647741520

download 647741520

of 8

Transcript of 647741520

  • 8/11/2019 647741520

    1/8

    Non-crimp fabriccomposites

    Manufacturing, properties and

    applications

    Edited by

    Stepan V. Lomov

    WP

    WOODHEAD

    PUBLISHING

    Oxford Cambridge Philadelphia New Delhi

  • 8/11/2019 647741520

    2/8

    Contents

    Contributor contact details xiii

    Introduction xvi

    Part I Manufacturing of non-crimp fabrics 1

    1 Production of non-crimp fabrics for composites 3 A. Schnabel and T, Gries, Institut fur Textiltechnik (ITA)

    of RWTH Aachen University, Germany

    1.1 Introduction 3

    1.2 Warp-knitted non-crimp fabric (NCF) 51.3 Weft-knitted NCF 22

    1.4 Non-crimp woven fabrics 231.5 3D woven and non-interlaced NCF 27

    1.6 Fixation by adhesion 30

    1.7 Comparison of production technologies 331.8 Future trends 35

    1.9 Acknowledgements 37

    1.10 References 37

    2 Standardisation of production technologies for

    non-crimp fabric composites 42F. Kruse and T. Gries, Institut fUr Textiltechnik (ITA) of

    RWTH Aachen University, Germany

    2.1 Introduction 42

    2.2 Classification and standardisation of non-crimp fabric (NCF)

    production methods 42

    2.3 Outstanding patents of existing machines for theproduction of NCFs 47

    2.4 The 'Hexcel patent' - EP 0972102 B1 59

    2.5 Product patents in the production of NCFs 61

  • 8/11/2019 647741520

    3/8

    2.6 Immobilisation of adhesive on the surface of semi-finished

    textile products (DE 102008004112 A1) 64

    2.7 References 65

    3 Structural stitching ofnon-crimp

    fabric preformsfor composites 67

    P. Mitschang, Institut fur Verbundwerkstoffe GmbH, Germany

    3.1 Introduction 67

    3.2 Threads for structural stitching technology 683.3 Stitching technology and sewing machines 70

    3.4 Quality aspects for structural stitching 74

    3.5 Applications and future trends 81

    3.6 References 82

    4 Understanding and modelling the effect ofstitching on the geometry of non-crimp fabrics 84S. V. Lomov, Katholieke Universiteit Leuven, Belgium

    4.1 Introduction 84

    4.2 General parameters of the fibrous plies 854.3 Geometry of the stitching 864.4 Distortions of fibres in the plies 92

    4.5 Change of the geometry after shear 984.6 A geometrical model of NCF 1004.7 Conclusion 100

    4.8 References 102

    5 Automated analysis of defects in non-crimpfabrics for composites 103M. Schneider, Toho Tenax Europe GmbH, Germany

    5.1 Motivation 103

    5.2 Quality characteristics of non-crimp fabric (NCF) 1045.3 Quality analysis of NCF by digital image

    analysis 1065.4 Future trends 111

    5.5 References 114

    Part II Manufacturing of non-crimp fabric composites 115

    6 Deformability of textile preforms in themanufacture of non-crimp fabric composites 117S. V. Lomov, Katholieke Universiteit Leuven, Belgium

    6.1 Introduction 117

  • 8/11/2019 647741520

    4/8

    6.2 Shear 118

    6.3 Biaxial tension 128

    6.4 Compression 1326.5 Bending 136

    6.6 Conclusion 1396.7 References 141

    7 Modelling the deformability of biaxial

    non-crimp fabric composites 144P. Harrison, University of Glasgow, UK, W-R. Yu, Seoul

    National University, Korea and A. C. Long, University of

    Nottingham, UK

    7.1 Introduction 144

    7.2 Behaviour of fabric architecture on the shear and

    draping behaviour of non-crimp fabrics (NCFs) 1457.3 Modelling strategies for NCF forming 1487.4 Energy-based kinematic mapping 1497.5 Finite element modelling of forming for NCFs 1567.6 Future trends 161

    7.7 Further information and advice 162

    7.8 References 162

    8 Permeability of non-crimp fabric preforms 166R. Loendersloot, University of Twente, The Netherlands

    8.1 Introduction 166

    8.2 Experimental permeability results 1688.3 Geometric effects 187

    8.4 Deformation and permeability 1968.5 Conclusions 208

    8.6 Acknowledgements 209

    8.7 References 210

    8.8 Appendix: nomenclature 214

    9 Understanding variability in the permeability of

    non-crimp fabric composite reinforcements 216 A. Endruweit and A. C. Long, University of Nottingham, UK

    9.1 Introduction 216

    9.2 Material characterisation 217

    9.3 Permeability measurement 222

    9.4 Modelling and simulation 233

    9.5 Future trends 239

    9.6 References 239

  • 8/11/2019 647741520

    5/8

    10 Modelling of the permeability of non-crimp fabricsfor composites 242B. Verleye, S. V. Lomov and D. Roose, Katholieke Universiteit

    Leuven, Belgium

    10.1 Introduction 242

    10.2 Numerical simulation 246

    10.3 Experimental validation 25110.4 Parametric study 25310.5 Influence of shear 256

    10.6 Conclusion 257

    10.7 Acknowledgements 25710.8 References 258

    Part III Properties of non-crimp fabric composites 261

    11 Mechanical properties of non-crimp fabric (NCF)based composites: stiffness and strength 263S. V. Lomov, T. Truonq Chi and I. Verpoest, Katholieke

    Universiteit Leuven, Belgium

    11.1 Introduction 263

    11.2 Materials and composite production 26411.3 Test procedures 26511.4 Mechanical properties of non-crimp fabric

    (NCF) composites 26611.5 Mechanical properties of composites based on

    sheared MMCF 274

    11.6 Damage development in B2 (0790) laminates 27911.7 X-ray radiography 283

    11.8 Damage initiation in non-sheared and sheared materials 28511.9 Conclusions 286

    11.10 References 287

    12 Damage progression in non-crimp fabric composites 289L. E. Asp, J. Varna and E. Marklund, Swerea SICOMP and

    Lulea University of Technology, Sweden

    12.1 Introduction 289

    12.2 Damage progression in non-crimp fabric (NCF)

    composites due to in-plane loading 29012.3 Damage progression in impacted NCF composites 30012.4 Conclusions 308

    12.5 References 308

  • 8/11/2019 647741520

    6/8

    13 Fatigue in non-crimp fabric composites 310K. Vallons, Katholieke Universiteit Leuven, Belgium

    13.1 Introduction 310

    13.2 Fatigue in non-crimp fabric (NCF) composites 31113.3 Post-fatigue residual properties 33013.4 Conclusions and open questions 33213.5 References 332

    13.6 Appendix 333

    14 Mechanical properties of structurally stitched

    non-crimp fabric composites 335N. Himmel, Institut ftir Verbundwerkstoffe GmbH, Germanyand H. HeB, BASF Engineering Plastics Europe, Germany

    14.1 Introduction 335

    14.2 Materials and stitching configurations 33714.3 Characterisation of structurally stitched

    NCF laminates 341

    14.4 Simulation of mechanical behaviour of structurallystitched laminates 348

    14.5 Conclusions and future trends 354

    14.6 References 355

    15 Predicting the effect of stitching on themechanical properties and damage of non-crimpfabric composites: finite element analysis 360D. S. Ivanov, S. V. Lomov and I. Verpoest, Katholieke

    Universiteit Leuven, Belgium

    15.1 Introduction 360

    15.2 Representative volume element (RVE) of non-crimp

    fabric (NCF) composites 36315.3 Elastic analysis 369

    15.4 Damage accumulation in NCF composites 372

    15.5 Conclusions 383

    15.6 References 384

    16 Modelling drape, stress and impact behaviourof non-crimp fabric composites 386

    A. K. Pickett, University of Stuttgart, Germany

    16.1 Finite element (FE) methods for drape, stress and

    impact analysis 386

    16.2 Laminate analysis and FE stiffness for

    non-crimp fabric (NCF) 387

    16.3 FE methods for infusion analysis 389

    16.4 Draping and FE simulation 390

  • 8/11/2019 647741520

    7/8

    16.5 Infusion simulation 394

    16.6 Stiffness and failure 39416.7 Impact and failure 39616.8 References 400

    17 Modelling stiffness and strength of non-crimpfabric composites: semi-laminar analysis 402E. Marklund, J. Varna and L. E. Asp, Swerea SICOMPand

    Lulea University of Technology, Sweden

    17.1 Introduction 402

    17.2 Stiffness models 405

    17.3 Strength models for non-crimp fabric (NCF) composites 420

    17.4 Conclusions 43517.5 References 436

    Part IV Applications of non-crimp fabric composites 439

    18 Aerospace applications of non-crimp fabric composites 441P. Middendorf and C. Metzner, EADS Innovation Works, Germany

    18.1 Introduction 441

    18.2 Aeronautic requirements 44318.3 Application examples 44518.4 Future trends 447

    18.5 References 448

    19 Non-crimp fabric: preforming analysis forhelicopter applications 449

    F. Dumont and C. Weimer, Eurocopter Deutschland GmbH, Germany

    19.1 Introduction 44919.2 Preform techniques for non-crimp fabrics (NCFs) 44919.3 Main NCF deformation mechanism

    observed during preforming 45419.4 Preforming defect analysis 456

    19.5 Conclusion and future trends 458

    19.6 References 460

    20 Automotive applications of non-crimp fabric

    composites 461

    B. SkOck-Hartmann and T. Gries, Institut ftirTextiltechnik (ITA)

    of RWTH Aachen University, Germany

    20.1 Introduction 461

    20.2 Applications of non-crimp fabrics (NCF) in theautomotive industry 466

  • 8/11/2019 647741520

    8/8

    20.3 Research and development for the use ofNCF in automotive applications 469

    20.4 Future trends 47620.5 Conclusion 478

    20.6 References 479

    21 Non-crimp fabric composites in wind turbines 481G. Adolphs and C. Skinner, OCV Technical Fabrics, Belgium

    21.1 Introduction 481

    21.2 Development of non-crimp fabric (NCF) compositesin wind energy 483

    21.3 NCF materials used in nacelle construction 491

    21.4 Future trends 492

    21.5 References 493

    22 Cost analysis in using non-crimp fabric compositesin engineering applications 494P. Schubel, University of Nottingham, UK

    22.1 Introduction 494

    22.2 Costing methodologies:

    currentapproaches

    495

    22.3 Technical cost modelling 496

    22.4 Case study: 40 m wind turbine blade shell 504

    22.5 Acknowledgements 50922.6 References 509

    Index 511