8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

40
8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410

Transcript of 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Page 1: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

8. Ocean Crustal Structureand Seismic Reflection

William Wilcock(via Michelle W.)

OCEAN/ESS 410

Page 2: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Lecture/Lab Learning Goals

• Know the basic structure of the oceanic crust as determined from ophiolite studies

• Understand how oceanic crustal structure is linked to mantle melting and volcanic processes

• Physics: Understand what seismic impedance is and how it controls the amplitude of seismic reflections

• Data collection: airguns & LOTS of hydrophones• Data processing: Be able to explain how reflection data is

stacked and converted into a seismic record section• Interpretation: What can seismic records tell you? (LAB)

Page 3: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Structure of oceanic crust: what’s down there?

Page 4: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Geophysics VS Geology

• What is the difference??

– Geology: a science based on direct observation of terrestrial formations

– Geophysics: finding things underground without digging. Or diving.

Page 5: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Drilling to the mantle

Page 6: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

The Geology part: Ophiolites

• Ophio = Snake

(i.e. green)

• Lithos = Stone

Page 7: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

What if the Juan de Fuca Ridge collided with the North American Plate?

North A

merican P

lateJuan

de

Fuc

a R

idge

I’m so hungry! I think I’ll eat the whole Juan de Fuca plate.

Nom nom nom

Oh no! Please don’t eat me!

Page 8: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

What if the Juan de Fuca Ridge collided with the North American Plate?

North A

merican P

lateJuan

de

Fuc

a R

idge

I’m so hungry! I think I’ll eat that Mid Ocean Ridge.

Nom nom nom

Oh no! Please don’t eat me!

You would get an ophiolite!-Often happens when ocean basins close-You get “obduction”, or upthrust of oceanic crust and mantle onto continental plates

Page 9: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Ophiolites around the world

Page 10: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Melting beneath mid-ocean ridges

The melt rises out of the mantle because it is buoyant (less dense than the mantle)

Page 11: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Ophiolite Sequence

Page 12: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Mantle

Page 13: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Crust-Mantle Interface (“Moho”)

Page 14: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Gabbro layer

Page 15: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

0

6

3

Dep

th, k

m

Page 16: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Gabbros (layered) - they can also be un-layered (massive)

Page 17: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Sheeted dike layer

- “feeder channels” for basaltic lava rising from below

- The cracks extend over large distances beneath ridges

Page 18: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Sheeted dike layer

Page 19: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Sheeted dike layer

Page 20: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Pillow basalt layer

Page 21: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Pillow basalt layer

- Lavas extruded onto ocean floor at a spreading center

Page 22: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Sediment layer

Pelagic sediments deposited above oceanic crust basalts

Page 23: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Seismic Reflection

Page 24: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Reflections from Interfaces

When a downgoing P-wave meets an interface, a portion of the wave is reflected.

Page 25: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Characteristic acoustic impedance

- An inherent property of the medium- Depends on sound speed (or seismic velocity) and

density - Pressure generated by vibration of molecules of a

particular medium at a given frequency

Page 26: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Amplitudes of Reflections for vertical rays

A0

V1, 1

V2, 2

The amplitude of the reflected and transmitted phase depends on the seismic velocity, V and the density, in each layer.

Larger contrasts in impedance result in large amplitude reflections

Page 27: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Marine Reflection Seismology - Airgun Sources

Reflection data is relatively easy to acquire in the oceans. Seismic sounds (shots) can be generated with arrays of compressed air guns (airguns) towed behind the ship

Page 28: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Marine Reflection Seismology - Hydrophone Streamers

The airgun shots are recorded by arrays of hydrophones towed behind the ship in a streamer. The seismic streamers contain 1000’s of hydrophones and can be >10 km long. A modern 3-D seismic ship will tow several (the records is 20) streamers.

Page 29: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Marine Reflection Seismology - Geometry

The streamer records waves reflected from interfaces

Page 30: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Normal moveout drawing on board…

Page 31: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Marine Reflection Seismology - DataThe seismic data recorded for a particular shot will display a geometric effect termed “normal moveout” (NMO) which reflects the increased distance the wave travels as source-receiver offset increases

Offset

Tim

e, sTime

X0

Page 32: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Marine Reflection Seismology - Sorting RecordsThe records are sorted so that they all have the same mid-point (Common Mid-Point - CMP)

Page 33: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Marine Reflection Seismology - Airgun SourcesThe seismic records can be corrected for geometric affects and stacked (summed) to produce a single record for the reflections below each each point

Before Geometric Correction

After Geometric Correction

Stacked (summed)

Page 34: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Marine Reflection Seismology - Filled Wiggle PlotsStacked records are plotted on the same plot with the horizontal axis showing position along the profile. Rather than showing lines for each record the plots often show filled regions for positive (or negative) displacements

Tim

e, s

Position

Page 35: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

A reflection profile across the East Pacific Rise

Reflections come from the seafloor, the base of layer 2A (pillow basalts), the axial magma chamber (AMC) and the Moho (M)

Page 36: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Reflection profile - Sumatra

Page 37: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Endeavour segment of

Juan de Fuca Ridge

Page 38: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Endeavour segment of

Juan de Fuca Ridge

TW

TT

(s)

AMC

2A/2B

Page 39: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.

Intersecting Record Sections from the East Pacific Rise

Page 40: 8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.