6_Mechanical Properties of Nylon-6 After

download 6_Mechanical Properties of Nylon-6 After

of 6

Transcript of 6_Mechanical Properties of Nylon-6 After

  • 7/23/2019 6_Mechanical Properties of Nylon-6 After

    1/6

    M e c h a n i c a l p r o p e r t ie s o f n y l o n 6 a f t e r

    t r e a t m e n t w i t h m e t a l h a l i d e s

    A . P. M o r e a n d A . M . D o n a l d

    Cavendish Laboratory, Madingley Road, Cam bridge, CB3 0HE, UK

    Received I March 1993)

    Conditioning of nylon-6 by immersion in metal chloride solutions modifies he mode of deformation under

    an applied tensile stress. Infra-red spectroscopy of salt-treated films shows significant modification of the

    spectrum, indicating changes in the intermolecular bonding. Modulus measurements support the hypothesis

    that modification of the intermolecular bonding in nylon results in some chain stiffening. This stiffening

    of the network of chains reduces the mobility that is required for shear deformation. This in turn leads to

    the onset of scission crazing. NaCI, however, spectroscopicallyshows no evidence for nylon-salt interactions

    having occurred. The deformation behaviour of both thin-film and bulk samples of NaCl-treated nylon-6

    reflect the absence of any salt-amide interaction.

    Keyw ords : ny lon-6 ; sa l t trea tment; m echanica l p ropert i es )

    INTRODUCTION

    The mechanisms operative during deformation of

    amorphous polymers are both well documented and well

    understood through numerous thin-film and macro

    studies (see reviews by Kramerl'2). Such models are

    described within a framework of the entanglement

    model T M with two possible routes envisaged for

    creation of the void-fibril craze microstructure: chain

    disentanglement or chain scission (breaking of the chain

    backbone) 1,2.

    It has been shown ~'3'5 that the process of disentangle-

    ment, which involves the relative motion of one chain

    past another, is favoured by high temperatures, low

    molecular weights and low strain rates. On the other

    hand, chain scission involves the direct breaking of

    chemical bonds in the backbone, and leads to a

    substantial energy penalty, which increases in magnitude

    as the density of entanglement points is increasedL Thus

    scission crazing is less likely to develop in highly

    entangled polymer networks. The transition to a more

    brittle response at high temperature, for what is

    normally a tough polymer, is identified with a switch in

    deformation from shear yielding to disentanglement-

    mediated crazing 3. Shear is always a potent ial competing

    mechanism with crazing, and the process that occurs for

    the lowest stress will develop first.

    The nature of crazing in semicrystalline polymers,

    and the associated mechanisms, are much less well

    understood than in amorphous polymers. Part of the

    problem relates to the variability in microstructure in

    semicrystalline polymers and the subsequent complex

    interaction between morphology and deformation6.

    Whilst voided craze-like microstructures are not

    uncommon in semicrystalline polymers, they tend to have

    a much coarser microst ructure (1000 nm fibril spacing)

    than their amorphous counterparts (e.g. 20nm fibril

    * To whom correspondence should be addressed

    spacing for polystyrene)7,s. Possible void-generating

    mechanisms for semicrystalline polymers have been

    subject to review by Friedrich 7. Such models tend

    to be developed at an empirical/phenomenological

    level and involve a combination of interlamellar slip,

    chain disentanglement, block rotation and fragmentation

    processes. Such models lean towards a cold-drawing

    mode of deformation involving a substantial amo unt of

    shear 9-12. Such models, however, invoke a differeiat

    framework from that built up for amorphous polymers.

    This paper seeks to examine further the deformational

    behaviour of semicrystalline polymers using nylon-6

    conditioned with various salts. Previous studies of

    salt-conditioned nylons have demonstrated that the mode

    of deformation is significantly affected by exposure to a

    variety of metal halides, with the most notable change

    being from ductile to brittle failure 13'14. Embrit tlement

    has been shown to relate to a switch in deformation from

    one that is shear-dominated to one that is craze-

    dominated ~5'16. This paper investigates the role of the

    salt in influencing the deformat ion mechanisms operative,

    predominantly at room temperature which is below the

    Tg of the amorphous regions. Infra-red spectroscopy and

    transmission electron microscopy results are presented

    for thin-film samples, and correlated with modulus data

    from bulk samples. Based on these results, explanations

    are offered for the switch in deformation from ductile to

    brittle presented in terms of the concepts previously

    developed for amorphous polymers.

    EXPERIMENTAL

    Thin films of nylon for infra-red studies were produced

    in a manner similar to that of Lauterwasser and

    Kramer iv. Nylon-6 (Mw,~18 000) was supplied by

    Goodfellows of Cambridge. Produced by drawing glass

    slides from 3 wt% polymer solutions in a formic acid

    solvent, the submicron thick films have a slightly

    0032-3861/93/245093-06

    1993 Butterworth-HeinemannLtd. POLYMER, 1993, Volume 34, Number 24

    5 0 9 3

  • 7/23/2019 6_Mechanical Properties of Nylon-6 After

    2/6

    Nylon 6 treatment with metal ha/ides: A. P. More and A.

    varying thickness owing to the semicrystalline spherulitic

    microstructure. The films were floated off the glass slide

    onto a water bath, after having been conditioned by

    immersion of the slide in 6 molal solutions of the

    appropriat e meta l chloride (Analar grade) for 6 h at 25C.

    Salt-conditioned films were picked up from the water

    bath on a 3 mm copper mesh, previously both annealed

    and nylon-coated. Films, when dry, were bonded to the

    grid by brief exposure to solvent vapour (formic acid) for

    a few seconds. This serves to relieve the stresses in the

    films in addition to smoothing them out. The films are

    then vacuum dried for 72 h at 80C, and stored in a

    desiccator prior to i.r. examination and deformation.

    Infra-red spectroscopy of both salt-treated and

    untreated films was undertaken with a Mattson 4020

    spectrometer equipped with a DGTS detector. Each

    spectrum was obtained by averaging 200 scans collected

    with a spectral resolution of 2 cm-1. Scattering losses

    caused by the copper grids were compensated for

    by using a similarly oriented uncoated copper grid

    in the background runs. Spectra were obtained from a

    circular region of the film ca. 10mm in diameter.

    Because the films were typically less than 1/zm thick,

    channel fringes were not observed. The spectrometer was

    well purged with dry nitrogen gas to eliminate the

    effects of atmospheric absorptions. The double-sided

    interferograms obtained were Fourier-transformed and

    background-stripped over the range 400 to 4000 cm-1.

    All spectra were deconvoluted before peak posi tions were

    located. The accuracy of the peak positions quoted is

    abou t + 1 cm - 1.

    Films for electron microscopy were prepared and

    salt-conditioned as for infra-red spectroscopy. Some of

    the unstrained thin films were stained with a 2%

    aqueous solution of phosphotungstaic acid (PTA) to

    allow differentiation of amorphous and crystalline

    domains -- the PTA preferentially enters and stains the

    amorphous regions. Staining was undertaken by immersion

    for 30 min at room temperature. Films were strained at a

    constant strain rate of -~3x10- 3s -1 in a variable-

    temperature strain rig mounted on a Carl Zeiss Jenapol

    optical microscope. The deformation was optically

    apparent as dark lineat ions at 160 x magnification. After

    deformation, individual grid squares were cut from the

    copper grid for examination. This method allows

    examination of the film in an as-stressed state as the

    copper maintains the state of strain. Examination was

    undertaken with a J EOL 2000 EX transmission electron

    microscope (TEM) operating at 200 kV.

    Modulus measurements were undertaken on thicker

    films of nylon-6. Melt-cast films of ,-, 160/tm thickness

    were conditioned by soaking in the 6 molal solutions for

    24 h at room temperature. Chemical analysis of cross-

    sections in a scanning electron microscope indicate

    development of a metal chloride-rich outer zone and

    metal chloride-poor core, unlike the micrometre-thick

    films where a homogeneous salt distribution is apparent.

    Soak times and immersion temperatures required for

    complete homogeneous diffusion of the salt t hrough the

    thicker samples results in significant damage to the nylon,

    and in the case of zinc chloride-nylon-6 the partial

    dissolution of the test samples. Thus studies of thick films

    for which there was complete diffusion of the salts through

    the films was not possible.

    Tensile studies were performed with a Polymer

    Laboratories Miniature Materials Tester (Minimat) at

    M. Donald

    room temperature with a strain rate of 1 10- 3s -1.

    Averaged modulus measurements were made over the

    interval 0.5 to 1.5% strain.

    RESULTS

    Infra-red spectroscopy of the salt-conditioned films shows

    a number of differences between these and the untreated

    films. Absorbance spectra for thin-film nylon-6, untreated

    and zinc chloride-conditioned, are presented in Fioure 1 .

    Of particular interest in the absorbance spectra of

    polyamide (nylon) are the C-H stretch peaks at 2390 and

    2860 cm-1, the C--O stretch (amide I) at 1635 cm-1, the

    (N-H)(C-N) couple (amide II) at 1540 cm-1, and N -H

    stretch centred around 3300cm -1 (see e.g. reviews by

    Miyazawa s and Krimm and Bandekar19). Following

    ZnCI2 treatment, variations in peak intensity and peak

    position are apparent, with modification of the region

    around the amide I and II bands particularly clear.

    ZnC12 conditioning would appear to give rise to new

    absorbance bands centred around 1601 and 1570 cm-1

    and loss of intensity for the amide I peak at 1635 cm- 1.

    These changes are seen more clearly in F i g u r e 2 , which

    expands the region ar ound 1600 cm- 1. Also apparent are

    small shifts in both the amide I peak (+3 cm -1) and

    amide II peak (+8cm-1). The C-H peak centred at

    2938 cm-1 increases in intensity, and shifts a few cm-1.

    The N- H stretch at 3300cm -1 broadens with salt

    conditioning, but no peak shifts are measured.

    Modification to the amide I and amide II peaks is also

    recorded for CaCI2 treatment of nylon-6 film, as seen in

    F i g u r e 2 . Shoulders are observed to develop on the low

    side of the amide I peak (at ~1614cm-1), and on the

    high-wavenumber side of the amide II peak, in addition

    to slight peak shifts of a few cm-1. NaC1 treatment,

    however, appears to leave the nylon films unchanged

    spectroscopically. Peak shifts and variations to peak

    intensity are absent Fioure 2) .

    Electron microscopy of unstrained films confirms the

    semicrystalline spherulitic microstructure apparent under

    the optical microscope. Spherulite sizes range from 2 to

    6 gm in diameter. Electron microscopy of PTA-stained

    films Figure 3) allows the identification of the domain

    Z n C Z 2

    P 6

    3 5 3 2 5 2 1 5

    W a v e n u m b e r s

    Figure

    1 I n f r a - r e d a b s o r b a n c e s p e c t r a o f u n t r e a t e d n y l o n - 6 ( P A 6)

    a n d a q u e o u s z i n c c h l o r i d e - tr e a t e d n y l o n - 6 f i l m (Z n C I z) .

    Peaks

    d e v e l o p e d c o r r e s p o n d t o: t h e N - H s t r e t c h a t ~ 3 3 0 0 c m - t , a p a i r o f

    C - H p e a k s a t ~ 2 3 9 0 a n d ~ 2 8 6 0 e r a - 1, t h e C = O

    stretch amide

    l ) a t

    ~ 1 6 35 c m - t a n d ( N - H X C - N ) c o u p l e ( a m i d e I I ) a t ~ 1 5 4 0 c m - 1

    5 9 4

    POLYM ER 1993 Volume 34 N umber 24

  • 7/23/2019 6_Mechanical Properties of Nylon-6 After

    3/6

    Nylon 6 treatment with metal hafides: A. P. More and A. M. Donald

    b

    b

    a

    n

    c

    e

    I

    I

    I

    I I

    1 ] 0 0 1 6 0 0 1 5 0 0 1 4 0 0 1 3 0 0

    N a v e n u l k l ~ r s

    Figure 2 Infra-red absorbanee spectra of untreated nylon-6 (PA 6)

    and NaC1, CaCI2 and ZnCi2 solution -treated nylon-6 films. Peak s a t

    ~ 1635 and ~ 1540 cm-1 correspond to the am ide I or C = O stretch

    and am ide II or (C -N)(N-H ) couple respectively

    T r a n s m i s s i o n e l e c t r o n m i c r o s c o p y o f b o t h s a l t e d

    a n d u n t r e a t e d f i l m s a f t e r s t r a i n i n g s h o w s a v a r i e t y

    o f d e f o r m a t i o n m i c r o s t r u c t u r e s t o b e o p e r a t i v e . I n

    a l l s a m p l e s d e f o r m a t i o n i s p r i n c i p a l l y c o n f i n e d t o

    i n t e r s p h e r u l i t i c r e g i o n s , a n d d e v e l o p s i n z o n e s r u n n i n g

    a p p r o x i m a t e l y p e r p e n d i c u l a r t o t h e a p p l i e d t e n s i l e s tr e ss .

    T h e s e i n t e r s p h e r u l i t ic r e g i o n s a r e s l i g h t l y t h i n n e r t h a n

    t h e m a j o r i t y o f t h e fi l m a n d a r e t h e r e f o r e s u b je c t e d t o

    h i g h e r s tr e ss e s. R e g i o n s o f d e f o r m a t i o n , b o t h s h e a r - a n d

    c r a z e - d o m i n a t e d , t e n d t o b e s h o r t , e x t e n d i n g fo r a fe w

    s p h e r u l it e s i n l e n g t h , a n d v a r y i n w i d t h f r o m 0 .5 t o 2 / am .

    Figure 4 s h o w s h o w m e t a l i o n s t a i n i n g ( Z n i n t h i s c a se )

    a l l o w s o b s e r v a t i o n o f t h e s p h e r u l i t ic m a t e r i a l b e i n g

    d r a w n i n t o d e f o r m i n g i n t e r s p h e r u l i t ic r e g i o n s .

    B o t h c r a z i n g a n d s h e a r p r o c e s s e s a r e o b s e r v e d i n t h e

    d e f o r m e d f i l m s . C r a z i n g i s r e s t r i c t e d i n d e v e l o p m e n t t o

    s a l t - c o n d i t i o n e d f il m s ; m o s t p a r t i c u l a r l y i n Z n C I 2 - a n d

    C a C 1 2 - t r e a t e d fi l m s , b u t t o a l e s s e r e x t e n t a l s o i n t h o s e

    e x p o s e d t o N a C 1 . S u c h N a C I c r a z e s , h o w e v e r , a r e p a t c h y

    a n d p o o r l y d e v e l o p e d . F o r a l l f i l m t y p e s e x a m i n e d ,

    c r a z i n g i s d e v e l o p e d f o r a l l t e m p e r a t u r e s e m p l o y e d ( 2 5

    t o 9 0 C ) , a n d b e s t d e v e l o p e d b e t w e e n 4 0 a n d 6 0 C 1 6.

    D e f o r m a t i o n i n u n c o n d i t i o n e d a n d N a C l - c o n d i t i o n e d

    f il m s i s s h e a r - d o m i n a t e d .

    S h e a r d e f o r m a t i o n c o m p r i s e s a m i x t u r e o f l o c a l iz e d

    u n i f o r m t h i n n i n g , s i m i l a r t o t h e d e f o r m a t i o n z o n e s

    d e s c r i b e d f o r a m o r p h o u s p o l y m e r f il m s 21 , a n d n o n -

    u n i f o r m o r i n h o m o g e n e o u s t h i n n i n g a c c o m p a n i e d b y

    m i c r o - v o i d i n g a n d t h e i n c o r p o r a t i o n o f s e m i c r y s t a l li n e

    m a t e r i a l w i t h i n th e d e f o r m a t i o n z o n e. T h e d e v e l o p m e n t

    o f m i c r o v o i d s a n d i n c o r p o r a t i o n o f s e m i c r y s t a l l in e

    m a t e r i a l g i v e s a f i b r i l l a t e d a p p e a r a n c e t o t h e d e f o r m e d

    r e g i o n s i m i l a r t o t h a t o b s e r v e d i n s e m i c r y s t a l l i n e

    p o l y e t h y l e n e a n d p o l y p r o p y l e n e f il m s ~. S i m i l a r m i c r o -

    s t r u c t u r e s h a v e b e e n r e c o r d e d i n d e f o r m e d p o l y ( e t h e r

    e t h e r k e t o n e ) ( P E E K ) 22 a n d p r e v i o u s l y d e s c r i b e d b y u s

    fo r n y lo n 16 . Figure 5 i l l u s t r a t e s s u c h a n a r e a o f f i b r i l l a t e d

    sh ear .

    T e x t u r a l l y , t r u e c r a z e s d i f f e r f r o m f i b r i l l a t e d s h e a r b y

    t h e d e v e l o p m e n t o f a r e g u l a r v o i d - f i b ri l m i c r o s t r u c t u r e

    s i m i l a r t o t h a t c h a r a c t e r i s ti c o f c r a z i n g i n a m o r p h o u s

    p o l y m e r f i l m s 1. C r a z e s d e v e l o p e d i n N a C l - c o n d i t i o n e d

    f i lms Figure 6) a p p e a r t o p o s s e s s a m u c h f i n e r

    m i c r o s t r u c t u r e t h a n t h e i r c o u n t e r p a r t s i n Z n C 1 2 - a n d

    C a C l 2 - c o n d i t i o n e d f i l m s . F o r t h e s e , a c o a r s e f i b r i l l a r

    m i c r o s t r u c t u r e i s s e e n Figures 7 a n d 8 ). O n e - d i m e n s i o n a l

    f a s t F o u r i e r t r a n s f o r m s o f d i g i t iz e d c r a z e i m a g e s c a n b e

    m a m m m a l n w m

    Figure 3 Transmission lectron micrograph of a P TA-stainedsample

    of untreated PA 6, The sample was exposed to a 2% solution of PTA

    for 10 min . Scale bar 200 nm

    s t r u c t u r e p r e v i o u s l y r e p o r t e d f o r b u l k n y l o n 2 . T h e s e

    d o m a i n s a r e m a d e u p o f c r y s t a l li n e la m e l l a e i n t e r s p e rs e d

    w i t h a m o r p h o u s r e g i o n s ; l a m e l l a e t h i c k n e s s e s v a r y

    b e t w e e n 1 0 a n d 2 0 n m a n d a r e s p a c e d ~ 1 0 n m a p a r t .

    T E M o f u n s t r a i n e d f il m s t h a t h a v e b e e n t r e a t e d w i t h

    a n y o f t h e m e t a l h a l i d e s r e v e a ls t h e s a m e s t a i n e d

    s p h e r u l i ti c s t r u c t u r e c o n f i r m i n g t h a t t h e m e t a l i o n s , w h i c h

    a r e o f c o m p a r a t i v e l y h i g h a t o m i c n u m b e r a n d t h e re f o re

    s c a t t e r e l e c t r o n s m o r e s t r o n g l y t h a n t h e n y l o n i t s e l f ,

    e n t e r t h e a m o r p h o u s r e g i o n s s e p a r a t i n g t h e c r y s t a l l i n e

    l a m e l l a e . T h i s s t a i n i n g c a n a l s o b e u s e d t o f o l l o w t h e

    d e f o r m a t i o n o f t h e l a m e l l a e a f t e r s t r a i n i n g ( se e b e lo w ) .

    Figure Transmission lectronmicrograph of a ZnC l2-treatedsample

    after straining.The lamellae,which are highlighted by the intervening

    stained am orphous egions,can be seen being drawn nto the deforming

    interspherulitic regions. Scale bar 0.25 ~m

    POLYMER 1993 Vo lume 34 N umber 24 5095

  • 7/23/2019 6_Mechanical Properties of Nylon-6 After

    4/6

    N ylon 6 t reatment w i th m eta l ha~ides: A. P. M ore and A. M . D onald

    Figure 5 Transmiss ion e lect ron micrograph show ing region of

    inhom ogeneou s or fibrillated shear developed n untreated nylon-6 film.

    The shea red region has a fibrillated microstructu re due to inco rporation

    of crystalline spherulite material, Draw direction arrowed. Scale bar

    ~ 0.5/zm

    a p p e a r i n t h e m i c r o g r a p h s t o s h o w s i m i l a r v a r i a t i o n s

    w i t h c o n d i t i o n i n g .

    M a c r o s c o p i c s t r e s s -s t r a in m e a s u r e m e n t s w e r e m a d e a t

    r o o m t e m p e r a t u r e f o r a s t r ai n r a t e o f 1 x l 0 - 3 s - 1

    o n t h e t h i c k -f i lm n y l o n - 6 . A v e r a g e d m o d u l i v a l u e s

    a r e c a l c u l a t e d o v e r t h e s t r a i n i n t e r v a l 0 .5 t o 1 . 5 % .

    S t r e s s - s tr a i n c u r v e s s h o w e v i d e n c e f o r p la s t ic b e h a v i o u r ,

    e s p e c i a l l y a t l a r g e p e r c e n t a g e s t ra i n s . I n a d d i t i o n t o

    m o d u l u s m e a s u r e m e n t s , e l o n g a t i o n a t f a il w a s r e c o r d e d .

    S a m p l e s s h o w e d t o o w i d e a s c a t t e r i n th e i r f a i lu r e s tr a i n s ,

    h o w e v e r , f o r a n y m e a n i n g f u l v a l u e s t o b e m e a s u r e d .

    F a i l u r e o c c u r s v i a f o r m a t i o n o f a n e c k e d r e g i o n e x h i b i ti n g

    d u c t i l e t e a r i n g . O c c a s i o n a l l y , f o r s o m e Z n C l 2 - t r e a t e d

    s a m p l e s , a s h a r p b r i t t l e - l i k e f a i l u r e o c c u r r e d , w i t h l i t t l e

    e v i d e n c e f o r n e c k f o r m a t i o n o r d u c t i le d r a w i n g .

    T y p i c a l s t r e s s - s tr a i n c u r v e s f o r u n c o n d i t i o n e d a n d

    s a l t - c o n d i t i o n e d n y l o n - 6 fi lm s a r e p r e s e n t e d i n Figure 9

    w i t h t h e Z n C 1 2 - c o n d i t i o n e d s a m p l e e x h i b i t i n g b r it t le - l i k e

    f a i lu r e a f t e r o n l y a f e w t e n s o f p e r c e n t . Y i e l d i n g o f b o t h

    N a C l - c o n d i t i o n e d a n d t h e u n c o n d i t i o n e d - f il m i s m o r e

    g r a d u a l , w i t h e x t e n s i v e p l a s t i c d e f o r m a t i o n o c c u r r i n g .

    A v e r a g e d m o d u l i v a l u e s p r e s e n t e d i n

    Table 1

    g i v e a

    m e a s u r e o f c h a n g e s i n t h e e l a st ic m o d u l u s d u e t o s a l t

    Figure 6 Transmission electron micrograph of interspherulit ic craze

    developed in sod ium chloride solution-treated nylo n-6 fi lm. Craze

    exhibits dark mid-l ine. Draw direction arrowed. Scale bar ~ 1/am

    Figure 7 Interspheruli tic cra zing developed in calc ium chloride-

    condit ioned nylon-6 fi lm. Localized shear thinning develops Where the

    craze changes direct ion. Draw d irection arrowed. Scale bar ~ 1

    u s e d t o g i v e a n e s t i m a t e o f m e a n f i b ri l s e p a r a t i o n 2 3. F o r

    c r a z e s in N a C l - c o n d i t i o n e d f il m s , a m e a n f ib r il s e p a r a t i o n

    o f ~ 6 0 n m i s m e a s u r e d . C r a z e s i n C a C 1 2 - c o n d i t i o n e d

    f il m s h a v e a m e a s u r e d m e a n f i br i l s p a c i n g o f ~ 1 0 5 n m ,

    a n d ~ 1 4 0 n m f o r Z n C l 2 - c o n d i t i o n e d f il m s . F i b r i l w i d t h s

    Figure Interspherulitic crazing developed in zinc chloride-

    condit ioned nylon-6 fi lm with a narrow tapering termination at one

    end and blun ted shear-dominated termination at the other. Draw

    direction arrowed.

    Figure 4

    i s an enlarged region of par t o f th i s

    micrograph. Scale bar ~ 1/~m

    Strel l 100

    80

    60

    40

    ~0

    0

    NaCI

    J i J i . I L I i i i

    O ~0 20 30 40 50

    Stretn S

    Figure 9 Ty pic al stress-strain cu rve s for uncond it ioned, NaCl-

    cond itioned and ZnC12-conditioned nylon-6 ma cro sam ples. Strain rate

    o f ~ 1

    10-3s -1

    5 0 9 6 P O L Y M E R 1 9 9 3 V o l u m e 3 4 N u m b e r 2 4

  • 7/23/2019 6_Mechanical Properties of Nylon-6 After

    5/6

    N y l o n 6 t re a t m e n t w i t h m e t a l h a l id e s : A . P . M o r e a n d A . M . D o n a l d

    ab l e

    1 E l a s ti c m o d u l i v a l u e s fo r u n c o n d i t i o n e d a n d s a l t - c o n d i t i o n e d m a c r o s a m p l e s a v e r a g e d o v e r t h e s t r a i n in t e r va l 0 .5 t o 2 . 0 %

    A v e r a g e d m o d u l u s S t a n d a r d d e v i at i on C h a n g e

    T r e a t m e n t ( M P a ) ( M P a ) ( % ) F a i l u r e m o d e

    Z n C I 2 2 0 4 0 9 2 + 1 1 B + D

    C a C I 2 1 9 8 0 1 1 6 + 8 D

    NaC 1 1628 104 - 12 D

    U n t r e a t e d 1 8 4 0 1 03 - D

    Failure

    m o d e : B , b r i tt l e ; D , n e c k i n g a n d d u c t i l e t e a r

    conditioning. Owing to the non-uniform nature of the

    salt ingression, absolute values may not be measured.

    Both CaCI2- and ZnCl2-conditioned samples show a

    moderate degree of stiffening, with an increase in

    modulus apparent, whereas NaCl-conditioned samples

    would appear to be plasticized, with a decrease in

    modulus measured. Although the shifts are small, the

    qualitative trends seems clear from the table; quanti tative

    data cannot be obtained because of the non-uniform

    penetration of the salts through the samples referred to

    above.

    DISCUSSION

    The different types of deformation observed in thin

    nylon films after salt treatment, and the strains at

    which deformation first occurs, have been described

    previously 16. With the addit ional data from i.r. and

    modulus measurements, coupled with the results of other

    workers, a framework for understanding the embrittling

    effect of the various salt solutions can now be proposed,

    which can be correlated with what is already known for

    amorphous polymers.

    The i. r. results show that the most drastic spectral

    modificat ions occur following treatment with ZnC12, with

    less marked changes occurring for CaC12-treated samples.

    These results are similar to those reported by Dunn and

    Sansom 24, who considered the i.r. spectrum of nylon-6

    with and without ZnCI 2 treatment, and compared

    the changes observed with model compounds to aid

    interpretation. These workers likewise observed the

    appearance of a strong new peak at around 1600 cm-1

    (they actually locate it at 1595 cm- 1 compared with the

    1601 cm- 1 of the present study), together with small shifts

    in position of the amide I and amide II bands. The spectra

    shown in

    F i g u r e

    2 actually have better resolution than

    the traces shown by Dunn and Sansom. The peak at

    1601 cm -1 appears to have a shoulder on its upper

    side and this shoulder appears to correspond to the

    downward-shifted amide I peak identified by Dunn and

    Sansom; the peak shifted slightly up, which we assign to

    amide I, does not seem to have been resolved in the

    earlier paper, nor does the peak a t 1570 cm- 1. The to tal

    effect of these changes is that the weight of the amide I

    band moves down, and the amide II band moves up.

    On the assumption that the Dunn and Sansom

    comparative study of the effect of ZnCl 2 on model

    compounds is still pertinent, even though modern

    spectrometers may provide additional resolution and

    therefore the identification of more peaks, we will use

    their analysis of the spectral shifts to aid in our

    interpretation of the effect of salt on the mechanical

    properties of nylon. The changes in the amide I and II

    region were attributed to the formation of a coordination

    complex, with the amide group acting as a ligand. It was

    suggested that the amide group is linked to the metal ion

    through the oxygen atom. The broadening of the N-H

    stretching band at around 3300 cm-1 seen in

    F i g u r e 1

    was likewise reported by Dunn and Sansom. This

    broadening was attributed by them to the formation of

    a c i s - f o r m

    complex. The net effect of these two changes

    in structure is a shift from there being significant

    interchain hydrogen bonding in favour of intrachain

    hydrogen bonding through the

    c i s - f o r m

    complex.

    Other workers have suggested that the formation of

    these amide-sa lt complexes (formed with a variety of salts

    including ZnCl 2 and CaCl2) affect properties other than

    the i.r . spectrum. For instance Kim and Harget 2s

    report significant shifts in Tg with salt content, as did

    Siegmann and Baraam 26 with some ra ther different salts.

    Wyzgowski and Novak 27 report changes in d.m.t.a.

    spectra. All groups attributed the Tg shifts to the amide

    complexes leading to a stiffening of the flexible polymer

    chains. This leads to a greater barrier to rotation of

    the chains, as demonstrated by calculations (with a

    lithium ion) by Balasubramanian

    et al. 28.

    This reduction

    in chain mobility may be expected to have consequences

    for the ease with which deformation can take place. In

    addition, the fact that thick films soaked for long times

    in ZnCl 2 often disintegrate before complete permeation

    of the salt occurs indicates that this salt solution at least

    can also lead to substant ial chemical damage, presumably

    via actual breaking of the chain backbone bonds.

    The spectral evidence therefore points to changes in

    bonding leading to chain stiffening, certainly for ZnCl 2,

    and to a lesser extent for CaCl 2. No changes in the i.r.

    spectrum were evident for NaCI-treated films, and it has

    previously been stated that NaC1 treatment does not

    affect the mechanical properties of nylon-629, although

    this does not agree with our own previous work 16. For

    the moment, discussion of the NaC1 case will be deferred

    and we will concentrate on ZnC12 and CaCl 2. It is seen

    that these salts lead to a r eduction in processes involving

    shear, either simple shear leading to the formation of

    interspherulitic shear deformation zones or fibrillar shear

    (seen in

    Fig u r e 5 ) .

    Crazing instead becomes dominant.

    In addi tion, we have previously shown 16 that the s train

    for deformation onset is markedly decreased upon

    salting -- by a factor of 3 for ZnC12-treated thin films

    at room temperature -- as the switch from shear-only

    processes to crazing-dominated takes place. The modulus

    measurements on thick samples show that the effect of

    these two salts is to increase the modulus

    T a b le 1 ) .

    In

    other words the stiffening of the chains revealed by the

    spectroscopy is accompanied by a macroscopic stiffening

    of the material.

    Using the picture built up for amorphous polymers of

    competing shear and crazing, with the possibility of two

    POLYM ER, 1993, Volume 34, Number 24 509 /

  • 7/23/2019 6_Mechanical Properties of Nylon-6 After

    6/6

    Nylon 6 treatment with metal ha/ides: A. P. More and A.

    r o u t e s t o c r a z i n g - - v i a s c i s s i o n o r d i s e n t a n g l e m e n t

    p r o c e s s e s - - i t i s n o w p o s s i b l e t o r e c o n c i l e th e s e v a r i o u s

    r e s u lt s . I n u n t r e a t e d f i lm s i t is c le a r t h a t s h e a r p r o c e s s e s

    c a n o c c u r r e a d i l y , l e a d i n g t o a t y p i c a l d u c t i l e r e s p o n s e :

    n y l o n - 6 i s n o r m a l l y a t o u g h m a t e r i a l . E i t h e r p u r e s h e a r

    o r f i b ri l la r s h e a r 1 5.1 6 m a y o c c u r . B o t h p r o c e s s e s r e q u i r e

    t h e p o s s i b i l i t y o f n e i g h b o u r i n g c h a i n s s l i d in g o v e r o n e

    a n o t h e r . T h e c h a i n s t i f f e n i n g t h a t o c c u r s u p o n s a l t i n g ,

    h o w e v e r , m a k e s t h i s t y p e o f m o t i o n v e r y d if f ic u l t - - t h e

    c h a in s c a n n o t m o v e i n d e p e n d e n t l y o f o n e a n o t h e r .

    C l e a r l y t h i s r u l e s o u t n o t o n l y s h e a r a n d f i b r i l l a r s h e a r ,

    b u t a l s o t h e p o s s i b i l i t y o f d i s e n t a n g l e m e n t c r a z in g .

    H o w e v e r , t h e r e d u c t i o n i n c h a i n m o b i l i t y n o w l e a d s t o

    i n c r e a s e d b u i l d - u p o f s t r e s s o n i n d i v i d u a l c h a i n s a s t h e

    ex te rna l s t r e ss i s app l i ed , and the s t r e ss fo r cha in sc i ss ion

    c a n t h e r e f o r e b e a t t a i n e d b e f o r e t h e i n t e r v e n t i o n o f s h e a r .

    C h a i n s c i s s i o n m a y a l s o b e o c c u r r i n g ( p a r t i c u l a r l y f o r

    Z n C 1 2) b y v i r t u e o f c h e m i c a l d a m a g e t o t h e c h a i n s . T h e

    n e t e f fe c t i s t h a t s c i s s io n c r a z i n g n o w b e c o m e s d o m i n a n t .

    S i n c e t h e i n it ia l m o l e c u l a r w e i g h t o f t h e n y l o n i s

    c o m p a r a t i v e l y l o w , f e w s c i s s i o n e v e n t s p e r c h a i n a r e

    r e q u i re d b e f o r e c r a ze b r e a k d o w n o c c u rs . T h u s t h e

    p o l y m e r h a s b e c o m e s e v e re l y e m b r i t t le d d u e t o t h e

    c o m p l e x f o r m a t i o n a n d c o n s e q u e n t r e d u c t i o n i n c h a i n

    m o b i l i t y . T h i s c o n c l u s i o n , b a s e d p r e d o m i n a n t l y o n

    r e s u l t s o b t a i n e d o n t h i n f i l m s , c a n e q u a l l y w e l l e x p l a i n

    t h e r e s u l t s o f W y z g o w s k i a n d N o v a k 1 4 '2 7 '2 9 o n b u l k

    sample s .

    T h e c a s e f o r N a C 1 t r e a t m e n t i s l e s s e a s i l y e x p l a i n e d .

    T h e i . r . s p e c t r u m s h o w s n o e v i d e n c e f o r m o d i f i c a t i o n s t o

    b o n d i n g b y c o m p l e x f o r m a t i o n . T h e r e i s t h e r e f o r e n o

    r e a s o n t o e x p e c t c h a i n s t i f f e n i n g t o o c c u r . F u r t h e r m o r e

    Table s h o w s t h a t t h e b u l k m o d u l u s a c t u a ll y d r o p s a f te r

    t r ea tment wi th NaCI , sugges t ing a p l a s t i c i za t i on e f fec t .

    T h i s c o u l d e x p l ai n w h y i n o u r e a r l ie r w o r k w e d e t e c te d

    a n i n c r e a s e i n t h e s t r a i n a t w h i c h d e f o r m a t i o n f i r s t s e t s

    i n a t r o o m t e m p e r a t u r e o f a f e w p e r c e n t , s o t h a t t h e

    s t r e ss e s f o r d e f o r m a t i o n o n s e t b e f o r e a n d a f t e r tr e a t m e n t

    a r e v e r y s im i la r. N e v e r t h e l e s s , a l t h o u g h t h e N a C 1

    t r e a t m e n t d o e s n o t a p p e a r t o b e e m b r i t t l i n g , t h e r e i s

    n e v e r t h e l e s s a s h i f t t o w a r d s c r a z i n g ( c r a z e s w e r e n e v e r

    s e e n i n o u r T E M o b s e r v a t i o n s o f u n t re a t e d n y l o n -6 ) . O n e

    s p e c u l a t i v e p o s s i b i l i t y i s t h a t t h e p l a s t i c i z a t i o n w i t h o u t

    a n y c o n c o m i t a n t c o m p l e x f o r m a t i o n a c t u a l l y l e a d s t o

    e n h a n c e d c h a i n m o b i l i t y . A s u f f i c i e n t i n c r e a s e i n c h a i n

    m o t i o n c o u l d l e a d t o t h e o n s e t o f d is e n t a n g le m e n t

    c r az in g , j u s t a s m a y o c c u r i n s o m e a m o r p h o u s p o l y m e r s

    u p o n r a i s in g t h e t e m p e r a t u r e 3 . D i s e n t a n g l e m e n t c r a z e s

    w i l l b e m u c h l e s s s u s c e p t i b l e t o c r a z e b r e a k d o w n , s i n c e

    t h e i r m o l e c u l a r w e i g h t i s u n d e g r a d e d , a n d t h u s t h e

    a p p e a r a n c e o f s u c h c r a z e s w i ll n o t n e c e s s a r i l y b e

    a c c o m p a n i e d b y b u l k e m b r i tt le m e n t .

    C O N C L U S I O N S

    I n f r a - r e d s p e c t r o s c o p y s h o w s s i g n i f i c a n t c h a n g e s i n t h e

    a m i d e I , a m i d e I I a n d C - H s t re t c h r e g io n s o f t h e s p e c t r u m

    o f n y l o n - 6 a f t e r t r e a t m e n t w i t h Z n C I 2 a n d C a C I 2 . T h e

    c h a n g e s a r e th o u g h t t o b e d u e t o c o m p l e x f o r m a t i o n o f

    t h e a m i d e g r o u p w i t h t h e m e t a l i o n s a n d l e a d t o

    s i g n if i c an t s t i ff e n in g o f t h e n y l o n c h a i n s. A c c o m p a n y i n g

    t h is s t i ff e n in g i s a c o n s e q u e n t r e d u c t i o n i n c h a i n m o b i l i ty .

    M. Donald

    T h i s r e d u c t i o n i n m o b i l i t y h a s a m a r k e d e f fe c t o n t h e

    m e c h a n i c a l p r o p e r t i e s o f th e n y l o n . T h e m a c r o s c o p i c

    m o d u l u s i s s e e n t o i n c r e a s e , c o r r e s p o n d i n g t o a n o v e r a l l

    s t i ff en ing o f t he m a te r i a l . S im ul t an eou s ly t he re i s a sh if t

    i n t h e m o d e o f d e f o r m a t i o n ( a s re v e a le d b y T E M o f th i n

    f il m s) fr o m o n e t h a t i s s h e a r - d o m i n a t e d t o o n e t h a t is

    p r i m a r i l y c r a z i n g. T h e o c c u r r e n c e o f c r a z i n g i s d u e t o

    t h e p o s s i b i l i t y o f s c i ss i o n a s t h e c h a i n m o b i l i t y d r o p s .

    T h e s e s c i s s i o n c r a z e s a r e in h e r e n t l y w e a k a n d t h e m a t e r i a l

    i s embr i t t l ed .

    T h e e f fe c t o f N a C I t r e a t m e n t i s r a t h e r d i f fe r e n t. T h e

    i . r . s p e c t r u m s h o w s n o e v i d e n c e f o r c o m p l e x f o r m a t i o n ,

    a n d t h e m a c r o s c o p i c m o d u l u s d r o p s r e l a t i v e t o t h e

    u n t r e a t e d n y l o n . N e v e r t h e l e s s T E M o b s e r v a t i o n s s h o w

    t h a t t h e r e i s a s w i t c h t o w a r d s c r a z i n g . I t i s s p e c u l a t e d

    t h a t t h is i s d u e t o t h e o n s e t o f d is e n t a n g l e m e n t c r a z in g ,

    w h i c h i s m u c h l e s s d a m a g i n g t h a n s c i s s io n c ra z i n g . T h e

    e m b r i t t le m e n t b r o u g h t o n b y Z n C I 2 a n d C a C 1 2 d o e s n o t

    t h e r e f o r e o c c u r .

    A C K N O W L E D G E M E N T S

    T h e a u t h o r s a r e g r a t e f u l t o t h e S E R C f o r f i n a n c i a l

    s u p p o r t a n d t o D r D . A . P r y s t u p a f o r a s s is t a n c e w i t h t h e

    i n f r a - r e d s p e c t r o s c o p y .

    R E F E R E N C E S

    1 Kram er , E . J .

    Adv. Polym. Sci.

    1983, 52/53, 1

    2 Kra m er, E. J . an d Berger , L, L.

    Adv. Polym. ScL

    1990, 91/92, 1

    3 P l u m m e t , C . J . G . a n d D o n a l d ,

    A. M. J. Polym. ScL, Polym.

    Phys . Edn.

    1989, 27, 325

    4 P l u m m e r , C . J . G . a n d D o n a l d , A . M .

    Macromolecules

    1990, 23,

    3929

    5 D o n a l d , A. M. J . Mater . ScL 1985, 20, 2630

    6 M ich le r , G . H .

    Colloid Polym. Sci.

    1992, 270, 627

    7 Fr ied r ich , K .

    Adv. Polym. Sci .

    1983, 52/53, 1

    8 Nar i sawa , I . and I sh ikawa , M .

    Adv. Polym. Sci.

    1990, 91/92, 353

    9 Pe te r l in ,

    A. J. Mater . ScL

    1971, 6, 490

    10 Oi l , H . G . and Pe te r l in , A. J. Polym. ScL, Polym. Phys . Edn.

    1974, 12, 2209

    11 Pe te rm an , J . and Gle i te r ,

    H. J. Polym. Sci. , Polym. Phys. Edn.

    1972, 10, 2333

    12 Pe te rm an , J . and Gle i te r ,

    H. d. Polym. Sci. , Polym. Phys. Edn.

    1973, 11,359

    1 3 D u n n , P . a n d S a n s o m ,

    G. F. J. Appl. Polym. Sci.

    1969,13, 1641

    14 Wyzgowski , M . G . and Nov ak ,

    G. E. J. Ma ter . Sci .

    1987, 22, 2615

    15 M ore , A . P . and Dona ld , A . M .

    lns t . Phys . Conf . Ser .

    1991,

    119, 357

    16 M ore , A . P . and Don a ld , A . M .

    Polym er

    1992, 33, 4081

    17 Lauterwasser , B. D. and Kra me r, E. J . Phil . Ma g. 1979, 20, 469

    18 M iyazawa , T . 'The Po ly -u -A mino Ac id s ' (Ed . G . D . Fasm an) ,

    Mar cel Dekk er, New York, 1967, p . 69

    19 Kr im m, S . and Bandeka r , J .

    Adv. Protein Chem.

    1986, 38, 181

    20 M ar t inez -Sa laza r , J . and Ca nno n ,

    C. G. J. Polym. ci . Let t .

    1984,

    3, 693

    21 Don a ld , A . M . and Kram er ,

    E. J. J. Mater. Sci.

    1981, 16, 2967

    22 Plum mer , C . J . G . and Kausch , H . H .

    Polym er

    1993, 34, 305

    23 Yang , A . C . -M . and Kram er ,

    E. J. J. M ater . Sci .

    1986, 21, 3601

    24

    D u n n , P . a n d S a n s o m , G . F . J . A p pl . P o l y m . S cL 1 9 6 9 , 1 3 ,1 6 5 7

    25 Kim, H . G . and Harge t , P. J. J. Appl . Phys . 1979, 50, 6072

    2 6 S i e g m a n n , A . a n d B a r a a m ,

    Z. M akromol. Chem. , Rapid Comm un.

    1980, 1, 113

    27 Wyzgowski , M . G . and Nov ak ,

    G. E. J. Mater . Sci .

    1987, 22,1715

    28 Ba la su b ram an ian , B ., Goe l , A . and Rao , C . N . R .

    Chem. Phys.

    Let t .

    1972, 17, 482

    29 Wyzgowski , M . G . and Nov ak , G. E. J. Ma ter . Sci . 1987, 22, 1 707

    5 0 9 8 P O L Y M E R 1 9 9 3 V o l u m e 3 4 N u m b e r 2 4