6.5 Trig. Form of a Complex Number Ex. Z = -2 + 5i -2 5.

12
6.5 Trig. Form of a Complex Number 2 2 b a bi a z + = + = Ex. Z = -2 + 5i ( ) 5 , 2 2 2 5 ) 2 ( + = z 29 = z -2 5

Transcript of 6.5 Trig. Form of a Complex Number Ex. Z = -2 + 5i -2 5.

Page 1: 6.5 Trig. Form of a Complex Number Ex. Z = -2 + 5i -2 5.

6.5 Trig. Form of a Complex Number

22 babiaz +=+=

Ex. Z = -2 + 5i ( )5,2−

22 5)2( +−=z

29=z -2

5

Page 2: 6.5 Trig. Form of a Complex Number Ex. Z = -2 + 5i -2 5.

Trigonometric Form of a Complex Number

( )θθ sincos irz +=r = the hypotenuse and theta = the angle.

Ex. iz 322−−= Find r (the hyp) & theta

r = 4

===2

32

.

.tan

adj

oppθ

1

3

060=∴θ ref. angle

°=∴ 2403

4or

πθ

)3

4sin

3

4(cos4

ππiz +=

Write in trig. form

2−

32−

Page 3: 6.5 Trig. Form of a Complex Number Ex. Z = -2 + 5i -2 5.

Write the complex number in standard form a + bi.

Ex. ⎥⎦

⎤⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛−+⎟⎠

⎞⎜⎝

⎛−=3

sin3

cos8ππ

iz

⎥⎦

⎤⎢⎣

⎡−= iz

2

3

2

122

z = 2 − 6i

Page 4: 6.5 Trig. Form of a Complex Number Ex. Z = -2 + 5i -2 5.

Multiplication of Complex Numbers

( ) ( )[ ]21212121 sincos θθθθ +++= irrzz

Find the Product if

⎟⎠

⎞⎜⎝

⎛ +=3

2sin

3

2cos21

ππiz & ⎟

⎞⎜⎝

⎛ +=6

11sin

6

11cos82

ππiz

=21zz ⎥⎦

⎤⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛ ++⎟⎠

⎞⎜⎝

⎛ +6

11

3

2sin

6

11

3

2cos16

ππππi

⎥⎦

⎤⎢⎣

⎡ +=2

5sin

2

5cos16

ππi [ ] ii 16)1(016 =+=

2

π

Page 5: 6.5 Trig. Form of a Complex Number Ex. Z = -2 + 5i -2 5.

Dividing Complex Numbers

( ) ( )[ ]21212

1

2

1 sincos θθθθ −+−= ir

r

z

z

Page 6: 6.5 Trig. Form of a Complex Number Ex. Z = -2 + 5i -2 5.

Divide

( )oo iz 300sin300cos241 +=

( )oo iz 75sin75cos82 +=

[ ])75300sin()75300cos(8

24

2

1 oooo iz

z−+−=

[ ]oo i 225sin225cos3 +=

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−+⎟⎟

⎞⎜⎜⎝

⎛−=

2

2

2

23 i i

2

23

2

23−−=

2

1

z

z

Page 7: 6.5 Trig. Form of a Complex Number Ex. Z = -2 + 5i -2 5.

DeMoivre’s Theorem and nth Roots

zn = r cosθ + isinθ( )[ ]n

( )θθ ninr n sincos +=

Page 8: 6.5 Trig. Form of a Complex Number Ex. Z = -2 + 5i -2 5.

Ex. Find 12)31( i+−

Imagine how much fun it would be to multiply this example out 12 times. It would take forever. Using DeMovre’s Theorem, however, makes it short and simple.

First, convert to trigonometric form.

=+− 12)31( i12

3

2sin

3

2cos2 ⎥

⎤⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛ +ππ

i

( ) ( ) ⎥⎦

⎤⎢⎣

⎡ +=3

212sin

3

212cos212 ππ

i ( )ππ 8sin8cos4096 i+=

( )i014096 += 4096=

Page 9: 6.5 Trig. Form of a Complex Number Ex. Z = -2 + 5i -2 5.

nth Roots of a Complex Number

For a positive integer n, the complex number

z = r(cos x + i sin x)

has exactly n distinct nth roots given by

⎟⎠

⎞⎜⎝

⎛ ++

+n

ki

n

krn

πθπθ 2sin

2cos

where k = 0, 1, 2, . . . , n - 1

WATCH THE EXAMPLES CAREFULLY!!!

Page 10: 6.5 Trig. Form of a Complex Number Ex. Z = -2 + 5i -2 5.

Ex. Find all the sixth roots of 1.

First, write 1 + 0i in trig. form.

1 + 0i is over 1 and up 0. Therefore, 1 is the hypotenuse and theta is 0o.

( ) 61

01 i+

1 cos0o + isin0o( )[ ]1

6

⎟⎠

⎞⎜⎝

⎛ ++

+=

6

20sin

6

20cos16 ππ k

ik

Now, we plug in 0, 1, 2, 3, 4, and 5 for k to find our six roots.

Page 11: 6.5 Trig. Form of a Complex Number Ex. Z = -2 + 5i -2 5.

( ) 10sin0cos1 =+ i

ii2

3

2

1

3sin

3cos1 +=⎟

⎞⎜⎝

⎛ +ππ

ii2

3

2

1

3

2sin

3

2cos1 +−=⎟

⎞⎜⎝

⎛ +ππ

( ) 1sincos1 −=+ ππ i

ii2

3

2

1

3

4sin

3

4cos1 −−=⎟

⎞⎜⎝

⎛ +ππ

ii2

3

2

1

3

5sin

3

5cos1 −=⎟

⎞⎜⎝

⎛ +ππ

Page 12: 6.5 Trig. Form of a Complex Number Ex. Z = -2 + 5i -2 5.

Find the three cube roots of z = -2+2i

Again, first convert to trig form.

−2 + 2i( )1

3 = 8 cos135o + isin135o( )[ ]1

3

81

2 ⎛ ⎝ ⎜ ⎞

⎠ ⎟1

3cos

135 + 360k

3+ isin

135 + 360k

3

⎝ ⎜

⎠ ⎟

For k = 0, 1, and 2, the roots are:

( )oo i 45sin45cos2 +

( )oo i 165sin165cos2 +

( )oo i 285sin285cos2 +