6 Prins slides2005-09-29_AIOmeeting

download 6 Prins slides2005-09-29_AIOmeeting

of 24

Transcript of 6 Prins slides2005-09-29_AIOmeeting

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    1/24

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    2/24

    Gasi f ier fue ls

    0.40 0.2 0.80.6

    0.2

    0.4

    1.0

    1.2

    1.4

    1.8

    0.8

    0.6

    1.6

    Atomic O/C ratio

    Biomass

    Peat

    Lignite

    Coal

    Anthracite

    Increased Heating Value

    Atomic H/C ratio

    Lignin

    Wood

    Cellulose

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    3/24

    Whic h fuel c an be c onver t ed t o

    gas w i t h t he h ighest ef f ic ienc y?

    A. Solid Carbon, because it has thehighest calorific value

    B. Cellulose, because it requires lessoxygen

    C. It does not matter

    D. I dont know

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    4/24

    Reac t ion Gibss func t ion Gr

    C6(H2O)5 + H2O = 6 CO + 6 H2

    -400

    -350

    -300

    -250

    -200

    -150

    -100

    -50

    0

    50

    100

    150

    0 50 100 150 200 250 300 350

    Temperature (C)

    Gr(kJ/mol)

    Scientist dream:kinetic pathwayto synthesis gas

    BUT: catalyst doesnot exist!

    CO2, CH4 and C (s)

    more stable at lowtemperature

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    5/24

    Gasi f ic at ion in a CHO-diagram

    0.00 0.25 0.50 0.75 1.00

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0 0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1500 K1100 K

    1000 K900 K

    700 K

    Mol % C

    CH4

    H2O

    CO

    CO2

    Mol % H

    Mol % O

    coal

    peatbiomass

    lignite

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    6/24

    Gasi f ic a t ion at c arbon boundary

    0.0 0.2 0.4 0.6 0.8

    500

    1000

    1500

    2000

    2500

    0.0 0.2 0.4 0.6 0.8

    500

    1000

    1500

    2000

    2500

    0.0 0.2 0.4 0.6 0.8

    500

    1000

    1500

    2000

    2500

    Gasificationtemp

    erature(C

    )

    lowH/C

    ratio

    highH/C

    ratio

    927C

    1227C

    carbon boundary

    temperature

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    7/24

    Steam, ch = 527 kJ/kg

    ph = 92 kJ/kg

    Fuel, ch = 18000-39000 kJ/kg Product gas

    Oxygen, ch = 124 kJ/kgGasifier

    Therm odynam ic ef f ic ienc y

    of gasi f iers

    fuelchfuelm

    oxygenchoxygenmgasphgaschgasm

    total

    ,,

    ,,,,, )(

    +=

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    8/24

    Gasif i c a t ion ef f ic ienc y

    0.0 0.2 0.4 0.6 0.860

    62

    64

    6668

    70

    72

    74

    76

    78

    80

    82

    84

    86

    8890

    lowH

    /Cratiohig

    hH/C

    ratio

    highH/Cratio

    highH/Cratio

    Therm

    odynamicefficiency(%

    )

    Atomic O/C ratio of fuel

    0.0 0.2 0.4 0.6 0.860

    62

    64

    6668

    70

    72

    74

    76

    78

    80

    82

    84

    86

    8890

    0.0 0.2 0.4 0.6 0.860

    62

    64

    6668

    70

    72

    74

    76

    78

    80

    82

    84

    86

    8890

    0.0 0.2 0.4 0.6 0.860

    62

    64

    6668

    70

    72

    74

    76

    78

    80

    82

    84

    86

    8890

    0.0 0.2 0.4 0.6 0.860

    62

    64

    6668

    70

    72

    74

    76

    78

    80

    82

    84

    86

    8890

    0.0 0.2 0.4 0.6 0.860

    62

    64

    6668

    70

    72

    74

    76

    78

    80

    82

    84

    86

    8890

    lowH/Cratio

    lowH/Cratio

    lowH/CratiohighH/Cratio

    1227C

    927C

    carbon boundary

    temperature

    1227C927C

    carbon boundary

    temperature

    overall

    efficiency

    chemical

    efficiency

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    9/24

    In t erm ediat e c onc lus ions

    fuelLHV

    fuelch

    Fuels with high O/C ratio have relatively highchemical exergy ( = 1.12-1.14 for biomass,

    1.05 for solid carbon)

    and therefore lower gasification efficiency

    = ,

    Fuels with high O/C ratio are over-oxidized atpractical gasification temperatures (1200-1500 K)

    Biomass needs to be upgraded!!

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    10/24

    Biom ass t o rrefac t ion

    0.40 0.2 0.80.6

    0.2

    0.4

    1.0

    1.2

    1.4

    1.8

    0.8

    0.6

    1.6

    Atomic O/C ratio

    Biomass

    Peat

    Lignite

    Coal

    Anthracite

    Increased Heating Value

    Torrefied Wood

    Atomic H/C ratio

    Lignin

    Cellulose

    Wood

    Torrefaction

    (at 250-300C)

    1. Thermo ofgasification

    2. Biomasstorrefaction

    3. TW as agasifier fuel

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    11/24

    Volatilessteamacetic acidmethanolCO2, COother organics

    Torrefac t ion ex per im ent s

    Thermo balance (TGA):

    reaction kinetics

    Small scale oven: product recovery product analysis

    mass and energy balances

    Feed

    Product 1

    Product 2

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    12/24

    Weight loss k inet ic s (250C)

    0.45

    0.50

    0.55

    0.60

    0.65

    0.70

    0.75

    0.80

    0.85

    0.90

    0.95

    1.00

    1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

    Time (s)

    Relativew

    eight(-)

    150

    170

    190

    210

    230

    250

    270

    290

    Temperature(C)

    cellulose

    xylan

    straw

    willowbeech

    larch

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    13/24

    Weight loss k inet ic s (270C)

    0.45

    0.50

    0.55

    0.60

    0.65

    0.70

    0.75

    0.80

    0.85

    0.90

    0.95

    1.00

    1000 1500 2000 2500 3000 3500 4000 4500 5000 5500Time (s)

    Relative

    weight(-)

    150

    170

    190

    210

    230

    250

    270

    290

    Temperature(C)

    cellulose

    xylan

    straw

    willowbeech

    larch

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    14/24

    Tor re fac t ion Reac t iv i t y (a t 250-300C)

    OH

    O

    O O

    OH

    O-Ac

    O

    O

    O-Ac

    OH

    O

    O

    O O

    O

    OH

    OH

    O

    O

    OH

    OH

    H2CO

    COOH

    OH

    O-AcHemi-cellulose Highly

    reactive

    Hardlyreactive

    Cellulose

    LigninOnly side-

    chains

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    15/24

    Composition

    Composition hemicelluloses

    4-O methyl glucuronoxylan (wt%) 80-90 5-15

    4-O methyl glucuronoarabinoxylan (wt%)

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    16/24

    K ine t i c m odel (for w i l l ow )

    Di Blasi &

    Lanzetta, 1997 A B C

    V1 V2

    KB KC

    KV1KV2

    Hemi-cellulose

    decomposition

    (Ea = 76 kJ/mol)

    Cellulose

    decomposition

    (Ea = 152 kJ/mol)

    Relative rates250C 1 0.025

    300C 5.5 0.52

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    17/24

    Requi red res idenc e t im e

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    230 240 250 260 270 280 290 300

    Torrefaction temperature [C]

    Relativew

    eight[-]

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    Reactiontime[min]

    C

    B

    A

    time

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    18/24

    Set -up for produc t analys is

    Cooling

    Cooling

    h

    eater

    h

    eater

    Mass flow

    controller

    Reactor

    Pressure

    controller

    Cold

    trap

    Gasbag

    Argon

    Temp

    controller

    120 CTracing inlet

    180 CTracing outlet

    230-300 CTemp

    AtmosphericPressure

    10-50 ml/minFlow

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    19/24

    Condensable vo lat i les

    0.0%

    2.0%

    4.0%

    6.0%

    8.0%

    10.0%

    12.0%

    14.0%

    230C (50 min.) 250C (30 min.) 270C (15 min.) 280C (10 min.) 300C (10 min.)

    Condensablevolatileyield(wt%)

    acetic acid water formic acid methanol

    lactic acid furfural hydroxy acetone phenol

    willow

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    20/24

    Non-c ondensable vo lat i les

    0.0%

    1.0%

    2.0%

    3.0%

    4.0%

    5.0%

    6.0%

    230C (50 min.) 250C (30 min.) 270C (15 min.) 280C (10 min.) 300C (10 min.)

    Non-condensablevo

    latileyield(wt%

    )

    carbon dioxide carbon monoxide

    willow

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    21/24

    LHV of so l id produc t

    18000

    18500

    19000

    19500

    20000

    20500

    21000

    21500

    220 230 240 250 260 270 280 290 300

    Temperature (C)

    Lowerheatingvalueofso

    lidproduct[kJ

    /kgdry]

    brown larch

    green willow

    10 minutes

    15 minutes 30 minutes

    50 minutes

    60 minutes

    brown larch

    green willow

    10 minutes

    15 minutes 30 minutes

    50 minutes

    60 minutes

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    22/24

    Energy y ie ld

    70%

    75%

    80%

    85%

    90%

    95%

    100%

    105%

    220 230 240 250 260 270 280 290 300

    Temperature (C)

    Lowerheatingvalueretain

    edinsolidproduct[%] larch

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    23/24

    Tor re f ied w ood as a gas i f ie r fue l

    1. F-T fuels frombiomass

    2. Biomasstorrefaction

    3. TW as a

    gasifier fuel

    Attractive Gasification Properties

    Low ash, sulphur and nitrogen content

    Increased energy density: 18 to 21 MJ/kg

    Reduced moisture content: 10 % to < 2 %

    Ratio of volatiles/FC: 80/20 to 60/40

    Reduced hemi-cellulose: 20-30% < 5 %

    Friable

    Cheaper to transport

    storage

    Densification from 400 kg/m3

    topellets > 800 kg/m3 possible

    50-85% lesselectricity forsize reduction

  • 8/3/2019 6 Prins slides2005-09-29_AIOmeeting

    24/24

    Ac t ions fo r fu t u re developm ent

    Construction & demonstration ofcontinuous torrefaction reactors

    Demonstration of TW (co-) gasification inentrained flow gasifiers

    1. F-T fuels frombiomass

    2. Biomasstorrefaction

    3. TW as a

    gasifier fuel

    For stand-alone torrefaction:

    Catalytic combustion of volatiles

    Techno-economic analysis of torrefaction-aided gasification (stand-alone, integrated)

    versus direct wood gasification

    airlessdrying unitin Sneek

    EF pilot plantat ECN;Buggenum?