5.Laplace Casos Especiais.1234.Sol

21
 4.3  T ranslation Theorems 45.  F or  y 4y = 6e 3t 3e t the transfer function is  W (s) = 1/(s 2 4s). The zero-input response is y 0 (t) =  s 5 s 2 4s  = 5 4  ·  1 s  −  1 4  ·  1 s 4  =  5 4  −  1 4 e 4t , and the zero-state response is y 1 (t) =  6 (s 3)(s 2 4s)  −  3 (s + 1)(s 2 4s) = 27 20  ·  1 s 4  −  2 s 3  +  5 4  ·  1 s  −  3 5  ·  1 s + 1 =  27 20 e 4t 2e 3t +  5 4  −  3 5 e t . 46.  From Theorem 4.4, if  f  and  f  are continuous and of exponential order,  {f  (t)}  =  sF (s) f (0) . From Theorem 4.5, lim s→∞  {f  (t)} = 0 so lim s→∞ [sF (s) f (0)] = 0 and lim s→∞ F (s) =  f (0). F or  f (t) = cos kt, lim s→∞ sF (s) = lim s→∞ s  s s 2 + k 2  = 1 =  f (0). EXERCISES 4.3 Translation Theorems 1. te 10t  =  1 (s 10) 2  2. te 6t  =  1 (s + 6) 2 3. t 3 e 2t  =  3! (s + 2) 4  4. t 10 e 7t  =  10! (s + 7) 11 5. t e t + e 2t 2  = te 2t + 2te 3t + te 4t  =  1 (s 2) 2  +  2 (s 3) 2  +  1 (s 4) 2 6. e 2t (t 1) 2  = t 2 e 2t 2te 2t + e 2t  =  2 (s 2) 3  −  2 (s 2) 2  +  1 s 2 7. e t sin3t  =  3 (s 1) 2 + 9 8. e 2t cos4t  =  s + 2 (s + 2) 2 + 16 9.  {(1 e t + 3e 4t )cos5t} =  {cos5t e t cos5t + 3e 4t cos5t} =  s s 2 + 25  −  s 1 (s 1) 2 + 25  +  3(s + 4) (s + 4) 2 + 25 10. e 3t 9 4t + 10sin  t 2  = 9e 3t 4te 3t + 10e 3t sin  t 2 =  9 s 3  −  4 (s 3) 2  +  5 (s 3) 2 + 1/4 11.  1 (s + 2) 3  = 1 2 2 (s + 2) 3  =  1 2 t 2 e 2t 207

description

Lapace

Transcript of 5.Laplace Casos Especiais.1234.Sol

  • 4.3 Translation Theorems

    45. For y 4y = 6e3t 3et the transfer function is W (s) = 1/(s2 4s). The zero-input response is

    y0(t) ={

    s 5s2 4s

    }=

    {54 1s 1

    4 1s 4

    }=

    54 1

    4e4t ,

    and the zero-state response is

    y1(t) ={

    6(s 3)(s2 4s)

    3(s + 1)(s2 4s)

    }

    ={

    2720 1s 4

    2s 3 +

    54 1s 3

    5 1s + 1

    }

    =2720

    e4t 2e3t + 54 3

    5et .

    46. From Theorem 4.4, if f and f are continuous and of exponential order, {f (t)} = sF (s) f(0). FromTheorem 4.5, lims {f (t)} = 0 so

    lims[sF (s) f(0)] = 0 and limsF (s) = f(0).

    For f(t) = cos kt,

    lims sF (s) = lims s

    s

    s2 + k2= 1 = f(0).

    EXERCISES 4.3Translation Theorems

    1.{te10t

    }=

    1(s 10)2 2.

    {te6t

    }=

    1(s + 6)2

    3.{t3e2t

    }=

    3!(s + 2)4

    4.{t10e7t

    }=

    10!(s + 7)11

    5.{t(et + e2t

    )2}=

    {te2t + 2te3t + te4t

    }=

    1(s 2)2 +

    2(s 3)2 +

    1(s 4)2

    6.{e2t(t 1)2} = {t2e2t 2te2t + e2t} = 2

    (s 2)3 2

    (s 2)2 +1

    s 2

    7.{et sin 3t

    }=

    3(s 1)2 + 9 8.

    {e2t cos 4t

    }=

    s + 2(s + 2)2 + 16

    9. {(1 et + 3e4t) cos 5t} = {cos 5t et cos 5t + 3e4t cos 5t} = ss2 + 25

    s 1(s 1)2 + 25 +

    3(s + 4)(s + 4)2 + 25

    10.{e3t(9 4t + 10 sin t

    2

    )}=

    {9e3t 4te3t + 10e3t sin t

    2

    }=

    9s 3

    4(s 3)2 +

    5(s 3)2 + 1/4

    11.{

    1(s + 2)3

    }=

    {12

    2(s + 2)3

    }=

    12t2e2t

    207

  • 4.3 Translation Theorems

    12.{

    1(s 1)4

    }=

    16

    {3!

    (s 1)4}

    =16t3et

    13.{

    1s2 6s + 10

    }=

    {1

    (s 3)2 + 12}

    = e3t sin t

    14.{

    1s2 + 2s + 5

    }=

    {12

    2(s + 1)2 + 22

    }=

    12et sin 2t

    15.{

    s

    s2 + 4s + 5

    }=

    {s + 2

    (s + 2)2 + 12 2 1

    (s + 2)2 + 12

    }= e2t cos t 2e2t sin t

    16.{

    2s + 5s2 + 6s + 34

    }=

    {2

    (s + 3)(s + 3)2 + 52

    15

    5(s + 3)2 + 52

    }= 2e3t cos 5t 1

    5e3t sin 5t

    17.{

    s

    (s + 1)2

    }=

    {s + 1 1(s + 1)2

    }=

    {1

    s + 1 1

    (s + 1)2

    }= et tet

    18.{

    5s(s 2)2

    }=

    {5(s 2) + 10

    (s 2)2}

    ={

    5s 2 +

    10(s 2)2

    }= 5e2t + 10te2t

    19.{

    2s 1s2(s + 1)3

    }=

    {5s 1

    s2 5

    s + 1 4

    (s + 1)2 3

    22

    (s + 1)3

    }= 5 t 5et 4tet 3

    2t2et

    20.{

    (s + 1)2

    (s + 2)4

    }=

    {1

    (s + 2)2 2

    (s + 2)3+

    16

    3!(s + 2)4

    }= te2t t2e2t + 1

    6t3e2t

    21. The Laplace transform of the dierential equation is

    s {y} y(0) + 4 {y} = 1s + 4

    .

    Solving for {y} we obtain{y} = 1

    (s + 4)2+

    2s + 4

    .

    Thusy = te4t + 2e4t.

    22. The Laplace transform of the dierential equation is

    s {y} {y} = 1s+

    1(s 1)2 .

    Solving for {y} we obtain

    {y} = 1s(s 1) +

    1(s 1)3 =

    1s+

    1s 1 +

    1(s 1)3 .

    Thusy = 1 + et + 1

    2t2et.

    23. The Laplace transform of the dierential equation is

    s2 {y} sy(0) y(0) + 2[s {y} y(0)]+ {y} = 0.Solving for {y} we obtain

    {y} = s + 3(s + 1)2

    =1

    s + 1+

    2(s + 1)2

    .

    Thusy = et + 2tet.

    208

  • 4.3 Translation Theorems

    24. The Laplace transform of the dierential equation is

    s2 {y} sy(0) y(0) 4 [s {y} y(0)] + 4 {y} = 6(s 2)4 .

    Solving for {y} we obtain {y} = 120

    5!(s 2)6 . Thus, y =

    120

    t5e2t.

    25. The Laplace transform of the dierential equation is

    s2 {y} sy(0) y(0) 6 [s {y} y(0)] + 9 {y} = 1s2

    .

    Solving for {y} we obtain

    {y} = 1 + s2

    s2(s 3)2 =227

    1s+

    19

    1s2 2

    271

    s 3 +109

    1(s 3)2 .

    Thus

    y =227

    +19t 2

    27e3t +

    109

    te3t.

    26. The Laplace transform of the dierential equation is

    s2 {y} sy(0) y(0) 4 [s {y} y(0)] + 4 {y} = 6s4

    .

    Solving for {y} we obtain

    {y} = s5 4s4 + 6s4(s 2)2 =

    34

    1s+

    98

    1s2

    +34

    2s3

    +14

    3!s4

    +14

    1s 2

    138

    1(s 2)2 .

    Thus

    y =34+

    98t +

    34t2 +

    14t3 +

    14e2t 13

    8te2t.

    27. The Laplace transform of the dierential equation is

    s2 {y} sy(0) y(0) 6 [s {y} y(0)] + 13 {y} = 0.Solving for {y} we obtain

    {y} = 3s2 6s + 13 =

    32

    2(s 3)2 + 22 .

    Thus

    y = 32e3t sin 2t.

    28. The Laplace transform of the dierential equation is

    2[s2 {y} sy(0)]+ 20[s {y} y(0)]+ 51 {y} = 0.

    Solving for {y} we obtain

    {y} = 4s + 402s2 + 20s + 51

    =2s + 20

    (s + 5)2 + 1/2=

    2(s + 5)(s + 5)2 + 1/2

    +10

    (s + 5)2 + 1/2.

    Thus

    y = 2e5t cos(t/2 ) + 10

    2 e5t sin(t/

    2 ).

    29. The Laplace transform of the dierential equation is

    s2 {y} sy(0) y(0) [s {y} y(0)] = s 1(s 1)2 + 1 .

    209

  • 4.3 Translation Theorems

    Solving for {y} we obtain

    {y} = 1s(s2 2s + 2) =

    12

    1s 1

    2s 1

    (s 1)2 + 1 +12

    1(s 1)2 + 1 .

    Thus

    y =12 1

    2et cos t +

    12et sin t.

    30. The Laplace transform of the dierential equation is

    s2 {y} sy(0) y(0) 2 [s {y} y(0)] + 5 {y} = 1s+

    1s2

    .

    Solving for {y} we obtain

    {y} = 4s2 + s + 1

    s2(s2 2s + 5) =725

    1s+

    15

    1s2

    +7s/25 + 109/25

    s2 2s + 5

    =725

    1s+

    15

    1s2 7

    25s 1

    (s 1)2 + 22 +5125

    2(s 1)2 + 22 .

    Thus

    y =725

    +15t 7

    25et cos 2t +

    5125

    et sin 2t.

    31. Taking the Laplace transform of both sides of the dierential equation and letting c = y(0) we obtain

    {y}+ {2y}+ {y} = 0s2 {y} sy(0) y(0) + 2s {y} 2y(0) + {y} = 0

    s2 {y} cs 2 + 2s {y} 2c + {y} = 0(s2 + 2s + 1

    ) {y} = cs + 2c + 2{y} = cs

    (s + 1)2+

    2c + 2(s + 1)2

    = cs + 1 1(s + 1)2

    +2c + 2(s + 1)2

    =c

    s + 1+

    c + 2(s + 1)2

    .

    Therefore,

    y(t) = c{

    1s + 1

    }+ (c + 2)

    {1

    (s + 1)2

    }= cet + (c + 2)tet.

    To nd c we let y(1) = 2. Then 2 = ce1 + (c + 2)e1 = 2(c + 1)e1 and c = e 1. Thus

    y(t) = (e 1)et + (e + 1)tet.

    32. Taking the Laplace transform of both sides of the dierential equation and letting c = y(0) we obtain

    {y}+ {8y}+ {20y} = 0s2 {y} y(0) + 8s {y}+ 20 {y} = 0

    s2 {y} c + 8s {y}+ 20 {y} = 0(s2 + 8s + 20) {y} = c

    {y} = cs2 + 8s + 20

    =c

    (s + 4)2 + 4.

    210

  • 4.3 Translation Theorems

    Therefore,

    y(t) ={

    c

    (s + 4)2 + 4

    }=

    c

    2e4t sin 2t = c1e4t sin 2t.

    To nd c we let y() = 0. Then 0 = y() = ce4 and c = 0. Thus, y(t) = 0. (Since the dierential equationis homogeneous and both boundary conditions are 0, we can see immediately that y(t) = 0 is a solution. Wehave shown that it is the only solution.)

    33. Recall from Section 3.8 that mx = kxx. Now m = W/g = 4/32 = 18 slug, and 4 = 2k so that k = 2 lb/ft.Thus, the dierential equation is x + 7x + 16x = 0. The initial conditions are x(0) = 3/2 and x(0) = 0.The Laplace transform of the dierential equation is

    s2 {x}+ 32s + 7s {x}+ 21

    2+ 16 {x} = 0.

    Solving for {x} we obtain

    {x} = 3s/2 21/2s2 + 7s + 16

    = 32

    s + 7/2(s + 7/2)2 + (

    15/2)2

    715

    10

    15/2

    (s + 7/2)2 + (15/2)2

    .

    Thus

    x = 32e7t/2 cos

    152

    t 715

    10e7t/2 sin

    152

    t.

    34. The dierential equation isd2q

    dt2+ 20

    dq

    dt+ 200q = 150, q(0) = q(0) = 0.

    The Laplace transform of this equation is

    s2 {q}+ 20s {q}+ 200 {q} = 150s

    .

    Solving for {q} we obtain

    {q} = 150s(s2 + 20s + 200)

    =34

    1s 3

    4s + 10

    (s + 10)2 + 102 3

    410

    (s + 10)2 + 102.

    Thus

    q(t) =34 3

    4e10t cos 10t 3

    4e10t sin 10t

    and

    i(t) = q(t) = 15e10t sin 10t.

    35. The dierential equation isd2q

    dt2+ 2

    dq

    dt+ 2q =

    E0L

    , q(0) = q(0) = 0.

    The Laplace transform of this equation is

    s2 {q}+ 2s {q}+ 2 {q} = E0L

    1s

    or (s2 + 2s + 2

    ) {q} = E0L

    1s.

    Solving for {q} and using partial fractions we obtain

    {q} = E0L

    (1/2

    s (1/

    2)s + 2/2

    s2 + 2s + 2

    )=

    E0L2

    (1s s + 2

    s2 + 2s + 2

    ).

    211

  • 4.3 Translation Theorems

    For > we write s2 + 2s + 2 = (s + )2 (2 2), so (recalling that 2 = 1/LC){q} = E0C

    (1s s +

    (s + )2 (2 2)

    (s + )2 (2 2))

    .

    Thus for > ,

    q(t) = E0C[1 et

    (cosh

    2 2 t

    2 2 sinh

    2 2 t)]

    .

    For < we write s2 + 2s + 2 = (s + )2 +(2 2), so

    {q} = E0C(

    1s s +

    (s + )2 + (2 2)

    (s + )2 + (2 2))

    .

    Thus for < ,

    q(t) = E0C[1 et

    (cos

    2 2 t

    2 2 sin

    2 2 t)]

    .

    For = , s2 + 2 + 2 = (s + )2 and

    {q} = E0L

    1s(s + )2

    =E0L

    (1/2

    s 1/

    2

    s + 1/

    (s + )2

    )=

    E0L2

    (1s 1

    s +

    (s + )2

    ).

    Thus for = ,

    q(t) = E0C(1 et tet) .

    36. The dierential equation is

    Rdq

    dt+

    1C

    q = E0ekt, q(0) = 0.

    The Laplace transform of this equation is

    Rs {q}+ 1C

    {q} = E0 1s + k

    .

    Solving for {q} we obtain

    {q} = E0C(s + k)(RCs + 1)

    =E0/R

    (s + k)(s + 1/RC).

    When 1/RC = k we have by partial fractions

    {q} = E0R

    (1/(1/RC k)

    s + k 1/(1/RC k)

    s + 1/RC

    )=

    E0R

    11/RC k

    (1

    s + k 1

    s + 1/RC

    ).

    Thus

    q(t) =E0C

    1 kRC(ekt et/RC

    ).

    When 1/RC = k we have

    {q} = E0R

    1(s + k)2

    .

    Thus

    q(t) =E0R

    tekt =E0R

    tet/RC .

    37.{(t 1) (t 1)} = es

    s2

    38.{e2t (t 2)} = {e(t2) (t 2)} = e2s

    s + 1

    212

  • 4.3 Translation Theorems

    39.{t (t 2)} = {(t 2) (t 2) + 2 (t 2)} = e2s

    s2+

    2e2s

    sAlternatively, (16) of this section could be used:

    {t (t 2)} = e2s {t + 2} = e2s(

    1s2

    +2s

    ).

    40.{(3t + 1) (t 1)} = 3 {(t 1) (t 1)}+ 4 { (t 1)} = 3es

    s2+

    4es

    sAlternatively, (16) of this section could be used:

    {(3t + 1) (t 1)} = es {3t + 4} = es(

    3s2

    +4s

    ).

    41.{cos 2t (t )} = {cos 2(t ) (t )} = ses

    s2 + 4Alternatively, (16) of this section could be used:

    {cos 2t (t )} = es {cos 2(t + )} = es {cos 2t} = es ss2 + 4

    .

    42.{sin t

    (t

    2

    )}=

    {cos

    (t

    2

    ) (t

    2

    )}=

    ses/2

    s2 + 1

    Alternatively, (16) of this section could be used:{sin t

    (t

    2

    )}= es/2

    {sin

    (t +

    2

    )}= es/2 {cos t} = es/2 s

    s2 + 1.

    43.{

    e2s

    s3

    }=

    {12 2s3

    e2s}

    =12(t 2)2 (t 2)

    44.{

    (1 + e2s)2

    s + 2

    }=

    {1

    s + 2+

    2e2s

    s + 2+

    e4s

    s + 2

    }= e2t + 2e2(t2) (t 2) + e2(t4) (t 4)

    45.{

    es

    s2 + 1

    }= sin(t ) (t ) = sin t (t )

    46.{

    ses/2

    s2 + 4

    }= cos 2

    (t

    2

    ) (t

    2

    )= cos 2t

    (t

    2

    )

    47.{

    es

    s(s + 1)

    }=

    {es

    s e

    s

    s + 1

    }= (t 1) e(t1) (t 1)

    48.{

    e2s

    s2(s 1)}

    ={e

    2s

    s e

    2s

    s2+

    e2s

    s 1}

    = (t 2) (t 2) (t 2) + et2 (t 2)

    49. (c) 50. (e) 51. (f) 52. (b) 53. (a) 54. (d)

    55.{2 4 (t 3)} = 2

    s 4

    se3s

    56.{1 (t 4) + (t 5)} = 1

    s e

    4s

    s+

    e5s

    s

    57.{t2 (t 1)} = {[(t 1)2 + 2t 1] (t 1)} = {[(t 1)2 + 2(t 1) 1] (t 1)}

    =(

    2s3

    +2s2

    +1s

    )es

    213

  • 4.3 Translation Theorems

    Alternatively, by (16) of this section,

    {t2 (t 1)} = es {t2 + 2t + 1} = es(

    2s3

    +2s2

    +1s

    ).

    58.{sin t

    (t 3

    2

    )}=

    { cos

    (t 3

    2

    ) (t 3

    2

    )}= se

    3s/2

    s2 + 1

    59.{t t (t 2)} = {t (t 2) (t 2) 2 (t 2)} = 1

    s2 e

    2s

    s2 2e

    2s

    s

    60.{sin t sin t (t 2)} = {sin t sin(t 2) (t 2)} = 1

    s2 + 1 e

    2s

    s2 + 1

    61.{f(t)

    }=

    {(t a) (t b)} = eas

    s e

    bs

    s

    62.{f(t)

    }=

    {(t 1) + (t 2) + (t 3) + } = es

    s+

    e2s

    s+

    e3s

    s+ = 1

    s

    es

    1 es63. The Laplace transform of the dierential equation is

    s {y} y(0) + {y} = 5ses.

    Solving for {y} we obtain{y} = 5e

    s

    s(s + 1)= 5es

    [1s 1

    s + 1

    ].

    Thusy = 5 (t 1) 5e(t1) (t 1).

    64. The Laplace transform of the dierential equation is

    s {y} y(0) + {y} = 1s 2

    ses.

    Solving for {y} we obtain

    {y} = 1s(s + 1)

    2es

    s(s + 1)=

    1s 1

    s + 1 2es

    [1s 1

    s + 1

    ].

    Thusy = 1 et 2

    [1 e(t1)

    ](t 1).

    65. The Laplace transform of the dierential equation is

    s {y} y(0) + 2 {y} = 1s2 es s + 1

    s2.

    Solving for {y} we obtain

    {y} = 1s2(s + 2)

    es s + 1s2(s + 2)

    = 14

    1s+

    12

    1s2

    +14

    1s + 2

    es[14

    1s+

    12

    1s2 1

    41

    s + 2

    ].

    Thus

    y = 14+

    12t +

    14e2t

    [14+

    12(t 1) 1

    4e2(t1)

    ](t 1).

    66. The Laplace transform of the dierential equation is

    s2 {y} sy(0) y(0) + 4 {y} = 1s e

    s

    s.

    214

  • 4.3 Translation Theorems

    Solving for {y} we obtain

    {y} = 1 ss(s2 + 4)

    es 1s(s2 + 4)

    =14

    1s 1

    4s

    s2 + 4 1

    22

    s2 + 4 es

    [14

    1s 1

    4s

    s2 + 4

    ].

    Thus

    y =14 1

    4cos 2t 1

    2sin 2t

    [14 1

    4cos 2(t 1)

    ](t 1).

    67. The Laplace transform of the dierential equation is

    s2 {y} sy(0) y(0) + 4 {y} = e2s 1s2 + 1

    .

    Solving for {y} we obtain

    {y} = ss2 + 4

    + e2s[13

    1s2 + 1

    16

    2s2 + 4

    ].

    Thus

    y = cos 2t +[13sin(t 2) 1

    6sin 2(t 2)

    ](t 2).

    68. The Laplace transform of the dierential equation is

    s2 {y} sy(0) y(0) 5 [s {y} y(0)] + 6 {y} = es

    s.

    Solving for {y} we obtain

    {y} = es 1s(s 2)(s 3) +

    1(s 2)(s 3)

    = es[16

    1s 1

    21

    s 2 +13

    1s 3

    ] 1

    s 2 +1

    s 3 .

    Thus

    y =[16 1

    2e2(t1) +

    13e3(t1)

    ](t 1) e2t + e3t.

    69. The Laplace transform of the dierential equation is

    s2 {y} sy(0) y(0) + {y} = es

    s e

    2s

    s.

    Solving for {y} we obtain

    {y} = es[1s s

    s2 + 1

    ] e2s

    [1s s

    s2 + 1

    ]+

    1s2 + 1

    .

    Thusy = [1 cos(t )] (t ) [1 cos(t 2)] (t 2) + sin t.

    70. The Laplace transform of the dierential equation is

    s2 {y} sy(0) y(0) + 4[s {y} y(0)]+ 3 {y} = 1s e

    2s

    s e

    4s

    s+

    e6s

    s.

    Solving for {y} we obtain

    {y} = 13

    1s 1

    21

    s + 1+

    16

    1s + 3

    e2s[13

    1s 1

    21

    s + 1+

    16

    1s + 3

    ]

    e4s[13

    1s 1

    21

    s + 1+

    16

    1s + 3

    ]+ e6s

    [13

    1s 1

    21

    s + 1+

    16

    1s + 3

    ].

    215

  • 4.3 Translation Theorems

    Thus

    y =13 1

    2et +

    16e3t

    [13 1

    2e(t2) +

    16e3(t2)

    ](t 2)

    [13 1

    2e(t4) +

    16e3(t4)

    ](t 4) +

    [13 1

    2e(t6) +

    16e3(t6)

    ](t 6).

    71. Recall from Section 3.8 that mx = kx + f(t). Now m = W/g = 32/32 = 1 slug, and 32 = 2k so thatk = 16 lb/ft. Thus, the dierential equation is x + 16x = f(t). The initial conditions are x(0) = 0, x(0) = 0.Also, since

    f(t) =

    {20t, 0 t < 50, t 5

    and 20t = 20(t 5) + 100 we can writef(t) = 20t 20t (t 5) = 20t 20(t 5) (t 5) 100 (t 5).

    The Laplace transform of the dierential equation is

    s2 {x}+ 16 {x} = 20s2 20

    s2e5s 100

    se5s.

    Solving for {x} we obtain

    {x} = 20s2(s2 + 16)

    20s2(s2 + 16)

    e5s 100s(s2 + 16)

    e5s

    =(

    54 1s2 5

    16 4s2 + 16

    )(1 e5s) (25

    4 1s 25

    4 ss2 + 16

    )e5s.

    Thus

    x(t) =54t 5

    16sin 4t

    [54(t 5) 5

    16sin 4(t 5)

    ](t 5)

    [254 25

    4cos 4(t 5)

    ](t 5)

    =54t 5

    16sin 4t 5

    4t (t 5) + 5

    16sin 4(t 5) (t 5) + 25

    4cos 4(t 5) (t 5).

    72. Recall from Section 3.8 that mx = kx + f(t). Now m = W/g = 32/32 = 1 slug, and 32 = 2k so thatk = 16 lb/ft. Thus, the dierential equation is x + 16x = f(t). The initial conditions are x(0) = 0, x(0) = 0.Also, since

    f(t) ={

    sin t, 0 t < 20, t 2

    and sin t = sin(t 2) we can writef(t) = sin t sin(t 2) (t 2).

    The Laplace transform of the dierential equation is

    s2 {x}+ 16 {x} = 1s2 + 1

    1s2 + 1

    e2s.

    Solving for {x} we obtain

    {x} = 1(s2 + 16) (s2 + 1)

    1(s2 + 16) (s2 + 1)

    e2s

    =1/15s2 + 16

    +1/15s2 + 1

    [ 1/15s2 + 16

    +1/15s2 + 1

    ]e2s.

    216

  • 4.3 Translation Theorems

    Thusx(t) = 1

    60sin 4t +

    115

    sin t +160

    sin 4(t 2) (t 2) 115

    sin(t 2) (t 2)

    =

    { 160 sin 4t + 115 sin t, 0 t < 20, t 2.

    73. The dierential equation is

    2.5dq

    dt+ 12.5q = 5 (t 3).

    The Laplace transform of this equation is

    s {q}+ 5 {q} = 2se3s.

    Solving for {q} we obtain

    {q} = 2s(s + 5)

    e3s =(

    25 1s 2

    5 1s + 5

    )e3s.

    Thusq(t) =

    25

    (t 3) 25e5(t3) (t 3).

    74. The dierential equation is

    10dq

    dt+ 10q = 30et 30et (t 1.5).

    The Laplace transform of this equation is

    s {q} q0 + {q} = 3s 1

    3e1.5

    s 1.5 e1.5s.

    Solving for {q} we obtain

    {q} =(q0 32

    ) 1s + 1

    +32 1s 1 3e

    1.5

    (2/5s + 1

    +2/5

    s 1.5)

    e1.5s.

    Thus

    q(t) =(q0 32

    )et +

    32et +

    65e1.5

    (e(t1.5) e1.5(t1.5)

    )(t 1.5).

    75. (a) The dierential equation is

    di

    dt+ 10i = sin t + cos

    (t 3

    2

    ) (t 3

    2

    ), i(0) = 0.

    The Laplace transform of this equation is

    s {i}+ 10 {i} = 1s2 + 1

    +se3s/2

    s2 + 1.

    Solving for {i} we obtain

    {i} = 1(s2 + 1)(s + 10)

    +s

    (s2 + 1)(s + 10)e3s/2

    =1

    101

    (1

    s + 10 s

    s2 + 1+

    10s2 + 1

    )+

    1101

    ( 10s + 10

    +10s

    s2 + 1+

    1s2 + 1

    )e3s/2.

    Thusi(t) =

    1101

    (e10t cos t + 10 sin t)

    +1

    101

    [10e10(t3/2) + 10 cos

    (t 3

    2

    )+ sin

    (t 3

    2

    )] (t 3

    2

    ).

    217

  • 1 2 3 4 5 6t

    -0.2

    0.2

    i

    1 2 3 4 5 6t

    1

    q

    4.3 Translation Theorems

    (b)

    The maximum value of i(t) is approximately 0.1 at t = 1.7, the minimum is approximately 0.1 at 4.7.76. (a) The dierential equation is

    50dq

    dt+

    10.01

    q = E0[ (t 1) (t 3)], q(0) = 0or

    50dq

    dt+ 100q = E0[ (t 1) (t 3)], q(0) = 0.

    The Laplace transform of this equation is

    50s {q}+ 100 {q} = E0(

    1ses 1

    se3s

    ).

    Solving for {q} we obtain

    {q} = E050

    [es

    s(s + 2) e

    3s

    s(s + 2)

    ]=

    E050

    [12

    (1s 1

    s + 2

    )es 1

    2

    (1s 1

    s + 2

    )e3s

    ].

    Thus

    q(t) =E0100

    [(1 e2(t1)

    )(t 1)

    (1 e2(t3)

    )(t 3)

    ].

    (b)

    The maximum value of q(t) is approximately 1 at t = 3.

    77. The dierential equation is

    EId4y

    dx4= w0[1 (x L/2)].

    Taking the Laplace transform of both sides and using y(0) = y(0) = 0 we obtain

    s4 {y} sy(0) y(0) = w0EI

    1s

    (1 eLs/2

    ).

    Letting y(0) = c1 and y(0) = c2 we have

    {y} = c1s3

    +c2s4

    +w0EI

    1s5

    (1 eLs/2

    )so that

    y(x) =12c1x

    2 +16c2x

    3 +124

    w0EI

    [x4

    (x L

    2

    )4 (x L

    2

    )].

    To nd c1 and c2 we compute

    y(x) = c1 + c2x +12

    w0EI

    [x2

    (x L

    2

    )2 (x L

    2

    )]

    and

    218

  • 4.3 Translation Theorems

    y(x) = c2 +w0EI

    [x

    (x L

    2

    ) (x L

    2

    )].

    Then y(L) = y(L) = 0 yields the system

    c1 + c2L +12

    w0EI

    [L2

    (L

    2

    )2]= c1 + c2L +

    38

    w0L2

    EI= 0

    c2 +w0EI

    (L

    2

    )= c2 +

    12

    w0L

    EI= 0.

    Solving for c1 and c2 we obtain c1 = 18w0L2/EI and c2 = 12w0L/EI. Thus

    y(x) =w0EI

    [116

    L2x2 112

    Lx3 +124

    x4 124

    (x L

    2

    )4 (x L

    2

    )].

    78. The dierential equation is

    EId4y

    dx4= w0[ (x L/3) (x 2L/3)].

    Taking the Laplace transform of both sides and using y(0) = y(0) = 0 we obtain

    s4 {y} sy(0) y(0) = w0EI

    1s

    (eLs/3 e2Ls/3

    ).

    Letting y(0) = c1 and y(0) = c2 we have

    {y} = c1s3

    +c2s4

    +w0EI

    1s5

    (eLs/3 e2Ls/3

    )so that

    y(x) =12c1x

    2 +16c2x

    3 +124

    w0EI

    [(x L

    3

    )4 (x L

    3

    )(x 2L

    3

    )4 (x 2L

    3

    )].

    To nd c1 and c2 we compute

    y(x) = c1 + c2x +12

    w0EI

    [(x L

    3

    )2 (x L

    3

    )(x 2L

    3

    )2 (x 2L

    3

    )]

    and

    y(x) = c2 +w0EI

    [(x L

    3

    ) (x L

    3

    )(x 2L

    3

    ) (x 2L

    3

    )].

    Then y(L) = y(L) = 0 yields the system

    c1 + c2L +12

    w0EI

    [(2L3

    )2(

    L

    3

    )2]= c1 + c2L +

    16

    w0L2

    EI= 0

    c2 +w0EI

    [2L3 L

    3

    ]= c2 +

    13

    w0L

    EI= 0.

    Solving for c1 and c2 we obtain c1 = 16w0L2/EI and c2 = 13w0L/EI. Thus

    y(x) =w0EI

    (112

    L2x2 118

    Lx3 +124

    [(x L

    3

    )4 (x L

    3

    )(x 2L

    3

    )4 (x 2L

    3

    )]).

    79. The dierential equation is

    EId4y

    dx4=

    2w0L

    [L

    2 x +

    (x L

    2

    ) (x L

    2

    )].

    219

  • 4.3 Translation Theorems

    Taking the Laplace transform of both sides and using y(0) = y(0) = 0 we obtain

    s4 {y} sy(0) y(0) = 2w0EIL

    [L

    2s 1

    s2+

    1s2

    eLs/2].

    Letting y(0) = c1 and y(0) = c2 we have

    {y} = c1s3

    +c2s4

    +2w0EIL

    [L

    2s5 1

    s6+

    1s6

    eLs/2]

    so that

    y(x) =12c1x

    2 +16c2x

    3 +2w0EIL

    [L

    48x4 1

    120x5 +

    1120

    (x L

    2

    )5 (x L

    2

    )]

    =12c1x

    2 +16c2x

    3 +w0

    60EIL

    [5L2

    x4 x5 +(x L

    2

    )5 (x L

    2

    )].

    To nd c1 and c2 we compute

    y(x) = c1 + c2x +w0

    60EIL

    [30Lx2 20x3 + 20

    (x L

    2

    )3 (x L

    2

    )]

    and

    y(x) = c2 +w0

    60EIL

    [60Lx 60x2 + 60

    (x L

    2

    )2 (x L

    2

    )].

    Then y(L) = y(L) = 0 yields the system

    c1 + c2L +w0

    60EIL

    [30L3 20L3 + 5

    2L3]= c1 + c2L +

    5w0L2

    24EI= 0

    c2 +w0

    60EIL[60L2 60L2 + 15L2] = c2 + w0L4EI = 0.

    Solving for c1 and c2 we obtain c1 = w0L2/24EI and c2 = w0L/4EI. Thus

    y(x) =w0L

    2

    48EIx2 w0L

    24EIx3 +

    w060EIL

    [5L2

    x4 x5 +(x L

    2

    )5 (x L

    2

    )].

    80. The dierential equation is

    EId4y

    dx4= w0[1 (x L/2)].

    Taking the Laplace transform of both sides and using y(0) = y(0) = 0 we obtain

    s4 {y} sy(0) y(0) = w0EI

    1s

    (1 eLs/2

    ).

    Letting y(0) = c1 and y(0) = c2 we have

    {y} = c1s3

    +c2s4

    +w0EI

    1s5

    (1 eLs/2

    )so that

    y(x) =12c1x

    2 +16c2x

    3 +124

    w0EI

    [x4

    (x L

    2

    )4 (x L

    2

    )].

    To nd c1 and c2 we compute

    y(x) = c1 + c2x +12

    w0EI

    [x2

    (x L

    2

    )2 (x L

    2

    )].

    220

  • 4.3 Translation Theorems

    Then y(L) = y(L) = 0 yields the system

    12c1L

    2 +16c2L

    3 +124

    w0EI

    [L4

    (L

    2

    )4]=

    12c1L

    2 +16c2L

    3 +5w0

    128EIL4 = 0

    c1 + c2L +12

    w0EI

    [L2

    (L

    2

    )2]= c1 + c2L +

    3w08EI

    L2 = 0.

    Solving for c1 and c2 we obtain c1 = 9128 w0L2/EI and c2 = 57128 w0L/EI. Thus

    y(x) =w0EI

    [9

    256L2x2 19

    256Lx3 +

    124

    x4 124

    (x L

    2

    )4 (x L

    2

    )].

    81. (a) The temperature T of the cake inside the oven is modeled by

    dT

    dt= k(T Tm)

    where Tm is the ambient temperature of the oven. For 0 t 4, we have

    Tm = 70 +300 704 0 t = 70 + 57.5t.

    Hence for t 0,Tm =

    {70 + 57.5t, 0 t < 4300, t 4.

    In terms of the unit step function,

    Tm = (70 + 57.5t)[1 (t 4)] + 300 (t 4) = 70 + 57.5t + (230 57.5t) (t 4).The initial-value problem is then

    dT

    dt= k[T 70 57.5t (230 57.5t) (t 4)], T (0) = 70.

    (b) Let t(s) = {T (t)}. Transforming the equation, using 230 57.5t = 57.5(t 4) and Theorem 4.7, gives

    st(s) 70 = k(t(s) 70

    s 57.5

    s2+

    57.5s2

    e4s)

    or

    t(s) =70

    s k 70k

    s(s k) 57.5k

    s2(s k) +57.5k

    s2(s k) e4s.

    After using partial functions, the inverse transform is then

    T (t) = 70 + 57.5(

    1k

    + t 1k

    ekt) 57.5

    (1k

    + t 4 1k

    ek(t4))

    (t 4).

    Of course, the obvious question is: What is k? If the cake is supposed to bake for, say, 20 minutes, thenT (20) = 300. That is,

    300 = 70 + 57.5(

    1k

    + 20 1k

    e20k) 57.5

    (1k

    + 16 1k

    e16k)

    .

    But this equation has no physically meaningful solution. This should be no surprise since the model predictsthe asymptotic behavior T (t) 300 as t increases. Using T (20) = 299 instead, we nd, with the help of aCAS, that k 0.3.

    82. In order to apply Theorem 4.7 we need the function to have the form f(t a) (t a). To accomplish thisrewrite the functions given in the forms shown below.

    221

  • 4.3 Translation Theorems

    (a) 2t + 1 = 2(t 1 + 1) + 1 = 2(t 1) + 3 (b) et = et5+5 = e5et5(c) cos t = cos(t ) (d) t2 3t = (t 2)2 + (t 2) 2

    83. (a) From Theorem 4.6 we have {tekti} = 1/(s ki)2. Then, using Eulers formula,

    {tekti} = {t cos kt + it sin kt} = {t cos kt}+ i {t sin kt}

    =1

    (s ki)2 =(s + ki)2

    (s2 + k2)2=

    s2 k2(s2 + k2)2

    + i2ks

    (s2 + k2)2.

    Equating real and imaginary parts we have

    {t cos kt} = s2 k2

    (s2 + k2)2and {t sin kt} = 2ks

    (s2 + k2)2.

    (b) The Laplace transform of the dierential equation is

    s2 {x}+ 2 {x} = ss2 + 2

    .

    Solving for {x} we obtain {x} = s/(s2 + 2)2. Thus x = (1/2)t sint.

    EXERCISES 4.4Additional Operational Properties

    1. {te10t} = dds

    (1

    s + 10

    )=

    1(s + 10)2

    2. {t3et} = (1)3 d3

    ds3

    (1

    s 1)

    =6

    (s 1)4

    3. {t cos 2t} = dds

    (s

    s2 + 4

    )=

    s2 4(s2 + 4)2

    4. {t sinh 3t} = dds

    (3

    s2 9)

    =6s

    (s2 9)2

    5. {t2 sinh t} = d2

    ds2

    (1

    s2 1)

    =6s2 + 2(s2 1)3

    6. {t2 cos t} = d2

    ds2

    (s

    s2 + 1

    )=

    d

    ds

    (1 s2

    (s2 + 1)2

    )=

    2s(s2 3)

    (s2 + 1)3

    7.{te2t sin 6t

    }= d

    ds

    (6

    (s 2)2 + 36)

    =12(s 2)

    [(s 2)2 + 36]2

    8.{te3t cos 3t

    }= d

    ds

    (s + 3

    (s + 3)2 + 9

    )=

    (s + 3)2 9[(s + 3)2 + 9]2

    9. The Laplace transform of the dierential equation is

    s {y}+ {y} = 2s(s2 + 1)2

    .

    Solving for {y} we obtain

    {y} = 2s(s + 1)(s2 + 1)2

    = 12

    1s + 1

    12

    1s2 + 1

    +12

    s

    s2 + 1+

    1(s2 + 1)2

    +s

    (s2 + 1)2.

    222

  • 4.4 Additional Operational Properties

    Thus

    y(t) = 12et 1

    2sin t +

    12cos t +

    12(sin t t cos t) + 1

    2t sin t

    = 12et +

    12cos t 1

    2t cos t +

    12t sin t.

    10. The Laplace transform of the dierential equation is

    s {y} {y} = 2(s 1)((s 1)2 + 1)2 .

    Solving for {y} we obtain{y} = 2

    ((s 1)2 + 1)2 .

    Thus

    y = et sin t tet cos t.

    11. The Laplace transform of the dierential equation is

    s2 {y} sy(0) y(0) + 9 {y} = ss2 + 9

    .

    Letting y(0) = 2 and y(0) = 5 and solving for {y} we obtain

    {y} = 2s3 + 5s2 + 19s 45

    (s2 + 9)2=

    2ss2 + 9

    +5

    s2 + 9+

    s

    (s2 + 9)2.

    Thus

    y = 2 cos 3t +53sin 3t +

    16t sin 3t.

    12. The Laplace transform of the dierential equation is

    s2 {y} sy(0) y(0) + {y} = 1s2 + 1

    .

    Solving for {y} we obtain

    {y} = s3 s2 + s(s2 + 1)2

    =s

    s2 + 1 1

    s2 + 1+

    1(s2 + 1)2

    .

    Thus

    y = cos t sin t +(

    12sin t 1

    2t cos t

    )= cos t 1

    2sin t 1

    2t cos t.

    13. The Laplace transform of the dierential equation is

    s2 {y} sy(0) y(0) + 16 {y} = {cos 4t cos 4t (t )}or by (16) of Section 4.3 in the text,

    (s2 + 16) {y} = 1 + ss2 + 16

    es {cos 4(t + )}

    = 1 +s

    s2 + 16 es {cos 4t} = 1 + s

    s2 + 16 s

    s2 + 16es .

    Thus

    {y} = 1s2 + 16

    +s

    (s2 + 16)2 s

    (s2 + 16)2es

    and

    y =14sin 4t +

    18t sin 4t 1

    8(t ) sin 4(t ) (t ).

    223

  • 1 2 3 4 5 6t

    -1

    -0.5

    0.5

    1

    y

    1 2 3 4 5 6t

    -4

    -2

    2

    4

    y

    4.4 Additional Operational Properties

    14. The Laplace transform of the dierential equation is

    s2 {y} sy(0) y(0) + {y} ={1

    (t

    2

    )+ sin t

    (t

    2

    )}

    (s2 + 1) {y} = s + 1s 1

    ses/2 + es/2

    {sin

    (t +

    2

    )}or

    = s +1s 1

    ses/2 + es/2 {cos t}

    = s +1s 1

    ses/2 +

    s

    s2 + 1es/2.

    Thus{y} = s

    s2 + 1+

    1s(s2 + 1)

    1s(s2 + 1)

    es/2 +s

    (s2 + 1)2es/2

    =s

    s2 + 1+

    1s s

    s2 + 1(

    1s s

    s2 + 1

    )es/2 +

    s

    (s2 + 1)2es/2

    =1s(

    1s s

    s2 + 1

    )es/2 +

    s

    (s2 + 1)2es/2

    andy = 1

    [1 cos

    (t

    2

    )] (t

    2

    )+

    12

    (t

    2

    )sin

    (t

    2

    ) (t

    2

    )= 1 (1 sin t)

    (t

    2

    ) 1

    2

    (t

    2

    )cos t

    (t

    2

    ).

    15. 16.

    17. From (7) of Section 4.2 in the text along with Theorem 4.8,

    {ty} = dds

    {y} = dds

    [s2Y (s) sy(0) y(0)] = s2 dYds

    2sY + y(0),so that the transform of the given second-order dierential equation is the linear rst-order dierential equationin Y (s):

    s2Y + 3sY = 4s3

    or Y +3sY = 4

    s5.

    The solution of the latter equation is Y (s) = 4/s4 + c/s3, so

    y(t) = {Y (s)} = 23t3 +

    c

    2t2.

    18. From Theorem 4.8 in the text

    {ty} = dds

    {y} = dds

    [sY (s) y(0)] = s dYds

    Yso that the transform of the given second-order dierential equation is the linear rst-order dierential equationin Y (s):

    Y +(

    3s 2s

    )Y = 10

    s.

    224

  • 4.4 Additional Operational Properties

    Using the integrating factor s3es2, the last equation yields

    Y (s) =5s3

    +c

    s3es

    2.

    But if Y (s) is the Laplace transform of a piecewise-continuous function of exponential order, we must have, inview of Theorem 4.5, lims Y (s) = 0. In order to obtain this condition we require c = 0. Hence

    y(t) ={

    5s3

    }=

    52t2.

    19.{1 t3} = 1

    s

    3!s4

    =6s5

    20.{t2 tet} = 2

    s3(s 1)2

    21.{et et cos t} = s 1

    (s + 1) [(s 1)2 + 1] 22.{e2t sin t} = 1

    (s 2)(s2 + 1)

    23.{ t

    0

    e d

    }=

    1s

    {et} = 1s(s 1)

    24.{ t

    0

    cos d}

    =1s

    {cos t} = ss(s2 + 1)

    =1

    s2 + 1

    25.{ t

    0

    e cos d}

    =1s

    {et cos t

    }=

    1s

    s + 1(s + 1)2 + 1

    =s + 1

    s (s2 + 2s + 2)

    26.{ t

    0

    sin d}

    =1s

    {t sin t} = 1s

    ( d

    ds

    1s2 + 1

    )= 1

    s

    2s(s2 + 1)2

    =2

    (s2 + 1)2

    27.{ t

    0

    et d}

    = {t} {et} = 1s2(s 1)

    28.{ t

    0

    sin cos(t ) d}

    = {sin t} {cos t} = s(s2 + 1)2

    29.{t

    t0

    sin d}

    = dds

    { t0

    sin d}

    = dds

    (1s

    1s2 + 1

    )=

    3s2 + 1s2 (s2 + 1)2

    30.{t

    t0

    ed}

    = dds

    { t0

    ed}

    = dds

    (1s

    1(s + 1)2

    )=

    3s + 1s2(s + 1)3

    31.{

    1s(s 1)

    }=

    {1/(s 1)

    s

    }= t0

    ed = et 1

    32.{

    1s2(s 1)

    }=

    {1/s(s 1)

    s

    }= t0

    (e 1)d = et t 1

    33.{

    1s3(s 1)

    }=

    {1/s2(s 1)

    s

    }= t0

    (e 1)d = et 12t2 t 1

    34. Using{

    1(s a)2

    }= teat, (8) in the text gives

    {1

    s(s a)2}

    = t0

    ea d =1a2

    (ateat eat + 1).

    35. (a) The result in (4) in the text is {F (s)G(s)} = f g, so identify

    F (s) =2k3

    (s2 + k2)2and G(s) =

    4ss2 + k2

    .

    225

  • ty

    5 10 1550

    50

    4.4 Additional Operational Properties

    Thenf(t) = sin kt kt cos kt and g(t) = 4 cos kt

    so {8k3s

    (s2 + k2)3

    }= {F (s)G(s)} = f g = 4

    t0

    f()g(t )dt

    = 4 t0

    (sin k k cos k) cos k(t )d.

    Using a CAS to evaluate the integral we get{8k3s

    (s2 + k2)3

    }= t sin kt kt2 cos kt.

    (b) Observe from part (a) that

    {t(sin kt kt cos kt)} = 8k3s

    (s2 + k2)3,

    and from Theorem 4.8 that{tf(t)

    }= F (s). We saw in (5) in the text that

    {sin kt kt cos kt} = 2k3/(s2 + k2)2,so {

    t(sin kt kt cos kt)} = dds

    2k3

    (s2 + k2)2=

    8k3s(s2 + k2)3

    .

    36. The Laplace transform of the dierential equation is

    s2 {y}+ {y} = 1(s2 + 1)

    +2s

    (s2 + 1)2.

    Thus

    {y} = 1(s2 + 1)2

    +2s

    (s2 + 1)3

    and, using Problem 35 with k = 1,

    y =12(sin t t cos t) + 1

    4(t sin t t2 cos t).

    37. The Laplace transform of the given equation is

    {f}+ {t} {f} = {t}.

    Solving for {f} we obtain {f} = 1s2 + 1

    . Thus, f(t) = sin t.

    38. The Laplace transform of the given equation is

    {f} = {2t} 4 {sin t} {f}.Solving for {f} we obtain

    {f} = 2s2 + 2

    s2(s2 + 5)=

    25

    1s2

    +8

    55

    5

    s2 + 5.

    Thusf(t) =

    25t +

    855sin

    5 t.

    39. The Laplace transform of the given equation is

    {f} = {tet}+ {t} {f}.226