +0g0(t)

    Wave bounces back and forth getting smaller with each reflection:

    vS(t) 0 f0(t)

    L g0(t +

    2Lu )

    0 f0(t +

    2Lu )

    R fl ti

  • 7/25/2019 90400 Transients

    65/89

    Reflections

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 7 / 9

    vx =fx+gxix =

    fxgxZ0

    Atx =L, Ohms law vL(t)iL(t) =RL gL(t) = RLZ0RL+Z0

    fL(t).

    Reflection coefficient:L= gL(t)fL(t)

    = RLZ0RL+Z0L [1, +1]and increases withRL

    Knowingfx(t)forx =x0 now tells youfx, gx, vx, ix x

    Atx = 0:f0(t) = Z0RS+Z0

    vS(t) +RSZ0RS+Z0

    g0(t) =0vS(t) +0g0(t)

    Wave bounces back and forth getting smaller with each reflection:

    vS(t) 0 f0(t)

    L g0(t +

    2Lu )

    0 f0(t +

    2Lu )

    L g0(t +

    4Lu )

    R fl ti

  • 7/25/2019 90400 Transients

    66/89

    Reflections

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 7 / 9

    vx =fx+gxix =

    fxgxZ0

    Atx =L, Ohms law vL(t)iL(t) =RL gL(t) = RLZ0RL+Z0

    fL(t).

    Reflection coefficient:L= gL(t)fL(t)

    = RLZ0RL+Z0L [1, +1]and increases withRL

    Knowingfx(t)forx =x0 now tells youfx, gx, vx, ix x

    Atx = 0:f0(t) = Z0RS+Z0

    vS(t) +RSZ0RS+Z0

    g0(t) =0vS(t) +0g0(t)

    Wave bounces back and forth getting smaller with each reflection:

    vS(t) 0 f0(t)

    L g0(t +

    2Lu )

    0 f0(t +

    2Lu )

    L g0(t +

    4Lu )

    0

    R fl ti

  • 7/25/2019 90400 Transients

    67/89

    Reflections

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 7 / 9

    vx =fx+gxix =

    fxgxZ0

    Atx =L, Ohms law vL(t)iL(t) =RL gL(t) = RLZ0RL+Z0

    fL(t).

    Reflection coefficient:L= gL(t)fL(t)

    = RLZ0RL+Z0L [1, +1]and increases withRL

    Knowingfx(t)forx =x0 now tells youfx, gx, vx, ix x

    Atx = 0:f0(t) = Z0RS+Z0

    vS(t) +RSZ0RS+Z0

    g0(t) =0vS(t) +0g0(t)

    Wave bounces back and forth getting smaller with each reflection:

    vS(t) 0 f0(t)

    L g0(t +

    2Lu )

    0 f0(t +

    2Lu )

    L g0(t +

    4Lu )

    0

    Infinite sum:

    f0(t) =0vS(t)+0L0vS(t2Lu )+. . .

    Reflections

  • 7/25/2019 90400 Transients

    68/89

    Reflections

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 7 / 9

    vx =fx+gxix =

    fxgxZ0

    Atx =L, Ohms law vL(t)iL(t) =RL gL(t) = RLZ0RL+Z0

    fL(t).

    Reflection coefficient:L= gL(t)fL(t)

    = RLZ0RL+Z0L [1, +1]and increases withRL

    Knowingfx(t)forx =x0 now tells youfx, gx, vx, ix x

    Atx = 0:f0(t) = Z0RS+Z0

    vS(t) +RSZ0RS+Z0

    g0(t) =0vS(t) +0g0(t)

    Wave bounces back and forth getting smaller with each reflection:

    vS(t) 0 f0(t)

    L g0(t +

    2Lu )

    0 f0(t +

    2Lu )

    L g0(t +

    4Lu )

    0

    Infinite sum:

    f0(t) =0vS(t)+0L0vS(t2Lu )+. . .=

    i=00iL

    i0vSt

    2Liu

    Sinewaves and Phasors

  • 7/25/2019 90400 Transients

    69/89

    Sinewaves and Phasors

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 8 / 9

    Sinewaves are easier because:

    1. Use phasors to eliminatet:

    2. Time delays are just phase shifts:

    Sinewaves and Phasors

  • 7/25/2019 90400 Transients

    70/89

    Sinewaves and Phasors

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 8 / 9

    Sinewaves are easier because:

    1. Use phasors to eliminatet:f0(t) =A cos(t+) F0=Aej

    2. Time delays are just phase shifts:

    Sinewaves and Phasors

  • 7/25/2019 90400 Transients

    71/89

    Sinewaves and Phasors

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 8 / 9

    Sinewaves are easier because:

    1. Use phasors to eliminatet:f0(t) =A cos(t+) F0=Aej

    2. Time delays are just phase shifts:

    fx(t) =A cos

    t xu

    + Fx =Ae

    j(ux)=F0ejkx

    Sinewaves and Phasors

  • 7/25/2019 90400 Transients

    72/89

    Sinewaves and Phasors

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 8 / 9

    Sinewaves are easier because:

    1. Use phasors to eliminatet:f0(t) =A cos(t+) F0=Aej

    2. Time delays are just phase shifts:

    fx(t) =A cos

    t xu

    + Fx =Ae

    j(ux)=F0ejkx

    kis thewavenumber: radians per metre (c.f. in rad per second)

    Sinewaves and Phasors

  • 7/25/2019 90400 Transients

    73/89

    Sinewaves and Phasors

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 8 / 9

    Sinewaves are easier because:

    1. Use phasors to eliminatet:f0(t) =A cos(t+) F0=Aej

    2. Time delays are just phase shifts:

    fx(t) =A cos

    t xu

    + Fx =Ae

    j(ux)=F0ejkx

    kis thewavenumber: radians per metre (c.f. in rad per second)

    As before: Vx =Fx+Gx andIx = FxGx

    Z0

    Sinewaves and Phasors

  • 7/25/2019 90400 Transients

    74/89

    Sinewaves and Phasors

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 8 / 9

    Sinewaves are easier because:

    1. Use phasors to eliminatet:f0(t) =A cos(t+) F0=Aej

    2. Time delays are just phase shifts:

    fx(t) =A cos

    t xu

    + Fx =Ae

    j(ux)=F0ejkx

    kis thewavenumber: radians per metre (c.f. in rad per second)

    As before: Vx =Fx+Gx andIx = FxGx

    Z0

    As before:

    GL =LFLF0 =0VS+0G0

    Sinewaves and Phasors

  • 7/25/2019 90400 Transients

    75/89

    Sinewaves and Phasors

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 8 / 9

    Sinewaves are easier because:

    1. Use phasors to eliminatet:f0(t) =A cos(t+) F0=Aej

    2. Time delays are just phase shifts:

    fx(t) =A cos

    t xu

    + Fx =Ae

    j(ux)=F0ejkx

    kis thewavenumber: radians per metre (c.f. in rad per second)

    As before: Vx =Fx+Gx andIx = FxGx

    Z0

    As before:

    GL =LFLF0 =0VS+0G0

    ButG0 =F0Le2jkL : roundtrip delay of 2Lu + reflection atx =L.

    Sinewaves and Phasors

  • 7/25/2019 90400 Transients

    76/89

    Sinewaves and Phasors

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 8 / 9

    Sinewaves are easier because:

    1. Use phasors to eliminatet:f0(t) =A cos(t+) F0=Aej

    2. Time delays are just phase shifts:

    fx(t) =A cos

    t xu

    + Fx =Ae

    j(ux)=F0ejkx

    kis thewavenumber: radians per metre (c.f. in rad per second)

    As before: Vx =Fx+Gx andIx = FxGx

    Z0

    As before:

    GL =LFLF0 =0VS+0G0

    ButG0 =F0Le2jkL : roundtrip delay of 2Lu + reflection atx =L.

    Substituting forG0 in source end equation: F0 =0VS+0F0Le2jkL

    Sinewaves and Phasors

  • 7/25/2019 90400 Transients

    77/89

    Sinewaves and Phasors

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 8 / 9

    Sinewaves are easier because:

    1. Use phasors to eliminatet:f0(t) =A cos(t+) F0=Aej

    2. Time delays are just phase shifts:

    fx(t) =A cos

    t xu

    + Fx =Ae

    j(ux)=F0ejkx

    kis thewavenumber: radians per metre (c.f. in rad per second)

    As before: Vx =Fx+Gx andIx = FxGx

    Z0

    As before:

    GL =LFLF0 =0VS+0G0

    ButG0 =F0Le2jkL : roundtrip delay of 2Lu + reflection atx =L.

    Substituting forG0 in source end equation: F0 =0VS+0F0Le2jkL

    F0= 0

    10Lexp(2jkL)VSso no infinite sums needed

    Standing Waves

  • 7/25/2019 90400 Transients

    78/89

    Standing Waves

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 9 / 9

    Standing wavesarise whenever a wave meets its reflection:at places where the two waves arein phasetheir amplitudes add

    but where they areanti-phasetheir amplitudes subtract.

    Standing Waves

  • 7/25/2019 90400 Transients

    79/89

    Standing Waves

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 9 / 9

    Standing wavesarise whenever a wave meets its reflection:at places where the two waves arein phasetheir amplitudes add

    but where they areanti-phasetheir amplitudes subtract.

    At any pointx,

    delay of xu

    Fx =F0ejkx

    Standing Waves

  • 7/25/2019 90400 Transients

    80/89

    Standing Waves

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 9 / 9

    Standing wavesarise whenever a wave meets its reflection:at places where the two waves arein phasetheir amplitudes add

    but where they areanti-phasetheir amplitudes subtract.

    At any pointx,

    delay of xu

    Fx =F0ejkx

    Backward wave: Gx =LFxe2jk(Lx)

    Standing Waves

  • 7/25/2019 90400 Transients

    81/89

    Standing Waves

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 9 / 9

    Standing wavesarise whenever a wave meets its reflection:at places where the two waves arein phasetheir amplitudes add

    but where they areanti-phasetheir amplitudes subtract.

    At any pointx,

    delay of xu

    Fx =F0ejkx

    Backward wave: Gx =LFxe2jk(Lx): reflection + delay of2Lxu

    Standing Waves

  • 7/25/2019 90400 Transients

    82/89

    Standing Waves

    Revision Lecture 4:Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 9 / 9

    Standing wavesarise whenever a wave meets its reflection:at places where the two waves arein phasetheir amplitudes add

    but where they areanti-phasetheir amplitudes subtract.

    At any pointx,

    delay of xu

    Fx =F0ejkx

    Backward wave: Gx =LFxe2jk(Lx): reflection + delay of2Lxu

    Voltage atx: Vx =Fx+Gx

    Standing Waves

  • 7/25/2019 90400 Transients

    83/89

    Sta d g a es

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 9 / 9

    Standing wavesarise whenever a wave meets its reflection:at places where the two waves arein phasetheir amplitudes add

    but where they areanti-phasetheir amplitudes subtract.

    At any pointx,

    delay of xu

    Fx =F0ejkx

    Backward wave: Gx =LFxe2jk(Lx): reflection + delay of2Lxu

    Voltage atx: Vx =Fx+Gx=F0ejkx

    1 +Le

    2jk(Lx)

    Standing Waves

  • 7/25/2019 90400 Transients

    84/89

    g

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 9 / 9

    Standing wavesarise whenever a wave meets its reflection:at places where the two waves arein phasetheir amplitudes add

    but where they areanti-phasetheir amplitudes subtract.

    At any pointx,

    delay of xu

    Fx =F0ejkx

    Backward wave: Gx =LFxe2jk(Lx): reflection + delay of2Lxu

    Voltage atx: Vx =Fx+Gx=F0ejkx

    1 +Le

    2jk(Lx)

    Voltage Magnitude : |Vx| = |F0|1 +Le2jk(Lx)

    Standing Waves

  • 7/25/2019 90400 Transients

    85/89

    g

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 9 / 9

    Standing wavesarise whenever a wave meets its reflection:at places where the two waves arein phasetheir amplitudes add

    but where they areanti-phasetheir amplitudes subtract.

    At any pointx,

    delay of xu

    Fx =F0ejkx

    Backward wave: Gx =LFxe2jk(Lx): reflection + delay of2Lxu

    Voltage atx: Vx =Fx+Gx=F0ejkx

    1 +Le

    2jk(Lx)

    Voltage Magnitude : |Vx| = |F0|1 +Le2jk(Lx)

    : depends onx

    Standing Waves

  • 7/25/2019 90400 Transients

    86/89

    g

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 9 / 9

    Standing wavesarise whenever a wave meets its reflection:at places where the two waves arein phasetheir amplitudes add

    but where they areanti-phasetheir amplitudes subtract.

    At any pointx,

    delay of xu

    Fx =F0ejkx

    Backward wave: Gx =LFxe2jk(Lx): reflection + delay of2Lxu

    Voltage atx: Vx =Fx+Gx=F0ejkx

    1 +Le

    2jk(Lx)

    Voltage Magnitude : |Vx| = |F0|1 +Le2jk(Lx)

    : depends onx

    IfL 0,max magnitudeis(1 +L) |F0| whenevere2jk(Lx)

    = +1

    Standing Waves

  • 7/25/2019 90400 Transients

    87/89

    g

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 9 / 9

    Standing wavesarise whenever a wave meets its reflection:at places where the two waves arein phasetheir amplitudes add

    but where they areanti-phasetheir amplitudes subtract.

    At any pointx,

    delay of xu

    Fx =F0ejkx

    Backward wave: Gx =LFxe2jk(Lx): reflection + delay of2Lxu

    Voltage atx: Vx =Fx+Gx=F0ejkx

    1 +Le

    2jk(Lx)

    Voltage Magnitude : |Vx| = |F0|1 +Le2jk(Lx)

    : depends onx

    IfL 0,max magnitudeis(1 +L) |F0| whenevere2jk(Lx)

    = +1 x=Lorx =L k orx =L

    2k or. . .

    Standing Waves

  • 7/25/2019 90400 Transients

    88/89

    g

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    E1.1 Analysis of Circuits (2014-4649) Revision Lecture 4 9 / 9

    Standing wavesarise whenever a wave meets its reflection:at places where the two waves arein phasetheir amplitudes add

    but where they areanti-phasetheir amplitudes subtract.

    At any pointx,

    delay of x

    u Fx =F0e

    jkx

    Backward wave: Gx =LFxe2jk(Lx): reflection + delay of2Lxu

    Voltage atx: Vx =Fx+Gx=F0ejkx

    1 +Le

    2jk(Lx)

    Voltage Magnitude : |Vx| = |F0|1 +Le2jk(Lx)

    : depends onx

    IfL 0,max magnitudeis(1 +L) |F0| whenevere2jk(Lx)

    = +1 x=Lorx =L k orx =L

    2k or. . .

    Min magnitudeis(1 L) |F0| whenevere2jk(Lx) = 1

    Standing Waves

  • 7/25/2019 90400 Transients

    89/89

    Revision Lecture 4:

    Transients & Lines

    Transients: Basic Ideas

    Steady States

    Determining Time

    Constant

    Determining Transient

    Amplitude

    Transmission Lines Basics

    Reflections

    Sinewaves and Phasors

    Standing Waves

    Standing wavesarise whenever a wave meets its reflection:at places where the two waves arein phasetheir amplitudes add

    but where they areanti-phasetheir amplitudes subtract.

    At any pointx,

    delay of x

    u Fx =F0e

    jkx

    Backward wave: Gx =LFxe2jk(Lx): reflection + delay of2LxuVoltage atx: Vx =Fx+Gx=F0e

    jkx

    1 +Le2jk(Lx)

    Voltage Magnitude : |Vx| = |F0|

    1 +Le2jk(Lx): depends onx

    IfL 0,max magnitudeis(1 +L) |F0| whenevere2jk(Lx)

    = +1 x=Lorx =L k orx =L

    2k or. . .

    Min magnitudeis(1 L) |F0| whenevere2jk(Lx) = 1

    x=L 2k orx =L 32k orx =L

    52k or. . .