6.435 Lecture 1 v - MIT OpenCourseWare · solution? Persistency of excitation! •Note that you get...

39
System Identification 6.435 SET 3 – Nonparametric Identification Munther A. Dahleh Lecture 3 6.435, System Identification Prof. Munther A. Dahleh 1

Transcript of 6.435 Lecture 1 v - MIT OpenCourseWare · solution? Persistency of excitation! •Note that you get...

System Identification

6.435

SET 3

– Nonparametric Identification

Munther A. Dahleh

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

1

Nonparametric Methodsfor System ID

• Time domain methods

– Impulse response

– Step response

– Correlation analysis / time

• Frequency domain methods

– Sine-wave testing

– Correlation analysis / Frequency

– Fourier-analysis

– Spectral analysis

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

2

Problem Formulation

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

3

• Actual system is Linear time-invariant stable.

• Time domain methods ⇒ estimates of

Black Box

• Process:

• Frequency-domain methods ⇒ estimates of

• Tests:

at each freq.a)

b)

c)

d)

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

4

Time-Domain Methods

• Impulse response

estimate:

Analysis: small if

Practicality: not very useful.

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

5

• Step response

estimate:

Analysis:

Practicality: Not good for determining . Good for determining delays, modes….

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

6

Methods (Continued)

• Correlation Analysis

• Assume u is quasi-stationary

are uncorrelated.

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

7

• Case I: If

To estimate:

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

8

• Case II: Input is not white.

Using the approximation

In matrix form:

notice

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

9

⇒ Estimate

• Question: Under what conditions the above system has a unique solution? Persistency of excitation!

• Note that you get the same estimate regardless of the spectrum of the noise.

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

10

Analysis of Correlation Method

• Estimate

• Need to determine the covariance of for a fixed large N.

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

11

• Covariance, proportional to

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

12

Frequency-Response Analysis

• Input

• Extract

• How do you measure in the presence of noise? A good approach is correlation.

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

13

• Define

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

14

• Estimate:

• Comment:

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

15

Empirical Transfer Function Estimate (ETFE)

• For an arbitrary input

• Recall: Correlation analysis

• If , then the previous analysis shows that

• Similarly for u = White input.

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

16

• General Procedure

1. Calculate

2. Obtain the inverse DFT:

3. Define

• The algorithm is quite efficient; requires only the computation of the Inverse DFT. Note also that the algorithm is Linear.

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

17

Properties of EFTE

Theorem:

Given:

With:

• s(t) is stationary, zero mean with spectrum

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

18

Then:

1.

2.

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

19

Proofs

• Bias

• Covariance

1st: Compute

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

20

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

21

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

22

• Put together

Now:

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

23

Comments on EFTE

• Suppose U = periodic

increases as a function of N for some

and zero for others

— EFTE is defined for a fixed number of frequencies,

i.e. independent of N.

— At these frequencies, ETFE is unbiased and Covariance decays as . (Recall ).

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

24

• Suppose V is a stochastic process, uncorrelated with v

in dist. (a bounded function)

– ETFE is asymptotically unbiased, with increasingly more well-defined frequencies (as N → ∞).

– The variance does not decrease as N → ∞.

– Estimates are asymptotically uncorrelated.

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

25

Spectral Estimation

• Traditionally

estimateN-Long time series

• In here, different context.

{smaller variance}• Theme:– Show the mechanics– Importance of windowing, tradeoffs – Relate to spectral estimation

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

26

Spectral Estimation: Non Std (Ljung)

• Idea: the actual function is smooth. The values of should be related for small intervals ω.

• According to previous analysis, is uncorrelated with and has variance

• Suppose satisfies

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

27

• Define the estimate (new) at as follows:

• Where are chosen so thatis minimized.

• Solution:

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

28

• As N → ∞, the sums integrals

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

29

• Equivalently: Let be a window function. Then,

• If is unknown, but slowly varying in frequency

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

30

Relations to TraditionalSpectral Analysis

• Recall:

indistribution

estimate of

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

31

• Define:

Similarly:

• Conclusion

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

32

Efficient Computation

Of course for large enough but not as large

as N. Example is:

(Bartlett)

• Similarly for

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

33

Analysis of Spectral Estimation

and

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

34

• Write

• Recall:

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

35

Numerator•

Denominator

Numerator:

Denominator:

⇒ for each finite , the estimate is biased.

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

36

• For a fixed

• Improved variance on the expense of the biase.

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

37

Estimating the Disturbance Spectrum

• If was measurable, then

Bias:

Variance

• Problem: is not readily measurable.

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

38

• The residual spectrum.

is the estimate

• Define

Lecture 3 6.435, System Identification Prof. Munther A. Dahleh

39