77 · ... iuy\ w z C = cosine S = sine Each .actu,atpr is modeled ,as a flexi ble rod with pinned...

136
NASA CR- I /+&&77 02-118544-2 L DMIC DoCKING TEST SYSTEM (DDTS) ACTIVE TABLE COMPUTER PROGM NASA ADVANCED DOCKING SYSTM (WADS) https://ntrs.nasa.gov/search.jsp?R=19740026177 2018-06-02T00:36:32+00:00Z

Transcript of 77 · ... iuy\ w z C = cosine S = sine Each .actu,atpr is modeled ,as a flexi ble rod with pinned...

NASA CR-

I /+&&77 02-118544-2 L

D M I C DoCKING TEST SYSTEM (DDTS) ACTIVE TABLE COMPUTER P R O G M

NASA ADVANCED DOCKING SYSTM (WADS)

https://ntrs.nasa.gov/search.jsp?R=19740026177 2018-06-02T00:36:32+00:00Z

DOCUMENT NO. D2-118544-2

DYNAMIC DOCKING TEST SYSTEM (DOTS) ACTIVE TABLE COMPUTER PROGRAM NASA ADVANCED DOCKING SYSTEM

i W S 1

Contract NkS 9-13136

August 30, 1974

Prepared by

R. M. Gates R. E. Jantz

Approved by

Technical Program Manager

BOEING ~EROSPACE CDWPANY

- Houston, Texas

DATE APPROVED

This document describes the computer program developed t o describe t h e .

three-dimensional motion of the Dynami c Docking Tes t System (DDTS) ac t ive table. The input cons is ts of i n e r t i a and geometry data , , ac tuator struc- t u r z l da ta , forcing function data , hydraulics da ta , servo e lec t ronics da ta , and in tegra t ion control data. The output cons is ts of t a b l e responses,

actuator bending responses, and ac tua to r responses.

ABSTRACT

KEY WORDS

Docking Simulator

Dynani c Doc k3 ng Tes t Sys tern (DDTS) Hydraulic Actuator

Mathematical Model Motion' Simulator

iii

TABLE OF CONTENTS

PARAGRAPH PAG E - REVISIONS

, - ABSTRACT AND KEY WORDS

TABLE OF CONTENTS

- L I S T OF ILLUSTRATIONS -

REFERENCE

1.0 GENERAL INFORMATION 1.1 ,COMPUTER SYSTEM 1.2 ; PURPOSE 1.3 ' LIMITATIONS

2.0 PROCEDURE 2.1 PROGRAM NAME 2.2 NOMENCLATURE 2.3 METHOD

.d.O I NPUT/OUTPUT DESCRIPTION 3.1 . INPUT DESCRIPTION AND PREPARATICN 3.2 OUTPUT DESCRIPTION 3.3 ERROR MESSAGES

4.0 OPERATING INFORMATION 4.1 PROGRM 'AND DATA SETUP 4.2 RUN INFORMATION

5.0 PROGRAMING - INFORMATION . - 5.1 FLOW CHARTS 5.2 SYSTEM STRUCTURE ..

5.3 LIBRARY SUBROUTINES 5.4 PROGRAM LISTING 5.5 SAMPLE PROBLEM

ILLUSTRATIONS

FIGURE

,. 1 DDTS Simulator Faci 1 i ty

Actfve Table Coordinate Systems ~ .

Mass Mztrix

Servo ~lectroni cs Block Diagram

PAGE -

-

REFERENCE

Boeing ~ocument 02-118544-1, "Mathematical Model for the Simulation o f

Dynamic Docking Test System Active Table Motfon ," -August 30, 1974. \

1

1 r;

D2-110544-2 ! -~ - . - I 7

1 _ - 1.0 GENERAL INFORMATION

-- 1 .l COMPUTER SYSTEM r -

- - -. This program was written i n FORTRAN V language for use on the UNIVAC 1108 '

I- I

computer w i t h the EXEC I1 operating system. -The program can easily be , -.

. - converted t o the EXEC 8 operating system. The plotted output i s done on . - the Stromberg Datagr-aphix's SD-4060 m i crofi l m plotter. 1

i r

i 1 . 1.2 PURPOSE !

The program simulates the motions of the NASA JSC Dynamic Docking Test i - i

System (DDTS) active table. Given a description of the table mass and

geometry, the actuators, the hydraulic sys tem , the electronics, and the !

forcing function, the program outputs time-histories of table responses, I I actuator bending data, and actuator responses. Responses t o the f 01 1 owi ng I ! i

I i n p u t forcing functions are calculated: ' i i I i a. Step velocity comnand t I

b. Si nusoidal position commands

c. Step external 'forth: on table c,g. d. Si r~usoidal external force on tab1 e,. c,g .

1.3 LIMITATIONS

Forcing functions are limited t o those l i s ted in Paragraph 1.2. Dynamics ' I - ,

1 of the, simulator due to docking are .not modeled. Actuator control system 1 I

i components are limi,ted to those shown i n Figure 4. In the actual DDTS, 1 : * 1 L

~ - there are notch f i l t e r s i n both the velocity command l ine and the forward

t loop which are not included i n th i s simulation. I

2.0 PROCEDURE

2.1 FROGRAEl NAME

The program acronym i s NADS , .

from - NASA Yvanced b c k i n g System. - -

- 2.2 NOMENCLATURE

Program - A

A A

AL

ALPHA

AL3D

AV

BETA

BETAE

CAA

CAL

' DLTAI

Engineering

MI

A1' A2

it P

1 P

a

'4' .P -

'P B

fje

B p \

- I

.. c

1 c

c

C~

AX, Y A Y I '

A Z I Y A @ ,

A $ , A 4

EIr

Ff

F~

Nomencl ature for NADS -

Description

Transformation matrix from table to inertial coordinates

"Push" and "pull" stroke working areas of actuators

Actuator accelerati on

Actuator length

Break frequency of f i r s t order f i 1 t e r .

Actuator jerk

Actuator ve.1 oci ty

Break frequency of f i r s t order f i 1 t e r

Equivalent hydraul i c sys tem bul k modulus - ,

Viscous damping coefficient of actuator

Column of generalized forces for equations of notion, solution

commanded actuator acceleration

Commanded actuator length

Commanded actuator velocity

Leakage coef f i eient 'across p i ston seals

Sinusoidal amp1 i tudes c f trans1 ational commands for table c.g. and of table Euler angles

Bending modulus of piston rod I . . ~ .-

~ o u l o h fr ict ion force of actuator \

Total hydraulic and fr ict ion forces acting ,

on pistons

2.2 (conti nued)

Nomenclature- f o r NADS (con ti nued)

Program Engineering Description - FMEXT F ~ ~ ~ ' M~~~ External forces and moments . .-

I F P F i ~ , - Net forces on actuator piston . ,

I , I ' f . !

I - FRQNCY w Command s i gnal frequency ! C ?

I ! I t I AC Mass moment of ine r t i a of cyl inder (excluding i

I AC ! ! . the mass of the piston) about f loor swivel I

I

jo in t I I I

.. I - -i IFIRST - j In i t i a l i za t ion indicator f o r nass matrfx and

geometry r' i

- i IM - Mass matrix and geometry update option indicator I 1 INDKTR '

- Stroking or' rnatri x inversion error indicator I t o terminate the integration process

I 1

I I I i INER 1 ' 1 xx.? -yy3 Moments and products of inert- ia I . .

i , , ' ' I,,, l ~ x y s

. , - I i Ixz9 I\j;,:

.)

\ '

IPLOPT Plot option ind.1 cator , < - I P ROPT - Print option indicator

IXF - (External force and moment option indicator ,

Kc Valve pressure flow coefficient I

I ! , * KF Kf D i sp1 acewent feedback and command,^ gai n . s , . I , I KG

K; , Electronics and valve forward loop gain ! I' , , . , .

KPF K ~ f

Pressure feedback 1 oop , gain I ,

, KR ., ,,

Kr Vel oci - t y feedback 1 oop gai n i;

, , KRC- Krc Vel ocf t y command gain C

(.- 1 ,

LC 1 .:. E 'C Distance from f loor swivel t o , 'center l i n e of piston rod seal a t end ,of cylinder ;*.

I .

D2-118544-2

2.2 (Conti nued)

Nomenclature f o r NADS \continued)

Program Engi neer i n g Descr ip t ion

L PM P.

Maximum s t roke o f actuators

L R Length o f p i s t o n rod I -

LO l o Retracted length (between swivel j o i n t s ) of actuators

M M, M - ~ Mass ma t r i x and mass ma t r i x inverse

MH M~ Moment ac t ing about t a b l e c.g. from hydrau l ic and f r i c t i o n forces

1 Ef fnct ive r i g i d l a t e r a l mass o f actuator assembly

MP m P

Mass o f p i s t o n rod and pis?tr?n i I MQ m 9

Ef fec t ive , bending mass lumped a t rod seal o f c y l i nder

MT mt Table mass

s NFREQ - ,Number o f . t a b l e d i sp1 acement frequency , , cases I I !

NFFREQ - Number o f external fo rce and moment fre:uency - I cases I i NPLTS - , Number of p l o t t e d t ime ,,points

OMEGA "'1' "'2 Break frequencies o f f i r s t order fi.1 t e r s t I / OMEGAC "k Di sg l acement ,command s igna l frequency

, OMEGAE -- o' Actuator bending frequency e :'

I

OMEGAF Wf Frequency o f s inusoidal external forces and < . moments . ,

OMEGAS ~ r e ~ u e n c y o f ' s k c b n d order f i 1 t e r , on' d i sp l acement and v p l o c i ty feedbacks

OMEGAV o Y

Frequency o f wal ve dynami cs i

O M W u p f l ~ y p f 2 Break f i ;quenc les o f 'pressure' feedback fi 1 t e r s <\ i I '.. ,

, ! - . .

D2-118544-2

2.2. (Continued)

i - Nomencl ature fo r NADS (conti nued)

Program Engi neeri ng Description

Output frequency fo r printing and plott ing

Supply pressure

1 RS Iner t ia l vector components o f actuator length r~ ! 1 RXA X axis table s ta t ion of actuator swivel jo ints rxa -. i w i t h respect t o the table c.g. .-

C 1 . I RYZA 'yay 'za Y , Z table coordinates of swivel jo ints w i t h

I respect\ t o the table c.g. % t

[TI Trans formati on matrix trans forming vectors from table coordinates to 1 ocal actuator coordinates

1 I i ,

i T CG CO X I , yI , In i t i a l i ne r t i a l coordinates of table c.g. 0 0 f

- i I

! I 1 ' . 4

0 I 0

I TDZC- Time dependent i nert i a1 commands I I (R1c)y {R1c) , I

i ! , i

T EAO eo' JIos (b0 I n i t i a l Euler .angles of the table coordinate system w i t h respect t o the i ne r t i a l system

TEND - TIME t

TITLE , -.

TPLOT -

TPRINT -

Last integration t ime , ,

Time ,

T i t l e t o be printed a t top of f i rst'. page of output , .

.Time por'nt' "at. or af ter , which' output fo r p lots i s nade I

Time point a t or after'khich printed output i s made

2 .2 (con t i nued) I .

Nomenclature for NADS (concluded)

Pmgram Engi neeri ng Description

VO * 0 In i t ia l hydraulic volumes of push and pull strokes of ful ly retracted actuator

X - Vari able array (outp~rt by i ntegrati on procedure)

X DOT .. Derivative array

X 0 Xo h i t i a1 condition array

YZF Yf9 Zf Y and Z iner t ia l coordinates of floor swivel joints

ZETAE ce Damping constant for actuator bendi np

ZETAS 5 Damping constant of second order f i l t e r on di spl acement and vel oc! ty feedbacks'

ZETAV Damping constant of valve dynami cs . cv

This section contains a brief description of the physical system for which the program was written and the mathematical equa t1,ons used to describe the motion of the system. The equations are described i n detail i n the

referenced document. 'L-.

The DDTS active table i s a triangular platform supported by six hydraulic actuators as shown i n ' ~ i ~ u r e 1. The table is capable-of ,six-degree-of- freedom motion contro1,led. by the six ,actuators.

Three coordinate syste~n<'aye'used to describe the motion , , of the table and actuators. These coordinate systems are shown i n , Figure ,2. The iner t ia l coordinate. system origin i s ,on the simulator centerline i-n the plane ,of the floor swivel joints. ,Table, motion commands and responies , . are expressed i n

the inerti a1 coordinate system. Table -coordinates are b i d v fixed coordi - nates whose origin i s a t the table 'center of gravity. Actuator coordin,ates

are used to describe actuator motions. , I

Y\ , ,

6

\ . ' ,

RT . A~O~IUCIBIWTY OF THE QUGIPJAL PAGE IS POOR

TABLE COORDINATES

COORDINATES 1 '""'" ACTUATOR COORDINATES

Figure 2. Active Table Coordinate Systems

2.3 (Continued)

Table equations of motion a r e wr i t ten i n the body f ixed t a b l e coordinates as follows:

where: 1 x is a- column of- accelerat ions f o r each C g r e e of freedom ( s ix degrees of freedom f o r the t a b l e and two e l a s t i c degrees of freedom f o r each actuator)

[ M I is the 18 x 18 coupled mass matrix

( C 1 is a column of generalized forces f o r each degree of freedom

The mass coupling effzcts of the actuators due t o t a b l e motions a r e

determined by Lagrange's method. The three-dimensional r i g i d motions of the ac tu t to r s are completely constrained (I .e., they a r e dependent upon

the t a b l e motions). The--mass matrix is shown i n Figure 3 i n upper tri- angul ar f o ~ . .

The. columa of generalized forces includes the ve loci ty terms i n the .

equations of motion, the t o t a l forces exerted on the t ab le by the actua- t o r s , external ly applied forces and moments, and ac tuator bending s t i f fness

2.3 (~onijnued) I . ,

/

The Euler. angles 0 , q,, cg are used t o transform velocities i n the table coordi pa?. ? system t o the iner t ia l coordinate system

' , I . : , , , . ,

1 / ! '

' I ' COS& , - W

I I . 0 cosg cosq, X

I " I )

1 , 1 It i , . 1 . 1 - i ["in+ 1 -cos+tan+ si n4tang c o s 4 ] iuy\ w z

C = cosine S = sine

Each .actu,atpr is modeled ,as a flexi ble rod w i t h pinned ends and is free - - to1.bend i n i ts f i rs: la teral mode i n two orthogonal directions.

I \ 5 1 ,

$ 8 Hydraulic forces are calculated using nonlinear hydraulic flow equations: , , , I

' i

D2-118544-2

2.3 (Continued)

Piston forces calculated include the effects of viscous damping, B , and P

coulomb friction, Ff. For each actuator:

The coefficient CF i s used to avoid a discontinuity at zero velocity.

? I f lip] 2 Vbw then CF = p

l ipl

1 If llpl < Vbw , then CF = E

'bw

Total hydraulic actuator forces and moments are then calculated for the equations of motion as follows:

: 2.3 (Continued)

where the terms Ti , Ti12, . .. etc. are the terms in the transformation 11

from table coordinates to 1 ocal actuator coordinates :

TI^] is the transformation from actuator coordinates to iner t ia l coordi nates.

The servo electronics consist of actuator position and rate command signals and the electronic components shown i n Figure 4. The use of the forward 1 oop compensation network, the valve dynamics representation, and the position and ra te feedback f i l t e r are optional. I f B , for example, is input as a value less than unity, then the forward 1-oop compensation network is not included i n - the simulation. Similarly, the valve dynamics and posl tion feedback f i l t e r are neglected i f wv < 1 and us 1, respec- ti vely .

Table motion commands are input i n the iner t ia l ccordinate system ana are transformed to commands to the s ix actuators as follows:

as the [A] natrjx with the angles e , ), + replaced with the uler angles ec, q,, +c. Then the cmanded iner t ia l components

J

PRES

SURE

COM

PEYS

ATIO

N

rc

SERV

O. V

ALVE

AC

TUAT

OR D

YNAM

ICS

2nd

ORDE

R FI

LTER

-

Figu

re 4

,

t

' c +

IK~

-

Serv

o E

lect

roni

cs B

lock

Dia

gram

I

C

S+

1

a -

s -a

1

B

e - 1

(5$+

2~s+

1 i W v

A

f

-K

gv

I

Q,

b

PRES

SURE

EQU

ATIO

NS

AND

EQUA

TION

S OF

MOT

ION -

2.3 (Continued)

of actuator length are:

and the commanded iner t ia l velocities of the tabletservo attachment points

are :

where :

Then the commanded actuator lengths and velocities are:

3.0 INPUTjOUTPUT DESCRIPTION

3 .1 INPUT DESCRIPTION AND PREPARATION

Card 1 Format 13A6 ,A2

T I T L E

T I T L E - 80-character t i t l e t o be pr in ted on the t op of t he first C: page of output

I N E V I A AND GEOMETRY DATA

Card 2 Format E12.6

MT - Table mass

Card 3 -- Format 6E12.6

INER - Table moments and products o f inertia

Card 4 Format E12 .6 , ,

RXA

RXA - X t a b l e s t a t i o n of ac tua to r swivel j o i n t s w.r.t. table. c.g. -

3.1 (Continued)

Card 5 Format 6E12.6 .

RYzA(~,I) - y-table coqrdinate of I ' t h swivel jo in t w.r.t. table c.g.

RYZA(2 , I ) - Z-table coordinate of I ' t h swivel jo in t w. r. t. table c.g.

Card 6 Format 6E12.6

( (YZF(J , I ) , ~ = 1 , 2 ) ,1=1,6)

YzF(1 , I ) - y-i ner t ia l coordinate of I ' t h f loor swivel jo in t

YZF(Z,I) - 2-inert ial coordinate o f I ' t h f,loor swivel j o i n t

ACTUATOR STRUCTURAL DATA

Card 7 Format 6E12.6

ZETAE ,MP ,IAC,LCyLR,LOyEIR,LPM 1 /

ZETAE - Actuator bending damping constant - '

MP - Mass of rod and piston

IAC - Moment of i ne r t i a of cylinder about f loor swivel jo in t

LC - Distance from f loor swivel t o center' l ine of pi ston rod seal a t end of cylinder

LR - Length of piston rod :. '.

LO - Retracted length of actuatcr ,

EIR - Bending modulus o f pi ston rod

LPM - Maximum stroke of actuator

Note: The data above occupy two cards. -

D2-118544-2

3.1 (con ti nued)

FORCING FUNCTION DATA

Card 8 Format GE12.6

TCGCO - I n i t i a l ine r t i a l coordinates of table c.g.

TEA0 - In i t i a l Euler angles of table coordinate system w.r . t . i nert i $1 sys tem (rad. )

Card 9 Format 414

ZM,NFREQ,IXF,NFFREQ -

IM - Mass matrix and geometry update option - 0, do not update a f t e r i n i t i a l i z a t i on = 1, update throughout time span

NFREQ - Number o f displacement frequency cases t o run (max. = 18) (see note a f t e r Card 11)

IXF - Extern'll force and moment option

= 0, no exterrial forces. or moments = 1, constant external forces and ,moments are t o be - appl ied

t o the table c.g.

= 2 , excernal forces and moments are sinusoidal

NFFREQ- Number of external farce and moment frequencies (nax. = 18)

Card 10 Format 6E12.6

(OMEGAC ( I ) , I=1 ,NFREQ)

OMEGAC - Di spl acetnent command signal frequency (rad ./sec. ) I f OMEGAC(I) < 0 , the command amplltu@ (Card :1) are assumed t o be s tep velocit ies.

Card 11 -- Format : ,6EU .6

(DLTAI ( I ) , I=l ,6)

3.1 (con ti nued)

DLTAI - Si nusoidal amp1 i tudes of X, Y and Z commands f o r table c.g. , displacement and table Euler angles, e , 4 and 4 ( i f OMEGAC > 0) or s tep veloci t ies ( i f OMEGAC < 0 )

Note:: Due t o the interaction of Card; 10 and 11, i t i s logical t ha t i f - one OYEGAC(I) i s l e ss than o r equal t o zero they must a l l be. Therefore, i t is logical t ha t NFREQ should be only one i n t ha t case.

I f IXF.=O, skip the next two cards

Card 1 2 Format 6E12.6

(FMEXT(I) , I = ~ , s )

FMEXT - blagnitude of external forces and moments applied t o the table c.g.

I f IXF=ly skip the next card - -

Card 13 --- Format 6E12.6

(OMEGAF(I) ,1=1 ,NFFREQ)

OMEGAF = Frequencies o f si nusoi dal external. forces and moments (rad. /sec. )

HYDRAULICS DATA

Card 14 Format 3E12.6

PS yBETAE ,KC

PS - Supply pressure

BETAE - Equivalent system bulk modulus

KC - Valve pressure flow coefficdent

Card 15 Format 6E12.6

'(cP(I) ,1=1,6),(~P(X),I=l ,6) , '

3.1 (Con t i nued)

CP - Leakage coefficier,t across piston seals f o r each actuator

BP - Actuator viscous damping coefficient for each actuator i ? i I

Note: The data above occupy two cards. -

Card 16 Format 4E12.6 -

(A(1) , I= I ,2) (vO(I) ,I=1,2)

A - Actaator push and pull stroke working areas I VO - In i t i a l hydraulic volumes of fu l ly retracted actuator I

-.

Card 17 I -- Format 6ElZ ,6 !

(FF(1) ,I=1,6) i

FF - Coulomb f r k t i o n force of each actuator

ELECTRONICS DATA

Card 38 Format 6E12. 6

(KG(1) , I=1,6)

KG - Electronics and valve, forward loop gain

Card 1% Format 6E12.6

KF - Displacement feedback and command gain , -

Card 20 Format 6E12.6

(KR(I) , I=1,6)

KR - Velocity feedback loop gain I

Card 21 Format 6E12.6

KPF - Pressure feedback loop gain I .

3.1 (continued)

Card 22 Form~t6E12.6 .

(KRC(1) , l= l .6 )

KRC - Velocity comnand gain

Card 23 Format 4E12..6

ALP~,BEIA. (O~.IEGPF(I ) , 1 = 1 , 2 )

ALPHA - a BFTA - 0 I Break f requ~ncies of

first order f i l t e r s (rad./sec,) OMEGPF OiBF1 and u P ~ 2

Card 24 Format 6E12,6

ZETAS ,OMEGAS ,ZETAV ,OMEGAV

ZETAS - Damping constant of second order f i l t e r on displacement and velocity feedbacks

@IEGAS - Frequency of the displacement and velocity feedback f i l t e r (rad. lsec. )

ZETAV - Damping constant of valve dynamics

CiiiEGAW - Frequency of the valve dynamics (rad./sec,)

INTEGRAT JON CONTROL DATA

Card 25 Format 4E12.6,215

. . TSTART ,TENlr3 (OUTFRQ ( I ) , I = l , Z ) , IPROPi ,XPLOPT 4 1 TSTART -S t a r t t ime . .

TEHD - Stop time

O U T F R Q ( ~ ) - Output frequency fc r ,printing ( ~ t , sec.)

OuTFRQ(2) - Output frequency for plotting [ ~ t , sec,)

3.1 (Continued)

IPROPT - P r i n t option -

IPLOPT - P l o t option

Note: IPROPT and IPLOPT a r e of the form IlI2I3Iq0 where Ii is the group - number of the i ' t h group of da ta t o be printed. These groups a r e expi a i ned i n the next paragraph, Output Description.

Cards 1 through 25 may be repeated as many times as desired.

3.2 OUTPUT DESCRIPTION-

The output includes printed l i s t i n g s and p lo t s of responses versus time.

These responses a re divided i n t o four groups:

Group 1 - Table Response Data -

a. Incremental i n e r t i a l motions of the t a b l e c.g. b . Incremental angular notions c. Incremental ve loc i t i e s of the t ab le c.g. d' Euler angle r a t e s e. Table posi t ion e r r o r s

Group 2 - Actuator Bending Data

a. Bending frequencies of t h e ac tuators b. Y and Z l a t e r a l e l a s t i c displacements a t 'cylinder rod sea l

Group 3 - Actuator Responses

a. Actuator s trokes

b. Actuator ve loc i t i e s : ,

c. Actuator posi t ion e r r o r d. Net forces on the actuator pistons

3.2 (Continued)

Group 4 - Complete pestvatjve. and Variable Arrays (may - not be plotted)

The variables and the i r derivatives (indexed by row) are listed below.

Deri vati ~ f 2 -- .. *T .. YT .. 0

Ox

"'Y 9

.. Yel

.. '%-

. .. ".1

.. 2 e6

X~

i 1 . z1 . 8 . 0 9

9

i e6

Index Variable --- 9

x~

9~ . z~

"'x

W Y " -9

e6

i el '

1- . z e6

X~

1

8

'4

4 Y el

Y @6

Vari ab1 e !&f i n i ti on ,

Table c.g, velocities

Table. rotational rates

Lateral bending velocities of actuator along ys axis

i

Lateral bending velocities along z axis

S j .

Inertial displacements~ o f table c.g.

Table ~uier angles . .

Bending deflections of actuators a t top of cylinder

Variable - z el

2 e6

P l1 . . . -

P '6

Pfl

P 26

0

"06

Qol

I '06 .

Variable Definition

Bending deflections of actuators a t top of cylinder

"Push" hydraulic pressure on actuator pistons .

"Pu? 1 " hydraulic pressure on actuator pistons

DerS vatives of no-1 oad valve f 1 ow

No-load valve flaw

Fi 1 tered actuator feedback ve1 oci t ies from second order f i3 t e r

F i I t e i d &ydback- displacements from second order f i l , ter

3.2 / (Continued)

Index Deer! vati ve -. Variable Variable Defini ti on

Voltage output of f i r s t order lag f i 1 t e r in pressure feedback

'a - .

I Vo1 tage output of ~ h i g n $ass f i l t e r i n pressure feedback

I Voltage output of forward loop conpensation f i 1 t e r s

3.3 ERROR MESSAGES

"THE IIITEGRATION HAS FAILED AT T = XX-XXXX. ABORT AND GO TO NEXT CASE." - occurs if fo r some reason the integration procedure cannot

continue. The program will abort the case and attempt t o process another one.

"ACTUATOR XXX HAS STROKED OUT.. .ABORT AND GO TO NEXT CASE." - occurs when an a c t u a t x has exceeded the maximum stroke. The program will abort the case and attempt to process another.

"ERROR hHILE INVE-RT~NG MASS MATRIX. . .GO TO .NEXT CASE. " - is se1 f-

explanatory. The user should look f o r errors i n input which may cause a singular or i 1 1-condi tionedpmass matrix.

There are also ,several error messages output by the i ntegration routine. When one of these messages occurs, it is likely tha t an instabi l i ty ha: occurred i n the hydraulics or electronics caused by improper data.

4.0 OPERATING INFORMATION

4.1 PROGRAN AND DATA SETUP

The program may be i npu t v i a s tandard EXEC I1 control cards on source o r r e loca t ab l e decks. A l l da ta f o r t h e program a r e i npu t on cards .

4.2 RUN INFORMATION - - -

-.1

Compilation time f o r t h e program is about 40 seconds. Representat ive . . runs of about one second of s imulat ion time have averaged approximately 8 minutes. Run time depends g r e a t l y upon the frequency o f t h e hydraul ics and e l e c t r o n i c s inputs . ~ -

5.0 PROGRAMING INFORMATION ~ . -

5.1 FLOW CHARTS

Program flow c h a r t s a r e shown on the fol lowing pages.

ACAVAP : Actual Actuator Positions , Velocities, and Accelerations

START

r - - ACTUATOR

I I

ACTUATOR VELOCITIES

! CALCULATE I . ACTUATOR I POSITIONS

I I I L - - - {- ACTUATOR

RETURN

DENTCY

CALCULATE ACTUATOR

RETURN b

. -

and Accel e r a t i on Commands ACDVC: Actuator Displacement, V e l o c i t y ,

CALCULATE , INERTIAL COMMANDS

piitzw-1 , fHG. BODY

ACCELERATIONS

BEG I N ---I ArTUUOR -- . I

CALCULATE ;OMM. INERTIAL

VELS. AND ACCELS .

t CALCULATE

ACT. LENGTH INERTIAL

COMPONENTS

OMM . ACTUATOR ENGTHS , VELS.

AND ACCEL

1-1 ACTUATOR

RETURN 'b

ACIBD:

. .

D2-118544-2

Actuator I n e r t i a and Bending Dynamics Parameters

START I---- ACTUATOR I I

CALCULATE EFFECTIVE

LATERAL ACT.

CALCULATE EFFECTIVE (BENDING

MASS

CALCULATE BENDING

FREQUENCY '

-- -

DATARD : Data Input Routine

PRINT TITLE

EAD & PRINT INERTIA & EOMETRY

ACTUATOR TRUCTURAL

EAD & PRINT FORCING

EAD & PRINT

Y DRAULICS

EAD & PRINT LECTRON IC

, .

-.

1 DATA f

D2-118544-2

FCN: ~ e r i v a t i v e Eva1 u a t i o n Contro l Rout ine

FIRST

ACTUATOR COMMANDS ( ACDVC)

COLUMN OF GEN. FORCES

FQNS. OF.

DERIVATIVES

FCN (continued)

TRANSFORM TABLE

VELOCITIES

HYDRAULIC AND ELEC.

RETURN

SET . JNDICATOR

GONADS : Mai n Control Routine

GONADS

READ

DATA

START f-- FREQUENCY I I

I FREQUENCY LOOP

HYSREL: Hydraul i c and S e r v o E l e c t r o n i e D e r i v a t i v e s

START HYSREL

I

?ayE: DYNAMICS

' , .

NO-LOAD VALVE FLO'EJ

I-- CAILCUL ATE

, AO-LOAD VALVE ,FLOW DEklVATIVES ACTUATOR

LOOP

CALCULATE PRESSURE

DERIVATIVES

NO YES

l4 * 1-1 Fl LTERED ACTUATOR FEEDBACK

FEEDBACKS DERIVATIVES I

SET VOLTAGE OUTPUT '

'

HYSREt (conti nued)

CALCULATE HIGH-PASS

DERIVATIVE

CALCULATE

FILTER

6 COMP . NO

INITIL: I n i t i a l i z a t ' r . . ~ HoutP'ne

START (7) INITIALIZE INTEGRATION CONf ROLS

INITIALIZE INERTIAL POSITION OF TABLE

ACTUATOR

ACTUATOR POSITION AND VEL.

,,-.- D2-118544-2

OUTPUT: Print and k i t e Output on Drun~ for r

I L--

OPTION

D2-118544-2

OUTPUT (continued)

OUTPUT

1 BEGIN LOQP 1 ON NUMBER -----j I I OPTIONS OF PLOT I

PLOTLR: P l o t Control Routine

START (-1 -

CALCULATE OPTIONS

I START 1

FROM DRGM

I I I

I e- ---------- DATA SET

LOOP

RETURN

i ' .

PLT3: Routine ' t o Form Three P lots per Frame

START - (-1

MAX IMUM

MINIMUM

5.2 SYSTEM-STRUCTURE

No over1 ay structure , is required for th i s program. , ,

5.3 LIBRARY SUBROUTINES

Several routines from the Johnson Space Center plotting l ibrary are used. These routines and thei r ' f~ ictions are :

FILMAV - advances the film GRDSET - se t s 1 i ne i ntensi t i e s GRID - forms a grid PLOTIV - plots an array of points PRINT - prints axis t i t l e s .

These routines may not be available a t another location; i n which case, the bes.t action would 1 i kely be t o substitute routines w i t h . the sa.me f4nctions rather than obtaining these routines from the JSC library.

5.4 PROGRAM LXTING

A cmpl ete program 1 i s t i ng -is shown on the fo l l mri ng pages.

......

I i R

EPR

OD

UC

HIL

ITy OF

fib

- -

#\

, ,

j<,.><

- .,

'; I

.

1 DUGIUL P

AG

E Iq POOR

I '

I'

. C

e: 8 1 - - c - C 0 u C 0 0

a N m u

- m C. L -". O ' C

"I' I

. - ! < . N . - . L I N . * I . . .- I r) . - . > . *

) . u .C ,

8 ,

I - Ir l

- .- I-,

- --4

. ---

- --

- -- .

-*

3J

LX

**

R'

l?

dY

,-

-J

l.

l4

O

J~

~D

~N

O~

OJ

~U

~~

~I

OY

/Q

N@

A~

YI YO

UY

O)

a

--.A

- 1_-

t t

lv

/ v

Al

~v

~-

~~

bp

o2

* .- -.----a-

~d

~*

m1

a'u

le~

il3li>

vt

*~

y~

a:

La

z

rauAsavi nonno) 6

. d

t'

7~

'0

~~

'3

Vl

'3

')

#~1YJ-Uv<

- -

av,,,~ O

OO

QO

~_

. , ~0

00

2.

1~

~~

n0

00

~~

~~

~0

00

f'

~~

~0

00

~~

~.

~~

0

d-

go

op

~O

~q

OO

~

V~

~~

~_

L?

_O

O~

~J

.J

QO

~

- ih

SQ

QO

OO

cooo

YT

,060do Y to06

- ..- OW

-oooooo u sooo dw

to

oo

oo

L co

o0

iii rFoooo : $of:

27

t &

@O

v toao

7 IO

OO

OO

0

0

11

OO

GO

OO

u 0

00

0

Sd

rN:

CI

O~

;

00

00

w

d~

~~

~~

oo

Qc

0Q

0

1 1

13

?!OOQO

Y (000 3

10

00

QO

u 06

?0

7

V

SO

60

00

Y

hOO

O

bill

St

0

5V

l ZO

O0

00

$

00

0

tob

o-'

00

19

7

32

* I

P9.. 2

O-J

!.l.r*

._--

.-

- ._

-_.

I O

OtS

2

. 3

1*

20

r

H{

l)

FH

(t)d

?l.

J)*

TfJ

,I,l

) 4

.

I?

1 0

01

5S

34.

RII

) w

R

XA

-

J

--- ,

OO

iSb

3S*

00

50

Iw

l*4

I !

- oO!b

l--3b

! &

?U

EL

ZU

A I

---.

---

?

00

1b

2

37

0

at3

1

RV

ZA

(2a

fl

0

I I

' R

I 0

01

13

KO

->!? d

~h

?

-P

A---.-----.

--.

0a!4

'--3'

* 3

98

3

0 V

(JI . T(

I,I#

JI

: I:

, aq

! to

-

; C

-

qo

* C

AL

L

CR

OIS

IR~

V~

VII

-

QO

l7l

. ell*

DO

NO

J

w1

*3

i %

C'

o

o!?

?,

42.

oO

b1

4J

) ~

HI

JI

~~

P(

~I

*V

~I

J~

-

---

---.

---

00

11

1

#a*

.

SO

CO

NT

tNU

E

! %

O

OI

OO

A*

R

ETU

RN

0

02

0 I

s-

ci

io

-.....-

- -

- - -

----.

Ir

:

r:

r: I

- -

.-. ...----

".A. -- ----.--

j IO~

~O

)~L

IYU

- .st,,

. .....

..*

.............. O

ttOO

,.a

., c 9

8 5

SO

~I

XS

VU

O

- rh

Z

Lt~

0.0

- I.

- I - --

- . --

.- -..-.-.-- ..--

d3

'0

~~

4

14

01

'91

31

1~

~

OC

Z SZZO

O-

I -m

i 5t7 0' rq-.-s-m

iiir sm

iirom

~ - 022-

CP

ZO

O

o~

*t

-t

f

~~

I'

I~

P*

IP

~~

BW

)I

(

~0

6'~

),

3l

!~

u

rlt

ClZ

00

I tS

*51

9C

'OB

l /S

*S

11

~'0

61

~S

.S

~~

C~

~~

-L

IX

S-

~~

~~

S

O&

.

an

[ZO

O-

--- -.

.&I

st to

e

. . i

nn

; roo-

.- - .------

----.---.- e

Lt

TS

IOO

I

ss

~o

r

-

VV

*~

W'

~V

tC

Ob

'T1

31

1~

1

.st

LC

10

0

~~

*s

~I

v~

JI

~s

I~

~I

~~

~I

x~

W

Vi

iY

B

1W

UO

.

.... ...

-. --- - .--- -------

.-- - .

. , .

----. -- ---

VV

3'A

V3

"11

1

I ZO

C'+

)?~

#I .C

1 O

Z! 00-

L;

- 8

tt4C

15

0 lv

bf nnr rt N

O m

oo

svr N

o:lV

?rrw

o2

SLML

I~O10010Zl3 ?

3A

31

e2

3~

31

- 1

52

VA

31

11

33

x3

A

Nv

YP

YO

~ *Ott

~V

AIN

A

SS

O_

Y>

~S

SO

~

O*Y

OA

e-

- :

.J

-,O l

iS

Ci

L.

,A

L_

Hf

iP

At

.

. . -

- .--

--- - -- - -

-

1

! ' i t '

EIO

~IU

IL

* 2

8 B

RE

TU

RN

1

. .

00

23

'l

57.

GO

T0

1

00

I

"'

'

oo

t3

Cs

a*

b

Rm

rm9-

o+b

,-- " .- -.

.

.- d

00

23

7

59

* .

CA

LL

RO

T

I

GO

TO

" s-.

- -

-Q

b2

74

00

*

id

7 .'

O0

2*1

'

I -I

61

-9

2 *

RJ

TC

tl3

,?G

s#

--

-.

-

- --

c Z-L

T~~

2-

,

. ..

. -Av-

' --

00

24

3

&2

* t

00

24

4

bS

* GO

TO

1

00

--

----

O

Q29

-4*

C3

-'ia

RfT

Wi?

rory

- '

----

-- .

. . -

--

--

-.-

., C

ALL

R

OT

O

OZY

7

6S

* , ,

-50

66

. ..--

- G

O

TO

10

0

> -

00

25

1

67.

. 9q

WRIYEtl7t9051_

:I

--

.---

--

---.

--.

- -

- . - -

-- - --

--.

-- -.

----

.

..

. .

-.---

- ..--

-.

----

-- -

- -

- J

. . . . . . - . . .

- . . . .

. . ,

. ,

I -,-..--

cu

b

! I .". -

--- --.

, .

5.5 SAMPLE PROBLEM '

1'-

The input data and output, both printout and plots, for a sample case -

are presented on the following pages. In the example, the table i s commanded to move sinusoidally i n the y direction with an amplitude of 0.1 inch. A1 though 18 frequency cases are specified, output from the f i r s t frequency case on1,y i s presented. In this example th,e valtje dynamics , forward 1 oop compensation f i 1 t e r , and posi ti on and rate feed- back second-order f i l t e r are ignored, Rate command and rate feedback gains are se t to zero.

. . *% ! ; 8 I

o N n.r ---so ON-om ma=.- - . o..--a o m - n r 0 . 0 0 . b

0 LC)'., I* t-h EL O N -

- 00 r :-.a- .I I - - *

0 r 00 : # I

0 .=-* N ..I*- r .a'* * L :.m19 * . ---- - 1 .*-a * I* = -*

a 8 ,

16 -N 0 ! 0 0 s 8 1 u IIr.1 L N Y O 0 .P.y* 7 - 0 - .. : - 3 ~ e c ' a - n . --• 8 ! - 9

rn.80)

0.002

0.001

-0

1 -0.901

-0.002

-0.891

-0.09q

-*. OO?

.;a- . s,;

'I- . - 02-118524-2

atrrrtw starts

15 0

LOO

5 0

-100

-250

-lnl