83066300

download 83066300

of 9

Transcript of 83066300

  • 7/30/2019 83066300

    1/9

    Removal of trace organic chemical contaminants

    by a membrane bioreactor

    T. Trinh, B. van den Akker, R. M. Stuetz, H. M. Coleman, P. Le-Clech

    and S. J. Khan

    ABSTRACT

    Emerging wastewater treatment processes such as membrane bioreactors (MBRs) have attracted a

    significant amount of interest internationally due to their ability to produce high quality effluent

    suitable for water recycling. It is therefore important that their efficiency in removing hazardous trace

    organic contaminants be assessed. Accordingly, this study investigated the removal of trace organic

    chemical contaminants through a full-scale, package MBR in New South Wales, Australia. This study

    was unique in the context of MBR research because it characterised the removal of 48 trace organic

    chemical contaminants, which included steroidal hormones, xenoestrogens, pesticides, caffeine,pharmaceuticals and personal care products (PPCPs). Results showed that the removal of most trace

    organic chemical contaminants through the MBR was high (above 90%). However, amitriptyline,

    carbamazepine, diazepam, diclofenac, fluoxetine, gemfibrozil, omeprazole, sulphamethoxazole and

    trimethoprim were only partially removed through the MBR with the removal efficiencies of 2468%.

    These are potential indicators for assessing MBR performance as these chemicals are usually

    sensitive to changes in the treatment systems. The trace organic chemical contaminants detected in

    the MBR permeate were 1 to 6 orders of magnitude lower than guideline values reported in the

    Australian Guidelines for Water Recycling. The outcomes of this study enhanced our understanding

    of the levels and removal of trace organic contaminants by MBRs.

    T. Trinh

    B. van den Akker

    R. M. Stuetz

    H. M. Coleman

    S. J. Khan (corresponding author)

    UNSW Water Research Centre,

    School of Civil and Environmental Engineering,

    University of New South Wales,

    NSW, 2052,

    Australia

    E-mail: [email protected]

    P. Le-Clech

    UNESCO Centre for Membrane Science and

    Technology,

    School of Chemical Engineering,

    University of New South Wales,

    NSW, 2052,

    Australia

    Key words | decentralised treatment system, membrane bioreactor, pesticides, pharmaceuticals

    and personal care products, steroidal hormones

    INTRODUCTION

    The presence of trace organic chemical contaminants such

    as steroidal hormones, xenoestrogens, pesticides, pharma-

    ceuticals and personal care products (PPCPs) in municipal

    wastewater has been the subject of increasing concern

    throughout recent decades (Jjemba ; Wright-Walters

    & Volz ). Some of these trace organic chemical con-

    taminants are known to have endocrine disrupting effects

    on aquatic organisms at low concentrations and others

    have been linked to ecological impacts due to acute and

    chronic toxicity mechanisms (Purdom et al. ; Hotchkiss

    et al. ). Investigating the removal of these trace organic

    chemical contaminants through treatment processes and

    assessing the risks associated with these chemicals to

    public health and the surrounding environment are particu-

    larly important for water reuse applications.

    Recently, membrane bioreactors (MBRs) have attracted

    a significant amount of interest internationally due to their

    ability to produce high quality effluent over conventional

    activated sludge systems (Coleman et al. ; Le-Minh

    et al. ). MBRs comprise a combination of a conventional

    activated sludge process with microfiltration/ultrafiltration

    membrane separation, which enables these systems to pro-

    duce effluents that could be recycled. In addition, this

    combination has the advantage of a small footprint which

    is favourable for small decentralised water reuse systems.

    However, like centralised wastewater treatment systems,

    there remains concern as to the fate and removal of trace

    chemical contaminants by MBR treatment processes.

    This research investigated the removal of a comprehen-

    sive set of 48 trace organic chemical contaminants through a

    1856 IWA Publishing 2012 Water Science & Technology | 66.9 | 2012

    doi: 10.2166/wst.2012.374

    mailto:[email protected]://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-mailto:[email protected]
  • 7/30/2019 83066300

    2/9

    decentralised package-plant MBR treating municipal waste-

    water in New South Wales, Australia. This research is

    unique because it includes a wide range of studied trace

    organic chemical contaminants covering steroidal hor-

    mones, xenoestrogens, pesticides, caffeine and PPCPs.

    MATERIALS AND METHODS

    Description of the package MBR

    Samples were collected from a decentralised full-scale MBR

    plant (800 equivalent persons) located in Wolumla, Bega

    Valley, New South Wales, Australia. A schematic diagram

    of the MBR is presented in Figure 1, which summarises

    the key components, flow direction and sample sites. The

    treatment process comprises of a fine screen (3 mm), a bio-

    reactor tank, two parallel-submerged membrane modules

    and a medium pressure ultra-violet (UV) disinfection unit.

    The sludge retention time (SRT) of the bioreactor was

    1015 d, the hydraulic retention time (HRT) was 1 d and

    the mixed liquor suspended solids (MLSS) concentration

    was 7.58.5 g L1. The bioreactor tank was intermittently

    aerated in 10 minute cycles (dissolved oxygen set-point of

    1 mg L1) to achieve simultaneous nitrification and denitri-

    fication. The submerged membrane modules were made of

    hollow fibre membranes (Koch Puron), which have an effec-

    tive pore size of 0.10.2 m and a surface area of 235 m2

    (each). For cleaning, scour air was applied to the mem-branes using a positive displacement blower and

    backwashing occurred every 360 seconds for a period of

    60 seconds. Chemical backwashing occurred automatically

    every three weeks, in accordance with the manufacturers

    recommendations, to maintain a transmembrane pressure

    of

  • 7/30/2019 83066300

    3/9

    compounds including 31 PPCPs (amitriptyline, atenolol,

    atorvastatin, carbamazepine, diazepam, DEET (N,N-Diethyl-

    meta-toluamide), diclofenac, dilantin, enalapril, fluoxetine,

    norfluoxetine,gemfibrozil, hydroxyzine,ibuprofen, ketoprofen,

    meprobamate, metformin, naproxen, omeprazole, o-hydroxya-

    torvastatin, p-hydroxyatorvastatin, paracetamol, primidone,simvastatin, simvastatin hydroxy acid, sulphamethoxazole,

    triamterene, triclocarban, triclosan, trimethoprim, risperi-

    done), two pesticides (atrazine, linuron), a xenoestrogen

    (bisphenol A) and caffeine. For another xenoestrogen propyl-

    paraben, no direct isotopically labeled analogue was able to

    be found, therefore quantification for this compound was

    based on external calibration only. 15N13C-paracetamol and

    D5-diazepam werepurchased fromCambridgeIsotope Labora-

    tories Inc., USA. D4-sulphamethoxazole, D6-trimethoprim,

    D5-atorvastatin, D5-p-hydroxyatorvastatin, D5-o-hydroxyator-

    vastatin, D4-risperidone, D5-enalapril, D6-simvastatin, D6-

    simvastatin hydroxy acid, D3-triclosan, D5-triamterene, D3-

    meprobamate and D8-hydroxyzine were purchased from Tor-

    onto Research Chemicals Inc., Canada. D6-amitriptyline, D7-

    atenolol, D5-atrazine, D7-bisphenol A, D9-caffeine, D10-carba-

    mazepine, D4-DEET, D4-diclofenac, D10-dilatin, D6-

    gemfibrozil, D5-fluoxetine, D5-norfluoxetine, D3-ibuprofen,

    D3-ketoprofen, D6-linuron, D6-metformin, D3-naproxen, D3-

    omeprazole, D5-primidone and D4-triclocarban were pur-

    chased from Dr. Ehrenstorfer GmbH, Germany. Atorvastatin,

    fluoxetine, norfluoxetine, o-hydroxyatorvastatin, p-hydroxya-

    torvastatin, risperidone, simvastatin hydroxy acid were

    purchased from Toronto Research Chemicals Inc., Canadaand other analytes were purchased from Sigma Aldrich. The

    limit of quantification (LOQ) for all analytes is 1 ng L1.

    Gas chromatography-tandem mass spectrometry

    (GC/MS-MS) analysis

    After analysis by LC-MS/MS, the same samples were pro-

    cessed for GC-MS/MS analysis of steroidal hormones

    using a previously published method (Trinh et al. b).

    The studied steroidal hormones include seven estrogens

    and five androgens. Direct isotopically labelled analogues

    were used for eight hormones (17-estradiol, estrone,

    17-ethynylestradiol, estriol, testosterone, etiocholanolone,

    dihydrotestosterone, androstenedione) and satisfactory isotopestandards were applied for the remaining four hormones

    (17-estradiol, mestranol, levonorgestrel and androsterone).

    RESULTS AND DISCUSSION

    Concentration of trace organic chemical contaminants

    in raw sewage

    Steroidal hormones

    The concentrations of steroidal hormones in raw sewage

    are presented in Figure 2. The natural estrogen, 17-estra-

    diol and the main components of the contraceptive pills

    (17-ethynylestradiol, mestranol and levonorgestrel) were

    not detected. The estrogens that were detected included

    the natural estrogen, 17-estradiol and its metabolised

    products estrone and estriol. The results show that the

    androgenic hormones were detected at higher concen-

    trations than estrogenic hormones which may be due to

    the higher excretion rates of androgens compared with

    estrogens in humans (Leusch et al. ). Testosterone

    and its metabolised products, androsterone, etiocholano-lone and dihydrotestosterone were all detected. In

    general, the concentrations of steroidal hormones are

    consistent with previous Australian studies; with the

    exception of testosterone and dihydrotestosterone,

    which were one to two orders of magnitude higher than

    values reported in the literature (Coleman et al. ;

    Le-Minh et al. ). This may be due to higher sensitivity

    of the analytical method used here compared with

    other studies (Coleman et al. , ; Le-Minh et al.

    ).

    Xenoestrogens, pesticides, caffeine and PPCPs

    The concentrations of xenoestrogens, pesticides, caffeine

    and PPCPs that were detected in raw sewage are shown

    in Figure 2. Of the 36 studied chemicals, 12 were not

    detected in the raw sewage. These included 10 PPCPs (dila-

    tin, enalapril, norfluoxetine, hydroxyzine, meprobamate,

    primidone, simvastatin, simvastatin hydroxy acid, triamter-

    ene, risperidone) and two pesticides (atrazine, linuron).

    Table 1 | Quality of raw sewage and MBR permeate (mean values reported, n 6)

    Quality parameters Raw sewage MBR permeate

    DOC (mg L1) 147.1 14.9

    NH3 (mg L1) 22.4 0.10

    Total N (mg L1) 71.6 1.9

    Total P (mg L1) Unavailablea 2.7

    pH 7.0 7.7

    aTotal P was not measured in raw sewage as the colourimetric method used onsite was

    not suitable for such coloured samples.

    1858 T. Trinh et al. | Removal of trace organic chemical contaminants by MBR Water Science & Technology | 66.9 | 2012

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/30/2019 83066300

    4/9

    Caffeine was found at concentrations of up to 40.5 g L

    1

    which was four times higher than values reported in raw

    sewage in the literature (Kim et al. ). Pharmaceuticals

    including ibuprofen, metformin, naproxen and paraceta-

    mol were all detected in the raw sewage at

    concentrations in the range of 18.359.5 g L1, which

    was not surprising given that these pharmaceuticals are

    used extensively in Australia (Khan & Ongerth ).

    The concentrations of carbamazepine, diclofenac and sul-

    phamethoxazole are consistent with published Australian

    data while ketoprofen was found to be five times higher

    (Al-Rifai et al. , Le-Minh et al. ). The remaining

    pharmaceuticals (trimethoprim, fluoxetine, omeprazole,amitriptyline, gemfibrozil and diazepam) were found in

    the raw sewage at concentrations of less than 100 ng L1.

    High day-to-day variability in concentrations of some

    chemicals, including gemfibrozil, omeprazole and sulpha-

    methoxazole was observed. Such variability may be the

    expected result for relatively low prescription rate drugs

    in a very small wastewater catchment (800 equivalent

    persons).

    Removals of trace organic chemical contaminants bythe package MBR

    Removal of steroidal hormones

    The percentage removal of steroidal hormones through the

    package MBR is presented in Figure 3. Results from this study

    show that steroidal hormones were effectively removed by

    the package MBR, with the removal efficiencies in the order

    of 97100%. These results are consistent with previous studies

    on MBRs (Kim et al. ; Spring et al. ; Lee et al. ;

    Coleman et al. ; Le-Minh et al. ; Trinh et al. ).

    The mechanisms responsible for removing these steroidal hor-mones in MBR plants typically include particulate adsorption

    and biodegradation (Ternes et al. ; Servos et al. ;

    Leusch et al. ; Abegglen et al. ; Coleman et al. ).

    Removal of xenoestrogens, pesticides, caffeine and PPCPs

    The removal of xenoestrogens, pesticides, caffeine and

    PPCPs through the package MBR is presented in Figure 3.

    Figure 2 | Concentrations of trace organic contaminants in raw sewage.

    1859 T. Trinh et al. | Removal of trace organic chemical contaminants by MBR Water Science & Technology | 66.9 | 2012

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/30/2019 83066300

    5/9

    Most of these chemicals were effectively removed by thepackage MBR. Removal efficiencies of bisphenol A, propyl-

    paraben, atenolol, atorvastatin, DEET, ibuprofen,

    ketoprofen, metformin, naproxen, o-hydroxyatorvastatin,

    p-hydroxyatorvastatin, paracetamol, triclosan and caffeine

    were between 90 and 100%. Previous studies on MBRs

    reported similar removal efficiencies for bisphenol A, ibu-

    profen, triclosan and caffeine (Clara et al. ; Kim et al.

    ; Radjenovic et al. ; Coleman et al. ; Radjeno-

    vic et al. ). These trace chemical contaminants are

    typically removed by MBRs via biodegradation and sorption

    to biomass (Cirja et al. ). Studies have shown that ateno-

    lol, ibuprofen, naproxen, paracetamol and caffeine arereadily biodegradable (Abegglen et al. ; Radjenovic

    et al. ) while triclosan can absorb to biomass (Coleman

    et al. ). For bisphenol A, both sorption to biomass and

    biodegradation are significant (Hu et al. ). The high

    removal efficiencies noted here can be attributed to the

    high SRT and MLSS concentration in the MBR (Clara

    et al. ; Chen et al. ; Coleman et al. ). Amitripty-

    line, gemfibrozil, omeprazole and sulphamethoxazole were

    moderately removed by the MBR with removal effi

    cienciesbetween 59 and 68%. Conversely, carbamazepine, diaze-

    pam, diclofenac, fluoxetine and trimethoprim were not

    effectively removed through the MBR with removal

    efficiencies of 2447%. Carbamazepine, diclofenac and tri-

    methoprim have been identified as persistent compounds

    that are difficult to be removed through MBRs with various

    removal efficiencies in the literature ranging from 0 to 50%.

    This is because they are not easily biodegradable and adsorb

    poorly to biomass (Clara et al. ; de Wever et al. ;

    Kim et al. ; Radjenovic et al. ; Radjenovic et al.

    ). The trace organic chemical contaminants that are

    partially removed through MBRs in normal operating con-ditions are potential indicators for assessing MBR

    performance as these chemicals are usually sensitive to

    changes in MBR treatment process performance (Drewes

    et al. ).

    Despite the high removal efficiencies for most of the

    chemicals, estrone, caffeine and some PPCPs were

    detected in the MBR permeate as shown in Figure 4.

    The concentration of metformin in the MBR

    Figure 3 | Removal of trace organic contaminants through the package MBR.

    1860 T. Trinh et al. | Removal of trace organic chemical contaminants by MBR Water Science & Technology | 66.9 | 2012

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/30/2019 83066300

    6/9

    permeate was up to 3.3 g L1. Atenolol, carbamazepine,

    diclofenac, ibuprofen, ketoprofen, sulphamethoxazole,

    triclocarban and trimethoprim were detected in the

    permeate at concentrations of 66230 ng L1. Atorvasta-

    tin, caffeine, DEET, omeprazole, o-hydroxyatorvastation,

    p-hydroxyatorvastation, paracetamol and triclosan were

    all detected in the MBR permeate at concentrations in

    the range of 6.221.6 ng L1. Estrone was the only ster-

    oidal hormone detected in the MBR permeate with a

    concentration of 1.5 ng L1. These results were 16

    orders of magnitude lower than Australian guideline

    values for water recycling (Australian Guidelines for

    Water Recycling ).

    CONCLUSIONS

    The results of this study showed that the removal of most of

    the studied trace chemical contaminants through the pack-

    age MBR was high (above 90%). However, amitriptyline,

    carbamazepine, diazepam, diclofenac, fluoxetine, gemfibro-

    zil, omeprazole, sulphamethoxazole and trimethoprim

    were only partially removed through the MBR with removal

    efficiencies of 2468%. These compounds are potential indi-

    cators for assessing the MBR performance as these

    chemicals are usually sensitive to changes in MBR treatment

    process performance. The trace organic chemical contami-

    nants detected in the MBR permeate were 16 orders of

    magnitude lower than guideline values in the Australian

    Guidelines for Water Recycling. These results enhance our

    understanding of the levels and removal of a comprehensive

    list of 48 trace chemical contaminants of concern through

    MBR systems.

    ACKNOWLEDGEMENTS

    This work was supported by the Australian Research Coun-

    cil Linkage Projects LP0989365 (with industry support from

    MidCoast Water, Bega Valley Council, Hunter Water and

    NSW Health). Trang Trinh was also supported by Water

    Quality Research Australia. The authors thank Ken

    McLeod, Chris Scharf and Tony Brown from Bega Valley

    Council for their support during the sampling period. We

    Figure 4 | Concentration of trace organic contaminants in MBR permeate.

    1861 T. Trinh et al. | Removal of trace organic chemical contaminants by MBR Water Science & Technology | 66.9 | 2012

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/30/2019 83066300

    7/9

    also thank Dr James McDonald for his technical support

    with the undertaking of this work.

    REFERENCES

    Abegglen, C., Joss, A., McArdell, C. S., Fink, G., Schlsener, M. P.,

    Ternes, T. A. & Siegrist, H. The fate of selected

    micropollutants in a single-house MBR. Water Research

    43 (7), 20362046.

    Al-Rifai, J. H., Gabelish, C. L. & Schfer, A. I. Occurrence of

    pharmaceutically active and non-steroidal estrogenic

    compounds in three different wastewater recycling schemes

    in Australia. Chemosphere 69 (5), 803815.

    Australian Guidelines for Water Recycling: Managing Health and

    Environmental Risks (Phase 2) - Augmentation of Drinking

    Water Supplies National Health and Medical Research

    Council/Natural Resource Management Ministerial Council.

    Chen, J., Huang, X. & Lee, D. Bisphenol A removal by a

    membrane bioreactor. Process Biochemistry 43 (4), 451456.

    Cirja, M., Ivashechkin, P., Schffer, A. & Corvini, P. Factors

    affecting the removal of organic micropollutants from

    wastewater in conventional treatment plants (CTP) and

    membrane bioreactors (MBR). Reviews in Environmental

    Science and Biotechnology 7 (1), 6178.

    Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N. &

    Kroiss, H. Removal of selected pharmaceuticals,

    fragrances and endocrine disrupting compounds in a

    membrane bioreactor and conventional wastewater

    treatment plants. Water Research 39 (19), 47974807.

    Coleman, H. M., Le-Minh, N., Khan, S. J., Short, M. D.,

    Chenicharo, C. & Stuetz, R. M. Fate and levels of steroid

    oestrogens and androgens in waste stabilisation ponds:quantification by liquid chromatography-tandem mass

    spectrometry. Water Science and Technology 61 (3), 677684.

    Coleman, H. M., Troester, M., Khan, S. J., McDonald, J. A.,

    Watkins, G. & Stuetz, R. M. Assessment of trace organic

    chemical removal by a membrane bioreactor using gas

    chromatography/mass spectrometry and a yeast screen

    bioassay. Environmental Toxicology and Chemistry 28 (12),

    25372545.

    de Wever, H., Weiss, S., Reemtsma, T., Vereecken, J., Mller, J.,

    Knepper, T., Rrden, O., Gonzalez, S., Barcelo, D. & Dolores

    Hernando, M. Comparison of sulfonated and other

    micropollutants removal in membrane bioreactor and

    conventional wastewater treatment. Water Research 41 (4),

    935

    945.Drewes, J. E., Sedlak, D., Snyder, S. & Dickenson, E.

    Development of indicators and surrogates for chemical

    contaminant removal during wastewater treatment and

    reclamation - Final report, Water Reuse Foundation,

    Alexandria, VA.

    Hotchkiss, A. K., Rider, C. V., Blystone, C. R., Wilson, V. S.,

    Hartig, P. C., Ankley, G. T., Foster, P. M., Gray, C. L. & Gray,

    E. L. Fifteen years after Wingspread - environmental

    endocrine disrupters and human and wildlife health: where

    we are today and where we need to go. The Journal of

    Toxicological Sciences 105 (2), 235259.

    Hu, J. Y., Chen, X., Tao, G. & Kekred, K. Fate of endocrine

    disrupting compounds in membrane bioreactor systems.

    Environmental Science and Technology 41 (11), 40974102.

    Jjemba, P. K. Excretion and ecotoxicity of pharmaceutical

    and personal care products in the environment.

    Ecotoxicology and Environmental Safety 63 (1), 113130.

    Khan, S. J. & Ongerth, J. E. Modelling of pharmaceutical

    residues in Australian sewage by quantities of use and

    fugacity calculations. Chemosphere 54 (3), 355367.

    Kim, S. D., Cho, J., Kim, I. S., Vanderford, B. J. & Snyder, S. A.

    Occurrence and removal of pharmaceuticals and

    endocrine disruptors in South Korean surface, drinking, and

    waste waters. Water Research 41 (5), 10131021.

    Le-Minh, N., Coleman, H. M., Khan, S. J., Van Luer, Y., Trang,

    T. T. T., Watkins, G. & Stuetz, R. M. The application of

    membrane bioreactors as decentralised systems for removal

    of endocrine disrupting chemicals and pharmaceuticals.

    Water Science and Technology 61 (5), 10811088.

    Lee, J., Lee, B. C., Ra, J. S., Cho, J., Kim, I. S., Chang, N. I., Kim,

    H. K. & Kim, S. D. Comparison of the removal

    efficiency of endocrine disrupting compounds in pilot scale

    sewage treatment processes. Chemosphere 71 (8), 15821592.

    Leusch, F. D. L., Chapman, H. F., van den Heuvel, M. R., Tan,

    B. L. L., Gooneratne, S. R. & Tremblay, L. A. Bioassay-

    derived androgenic and estrogenic activity in municipal

    sewage in Australia and New Zealand. Ecotoxicology and

    Environmental Safety 65 (3), 403411.

    Purdom, C. E., Hardiman, P. A., Bye, V. V. J., Eno, N. C., Tyler, C.

    R. & Sumpter, J. P. Estrogenic effects of effluents from

    sewage treatment works. Journal of Chemical Ecology 8 (4),

    275285.

    Radjenovic, J., Petrovic, M. & Barcel, D. Analysis of

    pharmaceuticals in wastewater and removal using a

    membrane bioreactor. Analytical and Bioanalytical

    Chemistry 387 (4), 13651377.

    Radjenovic, J., Petrovic, M. & Barcel, D. Fate and

    distribution of pharmaceuticals in wastewater and sewage

    sludge of the conventional activated sludge (CAS) and

    advanced membrane bioreactor (MBR) treatment. Water

    Research 43 (3), 831841.

    Servos, M. R., Bennie, D. T., Burnison, B. K., Jurkovic, A.,

    McInnis, R., Neheli, T., Schnell, A., Seto, P., Smyth, S. A. &

    Ternes, T. A. Distribution of estrogens, 17beta-estradiol

    and estrone, in Canadian municipal wastewater treatment

    plants. Science of the Total Environment 336 (13), 155170.

    Spring, A. J., Bagley, D. M., Andrews, R. C., Lemanik, S. & Yang,P. Removal of endocrine disrupting compounds using a

    membrane bioreactor and disinfection. Journal of

    Environmental Engineering and Science 6, 131137.

    Ternes, T. A., Kreckel, P. & Mueller, J. Behaviour and

    occurrence of estrogens in municipal sewage treatment

    plants - II. Aerobic batch experiments with activated sludge.

    Science of the Total Environment 225 (12), 9199.

    Trinh, T., van den Akker, Ben, Coleman, H. M., Stuetz, R. M.,

    Le-Clech, P. & Khan, S. J. Removal of endocrine

    1862 T. Trinh et al. | Removal of trace organic chemical contaminants by MBR Water Science & Technology | 66.9 | 2012

    http://dx.doi.org/10.1016/j.watres.2009.02.005http://dx.doi.org/10.1016/j.watres.2009.02.005http://dx.doi.org/10.1016/j.chemosphere.2007.04.069http://dx.doi.org/10.1016/j.chemosphere.2007.04.069http://dx.doi.org/10.1016/j.chemosphere.2007.04.069http://dx.doi.org/10.1016/j.chemosphere.2007.04.069http://dx.doi.org/10.1016/j.procbio.2008.01.001http://dx.doi.org/10.1016/j.procbio.2008.01.001http://dx.doi.org/10.1007/s11157-007-9121-8http://dx.doi.org/10.1007/s11157-007-9121-8http://dx.doi.org/10.1007/s11157-007-9121-8http://dx.doi.org/10.1007/s11157-007-9121-8http://dx.doi.org/10.1016/j.watres.2005.09.015http://dx.doi.org/10.1016/j.watres.2005.09.015http://dx.doi.org/10.1016/j.watres.2005.09.015http://dx.doi.org/10.1016/j.watres.2005.09.015http://dx.doi.org/10.2166/wst.2010.950http://dx.doi.org/10.2166/wst.2010.950http://dx.doi.org/10.2166/wst.2010.950http://dx.doi.org/10.2166/wst.2010.950http://dx.doi.org/10.2166/wst.2010.950http://dx.doi.org/10.2166/wst.2010.950http://dx.doi.org/10.1897/08-531.1http://dx.doi.org/10.1897/08-531.1http://dx.doi.org/10.1897/08-531.1http://dx.doi.org/10.1897/08-531.1http://dx.doi.org/10.1016/j.watres.2006.11.013http://dx.doi.org/10.1016/j.watres.2006.11.013http://dx.doi.org/10.1016/j.watres.2006.11.013http://dx.doi.org/10.1093/toxsci/kfn030http://dx.doi.org/10.1093/toxsci/kfn030http://dx.doi.org/10.1093/toxsci/kfn030http://dx.doi.org/10.1093/toxsci/kfn030http://dx.doi.org/10.1093/toxsci/kfn030http://dx.doi.org/10.1093/toxsci/kfn030http://dx.doi.org/10.1093/toxsci/kfn030http://dx.doi.org/10.1021/es062695vhttp://dx.doi.org/10.1021/es062695vhttp://dx.doi.org/10.1016/j.ecoenv.2004.11.011http://dx.doi.org/10.1016/j.ecoenv.2004.11.011http://dx.doi.org/10.1016/j.chemosphere.2003.07.001http://dx.doi.org/10.1016/j.chemosphere.2003.07.001http://dx.doi.org/10.1016/j.chemosphere.2003.07.001http://dx.doi.org/10.1016/j.watres.2006.06.034http://dx.doi.org/10.1016/j.watres.2006.06.034http://dx.doi.org/10.1016/j.watres.2006.06.034http://dx.doi.org/10.2166/wst.2010.884http://dx.doi.org/10.2166/wst.2010.884http://dx.doi.org/10.2166/wst.2010.884http://dx.doi.org/10.1016/j.chemosphere.2007.11.021http://dx.doi.org/10.1016/j.chemosphere.2007.11.021http://dx.doi.org/10.1016/j.chemosphere.2007.11.021http://dx.doi.org/10.1016/j.chemosphere.2007.11.021http://dx.doi.org/10.1016/j.chemosphere.2007.11.021http://dx.doi.org/10.1016/j.ecoenv.2005.07.020http://dx.doi.org/10.1016/j.ecoenv.2005.07.020http://dx.doi.org/10.1016/j.ecoenv.2005.07.020http://dx.doi.org/10.1080/02757549408038554http://dx.doi.org/10.1080/02757549408038554http://dx.doi.org/10.1080/02757549408038554http://dx.doi.org/10.1080/02757549408038554http://dx.doi.org/10.1007/s00216-006-0883-6http://dx.doi.org/10.1007/s00216-006-0883-6http://dx.doi.org/10.1007/s00216-006-0883-6http://dx.doi.org/10.1016/j.watres.2008.11.043http://dx.doi.org/10.1016/j.watres.2008.11.043http://dx.doi.org/10.1016/j.watres.2008.11.043http://dx.doi.org/10.1016/j.watres.2008.11.043http://dx.doi.org/10.1016/j.scitotenv.2004.05.025http://dx.doi.org/10.1016/j.scitotenv.2004.05.025http://dx.doi.org/10.1016/j.scitotenv.2004.05.025http://dx.doi.org/10.1139/s06-049http://dx.doi.org/10.1139/s06-049http://dx.doi.org/10.1016/S0048-9697(98)00335-0http://dx.doi.org/10.1016/S0048-9697(98)00335-0http://dx.doi.org/10.1016/S0048-9697(98)00335-0http://dx.doi.org/10.2166/wrd.2012.010http://dx.doi.org/10.2166/wrd.2012.010http://dx.doi.org/10.1016/S0048-9697(98)00335-0http://dx.doi.org/10.1016/S0048-9697(98)00335-0http://dx.doi.org/10.1016/S0048-9697(98)00335-0http://dx.doi.org/10.1139/s06-049http://dx.doi.org/10.1139/s06-049http://dx.doi.org/10.1016/j.scitotenv.2004.05.025http://dx.doi.org/10.1016/j.scitotenv.2004.05.025http://dx.doi.org/10.1016/j.scitotenv.2004.05.025http://dx.doi.org/10.1016/j.watres.2008.11.043http://dx.doi.org/10.1016/j.watres.2008.11.043http://dx.doi.org/10.1016/j.watres.2008.11.043http://dx.doi.org/10.1016/j.watres.2008.11.043http://dx.doi.org/10.1007/s00216-006-0883-6http://dx.doi.org/10.1007/s00216-006-0883-6http://dx.doi.org/10.1007/s00216-006-0883-6http://dx.doi.org/10.1080/02757549408038554http://dx.doi.org/10.1080/02757549408038554http://dx.doi.org/10.1016/j.ecoenv.2005.07.020http://dx.doi.org/10.1016/j.ecoenv.2005.07.020http://dx.doi.org/10.1016/j.ecoenv.2005.07.020http://dx.doi.org/10.1016/j.chemosphere.2007.11.021http://dx.doi.org/10.1016/j.chemosphere.2007.11.021http://dx.doi.org/10.1016/j.chemosphere.2007.11.021http://dx.doi.org/10.2166/wst.2010.884http://dx.doi.org/10.2166/wst.2010.884http://dx.doi.org/10.2166/wst.2010.884http://dx.doi.org/10.1016/j.watres.2006.06.034http://dx.doi.org/10.1016/j.watres.2006.06.034http://dx.doi.org/10.1016/j.watres.2006.06.034http://dx.doi.org/10.1016/j.chemosphere.2003.07.001http://dx.doi.org/10.1016/j.chemosphere.2003.07.001http://dx.doi.org/10.1016/j.chemosphere.2003.07.001http://dx.doi.org/10.1016/j.ecoenv.2004.11.011http://dx.doi.org/10.1016/j.ecoenv.2004.11.011http://dx.doi.org/10.1021/es062695vhttp://dx.doi.org/10.1021/es062695vhttp://dx.doi.org/10.1093/toxsci/kfn030http://dx.doi.org/10.1093/toxsci/kfn030http://dx.doi.org/10.1093/toxsci/kfn030http://dx.doi.org/10.1016/j.watres.2006.11.013http://dx.doi.org/10.1016/j.watres.2006.11.013http://dx.doi.org/10.1016/j.watres.2006.11.013http://dx.doi.org/10.1897/08-531.1http://dx.doi.org/10.1897/08-531.1http://dx.doi.org/10.1897/08-531.1http://dx.doi.org/10.1897/08-531.1http://dx.doi.org/10.2166/wst.2010.950http://dx.doi.org/10.2166/wst.2010.950http://dx.doi.org/10.2166/wst.2010.950http://dx.doi.org/10.2166/wst.2010.950http://dx.doi.org/10.1016/j.watres.2005.09.015http://dx.doi.org/10.1016/j.watres.2005.09.015http://dx.doi.org/10.1016/j.watres.2005.09.015http://dx.doi.org/10.1016/j.watres.2005.09.015http://dx.doi.org/10.1007/s11157-007-9121-8http://dx.doi.org/10.1007/s11157-007-9121-8http://dx.doi.org/10.1007/s11157-007-9121-8http://dx.doi.org/10.1007/s11157-007-9121-8http://dx.doi.org/10.1016/j.procbio.2008.01.001http://dx.doi.org/10.1016/j.procbio.2008.01.001http://dx.doi.org/10.1016/j.chemosphere.2007.04.069http://dx.doi.org/10.1016/j.chemosphere.2007.04.069http://dx.doi.org/10.1016/j.chemosphere.2007.04.069http://dx.doi.org/10.1016/j.chemosphere.2007.04.069http://dx.doi.org/10.1016/j.watres.2009.02.005http://dx.doi.org/10.1016/j.watres.2009.02.005
  • 7/30/2019 83066300

    8/9

    disrupting chemicals and microbial indicators by a

    decentralised membrane bioreactor for water reuse. Journal

    of Water Reuse and Desalination 2 (2), 6773.

    Trinh, T., van den Akker, B., Coleman, H. M., Stuetz, R. M.,

    Le-Clech, P. & Khan, S. J. a Fate of

    pharmaceuticals during wastewater treatment by

    a membrane bioreactor. Gwf-Wasser/Abwasser 152

    (S1/2011), 98102.

    Trinh, T., Harden, N. B., Coleman, H. M. & Khan, S. J. b

    Simultaneous determination of estrogenic and androgenic

    hormones in water by isotope dilution gas chromatography-

    tandem mass spectrometry. Journal of Chromatography A

    1218 (12), 16681676.

    Vanderford, B. J. & Snyder, S. A. Analysis of

    pharmaceuticals in water by isotope dilution liquid

    chromatography/tandem mass spectrometry. Environmental

    Science and Technology 40 (23), 73127320.

    Wright-Walters, M. & Volz, C. Municipal wastewater

    concentrations of pharmaceutical and xeno-estrogens:

    wildlife and human health implications. In: Proceedings of

    the National Conference on Environmental Science and

    Technology, Greensboro, North Carolina, USA, pp. 103113.

    First received 27 February 2012; accepted in revised form 16 May 2012

    1863 T. Trinh et al. | Removal of trace organic chemical contaminants by MBR Water Science & Technology | 66.9 | 2012

    http://dx.doi.org/10.2166/wrd.2012.010http://dx.doi.org/10.2166/wrd.2012.010http://dx.doi.org/10.1016/j.chroma.2011.01.068http://dx.doi.org/10.1016/j.chroma.2011.01.068http://dx.doi.org/10.1016/j.chroma.2011.01.068http://dx.doi.org/10.1021/es0613198http://dx.doi.org/10.1021/es0613198http://dx.doi.org/10.1021/es0613198http://dx.doi.org/10.1021/es0613198http://dx.doi.org/10.1021/es0613198http://dx.doi.org/10.1021/es0613198http://dx.doi.org/10.1016/j.chroma.2011.01.068http://dx.doi.org/10.1016/j.chroma.2011.01.068http://dx.doi.org/10.1016/j.chroma.2011.01.068http://dx.doi.org/10.2166/wrd.2012.010http://dx.doi.org/10.2166/wrd.2012.010
  • 7/30/2019 83066300

    9/9

    Copyright of Water Science & Technology is the property of IWA Publishing and its content may not be copied

    or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission.

    However, users may print, download, or email articles for individual use.